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Abstract001

The development of many vision models002
mainly focuses on improving their performance003
using metrics such as accuracy, IoU, and mAP,004
with less attention to explainability due to the005
complexity of applying xAI methods to provide006
a meaningful explanation of trained models.007
Although many existing xAI methods aim to008
explain vision models sample-by-sample, meth-009
ods explaining the general behavior of vision010
models, which can only be captured after run-011
ning on a large dataset, are still underexplored.012
Furthermore, some other xAI methods are com-013
plex and require expert interpretation, limiting014
their use in causal vision model development015
despite the importance of explainability. With016
the application of Vision-Language Models,017
this paper proposes a pipeline to explain vi-018
sion models for both sample and dataset levels.019
The proposed pipeline can be applied to dis-020
cover failure cases and understand vision mod-021
els without much effort, thus it can integrate022
vision models’ development and xAI analysis023
to advance the development of image analysis.024

1 Introduction025

Understanding how vision models make decisions026

is important to improve the reliability and trustwor-027

thiness of AI systems. Although there are many028

established methods, benchmarks for evaluating029

the overall performance of vision models on large030

datasets, methods focusing on analyzing how mod-031

els understand images, especially on large image032

datasets, are still limited despite the importance of033

explainability in providing information about how034

and why the model fails in some scenarios. Conse-035

quently, a scalable pipeline to explain vision mod-036

els in one sample or a large vision dataset would037

be important for image processing development.038

xAI methods such as CAM, GradCAM, LIME,039

and TCAV are introduced to explain vision mod-040

els. While concept-based methods like TCAV,041

ACE (Ghorbani et al., 2019), and CRAFT (FEL042

et al., 2022) explain a model on a dataset, they only 043

explain on a dataset and require more knowledge 044

about xAI, limiting their application. Meanwhile, 045

CAM-based methods are quick and simple; apply- 046

ing those methods to a dataset would require man- 047

ual summarization to get useful information. An ex- 048

isting framework, LangXAI, uses VLM to describe 049

vision models’ attention. Although the process is 050

automatic, the pipeline has similar limitations on 051

large datasets, and the pipeline’s explanation might 052

not be more useful than saliency images. 053

This work includes three main contributions. 054

First, we propose a scalable pipeline that combines 055

CAM-based methods with VLMs to explain the 056

behavior of the vision model. Second, we propose 057

masked CAM images, which show the benefit of 058

understanding the attended regions of vision mod- 059

els in this study’s scope. Lastly, we introduce a 060

confusion matrix used in the pipeline, which helps 061

summarize models’ behavior on a large dataset, 062

providing a general understanding of the models. 063

2 Related Work 064

Although many frameworks focus on evaluat- 065

ing vision model performance with metrics like 066

accuracy, IoU, ensuring transparency and inter- 067

pretability through explainable AI (xAI) is also 068

crucial (Gunning and Aha, 2019; Zhao et al., 069

2015). xAI includes a variety of techniques 070

to make machine learning models more inter- 071

pretable and is generally classified as model- 072

agnostic and model-specific methods (Lundberg 073

and Lee, 2017). Model-agnostic approaches, ap- 074

plicable to any model, often assess the importance 075

of features, while model-specific methods lever- 076

age internal model structures for explanation (Bach 077

et al., 2015). For vision tasks, popular techniques 078

such as LIME (Ribeiro et al., 2016), TCAV (Kim 079

et al., 2018), and CAM-based methods, includ- 080

ing CAM (Zhou et al., 2016), Grad-CAM (Sel- 081
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varaju et al., 2017), Grad-CAM++(Chattopadhyay082

et al., 2017), LayerCAM (Jiang et al., 2021), Score-083

CAM (Wang et al., 2020a), EigenCAM (Muham-084

mad and Yeasin, 2020), and XGradCAM (Oquab085

et al., 2015; Wang et al., 2020b) highlight regions086

important for predictions (Itti et al., 1998; Küm-087

merer et al., 2014; Zhao et al., 2015). These tools088

are especially valuable in fields like healthcare (Bo-089

rys et al., 2023; Kakogeorgiou and Karantzalos,090

2021; Kim and Joe, 2022), although many still re-091

quire expert interpretation, which poses challenges092

to integration into development workflows.093

The development of Vision-Language Models094

(VLMs) expands the capabilities of LLMs such as095

Qwen (Bai et al., 2023), Llama (Touvron et al.,096

2023), and Phi (Li et al., 2023b) by enabling them097

to process images and text simultaneously (Ranas-098

inghe et al., 2024; Liu et al., 2023). VLMs099

use vision models such as CLIP (Radford et al.,100

2021) to excel in multimodal tasks. Prominent ex-101

amples include Flamingo (Alayrac et al., 2022),102

BLIP (Li et al., 2022) integrates a visual en-103

coder with an LLM via a querying transformer (Li104

et al., 2023a), and different VLMs such as GPT-105

4o, Qwen-VL (Bai et al., 2023), and Llama Vi-106

sion (Chu et al., 2024), show strong ability to un-107

derstand visual data. Consequently, they are widely108

used in many applications, including evaluating ex-109

isting vision models (Chen et al., 2024).110

Despite the importance of xAI and the signif-111

icant advancement in VLMs in recent years, the112

applications to analyze interpretive visualizations,113

such as Grad-CAM, in visual models remain under-114

explored. To fill this gap, LangXAI Nguyen et al.115

(2024) explored the potential of using VLMs to gen-116

erate explanations for visual recognition based on117

the intensity of colors extracted from CAM meth-118

ods. However, the framework generates a descrip-119

tion for one sample at a time without summarizing,120

evaluating, and comparing the general interpretabil-121

ity of models on a set of images, making it difficult122

to understand their general underlying features and123

behaviors, as we cannot just read many descrip-124

tions for each model. To further bridge this gap, we125

developed a scalable pipeline that utilizes VLMs to126

evaluate predictions from vision models, scoring127

them, providing detailed explanations, and sum-128

marizing the model’s attention with a confusion129

matrix on a larger dataset. This method overcomes130

previous work by providing quantitative results on131

a larger dataset, helping to generalize the use of132

xAI and better connect training to understanding.133

3 Methodology 134

We introduce a novel pipeline to explain vision 135

models automatically. This pipeline combines 136

CAM methods to visualize the model’s attention 137

and uses vision-language models to generate de- 138

scriptions, evaluations, scores, and a confusion ma- 139

trix. The entire proposed pipeline to explain and 140

score vision models is illustrated in Figure 1. 141

3.1 Masked CAM image 142

The pipeline starts by feeding an image to vision 143

models and getting a predicted result on the image. 144

After that, different methods to extract models’ at- 145

tention, including CAM, LayerCAM, and more, are 146

utilized to get an attention map of vision models on 147

the image. Then, we apply a more general version 148

of the sigmoid function to the attention map and get 149

a mask for each image. The activation function is 150

illustrated in Equation 1, where vxy, ranging from 151

0 to 1, is the value of the attention map at position 152

(x, y), indicating the importance of the pixel, and 153

Mxy is the activated value at position (x, y). 154

Mxy =
1

1 + exp (α · (β − vxy))
(1) 155

In the equation, the values of vxy > β are scaled 156

closer to 1 to highlight important regions, while 157

vxy < β gradually decrease toward 0, reflecting 158

reduced importance. Meanwhile, α controls the 159

transition speed. The higher α, the more sudden 160

the transition from blacked-out to visible. 161

After achieving the mask, we apply it to the orig- 162

inal image to hide regions with less attention ac- 163

cording to the CAM-based method. This process is 164

formulated in Equation 2, where we multiply each 165

pixel in the original image I by the corresponding 166

value in the calculated mask M in Equation 1 to 167

achieve the final masked image A. 168

Axy = Ixy ·Mxy (2) 169

The main reason we use the masked image in- 170

stead of the heatmap overlay to explain the vision 171

model’s attention is to prevent degrading the qual- 172

ity of the image, which can negatively affect the 173

results of VLMs. Using a heatmap overlay can 174

hide away important features of the object(s), thus 175

reducing VLM’s ability to understand the attention 176

regions and lowering its accuracy. By blacking out 177

the areas without the model’s focus and maintain- 178

ing the remaining areas, we will not sacrifice the 179

image quality on attended objects while ensuring 180
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Original image Attention map Masked image

Description: The Grad-CAM highlights significant portions of the station wagon, particularly along the
side, where the model has seemingly concentrated its attention. There is a strong alignment between
the highlighted regions and the vehicle, indicating that the model is indeed identifying the station
wagon despite the obscured view. However, there are minimal distractions from the background, but
these do not greatly detract from the model's focus on the car. The occupied focus regions suggest
that the model detects key features of the wagon, such as its shape and distinctive color, allowing for
effective recognition even with partial masking.

Justification: The model effectively captures the prominent areas of the station wagon, showing an
understanding of its structure despite the limitations imposed by the masked image. While some
irrelevant background elements are present, they are not overly distracting. The clear identification of
the vehicle and minimal misallocation of attention support a strong performance in recognizing the
object under challenging conditions.

Score: 4

Prediction: station wagon

Label: station wagon

VLM

CAM-basedVision model

Label

Activate and masking

Evaluation prompt Evaluation and scoring
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Figure 1: The pipeline evaluates vision models’ ability to understand an image. The VLM model can describe,
justify, and score the input image and the corresponding attention map. In the description, the model’s interpretation
of positive objects is highlighted in red, while gray illustrates the negative description.

that VLMs can only see and focus on the main re-181

gions they need for the evaluation. Furthermore,182

the attention of the vision model should justify and183

provide sufficient evidence to explain its prediction.184

The lack of evidence to recognize and distinguish185

objects in the attended regions might suggest an186

existing problem with the vision model.187

3.2 VLM assessment188

The result of the previous process is an image that189

is largely blacked out, except for areas the model190

considered important in its output. The masked191

image and the predicted label of the model are then192

fed to a VLM for evaluation and scoring. In the193

pipeline, VLMs are asked to find the relevance be-194

tween the vision model’s prediction and the visible195

object(s) in the masked image, and then explain196

further. Finally, VLMs score every pair of masked197

pictures and labels to quantify the model’s ability.198

3.3 Evaluation metrics199

This section defines a confusion matrix for this200

pipeline, as we have a label and a generated expla-201

nation score for each image. First, we will select202

a threshold score to decide which generated score203

shows that the vision model has a problem in un-204

derstanding images. After that, we build the matrix 205

as shown in Figure 1, which depends on the VLM 206

scores and the correctness of the model on each 207

sample. The proposed confusion matrix shows four 208

stages of the model: 209

• Correct: The model focuses on the correct 210

object and predicts the object correctly, indi- 211

cating a strong understanding of the image. 212

• Misunderstood object: The model prediction 213

is correct, but its attention does not align with 214

the object, indicating a misunderstanding of 215

the appearance of the target. 216

• Attend to wrong object: The model’s attention 217

is correct, but its prediction is wrong, showing 218

that the model focuses on another object, not 219

the labeled one. 220

• Lack of understanding: The model cannot 221

explain its attention and its prediction is in- 222

correct, showing that the model does not have 223

enough knowledge for the task. 224

Given many input samples, we can count and com- 225

pute the percentage of each stage and obtain a com- 226

prehensive review of the model. 227
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4 Experiment228

We evaluated the pipeline’s trustworthiness with229

four experiments to assess the VLMs’ output (de-230

scriptions, scores), hyperparameter selection, and231

the usage of masked CAM and CAM images. The232

last one assesses our confusion matrix in predicting233

problems of trained vision models. The scoring234

system ranges from zero (random attention) to five235

(perfect attention), and saliency maps are extracted236

from the last layer as in the GradCAM paper.237

4.1 Human evaluation238

The first experiment compares the pipeline with239

two authors by collecting 200 ImageNet (Rus-240

sakovsky et al., 2015) images, using ResNet18,241

MaxViT and GradCAM to extract saliency maps,242

manually scoring, and taking average scores. Then243

those scores are compared with the VLM scores us-244

ing the Pearson correlation (PC). The results show245

that when using masked CAM images, the corre-246

lation between GPT-4o-mini and the annotators is247

0.54, and between the Gemini-1.5-flash and the248

annotators is 0.50. Meanwhile, GPT-4o-mini can249

achieve 0.53 in Pearson’s correlation when using250

original CAM images, while Gemini can achieve251

0.41, lower than masked CAM images. Lastly, the252

correlation between the two annotators is 0.71. Ta-253

ble 1 shows the Pearson correlation (PC).254

Next, two authors checked the VLMs’ output255

(200 samples) to verify the quality of the generated256

text for CAM and masked CAM images. In this ex-257

periment, they read the VLMs’ output and decide258

whether those texts are acceptable. An output is un-259

acceptable if the VLMs provide incorrect informa-260

tion, do not match the predicted object, or the score261

is not aligned with the justification and description.262

The result shows that 85.5% of the GPT-4o-mini’s263

generated samples on the masked CAM images are264

correct, while this rate in the Gemini-1.5-flash is265

79.5%. Meanwhile, results on the original CAM266

image show a lower rate; Gemini-1.5-flash achieves267

54.5% and GPT-4o-mini achieves 75.5%. This in-268

dicates that Gemini-1.5-flash benefits more from269

using masked CAM images than GPT-4o-mini. The270

experiment result is reported in Table 1, denoted271

by AR, which is short for acceptance rate.272

The third experiment, which uses the same273

method and data as the first experiment, measures274

the framework-human correlation with different275

hyperparameters. The result in Table 2 shows that276

the combination of α = 25, β = 0.6 achieves the277

Gemini-1.5-flash GPT-4o-mini

Masked image 0.50 - 79.5% 0.54 - 85.5%
CAM image 0.41 - 54.5% 0.53 - 75.5%

Table 1: Comparison between masked CAM images
(α = 25, β = 0.4) and CAM image. The results are
shown as PC − AR, PC is the Pearson correlation
between VLMs’ scores and humans’ scores, and AR is
the acceptance rate of VLMs’ generated text.

highest correlation with 0.64, and all selected com- 278

binations are better than using the original CAM, 279

which does not have hyperparameters. For this 280

experiment, only Gemini-1.5-flash is used. 281

α = 25 α = 15 α = 25
β = 0.4 β = 0.6 β = 0.7

Masked CAM 0.50 0.64 0.63
Original CAM 0.41

Table 2: Framework-human correlation results (Pearson
Correlation) for Gemini-1.5-flash using different hyper-
parameters and CAM types.

4.2 Failed models evaluation 282

We trained 31 models to classify cats and dogs (El- 283

son et al., 2007) in two scenarios: normal training 284

and training with cat images marked by a red dot on 285

the top right, introducing a biased attention mech- 286

anism. Further examples of the training datasets 287

are provided in Section A.2. We then collected 20 288

images from the training set and computed the con- 289

fusion matrix as proposed for each model. Next, we 290

determined the percentage of incorrect predictions 291

err (wrong predictions or low VLM scores). The 292

correlation between this percentage and the type 293

of training (normal or biased) is −0.70, indicat- 294

ing that the higher err, the more likely the model 295

is trained on the biased dataset. This experiment 296

shows the trustworthiness of the proposed matrix 297

in understanding and detecting models’ problems. 298

5 Conclusion 299

This paper proposed a novel framework to integrate 300

CAM visualizations with VLM to explain vision 301

models. The pipeline can be easily integrated into 302

the evaluation process to provide more details, in- 303

cluding text-based explanations, scores, and a con- 304

fusion matrix. This pipeline’s specialty is that it can 305

provide assessments for both the sample-level and 306

dataset-level, allowing researchers to understand 307

the general and detailed model’s performance. 308
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Limitations309

Despite being scalable and helpful in detecting sce-310

narios where vision models behave incorrectly, the311

pipeline still contains some limitations, including312

the dependence on VLM and the quality of the313

prompt to generate a correct description with a314

suitable score for each sample. Furthermore, the315

pipeline only utilizes CAM-based methods (and316

RISE, as we can extract attention regions from317

them) to extract the attention regions, but not meth-318

ods like finding the decision boundary and some319

other xAI visualization techniques.320

Potential risk321

The quality of the generated descriptions is highly322

dependent on the performance of the VLM. There-323

fore, the pipeline should be used only as a support-324

ing tool, with the researcher remaining the primary325

decision maker in the analysis.326
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A Appendix 514

A.1 Examples of Model’s Evaluation 515

Original image

Description: The Grad-CAM highlights the water buffalo's head and neck, demonstrating a good grasp of the primary
object. However, the model also focuses on the person's hand reaching towards the buffalo, suggesting potential
misdirection due to the hand's proximity and similar shape to the animal's head.  The attention is primarily on the
water buffalo, with minimal focus on the background.

Justification: The model effectively identifies the water buffalo's head and neck but exhibits slight distraction from the
hand, highlighting a potential influence of similar visual features on the attention mechanism.

Score: 4.

Prediction: water buffalo

Label: water buffalo

VLMAttention mapping

Masked image

Original image

Description: The Grad-CAM highlights a small area around a woman standing on a city street corner. The attention
does not align with an aircraft carrier, as none is present in the image. There is no significant focus on irrelevant
areas or the background, as the majority of the image is blacked out except for the immediate area around the
woman. The model's focus on the woman may be due to her being a prominent feature in the limited visible section,
leading the attention mechanism to highlight her as the most significant element within the masked area. The
absence of an aircraft carrier suggests a mismatch between the provided image and the task description.

Justification: I scored this a 1 because the model's attention is entirely misdirected. It focuses on a woman, which is
completely unrelated to the specified object of interest, an aircraft carrier. The model demonstrates a fundamental
failure to recognize or attend to the relevant object.

Score: 1.

Prediction: aircraft carrier

Label: street corner

VLM

Masked image

Attention mapping

Figure 2: Two prediction examples of the proposed pipeline.

We present additional qualitative results of our benchmark to analyze the effectiveness of our method 516

and evaluation metrics. The example shown in Figure 2 demonstrates how the model’s attention can 517

sometimes focus on irrelevant features, but does not lead to reduced interpretability. 518

A.2 Example data of failed models evaluation experiment 519

We provide examples of training data in the failed model evaluation experiment 4.2 in Figure 3. Normal 520

evaluation with accuracy cannot detect the problem as we proposed in the experiment, while many xAI 521

methods, like saliency extraction, LangXAI, and decision boundary visualization, will encounter issues 522
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such as time, expert requirements, and manually checking each sample to detect similar problems.

Pipeline's score: 2

Model's prediction: dog

Error type 4: The model
may not understand the
image

Pipeline's score: 2

Model's prediction: cat

Error type 3: The model
misunderstands the
cat, thinking that the
cat is a red dot on the
top-right of the image

Normal
training data

Training data
with bias
attention
noise - red dot
on the top
right of cat
images

Dog sample Cat sample Extracted cat's
masked CAM image

Evaluate on the cat's
masked CAM image

Figure 3: Examples of attention-biased and standard training data used in the experiment. The pipeline evaluates
each cat’s masked CAM to identify and categorize model errors.

523

A.3 Prompting524

The prompt used for the evaluation framework consists of an image description, evaluation criteria, scoring,525

and output format. The task involves analyzing a masked image in which the model’s focused areas are526

highlighted, while irrelevant regions are blacked out. Key criteria for evaluation include focus accuracy,527

object recognition, object coverage, and potential distractions from background or irrelevant elements.528

The evaluator is instructed to analyze the model’s attention on the object and provide an explanatory529

analysis, considering factors like visual challenges or misleading elements. A score from 0 to 5 is assigned,530

with specific descriptions for each score reflecting the model’s attention and recognition performance.531

The output includes a concise evaluation and score with justification.532

Prompt to get sample description justification and score from masked CAM images

Task: Evaluate the Model’s Attention Mechanism Using the Provided Masked Image.

• Image Description:

– The image is masked with a Grad-CAM heatmap, where only the areas the model focuses
on are visible, while all other regions are blacked out.

– The model is attempting to focus on the object.

• Evaluation Criteria:

– Focus Accuracy: Analyze which part of the image the Grad-CAM is highlighting. Is the
model’s attention placed accurately on the object, or is it scattered across other areas?

533
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– Object Recognition: Determine whether the model correctly recognizes the object. Is
the attention primarily on the correct object, or does the model focus on irrelevant areas?

– Object Coverage: Evaluate how much of the object is being captured by the model’s
attention. Is the entire object covered, only a small part, or none at all?

– Background and Irrelevant Focus: Check for any significant focus on the background or
irrelevant objects. Does this distract the model from the primary object?

– Explanatory Analysis: Provide possible reasons for the model’s attention pattern. Con-
sider whether the model is being misled by similarly shaped or colored objects, complex
backgrounds, or other visual challenges.

• Scoring:

Assign a score between 0 and 5 based on the relevance and accuracy of the model’s attention:

– 0: The model’s attention is completely irrelevant to the object, leading to a wrong result.
– 1: The model fails to recognize the object entirely, focusing on irrelevant areas.
– 2: The model captures only a small part of the object.
– 3: The object is recognized, but the attention also covers irrelevant parts or other objects.
– 4: Most of the object is detected correctly, with minimal distraction from irrelevant areas

or the background.
– 5: The model perfectly captures the entire object without being distracted by irrelevant

areas or the background.

• Output Format:

– Evaluation: Provide a concise evaluation (5-6 sentences), discussing: Where the Grad-
CAM is focusing. Whether the attention aligns with the object. Whether there is any
significant focus on irrelevant areas or the background. Explain why the model might
focus on specific regions.

– Score: Assign a score from 0 to 5, justifying your rating based on the model’s perfor-
mance in recognizing the object and avoiding distractions.

– The format must be presented as follows:

* Evaluation: [evaluation],

* Justification: [justification],

* Score: [score]
534

Prompt to get sample description justification and score from original CAM images

Task: Conduct an evaluation of the model’s attention mechanism by analyzing its response to the
supplied CAM heatmap. This assessment aims to test the model’s capacity to effectively interpret
and utilize attention when processing visual data.

• Image Description:

– The heatmap uses warm colors (orange, red) to represent areas where the model is
focusing most, while cool colors (blue, purple, dark) indicate regions of little to no
attention.

– The model’s focus is on the object.
– Identify the warm-colored regions and analyze what those regions represent in relation

to the object of interest. In addition, assess the presence of cool-colored regions and
their alignment with irrelevant areas or the background.

• Evaluation Criteria:
535
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– Focus Accuracy: Analyze which part of the heatmap the warm colors (orange, red)
highlight. Is the model’s attention accurately placed on the object, or is it scattered
across other areas?

– Object Recognition: Determine if the model is correctly recognizing the object. Is the
attention primarily on the correct object, or does the model focus on irrelevant areas?

– Object Coverage: Evaluate how much of the object is being captured by the model’s
attention. Is the entire object covered, only a small part, or none at all?

– Background and Irrelevant Focus: Check for any significant focus on cool-colored
regions. Does this distract the model from the primary object?

– Explanatory Analysis: Provide possible reasons for the model’s attention pattern. Con-
sider whether the model is being misled by similar-colored areas, complex backgrounds,
or other visual challenges.

• Scoring:

Assign a score between 0 and 5 based on the relevance and accuracy of the model’s attention:

– 0: The model’s attention is scattered with no clear target, showing that it does not
understand the task or the object.

– 1: The model consistently directs its attention to something unrelated to object, indicating
a fundamental misunderstanding of the object it is supposed to recognize.

– 2: Partial object recognition: The model captures only a small fragment of the object,
missing most of its critical features. The attention is mostly misdirected, with just minor
alignment to the actual object.

– 3: The model identifies a limited area of object, but its attention still includes some
irrelevant parts surrounding it.

– 4: The model predominantly focuses on object, with only minor distractions or irrelevant
attention in the background.

– 5: The model accurately captures the entire object without any distractions from irrele-
vant areas or background elements.

• Output Format:

– Evaluation: Provide a concise evaluation (5-6 sentences), discussing: Where the heatmap
focuses (warm colors). Whether the attention aligns with the object. Whether there is
any significant focus on irrelevant areas or the background. Explain why the model
might be focusing on specific regions.

– Score: Assign a score from 0 to 5, justifying your rating in a sentence.
– Your output format must be presented as follows, which is extremely important for the

evaluation process to run without any error:

* Evaluation: [evaluation],

* Justification: [justification],

* Score: [score]
536
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