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Autonomous agents operating in human worlds must un-
derstand and respond to natural language used by humans
to communicate their task needs. In a home environment, an
agent must solve the language-to-action problem - it should
comprehend put that apple in the refrigerator by connecting
references to objects (that apple, the refrigerator), instan-
tiating a task that achieves the goal (i.e., the desired spa-
tial relationship between the apple and the refrigerator), and
achieve it by applying an action sequence.

Recent work (Sarch et al. 2023) has begun to explore
this research challenge, greatly benefiting from the ad-
vances in deep learning and large language models (LLMs).
These approaches frame the language-to-action problem
as a sequence-to-sequence mapping problem. In datasets
such as ALFRED (Shridhar et al. 2020), a natural lan-
guage task request is paired with a sequence of natural lan-
guage ‘sub’actions, executing which will achieve the task
request. The agent determines (through machine learning-
based training) how to map the sequence of tokens in the
task request to sequence of ‘sub’actions in natural language.
An executor that can translate the ‘sub’actions into execu-
tion in the environment is assumed. Such approaches under-
play causal, goal-oriented reasoning that is critical for robust
and flexible task performance.

We introduce a distinct way of approaching the language-
to-action problem. Central to our approach is a planning-
based agent that maintains the perceive-decide-action loop
with its environment and can achieve a space of plausi-
ble goals. Natural Language Understanding (NLU) is, then,
framed as identification of relevant environmental elements
and construction of a goal that the human intends the agent
to perform. Once the goal is constructed, it is performed us-
ing the causal reasoning machinery in the planning-based
agent. We demonstrate our approach in an embodied plan-
ning agent operating in AI2Thor (Kolve et al. 2017).

Our work fits within ongoing research studying the role
LLMs in planning systems (Liu et al. 2023b). We use a
LLM specifically as an interaction mechanism between a hu-
man and an agent while sequential decision making is per-
formed by planning methods. This configuration alleviates
the problem of incorrect/incomplete plan inference in LLMs
(Valmeekam et al. 2024). Further, extending prior work (Liu
et al. 2023a), we bring LLM+planning techniques to task-
able, interactive, embodied agents.
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Figure 1: A notional diagram of our approach showing vari-
ous types of reasoning and decision making.

From Language to Planning

AI2Thor (Kolve et al. 2017) is a live, 3 dimensional, simu-
lated home environment in which embodied agents can in-
teract with and manipulate a variety of objects, tools, and
locations. It is equipped with many agents supporting a
range of embodiments including robots such as the LoCoBot
(Wogerer et al. 2012). It is one of the standard domains for
research on conversational embodied agents and has been
used in prominent datasets including ALFRED (Shridhar
et al. 2020) and Teach (Padmakumar et al. 2022).

Our demonstration is built using AI2Thor in which the
agent can be tasked to find certain objects and move them
to new locations. Similarly to prior work, we assume a dis-
cretized, factored state-space, a fully-observable environ-
ment, and a set of primitive, atomic actions. We break down
the language-to-action problem as a series of subproblems,
each of which is solved using problem-specific mechanism.
A notional system diagram is shown in Figure 1. Towards
the right (in green) is a standard planning-based agent that
receives percepts from the environment and maintains the
current state as a set of grounded predicates. Given a goal
(described using a conjunction of predicates), it plans a
sequence of actions that are executed in the environment.
NLU is split into two: one, linguistic reasoning (in red), that
translates human natural language into a machine-readable,
meaning representation and two, grounded reasoning, that
connects information conveyed in the machine representa-
tion to elements of the state and the task.

Linguistic Reasoning To translate a task request into a
meaning representation, we build upon analogical, case-
based reasoning and translation capabilities of LLMs
(shown in red in Figure 1). In-context learning in LLMs



language: Please clean that mug.

ISR: {INTENT: request, action:0: {TYPE: clean-task, obj:0:
{TYPE: mug}}}

language: Can you please wash this plate?

ISR: ...

language: ....

ISR: ...

Few-shot Prompt

i;nguage: Please place the bread in the fridge.

ISR: {INTENT: request, action:0: {TYPE: find-and-put-task,
obj:0: {SPEC: any, TYPE: apple}, obj:1: {SPEC: unique, TYPE:
bread}, rel:0: {TYPE: in, ARG1: obj:0, ARG2: obj:1}}}

Response

Figure 2: Few-shot prompting for translating a natural lan-
guage request into a meaning representation

(Dong et al. 2022) operates by introducing a few examples
of task performance written as text in the prompt (termed
few-shot prompt). The examples are followed by the actual
task query. An example is shown in Figure 2. The LLM is
shown several example translations (in the Few-Shot Prompt
box) of language to intentional semantics representations
(ISR). An ISR is a JSON structure explicitly encoding the
intent being expressed (a request in this case) as well as
the content (action: 0 of TYPE clean-task applied to
ob7j: 0 of type mug). After presenting examples, the LLM
is asked to translate a natural language sentence (shown in
bold). State of art LLMs can use examples in the prompt
to do the translation task reliably (in the response box). A
key observation we make here is that an LLM can be taught
to distill task-relevant information from variation in expres-
sion of task requests. For example, can you please clean
that mug, please clean that mug, clean that mug express
the same action. Our demonstration is built with OpenAl
GPT3.5 (gpt-3.5-turbo-0613).

Grounded Reasoning The ISR in Figure 2 contains infor-
mation about the task to perform (f ind—and-put—-task)
and which objects should be selected (e.g. TYPE: bread,
TYPE: fridge). However, these are ungrounded descrip-
tions; i.e, they are not connected to specific objects, actions,
configurations, or goals instantiated in the world. In the
grounded reasoning step, the system fuses its beliefs about
the world (and the state of task performance) with informa-
tion in the ISR to generate a grounded representation of the
goal. An example is shown in Figure 3. Beliefs about the
current state (Figure 3 top) are represented as predicates and
asserted based on the input from the environment (Figure 1).

The first step in grounded reasoning is identification of
entities described in the ISR from the current state beliefs.
This is done through a filtering process in which the system
maps object TYPE in ISR to the isa predicate. For exam-
ple, ob7j: 0 in the ISR is mapped to 04 in the current state
beliefs and obJj: 1 to 03 via the isa predicate.

The second step in grounded reasoning is constructing
a goal. Each action TYPE is mapped to a specific goal
construction mechanism. For example, the goal for the ac-
tion TYPE find-and-put-task, the goal is constructed
from the spatial relationship described in the ISR instanti-
ated with grounded objects (shown in Figure 3). We envi-

isa(o1, door), isa(02, stove), isa (03, fridge), isa (04,
knife), isa (05, bread), isa (06, countertop)....,
at(o1, <loc1>), at(o2, <loc2>), at(o3, <loc3>)....
iscontainer(o3), issurface(o6),....

Current State

Generated Goal [ in(o5, 03) ]

Figure 3: Grounded reasoning for connecting meaning rep-
resentations to beliefs about the state and the task

sion the agent to encode set of tasks each with its own goal
template that various verbs in natural language map to.

Sequential Decision Making Upon constructing the goal,
the agent invokes the planning process to determine a se-
quence of actions (shown in green in Figure 1). The input
from the world as well as the goal predicate generated by
the grounded reasoning process are written as PDDL (Ghal-
lab et al. 1998) predicates to a problem file. We make some
simplifying assumptions to generate the current state, such
as the location of each object is encoded as a cell (instead
of a numeric 3D location). The agent in AI2Thor has several
actions available to it; such as teleport, pickup, put, open,
and close. Availability of each action depends of properties
of objects provided to the agent as a part of the current state.
E.g., fridge and drawer are receptacle entities that
can be opened. The agent generates a domain file with action
definitions that capture these constraints as pre-conditions
and corresponding consequent effects. Actions such as tele-
port are defined as macro-actions where action application
include pose computations. We use state-of-the-art planners
such as FF (Hoffmann and Nebel 2001) and Nyx (Piotrowski
and Perez 2024) for planning a sequence of actions which is
executed in the world using AI2Thor interface.

Demonstrations The demo presents the web-based in-
terface for providing instructions and the simulator where
the robot executes the commands. Currently, it shows pre-
liminary results for end-to-end translation of the instruc-
tion and the execution of the plan in AI2Thor. The in-
structions provided to the robot are — put bread in
the fridge, put spatula in the drawer, and
put apple in the fridge. Demonstration can be
checked at — https://bit.ly/icaps24_demo.

At Outlook for the Future

In future, we will extend this demonstration to include a
wide class of tasks in the AI2Thor domain, covering those in
ALFRED and Teach datasets. We want to demonstrate that
integration of ML (LLM-based NLU) and reasoning (plan-
ning) methods enables robust embodied interactive behav-
ior that surpasses ML-only approaches. Our eventual goal is
to develop teachable agents that learn new knowledge from
human teaching facilitated by language. For embodied plan-
ning agents, this challenge comprises learning new action
models, pre-conditions, effects, and new goals by combining
information from natural language teaching from humans
and sensory information available in the world.
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