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Abstract

This project addresses the increasing challenge of detect-
ing AI-generated images by creating a novel dataset titled
“What Is Real Anymore?” (WIRA). WIRA comprises two
subsets: the first includes over 2000 images, validated as
authentically real by a set criterion and sourced from pho-
tographs on Flickr. The second subset consists of hyper-
realistic AI-generated counterparts for each validated Flickr
image, aggregated through the Leonardo.AI commercial API.
All Flickr-validated images in WIRA are credited to their
respective photographers and retain their associated rights.
Commercial use of this dataset requires permission from the
photographers or adherence to the copyright laws of each val-
idated Flickr image used. This document details the rationale
for image authentication, image categories, the motive for
category selection, authenticity validation criterion, method-
ology for the creation of the dataset, the computational re-
sources used, a review of included and excluded decision
records, and potential enhancements to expand WIRA.

Code — https://github.com/McDonaldAndrew-
ETSU/Real-To-AI-Pipeline.git

Datasets —
https://github.com/McDonaldAndrew-ETSU/WIRA.git

1 Introduction
In recent years, the rapid advancement of Artificial Intel-
ligence (AI) and Machine Learning (ML) technologies has
led to the proliferation of AI-generated content across var-
ious domains, such as text, images, and videos. While AI-
generated content has the potential to revolutionize con-
tent creation and improve efficiency, it also poses signif-
icant challenges in terms of authenticity, trustworthiness,
and potential misuse. The ability to distinguish between
human-generated and AI-generated content has become in-
creasingly important to maintain the integrity of informa-
tion and prevent the spread of misinformation. Thankfully,
researchers have tried to tackle the problem of detecting AI-
generated content with AI/ML models such as those within
the first 10 references (Monkam, Xu, and Yan 2023; Luo
et al. 2024; Zhang et al. 2022; Xia et al. 2022; Sun, Wang,
and Tang 2014a; Anokhin et al. 2021; Zhan et al. 2023;
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Wang et al. 2023a; Lorenz, Durall, and Keuper 2023; Liu
et al. 2015).

Mainstream image datasets used for training, such as
those within the first 9 to 36 references (Liu et al. 2015;
Lin, Shang, and Gao 2023; Epstein et al. 2023; Schuhmann
et al. 2021; Wang et al. 2023b; Yu et al. 2016; Deng et al.
2009; Karras et al. 2018; Zhu et al. 2023; Bird and Lotfi
2023; Krizhevsky 2009; Rahman et al. 2023; Sun, Wang,
and Tang 2013, 2014b; Karras, Laine, and Aila 2021; Karras
et al. 2021, 2020; Aksac et al. 2019; Choi et al. 2020; Zhou
et al. 2017; Russell et al. 2008; Zhou et al. 2014; Xiao et al.
2010; Lin et al. 2015; Cordts et al. 2016; Wang et al. 2020;
Russakovsky et al. 2015), do not validate or authenticate any
of the training images. Without recording each image’s ori-
gin and due to the advancements of AI-generated content,
it is impossible to conclude whether an image is truly real
or not. Unfortunately, this applies to all images provided in
the earlier mentioned datasets as there are not any validation
methods or criteria used to determine if web-scraped images
are authentically real.

This report aims to address the importance and explana-
tion of the creation of a dataset consisting of authentically
real and validated photographs along with AI-generated
counterparts. The dataset created will serve as a precursor
to future datasets for ensuring each data instance represent-
ing an authentically real image is verified by its origin first
before its aggregation. To illustrate the complexity of dis-
tinguishing between authentically real and AI-generated im-
ages, Figure 1 proposes a challenge to identify which images
are real. This visual exercise emphasizes the growing diffi-
culty of human perception alone in validating image authen-
ticity, further underscoring the importance of datasets with
rigorous validation criteria for real images such as WIRA.

2 Rationale For Image Athentication
Many of the popular and otherwise trusted datasets used
for the detection of AI-generated images such as LAION-
400M (Schuhmann et al. 2021), LSUN (Yu et al. 2016), and
CIFAKE (Bird and Lotfi 2023) were created over a decade
from the writing of this document. These datasets contain
subsets of images labeled as real. The curators of these
datasets, however, did not employ any validation techniques
that ensured the web-scraped images used were authenti-
cally real. During the period that these datasets were curated,



Figure 1: The challenge in identifying which images are authentically real and which are AI-generated from these shuffled pairs
underscores the necessity of robust authenticity validation methods in datasets like WIRA.

AI-generated content contaminating real image aggregation
within search engines was not an enormous problem as it is
today, if even a problem at all. Research regarding the issue
of detecting AI-generated images has been conducted only
within the last decade, with an increase of related studies
within the last 2 years such as references 1-5, 7-9, 11, and 12
(Monkam, Xu, and Yan 2023; Luo et al. 2024; Zhang et al.
2022; Xia et al. 2022; Sun, Wang, and Tang 2014a; Zhan
et al. 2023; Wang et al. 2023a; Lorenz, Durall, and Keu-
per 2023; Lin, Shang, and Gao 2023; Epstein et al. 2023)
due to the enormous performance gains of AI-generative
image models. This performance gain is so impressive that
now, most humans, even those with a trained-eye, may eas-
ily be deceived by the realism of AI-generated images. More
now than ever before, AI-generated images are contaminat-
ing search engines, causing real images to be interspersed
with artificial content, making it harder to find authentic vi-
suals on real-life topics or things. If a dataset was curated
today to detect AI-generated content by only web-scraping
without any validation criteria, it is guaranteed any set of
real-labeled images may be contaminated with AI-generated
content. Due to the increasing photo-realism of the AI im-
ages, human eye validation is becoming less effective to sep-
arate what is real and what is not.

Most researchers, therefore, depend on the foundation of
established datasets such as the ones mentioned previously.
One could argue, however, that the real images used in these
datasets are not “real” since not one of them used any valida-
tion criteria to determine the origin of each data-instance la-
beled real. A counter argument against this, however, can be
that AI-generated content did not start proliferating sources
of the web-scraped images from these datasets during the
time of their aggregation. While this counterargument is
plausible, it remains unprovable since no validation criteria
were applied to confirm whether the images scraped in the
past were genuinely real or computer altered. Some of the
first AI-generated photos can be traced back to over a decade
from the writing of this report. Even so, one could argue that
the timestamps in the image’s metadata were forged. If these

datasets of ’real’ images lacked records of the origin and au-
thenticity validation, it is now impossible to confirm the true
authenticity of each image, leaving room for perpetual de-
bate over their genuineness.

3 Image Categories
3.1 Landscapes and Environments
This hub of image subcategories conveys the beauty of the
natural world exploring stunning landforms, ecosystems,
and biomes. From vast mountain ranges to intricate forest
ecosystems, each subcategory captures unique aspects of
Earth’s landscapes and environments, offering a comprehen-
sive view of nature’s complexity and unique patterns. Figure
2 shows the full tree of these four main categories and all
nested leaf image subcategories within WIRA.

• Cities: Offers exploration of urban life across the globe,
featuring a range of subcategories dedicated to cities
from every corner of the world.

• Coastlines: Showcases the intersections of land and sea,
with subcategories highlighting diverse coastal land-
scapes from around the world.

• Deserts: Delves into desert landscapes, featuring subcat-
egories that explore arid regions across the globe.

• Forests: Shows lush and diverse forests worldwide, with
subcategories showcasing everything from rainforests to
serene temperate woodlands.

• Mountains: Captures many mountain landscapes, featur-
ing subcategories that span a range of peaks, valleys, and
rugged terrains from around the world.

3.2 Life and Portraits
This hub of image subcategories captures people in their ev-
eryday lives across cultures and environments. From por-
traits to candid moments, each collection reveals unique sto-
ries that make up human life, offering a rich number of faces
and traditions around the world.
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Figure 2: Granular image categories for WIRA, showcasing the main hubs and their detailed subcategories.

• Adults: Highlights adult life, showcasing individuals
from diverse backgrounds and cultures.

• Children and Adults: Connects children and adults, por-
traying mentorship and family experiences.

• Children: Highlights adolescent life across different cul-
tures and settings around the world.

• Culture: Explores rich culture, traditions, attire, and cel-
ebrations from unique communities around the world.

• Society: Reflects the structure of communities, capturing
scenes of daily life, social interactions, and activities that
illustrate how people live, work, and connect.

3.3 Photomicrographs
This hub of image subcategories delves into microorgan-
isms. From detailed views of cellular organisms to intricate
patterns in microscopic matter, each collection unveils oth-
erwise hidden complexity.
• Bacteria: Reveals the forms and structures of bacteria.
• Cells: Contains the patterns of healthy plant cell life as

well as cancerous cells and the patterns they form.
• Fungi: Captures fungi at a microscopic level, showing

unique structures of spores, hyphae, and fungal networks.
• Parasites: Focuses on structures parasitic organisms.

• Viruses: Explores the varied structures of viruses, show-
casing unique shapes for infecting host cells.

3.4 War-Torn Scenery
Offers an unflinching look at the devastating impact of war
on societies, featuring subcategories that capture the harsh
realities of conflict. These images confront viewers with
graphic scenes of destruction, loss, and the human suffering
that war leaves in its wake, providing a visceral portrayal of
the profound toll that conflict exacts on people and places.

• Aftermath: This subcategory captures remnants of con-
flict, illustrating the devastation it leaves behind.

• Explosions:Focuses on the intense, destructive power of
explosions, capturing their smoke clouds and fire.

• Rescues: Highlights moments of bravery and compassion
amidst chaos, capturing scenes of people helping others
to safety, providing aid, and showing resilience.

• Soldiers: Portrays the experiences of soldiers in various
contexts, from intense moments to quieter scenes.

• War-Torn Structures: Shows buildings and infrastruc-
ture bearing the destruction inflicted upon once-thriving
structures in war zones.



4 Motive For Image Category Selection
The selection of the four main image categories in WIRA;
Landscapes and Environments, Life and Portraits, Photomi-
crographs, and War-Torn Scenery were chosen for their po-
tential to safeguard society against the misuse of hyper-
realistic AI-generated images in scenarios that directly im-
pact public trust and safety.

4.1 Landscapes and Environments
With generative AI, a malicious user could create hyper-
realistic but non-existent locations. Without verification,
such synthetic images could deceive individuals, leading to
belief in the existence of fabricated places, potentially en-
dangering lives if the information is used maliciously. This
poses exploitation, manipulation, and endangerment to indi-
viduals who are led to non-existent destinations.

4.2 Life and Portraits
The misuse of AI to generate non-existent individuals or to
portray real people uncharacteristically can create false nar-
ratives, impacting public trust. Such synthetic images could
also contribute to identity manipulation and deception in so-
cial and political arenas. Furthermore, the ability of AI to
fabricate human faces could mislead viewers, leading to the
belief in the existence of these fabricated entities.

4.3 Photomicrographs
Public trust in scientific imagery is vulnerable to exploita-
tion, as AI-generated images of non-existent pathogens
could incite unnecessary fear or panic. This category empha-
sizes the importance of image authenticity to prevent such
misinformation in scientific and medical fields.

4.4 War-Torn Scenery
Synthetic images could be weaponized to mislead the public
in war-related contexts. This category is critical in identi-
fying accurate conflict reporting and helps support humani-
tarian accountability. Malicious uses of generative AI could
generate graphic war scenes to falsely depict conflict or sup-
press real events by portraying peaceful settings in active
war zones. This also potentially affects the preservation of
accurate historical records.

5 Authenticity Validation Criterion
A comprehensive validation criterion was applied to ensure
authenticity with verified origins in each Flickr image used
in WIRA. This multi-step process rigorously verifies each
image’s source, creator information, equipment used, and
metadata distinguishing it from datasets lacking any image
verification protocols. If any of these items fail to meet the
criterion, they each are meticulously documented for trans-
parent analytical review. This analytical record-keeping en-
hances the dataset’s reliability and effectiveness when train-
ing AI/ML models to accurately detect hyper-realistic AI-
generated images apart from reality. The following outlines
the steps in sequential order of the criterion.

5.1 Initial Download and Metadata Collection
The image is initially downloaded using Flickr’s API and its
associated metadata is recorded.

5.2 Creator Verification
The original creator of each image is identified using the
creator’s Flickr URL.

• If creator details are unavailable, the image is discarded,
and the process resumes with the next image in sequence.

• If creator details are available and verified, the origin is
recorded, and the image proceeds to the next stage.

5.3 Ownership Validation
The metadata obtained from the Flickr API is reviewed to
confirm that the identified creator is the legitimate owner of
the image as indicated by the image’s origin URL.

• If ownership cannot be verified, the image is discarded,
and the process resumes with the next image in sequence.

• If ownership can be verified, the creator’s details are
logged, and the image proceeds to the next stage.

5.4 Camera Model Verification
The image’s origin URL is reviewed to confirm the inclusion
of the camera model used to capture the image, a critical
indicator of authenticity.

• If camera model details are missing, the image is dis-
carded, and the process resumes with the next image.

• If the camera model is present, additional verification is
performed through Flickr’s camera database.

• If the camera model cannot be authenticated, the image is
discarded, and the process resumes with the next image.

• If the camera model is authenticated, the information is
recorded, and the image proceeds to the next stage.

5.5 Image Similarity Comparison
The downloaded image is compared with the version found
on the Flickr origin page using a Structural Similarity Index
Measure (SSIM). This confirms that no alterations have been
made and verifies the ownership of the image.

• If the SSIM score is below 90%, the image is discarded,
and the process resumes with the next image in sequence.

• If the SSIM score is above 90%, the image passes valida-
tion and proceeds to the final stage.

5.6 Final Approval and Storage
After meeting all preceding criteria, the image is designated
as authentically validated and stored. This process is re-
peated for each downloaded image until the dataset’s re-
quired thresholds are achieved.



6 Methodology For Dataset Creation
WIRA was developed through a comprehensive three-part
application known as the Real-To-AI Pipeline. The pipeline
is flexibly designed to aggregate authentic real images from
a search engine of a user’s configuration. For the basis of
WIRA, the Flickr API was used. The pipeline then creates
AI-generated images from Leonardo.AI’s commercial API.
This pipeline additionally enables users to select different AI
models for generated images along with customizable hy-
perparameters. Beyond simple aggregation, the pipeline en-
sures authenticity of real images using the specific criterion
detailed in section 5. Outlined below are the three main com-
ponents of the Real-To-AI-Pipeline for WIRA’s construc-
tion: the Real Image Scraper, the AI Image Captioner, and
the Leonardo Image Generator.

6.1 Real Image Scraper
The Real Image Scraper retrieves authentically validated
images from Flickr through a multi-step process. First, it
queries the Flickr API using customizable search parame-
ters, such as keywords, tags, sorting preferences, and me-
dia types. Next, the image processing phase begins, check-
ing each image to ensure it is not a duplicate. Following
this, each image’s origin and original metadata are docu-
mented, providing a traceable history for every image col-
lected. Once the origins are recorded, the previously detailed
validation criteria are applied, and if the image passes, it is
saved for use.

Querying the Flickr API All images that meet specified
criteria are saved in a “GranularImageCategories” directory,
with additional subdirectories based on the Flickr query pa-
rameters. To manage the scraping process, thresholds are
set to automatically stop scraping upon reaching the desired
number of validated images. The Flickr API is queried with
parameters such as sorting, safe search, and media types to
tailor search results. The scraper keeps track of its progress
by maintaining a count of images requested from the Flickr
API so that duplicate entries are not requested. Once images
are returned, the owner’s details and image origin URL are
recorded.

Duplication Check Before an image is downloaded, it
must first pass the Real-To-AI-Pipeline’s duplicate image
check. For each image response, the Python imagehash
library calculates the average, difference, perceptual, and
wavelet hashes. These hashes are then cross-checked against
their respective hash logs. If no match is found, the hashes
are logged respectively to prevent duplicate downloads,
avoiding reprocessing the image through the intensive au-
thenticity validation criterion.

Traceable Origins For each new image encountered by
the Real-To-AI-Pipeline, all related information including
origin data and camera details, is saved to a directory. A
manifest is created to facilitate transparent analysis, allow-
ing the identification of each unvalidated image. Each im-
age’s path is mapped to a JSON-formatted block containing
the original metadata extracted, and organized in a “Scraped
Image Manifest” file. The repository path is linked to an

image’s origin URL in an “All Links Checked” file. To-
gether, these files provide complete traceability records of
each image’s origin. The unique and documented image is
now ready for authenticity validation.

Authenticity Validation This step is guided by the de-
tailed criteria outlined in section 5. Python Selenium is em-
ployed to access and confirm attribute values for each image
on the Flickr website, ensuring the accuracy and authenticity
of the data received from the API.

Validate Creator with Image First, the validation process
begins with a Validator module, which creates a headless
Selenium Microsoft Edge instance. The Validator uses spe-
cific attributes from the current image’s response such as the
image’s ID, user ID, and image URL for its authentication.
The creator’s Flickr page is located using the user ID ob-
tained from the Flickr API. If the creator’s URL is provided,
the process continues to the next step. Otherwise the process
restarts from Step 1 with the next available image.

Validate Creator on Creator URL Second, the Validator
verifies the creator’s information on the Flickr website using
Selenium. If the creator’s name matches the account name
displayed on the account page where the image is hosted, the
validation process continues. Otherwise, the process restarts
from Step 1 with the next available image.

Validate Camera from Image Metadata Third, the Val-
idator retrieves camera EXIF data in the image’s Flickr API
response. If the camera attribute is present, it is recorded,
and the process proceeds to the next step. Otherwise, the cre-
ator is flagged in a “Watchlist” file, recording creators who
failed validation along with their culprit image URLs and
reasonings. In this case the reason, “No camera listed within
image metadata,” is appended after the image URL, sepa-
rated by ” - ” to ensure the URL remains intact. This entry
is added to a list of failed image URL-reason pairs regard-
ing the specific creator. The URL is also mapped to a local
path in a “Failed” file, as the initial image is downloaded and
saved separately from WIRA. The process then restarts from
Step 1 with the next available image.

Validate Camera on Flickr Camera Database Fourth,
with validated creator and recorded camera data, the Valida-
tor verifies the camera’s authenticity using Flickr’s camera
database. Flickr maintains a verified database with detailed
descriptions for each recognized camera. For images that in-
clude a camera in the Flickr API response, there is typically
a link on the image’s origin page the Validator searches for
that leads to the camera’s description. In most cases, this
link is present; however, some photographers may use un-
verified cameras not listed in Flickr’s camera database. This
step ensures that only images with Flickr-validated cameras
proceed to the next step. Otherwise, the creator is added to
the “Watchlist” file, noting the image URL and the reason
for failure “Camera could not be validated on Flickr page”.
The image URL is also mapped to its local downloaded path
in the “Failed” file. The process then restarts from Step 1
with the next available image.



Validate Local and Creator’s Images by SSIM Fifth,
once the creator and camera are validated, the downloaded
image must be identical to the image displayed on the cre-
ator’s Flickr account. Occasionally, discrepancies arise be-
tween the image provided by the Flickr API and the one
displayed on its original page, often due to slight modifica-
tions such as watermarks, borders, or minor edits. To address
this, a Structural Similarity Index Measure (SSIM) is calcu-
lated between the two images using the Python Scikit-Image
Metrics library. An SSIM range of 95%-100% typically sig-
nifies that the images are visually identical, with any vari-
ations likely due to minor artifacts or compression. Scores
between 85%-95% suggest small edits or adjustments, while
scores below 85% indicate significant structural or visual
differences, suggesting the images are not the same. For ac-
curate comparison, both images are resized to match the di-
mensions of the smaller image. A threshold of 90% SSIM
was selected to allow for minor modifications such as water-
marks or borders that photographers might add for copyright
purposes. If the SSIM score meets or exceeds 90%, the val-
idation proceeds. If not, the creator is added to the “Watch-
list” file, with the image URL recorded alongside the reason
for failure “Image downloaded is not visually the same as the
image on Creator page based on SSIM scoring”. The URL is
also mapped to its local path in the “Failed” file. The process
then restarts from Step 1 with the next available image.

Complete Validation and Traceable Origins Since the
creator, camera, and image are now successfully validated,
the authenticity criterion is fully met. The creator is ap-
pended to a file titled “Criteria Success List,” with the vali-
dated image URL appended to the creator’s list of previously
validated image URLs. The image URL is also mapped to its
local path in the “Passing” file. The image is then saved to
the “GranularImageCategories” directory. This process con-
tinues until reaching the image threshold.

6.2 AI Image Captioner
The AI Image Captioner accepts image requests and returns
captions, providing descriptive context for each image. The
main components of the AI Image Captioner, which are fur-
ther detailed in the following subheadings, include the API,
the AI captioning, and the containerization processes.

Creating the Flask API The Python Flask library is used
to build a simple API with two primary methods: one for
general image captioning and another specifically for han-
dling photomicrographs. The rationale for these separate
methods lies in the need to provide contextual prompts.
For most images, the API sends a prompt to the caption-
ing model asking for a detailed description without specify-
ing the image type, allowing the model to infer its content.
For photomicrographs the llama-3-vision-alpha-hf model re-
quires specific context for accurate descriptions. Otherwise
it struggles to interpret the content correctly. The API oper-
ates by opening a web socket that receives HTTP POST re-
quests with an image attachment. Upon startup, it initializes
the AI Image Captioner. The API route for general image
captioning is “/caption,” while photomicrograph images are
sent to “/caption-photomicrograph.”

The Captioning Model When the Flask API initializes, it
creates an instance of the AI “Captioner” class. The Cap-
tioner is configured to run offline, ensuring that the model is
fully tokenized and loaded within its container without the
need for internet. If a cached model is missing or corrupted,
the Captioner can detect this and attempt to retrieve the lat-
est version from its original repository. Upon successfully
downloading the latest model version, it creates a new cache
directory to store its safe-tensor shards. Once the model is
ready, the API is ready to accept image caption requests.

Containerization Docker is used to containerize the Flask
API and AI Captioner components, creating a cohesive and
scalable application. The Docker container uses the official
python:3.11.8-slim image. Necessary PyTorch and CUDA
libraries for GPU interaction are installed to the container
from PyTorch’s cu124 library. To support the synchroniza-
tion between the Docker container and the host machine’s
NVIDIA GPU, WSL2 is used for the Docker Desktop back-
end. The Docker Compose file is preconfigured to ensure
compatibility with an NVIDIA GPU on the host OS. The
project’s virtual environment dependencies are defined in a
requirements file, which the container uses to install the re-
maining needed libraries. Contents of the AI Image Cap-
tioner directory, including the cached model, are then writ-
ten into the container. Once setup is complete, the container
is launched, starting the Flask API and instantiating an in-
stance of the Captioner model, which then awaits image
POST requests. Upon captioning an image, the Captioner
model sends a response containing the generated caption,
which can be stored for future use.

6.3 Leonardo Image Generator
The third and final component of the Real-To-AI-Pipeline is
the Leonardo Image Generator. Once all images are aggre-
gated into the “GranularImageCategories” directory accord-
ing to the thresholds set by the Real Image Scraper, each
image is sent via HTTP POST to the AI Image Captioner
container. The captions generated for each image are then
recorded. After all images are captioned, each image and
its corresponding caption are submitted to the Leonardo.AI
commercial API to produce a hyper-realistic AI-generated
counterpart. The API is polled until the AI-generated im-
age is ready, at which point it is saved locally to a desig-
nated “AI” directory. The following subheadings provide a
detailed, sequential overview of this process.

Captioning Images from Image Directory Paths All im-
age paths for each image subcategory are recorded in a file
titled “Directory Paths”. To handle photomicrographs, the
paths for each subcategory within the Photomicrographs di-
rectory are specifically recorded in a file named “Photomi-
crograph Paths”. Once the Captioner generates a caption for
a given image, it is saved in an “Images Captioned” file and
mapped to the image’s path. This mapping ensures all im-
ages are captioned and allows each image-caption pair to be
sent to the Leonardo.AI commercial API.

Generating Hyper-Realistic AI Images After all images
have been captioned, the Directory Path and Photomicro-



graph Path files are used to locate an image-caption pair
for submission to the Leonardo.AI commercial API. First,
a pre-signed URL is requested from Leonardo.AI to send an
authenticated image generation request. The image-caption
pair is then sent to Leonardo.AI’s “Image to Image” gener-
ation feature with the caption as the prompt. To ensure con-
sistency between images and their AI counterparts, the AI-
generated image’s dimensions are configured to match the
original image’s height and width, maintaining the aspect
ratio between the two. The model selected for generating
images is the Leonardo Vision XL model. Further details on
model selection are provided in section 9. The Leonardo.AI
API is polled to track the generation status. Once an AI-
generated image is ready, it is downloaded and saved to the
“AI” local directory. A “Main Manifest” file records the lo-
cal path of each AI-generated image and maps it to the orig-
inal image’s local path, enabling analytical comparisons be-
tween paired images. This process iterates over all captioned
images until each has a hyper-realistic AI counterpart. This
completes the Real-To-AI-Pipeline and finalizes the WIRA
dataset creation.

7 Authenticity Validation And Traceable
Origins For Photomicrographs

As noted in section 4, the Photomicrographs category does
not apply the main Authenticity Validation and Traceable
Origins criterion described in sections 5 or 6. This deci-
sion was made due to the lack of mainstream capability on
Flickr for photographers to record specific tools, such as mi-
croscopes, within Flickr’s camera database. Consequently,
a modified approach was applied for authenticity validation
within the Photomicrographs category. For WIRA’s trans-
parency, all sources for the Bacteria, Cancer Cells, Healthy
Cells, Fungi, Parasites, and Virus subcategories are all thor-
oughly cited for transparency, ensuring their Traceable Ori-
gins. These subcategories contain images exclusively aggre-
gated by hand from reliable sources, including the CDC’s
Public Health Image Library, the Broad Institute’s Broad
Bioimage Benchmark Collection, the Image Data Resource
for Open Microscopy, and IAQ Consultants. Where avail-
able, each image from these sources is further documented
with its original publication reference. This method provides
a transparent and traceable foundation for the photomicro-
graphs included in WIRA. Please note that the citations of
all individual images or image datasets including their urls
and origin publication where available are cited within the
GitHub repository.

7.1 Bacteria

All photomicrographs of bacteria were collected from the
DAS+4tag Trial2 images from IDR located on the DOI or-
ganization online. This subset of images originates from a
study containing photomicrographs of E. Coli bacteria (Ali
et al. 2020). Other individual images were hand collected
from the CDC PHIL with no link to an original publication.

7.2 Cancer Cells
All photomicrographs of cancer cells were collected from
the BBBC, originating from BBBC001 and BBBC0018
(Moffat et al. 2006). BBBC006 is used but does not have
a direct link to an original publication.

7.3 Healthy Cells
All photomicrographs of healthy cells were collected from
the BBBC along with image datasets from IDR. BBBC009
is used but does not have a direct link to an original publica-
tion. AT1G02730 and AT1G05570 are from IDR but origi-
nate from a separate study (Yang et al. 2016). Diplophyllum
taxifolium and Scapania mucronate are from IDR but origi-
nate from a separate study (Peters and König-Ries 2022).

7.4 Fungi
All photomicrographs of fungi were collected from the CDC
PHIL and IAQ Consultants without links to original publi-
cations.

7.5 Parasites
All photomicrographs of parasites were collected from the
BBBC. BBBC010 is used and from a separate study (Moy
et al. 2009). BBBC041 is used but does not have a direct link
to an original publication.

7.6 Viruses
All photomicrographs of viruses were collected from the
IDR, some of which do not contain any original publica-
tion. These are the Zb BSF019089, BSF019243-1A, and
preScreen datasets. BSF018307-4D image is used and from
a separate study (Georgi et al. 2020).

8 Computational Resources For WIRA
Construction

This section presents the specific hardware and software re-
sources used in the construction of the WIRA dataset, which
was developed entirely on a local machine. Including these
details ensures transparency and supports reproducibility for
researchers who may wish to replicate or extend this work
without relying on cloud resources. Table 1 displays the
hardware specifications while Table 2 displays the software
environmeent of the machine used to construct WIRA.

9 WIRA Decsion Records
This section presents the decisions made throughout the cre-
ation of WIRA, detailing both accepted and rejected choices
along with the rationale behind each. Organized chronolog-
ically, it provides explanations for each decision, offering a
transparent view of WIRA’s development.

9.1 Third-Party Software to Validate Images
Third-party software, such as APIs like isitai.com, was ini-
tially considered to streamline the validation of web-scraped
images by detecting anomalies indicative of AI-generated
content, thereby expediting the authenticity validation pro-
cess. It was determined that such tools should not be part of



Component Specification
Machine Dell Precision 7770
Processor 12th G. Intel i7-12850HX 2.10GHz
Installed RAM 64.0 GB DDR5 4800MHz CAMM
System Type 64-bit OS, x64-based processor
Integrated GPU Intel UHD Graphics, 32.0 GB
Discrete GPU NVIDIA RTX A1000, 4GB GDDR6

Table 1: Hardware Specifications

Component Specification
Operating System Windows 11 Pro
OS Version / Build 23H2 / 22631.446
Code Editor VS Code
Program Language Python 3.11.8
AI/ML Backend PyTorch 2.5.1
CUDA Version 12.4
Containerization Docker Desktop v4.34.3
Docker Image python:3.11.8-slim
WSL version 2.2.4.0
AI Image Generator Leonardo.AI API v1.0
Metadata Tool ExifTool by Phil Harvey 12.96

Table 2: Software Environment

the authenticity validation process, as they do not provide
insight to an image’s origin. Relying on a third party for val-
idation could compromise the credibility of authenticity, es-
pecially as the Real-To-AI Pipeline already depends on the
search engine as a third party for initial image sourcing.

9.2 Image Captioning Websites
Websites like pallyy.com can be used to automatically cap-
tion images, which is an essential component of the Real-To-
AI Pipeline. These tools were found to produce subpar re-
sults when compared to the llama-3-vision-alpha-hf model.

9.3 Source of Images Scraped
Initially, Google was selected as the primary source for
scraping images. It became clear that using a custom Google
search engine would better streamline the web-scraping pro-
cess. Despite this, challenges persisted in maintaining ac-
countability for image sources on Google. Identifying the
original author of an image was rare and verifying if an
image was captured by a camera proved difficult. Reverse
image searches often failed to provide the oldest publica-
tion date, as some entries lacked this data. These limitations
made the web-scraping process inefficient for aggregating
authentically validated images. Consequently, Flickr was
chosen due to its robust API, which supports thorough in-
vestigation into the source and origin of each image. This en-
sured that if an image is later determined to be non-authentic
despite if it were to pass the Authenticity Validation criteria,
accountability would rest solely on the photographer, not the
search engine. The combination of the validation criteria and
Flickr’s platform reinforced the authenticity of images, en-
abling each to be traced back to its photographer, who attests
to its authenticity.

9.4 Image Metadata for Authenticity Validation
While tools like the ExifTool make it easy to access an im-
age’s metadata, they equally allow for metadata manipu-
lation. Initially, metadata was considered a primary factor
for determining an image’s authenticity; however, a mali-
cious actor could use the same tool to alter metadata on an
AI-generated image. Consequently, metadata is now utilized
solely for analytical purposes and does not play a role in any
stage of the Authenticity Validation criteria.

9.5 Using Cloud Computing Architecture
Due to time and funding constraints during the research and
development of WIRA, implementing a cloud computing ar-
chitecture was not feasible. As outlined in section 10, future
integration of cloud architecture could enhance WIRA.

9.6 Transparency of WIRA
WIRA is designed to maintain complete transparency, al-
lowing users to easily critique or validate its contents. For
each successful image, the photographer assumes full re-
sponsibility for ensuring the content they produce is authen-
tically real. Researchers may use the analytical files detailed
in section 6 and available in the GitHub repository, to an-
alyze each image. Without this transparency, determining
”what is real anymore” would be impossible.

9.7 Choice of Leonardo.AI Model
Through rigorous testing of various parameter settings for
the Leonardo.AI commercial API, many models were tested.
Figure 3 shows a comparison of real images to a sample
of model and parameter combinations used to determine
the final image-generation model for WIRA. A larger figure
can be found on the GitHub repository. The Leonardo Kino
XL and Leonardo Vision XL models performed exception-
ally well showing hyper-realistic counterpart images com-
paratively to the real images sampled. The Leonardo Vision
XL model was selected after it was found to produce fewer
anomalies compared to the Leonardo Kino XL model.

10 Enhancements For Expanding WIRA
This section outlines future enhancements for the WIRA
dataset, focusing on upgrades that can extend its applicabil-
ity beyond AI-generated image detection to a broader range
of AI/ML solutions. The following suggestions aim to in-
crease the scalability and adaptability of WIRA, making it
versatile for diverse applications.

10.1 SSIM Scoring Optimization
To improve SSIM scoring accuracy, the comparison process
should resize the local image to match the dimensions of
the reference image, rather than resizing both images to the
smallest dimensions of either image.

10.2 Cloud Computing Integration
A cloud architecture would support the dataset’s scalability,
allowing large-scale image aggregation and storage.



Figure 3: Showcasing different categories within WIRA, the first column represents authentically real images validated from the
Authenticity Validation steps. The following columns represent different model and parameter outputs used when generating
hyper-realistic AI counterpart images from the Leonardo.AI commercial API.

10.3 Image Captioning Standards

For the image captioning process, ensuring the captioning
model generates clear, contextually appropriate descriptions
that adhere to AI moderation standards, such as those estab-
lished by Leonardo.AI, to maintain ethical and safe content
generation.

11 Conclusion

The novel ”What Is Real Anymore?” (WIRA) dataset is an
authentic image dataset curated for AI-generated image de-
tection. By incorporating a rigorous authenticity validation
process and traceable origins, WIRA addresses critical gaps
in mainstream datasets by ensuring each image is authenti-
cally validated, and its source transparent. WIRA fills a vi-
tal need in AI research, where distinguishing between au-
thentic and synthetic imagery becomes increasingly chal-
lenging due to the sophistication and hyper-realism of AI-
generated visuals. Future enhancements like cloud comput-
ing integration and refined image similarity measures will
enable the expansion of WIRA, making it adaptable to di-
verse research applications. In conclusion, WIRA provides
the AI/ML community with a trusted resource for advanc-
ing AI-generated content detection, promoting integrity of
digital imagery in an era of increasing visual manipulation,
and setting a benchmark for the ethical curation of authenti-
cally real data. As the digital landscape continues to evolve,
datasets like WIRA will remain instrumental in upholding
public trust in visual content and contribute to the defense
of innocent individuals against adverse uses of generative
AI across the globe.
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