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ABSTRACT

Large language models (LLMs) exhibit remarkable performance across vari-
ous natural language processing tasks but suffer from immense computational
and memory demands, limiting their deployment in resource-constrained envi-
ronments. To address this challenge, we propose NoWag (Normalized Weight
and Activation Guided Compression), a unified framework for zero-shot shape
preserving compression algorithms. We compressed Llama-2 7B/13B/70B and
Llama-3 8B/70B models, using two popular forms of shape-preserving compres-
sion, vector quantization NoWag-VQ (NoWag for Vector Quantization), and un-
structured/structured pruning NoWag-P (NoWag for Pruning). We found that
NoWag-VQ significantly outperforms state-of-the-art zero shot VQ, and that
NoWag-P performs competitively against state-of-the-art methods. Our code is
available at https://github.com/LawrenceRLiu/NoWag

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020) have demonstrated remarkable capabilities
across a wide range of natural language processing tasks, but their immense computational and
memory requirements during inference pose significant challenges for deployment. Consequently,
post-training compression techniques have emerged as a promising tool to reduce model size and
computational overhead while maintaining accuracy. Two promising families of methods for post-
training compression are Pruning (Lecun et al., 1989; Hassibi et al., 1993; Han et al., 2015) and
Quantization (Yao et al., 2022; Dettmers et al., 2022b; Ahmadian et al., 2023).

Pruning aims to remove redundant parameters from LLMs while preserving performance. We will
focus on two forms of pruning, unstructured pruning (Liao et al., 2023), which removes zeroed
out, and N:M semi-structured pruning (Huang et al., 2024), where N of every M elements are ze-
roed out. SparseGPT (Frantar & Alistarh, 2023) introduced an efficient, unstructured and semi-
structured pruning method that leverages Hessian-based weight updates to minimize accuracy loss.
More recently, Wanda (Sun et al., 2024) demonstrated a simple yet effective unstructured and semi-
structured pruning method that requires no weight updates or hessian computation, making it sig-
nificantly faster and easier to apply than SparseGPT. However current hardware only supports 2:4
semi-structured sparsity, which results in significant post compression performance loss.

A more effective compression method is quantization, which reduces the number of bits used to
store each weight (Kuzmin et al., 2023). For the scope of this paper we focus on a common form
of quantization, Weight Only Post Training Quantization (PTQ). Pioneering works (Frantar et al.,
2023; Lin et al., 2024; Kim et al., 2024) focused on scalar quantization. For extreme compression
(e.g., ≤ 4 bits per weight), Vector Quantization (VQ), where groups of d consecutive weights are
quantized together, has demonstrated superior performance because the codebook to be shaped to
the distribution of weights (Egiazarian et al., 2024; van Baalen et al., 2024; Tseng et al., 2024a;
Liu et al., 2024). However, most current algorithms all share at least one of the following two
drawbacks: First, an expensive weight update process necessitating matrix inversion, similar to
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SparseGPT. Second, sampling an adequately accurate hessian for quantization requires as much as
25 million tokens and ∼ 1TB of CPU memory for Llama-3 70B, creating a new compute bottleneck
for quantization.

In this work, we address these issues by formulating a unifying framework for shape preserving
compression algorithms, where the compressed weight matrix has the same shape as the original
uncompressed counterpart but can be stored with less memory. This method is weight update free,
less dependent on calibration data, and has a novel normalization that is beneficial to both pruning
and quantization. We term this family of compression methods NoWag (Normalized Weight and
Activation Guided Compression). We show that the VQ variation of NoWag, NoWag-VQ (NoWag
for Vector Quantization), outperforms the SOTA one-shot VQs QuIP# (Tseng et al., 2024a), at bits
per value, while using 48x less calibration data. Furthermore, we show that the pruning variation
of NoWag, NoWag-P (NoWag for Pruning), offers comparable performance to recent pruning algo-
rithms, Wanda and SparseGPT, and results in greater preservation of Language Modeling abilities.

2 METHODS

In this work, we focus on “one-shot” compression methods for large language models (LLMs).
Here, “one-shot” refers to directly compressing the model based on the calibration data without
fine-tuning to adjust the compressed model parameters. Given a trained LLM, our goal is to obtain
a compressed model that significantly reduces the computational and memory requirements while
retaining as much general performance as possible. Due to the large number of parameters, using
global optimization for compression is computationally infeasible. As a result, one-shot compres-
sion methods commonly optimize each linear layer independently (Nagel et al., 2020). Following
this principle, our method compresses each linear layer by minimizing a data-aware loss function,
which we define below.

Problem Formulation Consider a linear layer in an LLM with weight matrix W ∈ Rdout×din .
Given input activations x ∈ Rdin , the output is computed as y = Wx, where y ∈ Rdout .

Our objective is to find a compressed weight matrix Ŵ ∈ Rdout×din that retains the same dimensions
but requires less memory while minimizing the deviation from the original model’s behavior. To
incorporate data awareness, we sample n sequences of length l from a calibration dataset and collect
the corresponding activation samples XT ∈ Rm×din where m = n × l. Given these activation
samples, we define a data-weighted loss function for compression.

Compression Objective To ensure numerical stability and enhance compression efficiency, we
first normalize W to obtain W̄ ∈ Rdout×din using normalization vectors r(1) ∈ Rdin and r(2) ∈ Rdout :
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The compressed weight matrix Ŵ is obtained by minimizing the following weighted Frobenius
norm:

ℓ̃(Ŵ) = ∥W̄ − Ŵ ∥2F,diag(XXT ) =
∑
i

∑
j

(W̄ij − Ŵij)
2∥Xj∥22. (1)

Here, Xj ∈ Rm represents the calibration activations for the jth input channel, and diag(XXT )
acts as a weighting term that prioritizes important elements of W .

Paradigms of Compression The above formulation unifies the following two paradigms of shape
preserving compression.

1. Quantization (NoWag-VQ): When using vector quantization, this corresponds to a
weighted K-means clustering problem, where the weights are determined by diag(XXT ).
A detailed formulation is provided in Appendix C.

2. Unstructured/Semi-Structured Pruning (NoWag-P): For an x%-unstructured pruning
pattern, where x% of the weight matrix entries (i, j) are zeroed out, our method selects
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the x% of entries with the smallest W̄ 2
ij∥Xj∥22, thereby minimizing Equation 1. For N:M

Semi-Structured Pruning, our method selects the N entries in each group of M with the
smallest W̄ 2

ij∥Xj∥22.

The average computational cost of both NoWag-P and NoWag-VQ scales linearly with the size,
dindout of the weight matrices.

Why this works. The critical step is our approach is the normalization of W , which rescales the
outliers rows and columns with large magnitudes. Without normalization, even after scaling by ac-
tivations, the location of preserved elements of unstructured pruning would be largely localized to
rows with large magnitudes, especially in the Multi Head Attention layers. This results in entire out-
put channels effectively being removed, dramatically reducing the performance of the compressed
LLM. Furthermore, normalization makes W̄ more VQ friendly, by bounding all elements to [−1, 1],
and rescaling outliers to make the d dimensional distribution of consecutive weights “ball shaped.”
A visualization is provided in figure 2 in appendix D.

3 RELATED WORKS

Pruning: A popular pruning algorithm for LLMs is Wanda (Sun et al., 2024), which prunes based
on a score metric Sij = |Wij |∥Xj∥2, furthermore, for unstructured pruning, pruning is performed
independently in per-output groups. Several parallels can be drawn to our approach. First, without
normalization NoWag-P is equivalent to Wanda without output grouped pruning. Second, normal-
ization performs a similar process to output grouped pruning by distributing preserved entries more
evenly, pruned masks are emperically very similar, please see Appendix D for a more detailed dis-
cussion.

Quantization: Kmeans has been explored for LLM PTQ in several works. In many VQ algorithms,
it is used to initialize before optimizing the quantization (van Baalen et al., 2024; Liu et al., 2024;
Egiazarian et al., 2024). For scalar quantization, SqueezeLLM has employed weighted K-means
using the diagonal of the fisher information as weights. Our algorithm has several key differences
to those aforementioned. First, we use K-means only without any computationally expensive op-
timization procedures required by previous VQ algorithms. Second, our weights are simply the
second moment of the sample activations, which can be calculated without a backwards pass.

Weight Update Compression Methods For both Pruning and Quantization, many compression
methods use linear feedback updates during compression (Chee et al., 2023; Tseng et al., 2024a; Liu
et al., 2024; van Baalen et al., 2024; Frantar & Alistarh, 2023). This method requires calculating the
inverse of a sample activation’s outer product, which costs O(d3in). Since din and dout are of roughly
the same magnitude in a modern LLM, NoWag-P and NoWag-VQ offers a significant speedup for
compression over linear feedback based pruning methods, whose computational complexity scales
cubically with din.

4 EXPERIMENTS

Models and Evaluations. We evaluate NoWag on two popular families of models Llama 2 (Llama-
2 7B/13B/70B) (Touvron et al., 2023) as well as Llama-3 8B (Grattafiori et al., 2024) for VQ and
Llama-3 8B/70B (Grattafiori et al., 2024) for Pruning.

Baselines We compared our results against the SOTA one-shot VQ algorithm at 2 bits per value,
QuIP# (Tseng et al., 2024a). This algorithm incorporates VQ with Hammard incoherence matrices
and an E8 structured codebook. We did not compare against QTIP (Tseng et al., 2024b) as our
focus was on VQ rounding methods, and because Trellis coding can be extended to any VQ round-
ing method. For pruning, we compare NoWag-P against Wanda (Sun et al., 2024). As discussed
previously, the key difference between Wanda and NoWag-P is our normalization method. As such,
a comparison between NoWag-P and Wanda serves to highlight the impact of our normalization
scheme in both a unstructured and semi-structured pruning scheme.

Calibration dataset We use 128 samples at the model’s native sequence length (4096 for the Llama
2 family and 8192 for the Llama 3 family) of the RedPajama 1T dataset (Weber et al., 2024) as our
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Bits Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 16 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 16 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (2-70B) 16 77.0 67.9 81.1 77.7 51.1 70.96
FP16 (3-8B) 16 73.5 68.6 79.7 80.1 50.2 70.42
QuIP# (2-7B ) 2 61.7 57.8 69.6 61.2 29.9 56.04
NoWag-VQ (2-7B) 2.02 64.4 54.5 73.6 60.7 31.7 56.99
QuIP # (2-13B) 2 63.6 54.5 74.2 68.7 36.2 59.44
NoWag-VQ (2-13B) 2.01 68.1 62.5 75.9 67.3 37.9 62.34
QuIP # (2-70B) 2 74.2 70.0 78.8 77.9 48.6 69.9
NoWag-VQ (2-70B) 2.02 74.5 69.0 79.4 75.4 46.2 68.9
QuIP # (3-8B) 2 63.2 52.7 67.6 57.6 28.2 53.86
NoWag-VQ (3-8B) 2.02 67.7 53.0 72.3 68.4 33.2 58.93

Table 1: Zeroshot sequence classification accuracies (%) across 5 tasks and the average accuracies
of Quantized Models without finetuning. 1

calibration data for both pruning and quantization. This is the same dataset used by QuIP#, which
uses 6144 samples, or 48x times more data.

Evaluation To evaluate NoWag-VQ and NoWag-P, we follow standard evaluation metrics for quan-
tized models of measuring the zero shot perplexity on the test splits of the C4 (Dodge et al., 2021)
and Wikitext2 (Merity et al., 2016), and task specific sequence classification zero shot accuracy
through the Eleuther AI LM Harness (Gao et al., 2024), the exact tasks are listed in the appendix E.
Because Wanda did not report C4 perplexities, we modified the code to compute them, furthermore
we added support for pruning the Llama-3 family of models. Because of this, several libraries had
to be upgraded from what the original Wanda paper used, resulting perplexities in Wikitext2 that are
slightly different to those reported in Wanda.

4.1 QUANTIZATION EVALUATION

For Llama-2 7B/13B and Llama-3 8B, we performed VQ with groups of d = 6 elements together,
this allows for the codebook to fit inside the L1 cache of an Nvidia A6000 GPU, enabling fast
decoding. For Llama-2 70B we performed VQ with groups of d = 7 elements, since the relative
overhead of the codebook is smaller with the larger model size. While larger, this codebook is
still able to fit inside the L1 cache of a Nvidia H100 GPU. In table 1 we compare the Zero Shot
accuracies of NoWag-VQ against QuIP# and in table 2 we compare the perplexities of NoWag-VQ
against QuIP#, both at ∼ 2 bits per value. NoWag-VQ outperforms QuIP# in perplexity for Llama-2
7B/13B and Llama 3-8B, and outperforms QuIP# for almost every zero shot task for all models,
while using 48x less calibration data.

4.2 PRUNING EVALUATION

Table 3, we compare the Wikitext2 Perplexity of NoWag-P with Wanda pruning for 50% unstruc-
tured pruning and 4:8 semi-structured pruning and 2:4 semi-structured results. In the interest of
space, C4 and zeroshot results are reported in are reported in the Appendix. NoWag-P uniformly
produces lower perplexity than Wanda at 50% and 4:8 semi-structured. This empirically demon-
strates the benefits of the NoWag normalizer. However at 2:4 semi-structured pruning, NoWag-P
only roughly matches the performance of Wanda. We believe that this is due to the more structured
pattern, which negates the impact of the normalizer. A detailed analysis is provided in the appendix.

5 CONCLUSION

In this work, we introduced NoWag, a novel framework unifying pruning and quantization un-
der a common normalization-based approach. Our experimental results demonstrate that NoWag-
P improves upon existing pruning techniques in maintaining language modeling accuracy, while

1QuIP# accuracies are taken from CALDERA (Saha et al., 2024).
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Method Bits Wiki2 (↓) C4 (↓)
fp16 (2-7B) 16 5.12 6.63
fp16 (2-13B) 16 4.57 6.05
fp16 (2-70B) 16 3.12 4.97
fp16 (3-8B) 16 5.54 7.01
QUIP # (2-7B) 2 8.23 10.8
NoWag-VQ (2-7B) 2.02 7.07 9.02
QuIP # (2-13B) 2 6.06 8.07
NoWag-VQ (2-13B) 2.01 5.93 7.94
QuIP # (2-70B) 2 4.16 6.01
NoWag-VQ (2-70B) 2.02 4.15 5.94
QuIP# (3-8B) 2 13.8 15.6
NoWag-VQ (3-8B) 2.02 10.68 11.92

Table 2: Perplexities for WikiText2 and
C4 without finetuning for 2-bit Quantized
Llama-2 7B/13B/70B, and Llama-3 8B

Wikitext2 PPL (↓)
Method Sparsity 2-7B 2-13B 2-70B 3-8B 3-70B
Dense 0% 5.12 4.57 3.12 5.54 2.58
Wanda 50% 6.46 5.58 3.97 9.06 5.34
NoWag-P 50% 6.37 5.49 3.89 8.32 4.95
Wanda 4:8 8.07 6.55 4.49 13.39 6.50
NoWag-P 4:8 8.04 6.47 4.45 12.66 6.24
Wanda 2:4 11.35 8.36 5.20 22.42 8.29
NoWag-P 2:4 11.14 8.28 5.17 24.0 7.52

Table 3: Wikitext2 for NoWag-P and
Wanda at 50% unstructured, and 4:8 and
2:4 semistructured pruning for Llama-2
7B/13B/70B and Llama-3 8B/70B. Con-
text length was at the model’s native con-
text length, 4096 for Llama-2 and 8192 for
Llama-3.

NoWag-VQ achieves superior quantization performance using substantially less calibration data.
By leveraging a structured normalization strategy, NoWag reduces the sensitivity of compression to
outlier weights and enhances the efficiency of both pruning and quantization. These findings sug-
gest that NoWag provides a scalable and adaptable compression paradigm for LLMs, facilitating
their deployment in real-world applications with reduced computational costs.
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A ADDITIONAL PRUNING EVALUATIONS

C4 PPL (↓)
Method Sparsity 2-7B 2-13B 2-70B 3-8B 3-70B
Dense 0% 6.63 6.05 4.97 7.01 5.78
Wanda 50% 8.39 7.47 5.77 10.19 7.00
NoWag-P 50% 8.27 7.35 5.71 9.67 6.81
Wanda 4:8 10.19 8.68 6.39 13.95 7.95
NoWag-P 4:8 10.17 8.67 6.38 13.86 7.69
Wanda 2:4 13.80 10.96 7.19 21.63 9.63
NoWag-P 2:4 13.91 11.05 7.23 23.5 9.18

Table 4: C4 Perplexities

Avg Zero Shot Accuracy (↑)
Method Sparsity 2-7B 2-13B 2-70B 3-8B 3-70B
Dense 0% 63.66 65.76 70.96 70.42 75.89
Wanda 50% 60.24 63.66 70.16 63.49 73.45
NoWag-P 50% 60.48 63.57 70.28 62.93 72.3
Wanda 4:8 58.27 61.32 68.7 57.84 70.42
NoWag-P 4:8 56.71 60.6 68.43 57.46 70.76
Wanda 2:4 55.37 58.24 66.73 52.59 68.08
NoWag-P 2:4 54.3 58.14 66.95 51.21 67.71

Table 5: Average Zeroshot Accuracies

Figure 1: Relative difference in C4 perplexity NoWag-P between Wanda:
(NoWag Perplexity)/(Wanda Perplexity) − 1. Calculated for a range of semi structured pat-
terns for Llama-2-13B and Llama-3-8B. The improvements provided by NoWag-P over Wanda
dimishes for more structured patterns (smaller N )
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A.1 PRUNING ZEROSHOT RESULTS TASKWISE

Sparsity Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 0% 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 0% 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (2-70B) 0% 77.0 67.9 81.1 77.7 51.1 70.96
FP16 (3-8B) 0% 73.5 68.6 79.7 80.1 50.2 70.42
FP16 (3-70B) 0% 80.7 69.0 82.5 86.8 60.4 75.89
Wanda (2-7B) 50% 66.9 55.6 75.6 66.2 37.0 60.24
NoWag-P (2-7B) 50% 65.7 60.7 75.7 65.5 34.9 60.48
Wanda (2-13B) 50% 68.9 58.5 78.4 71.6 41.0 63.66
NoWag-P (2-13B) 50% 68.9 59.6 77.8 71.3 41.0 63.57
Wanda (2-70B) 50% 76.9 69.3 80.5 75.9 48.2 70.16
NoWag-P (2-70B) 50% 76.6 71.1 80.7 75.5 47.4 70.28
Wanda (3-8B) 50% 71.0 59.9 74.9 71.4 40.3 63.49
NoWag-P (3-8B) 50% 70.0 56.7 75.8 71.7 40.4 62.93
Wanda (3-70B) 50% 78.0 70.0 81.3 83.0 55.0 73.5
NoWag-P (3-70B) 50% 76.7 67.9 81.2 82.8 52.9 72.30

Table 6: Zeroshot accuracies for each task for 50% Pruning

Sparsity Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 0% 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 0% 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (2-70B) 0% 77.0 67.9 81.1 77.7 51.1 70.96
FP16 (3-8B) 0% 73.5 68.6 79.7 80.1 50.2 70.42
FP16 (3-70B) 0% 80.7 69.0 82.5 86.8 60.4 75.89
Wanda (2-7B) 4:8 65.35 58.12 73.61 62.46 31.83 58.27
NoWag-P (2-7B) 4:8 64.7 54.2 72.7 61.7 30.2 56.71
Wanda (2-13B) 4:8 68.98 55.96 75.79 67.47 38.4 61.32
NoWag-P (2-13B) 4:8 69.0 57.0 75.0 65.5 36.5 60.60
Wanda (2-70B) 4:8 74.9 67.87 79.54 74.71 46.5 68.7
NoWag-P (2-70B) 4:8 75.6 67.2 79.3 74.0 46.2 68.43
Wanda (3-8B) 4:8 66.69 53.07 71.0 64.31 34.13 57.84
NoWag-P (3-8B) 4:8 65.0 54.5 70.7 63.6 33.4 57.46
Wanda (3-70B) 4:8 73.8 66.06 80.09 80.89 51.28 70.42
NoWag-P (3-70B) 4:8 76.1 65.7 79.7 81.4 50.9 70.76

Table 7: Zeroshot accuracies for each task for 4:8 Pruning
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Sparsity Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 0% 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 0% 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (2-70B) 0% 77.0 67.9 81.1 77.7 51.1 70.96
FP16 (3-8B) 0% 73.5 68.6 79.7 80.1 50.2 70.42
FP16 (3-70B) 0% 80.7 69.0 82.5 86.8 60.4 75.89
Wanda (2-7B) 2:4 60.5 58.5 70.1 57.6 30.2 55.37
NoWag-P (2-7B) 2:4 60.5 58.1 69.3 55.8 27.9 54.30
Wanda (2-13B) 2:4 65.8 54.5 73.1 63.8 34.0 58.2
NoWag-P (2-13B) 2:4 65.6 58.1 72.4 62.9 32.7 58.14
Wanda (2-70B) 2:4 73.6 64.6 78.9 72.9 43.2 66.70
NoWag-P (2-70B) 2:4 75.1 66.8 77.6 72.5 42.7 66.95
Wanda (3-8B) 2:4 59.9 52.7 67.5 56.9 25.9 52.59
NoWag-P (3-8B) 2:4 58.1 52.7 66.6 54.4 24.2 51.21
Wanda (3-70B) 2:4 71.7 63.9 78.1 78.5 48.2 68.08
NoWag-P (3-70B) 2:4 72.9 62.5 78.5 77.8 46.9 67.71

Table 8: Zeroshot accuracies for each task for 2:4 Pruning

B QUANTIZED FINETUNING

Method Bits Wiki2 (↓) C4 (↓)
fp16 (2-7B) 16 5.12 6.63
fp16 (2-13B) 16 4.57 6.05
fp16 (2-70B) 16 3.12 4.97
AQLM (2-7B) 2.02 6.59 8.54
NoWag-VQ (2-7B) 2.02 6.51 8.50
AQLM (2-13B) 1.97 5.60 7.49
NoWag-VQ (2-13B) 2.01 5.53 7.39
AQLM (2-70B) 2.07 3.94 5.72
NoWag-VQ (2-70B) 2.02 3.99 5.77

Table 9: Perplexities for WikiText2 and C4 with blockwise finetuning for 2-bit Quantized Llama-2
7B/13B/70B compared with AQLM.

We also examine the performance of NoWag-VQ beyond the “one-shot” compression regime. Ex-
isting literature has proposed several methods for post quantization finetuning. One popular method
is finetuning the remaining continuous parameters of each transformer block to minimize the block
output errors (Egiazarian et al., 2024). Another is model-wise finetuning to minimize the overall
Kullback–Leibler divergence with the original model, optimizing over the continuous (Tseng et al.,
2024a), and the discrete parameters (Malinovskii et al., 2024). Because of our limited computa-
tional resources, we were only able to perform block-wise finetuning. We compare the perplexities
of those models against those of AQLM (Egiazarian et al., 2024) in table 9. NoWag-VQ outperforms
AQLM for Llama 2 7B and 13B, but falls short for Llama-2 70B. We suspect this is due to AQLM
using d = 8 VQ rather than d = 7, which allows for more than 4x the parameters. However, our
codebook fits into the L1 cache of an H100 and AQLM’s does not.

Finetuning was performed in a blockwise fashion. For each transformer block, our objective was
minimizing the l2 norm between the outputs of the original block and those of the quantized blocks.
The parameters to optimize over were the codebooks, and the normalization vectors of each quan-
tized layers, and the RMS norm parameters. In addition we initalized a bias vector, set to all zeros,
for each linear layer in the block.

For Llama-2 7B/13B, finetuning was done using 128 samples of Red Pajamas (Weber et al., 2024),
with 32 held out as a validation set. Optimization was done through Adam Kingma & Ba (2017),
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without any weight decay and a learning rate of 10−4. For Llama-2 70B, 256 samples of Red
Pajamas was used with a learning rate 10−6.

C DETAILED FORMULATION OF QUANTIZATION

To quantize a model, we map each weight entry or a contiguous vector of weight entries to a code-
book. Without loss of generality, we assume that use a vector quantization algorithm where we
quantize every d parameters, wi,j:j+d together. Then quantization results in the following:

• A codebook C = {c1...ck|ck ∈ Rd}

• A mapping M(wi,j:j+d) = cl ∈ C.

when we represent the quantized weights for inference, these mappings become a string of bits
of length ⌈|C|⌉. Therefore the resulting in a bits per value of (log2 (⌈|C|⌉) + ϵ) 1

d , where ϵ is the
bits needed to represent the overhead of normalization parameters, codebooks, etc. Note that we
can inverse this relationship to find that if we have a target bits per values ∼ nbpv , the size of the
codebook should be |C| = 2nbpvd. The main benefit of vector quantization is that it allows for
the quantization codebook to be better shaped to the weights. However, the size of the codebook
increases exponentially with the dimension d, which leads to ϵ/d no longer becoming a negligible
quantity compared with the bits used to encode each value. Furthermore, for fast inference, C must
fit inside the L1 cache of a GPU. This has lead to a line of work on more efficient encoding schemes,
such as trellis encoding schemes pioneered by (Tseng et al., 2024b). We focus on only ”vanilla” VQ,
as the general construction of QTIP can be used as a drop-in replacement for VQ in any rounding
framework. (Tseng et al., 2024b)

C.1 WEIGHTED VECTOR K-MEANS FORMULATION

As discussed in section 2, for quantization we used weighted vector K-Means, this consists of two
steps, an assignment step and an update step, below we explicitly write each step. However, in the
interests of runtime, for each layer, we only initialized once using the K-means++ algorithm (Arthur
& Vassilvitskii, 2007), and only performed 100 assignment update step pairs. We did observe in-
creasing performance scaling from 20 to 100 assignment steps, therefore we believe that the results
reported in tables 2 1 do not demonstrate the full performance of NoWag-VQ.

Assignment step: For each vector W̄i,j:j+d we select the mappings to such that the weighted l2
norm is minimized.

M(W̄i,j:j+d) = argmin
cl∈C

(
W̄i,j:j+d − cl

)T (
diag(XXT )j:j+d ⊙

(
W̄i,j:j+d − cl

))
(2)

Update step: For each vector in the codebook, we take the weighted average of the assignments:

cl =

 ∑
i,j∀M(W̄i,j:j+d)=cl

diag(XXT )j:j+d ⊙ W̄i,j:j+d

⊘

 ∑
i,j∀M(W̄i,j:j+d)=cl

diag(XXT )j:j+d


(3)
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D WHY NORMALIZATION WORKS

Figure 2: 2d PCA visualization of the distribution of d = 6 grouped entries from W and W̄. Den-
sities are plotted at log scale. Normalization reshapes the distribution into a more ”ball-shaped
distribution.

Figure 3: A sample weight from the first attention layer of Llama-2-7B. From left to right: visualiza-
tion of the absolute values of the weights, normalized weights, importance scores, and normalized
importance scores all down-sampled to 1:4 scale by max pooling. Individual elements are visualized
in log scale, with blue implying larger value.

The critical step in our approach is the normalization of W . Our normalization method effectively
normalizes Wij by both the input and output group. This removes the biases on the compression
algorithm to focus on smaller-magnitude rows/columns, leading to a better retention of the overall
performance of an LLM.

To illustrate why, we visualize W and W̄ for an example weight in figure 3. In addition, to un-
derstand the effects of data awareness, we also visualized the element wise importance scores
S̄ij = ∥ W̄ij ∥∥Xj∥2 derived from equation 1. Likewise, for comparison, we also visualized the
naive scores Sij = ∥Wij ∥∥Xj∥2 without considering normalization.

We observe that non-normalized weights exhibit a structured pattern, with specific outlier rows
and columns, with larger magnitudes. These structures can be attributed to several phenomenons,
such as sensitive attention heads, rotatory embedding pattern, and outlier features (Dettmers et al.,
2023; Su et al., 2024; Dettmers et al., 2022a; Vig, 2019; Olsson et al., 2022). In comparison, the
normalized weights do not exhibit this patterns. This is highly beneficial for vector quantization, as
it projects the d dimensional distribution of consecutive weights into a bounded [0, 1] “ball shaped”
distribution, visualized in Figure 2

The importance visualizations in Figure 3 once again exhibits these row and column wise structures.
Thus, when pruning is applied, the removed elements will be concentrated away from these rows and
columns on the non-outlier columns. In turn, this effectively removes entire input/output channels,
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reducing the performance of the compressed LLM. Normalization largely removes the rowise outlier
structures from the importance scores. In addition some of the columnwise structure is removed,
while some still remains. The remaining structure is due to the ∥Xj∥2 component of the scores
S̄ij = ∥ W̄ij ∥∥Xj∥2.

E ZERO SHOT DISCRIPTIONS

NoWag-P was evaluated on zero-shot accuracy as noted Tables 8, 7, and 6. The classification se-
quence classification tasks are as follows:

1. RTE (Bentivogli et al., 2009) — Recognizing Text Entailment, a task in the GLUE bench-
mark, requires a model to determine if one statement logically follows from another.

2. WinoGrande (Keisuke et al., 2019) — WINOGRANDE is a large-scale dataset of 44k
problems based on the Winograd Schema Challenge, specifically crafted to minimize bi-
ases in training data. It features a two-choice fill-in-the-blank format that requires deep
commonsense reasoning.

3. ARC-e (Clark et al., 2018) — A subset of the AI2 Reasoning Challenge (ARC), ArcE
consists of multiple-choice questions designed to assess grade-school level knowledge and
represents the ”Easy” portion of the dataset.

4. ARC-c (Clark et al., 2018) — The ARC-Challenge subset follows the same format as
ARC-Easy but includes only questions that baseline algorithms previously failed to answer
correctly.

5. PIQA (Bisk et al., 2020) — PIQA is a benchmark dataset for physical commonsense rea-
soning, having AI answer questions about everyday interactions without direct physical
experience.

F QUANTIZATION ADDITIONAL EVALUATIONS

We include additional comparisons with three more VQ algorithms, AQLM (Egiazarian et al., 2024),
VPTQ (Liu et al., 2024) and CALDERA (Saha et al., 2024). AQLM (Additive Quantiztation for Lan-
guage Models) performs quantization through additive multi codebook VQ. VPTQ combindeds are
vector quantization extension of GPTQ (Frantar et al., 2023) with residual quantization. CALDERA
builds ontop of QuIP# by adding additional quantized low rank matrices, and as a result, requires
higher bits per value.

For AQLM and VPTQ, their appendices included zero shot ablation results for perplexity of Wiki-
text2 and C4. For VPTQ, because a very detailed ablation was chosen, we simply chose the best
performing zero-shot quantization. For CALDERA, we chose the compression with the least equiv-
alent bits per value. Perplexities are shown in table 10, and zero shot results with CALDERA are
show in table 11. We can see that our algorithm performs competitively to these modern VQ algo-
rithms as well.

15



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Method Bits Wiki2 (↓) C4 (↓)

fp16 (2-7B) 16 5.12 6.63
fp16 (2-13B) 16 4.57 6.05
fp16 (3-8B) 16 5.54 7.01
fp16 (2-70B) 16 3.12 4.97

AQLM (2-7B) 2.02 8.18 10.59
QUIP # (2-7B) 2 8.23 10.8
CALDERA (7B) 2.1 7.37 9.74
NoWag-VQ (2-7B) 2.02 7.07 9.02

QuIP # (2-13B) 2 6.06 8.07
CALDERA (2-13B) 2.08 6.04 7.98
VPTQ (2-13B) 2.07 6.02 7.96
NoWag-VQ (2-13B) 2.01 5.93 7.94

QuIP# (3-8B) 2 13.8 15.6
CALDERA 2.1 10.6 11.8
NoWag-VQ (3-8B) 2.02 10.68 11.92

QuIP# (2-70B) 2 4.16 6.01
CALDERA (2-70B) 2.1 4.11 5.95
NoWag-VQ (2-70B) 2.01 4.15 5.94

Table 10: Performance comparison of different methods on Wiki2 and C4 datasets.

Bits Wino (↑) RTE (↑) PiQA (↑) ArcE (↑) ArcC (↑) Avg Acc (↑)
FP16 (2-7B) 16 67.3 63.2 78.5 69.3 40.0 63.66
FP16 (2-13B) 16 69.5 61.7 78.8 73.2 45.6 65.76
FP16 (3-8B) 16 73.5 68.6 79.7 80.1 50.2 70.42
FP16 (2-70B) 16 77.0 67.9 81.1 77.7 51.1 70.96
QuIP# (2-7B ) 2 61.7 57.8 69.6 61.2 29.9 56.04
Caldera (2-7B) 2.1 63.7 62.1 72.3 60.9 31.7 58.14
NoWag-VQ (2-7B) 2.02 64.4 54.5 73.6 60.7 31.7 56.99
QuIP # (2-13B) 2 63.6 54.5 74.2 68.7 36.2 59.44
Caldera (2-13B) 2.08 66.9 61.0 76.0 69.5 37.2 62.12
NoWag-VQ (2-13B) 2.01 68.1 62.5 75.9 67.3 37.9 62.34
QuIP # (3-8B) 2 63.2 52.7 67.6 57.6 28.2 53.86
Caldera (3-8B) 2.1 66.9 58.5 71.8 68.2 34.3 59.94
NoWag-VQ (3-8B) 2.02 67.7 53.0 72.3 68.4 33.2 58.93
QuIP # (2-70B) 2 74.2 70.0 78.8 77.9 48.6 69.9
Caldera (2-70B) 2.1 75.5 69.3 79.8 76.9 47.7 69.84
NoWag-VQ (2-70B) 2.02 74.5 69.0 79.4 75.4 46.2 68.9

Table 11: Zeroshot accuracies (%) across 5 tasks and the average accuracies of Quantized Models
without finetuning.
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