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Abstract

Domain adaptation aims to use training data from
one or multiple source domains to learn a hypothe-
sis that can be generalized to a different, but related,
target domain. As such, having a reliable measure
for evaluating the discrepancy of both marginal and
conditional distributions is crucial. We introduce
Cauchy-Schwarz (CS) divergence to the problem
of unsupervised domain adaptation (UDA). The
CS divergence offers a theoretically tighter gener-
alization error bound than the popular Kullback-
Leibler divergence. This holds for the general case
of supervised learning, including multi-class clas-
sification and regression. Furthermore, we illus-
trate that the CS divergence enables a simple es-
timator on the discrepancy of both marginal and
conditional distributions between source and tar-
get domains in the representation space, without
requiring any distributional assumptions. We pro-
vide multiple examples to illustrate how the CS
divergence can be conveniently used in both dis-
tance metric- or adversarial training-based UDA
frameworks, resulting in compelling performance.
The code of our paper is available at https:
//github.com/ywzcode/CS-adv.

1 INTRODUCTION

Deep learning has achieved outstanding performance in
different vision tasks, including image classification [He
et al., 2016] and semantic segmentation [Ronneberger et al.,
2015]. Typically, it is assumed that the training and test
data are drawn from the same distribution. In reality, this
assumption is often violated due to a variety of factors,
such as changes in lighting conditions, viewpoints, and the
appearance of objects. This discrepancy between the source
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and target domains is referred to as domain shift [Mansour
et al., 2008, Yosinski et al., 2014], which can significantly
degrade the generalization capability of the learned model.

Domain adaptation aims to mitigate the effects of domain
shift by leveraging the knowledge acquired from one or mul-
tiple source domains to improve the model’s performance in
different, but related, target domains. Most of the previous
methods aim to learn a domain-invariant feature represen-
tation z that has the same marginal distribution p(z) across
domains. Usually, this is achieved by either using differ-
ent kinds of divergence measures, such as Maximum Mean
Discrepancy (MMD) [Gretton et al., 2012, Zhang and Wu,
2020], Kullback-Leibler (KL) divergence [Nguyen et al.,
2021b], Wasserstein distance which arises from the idea
of optimal transport [Damodaran et al., 2018, Fatras et al.,
2021], or adopting advanced optimization strategies such as
adversarial training [Ganin et al., 2016, Long et al., 2015,
Saito et al., 2018, Zhang et al., 2019, Du et al., 2021]. How-
ever, these approaches implicitly assume that the conditional
distribution p(y|z) remains the same, which is generally an
overly optimistic assumption (cf. Fig. 1 in [Zhao et al.,
2019]).

Moreover, due to the high dimensionality and continuous
nature of representation z, estimating the discrepancy of
p(y|z) in two domains is challenging. The above-mentioned
distance measures, including MMD, KL divergence, and
Wasserstein distance, have been considered to model the
discrepancy of p(y|z). However, earlier approaches either
resort to matching p(z|y) instead (e.g., [Luo and Ren, 2021,
Zhang and Wu, 2020]), or naïvely assume that such dis-
crepancy is sufficiently small [Nguyen et al., 2021b]. Note
that, given that p(z) is aligned, aligning p(y|z) by solely
matching p(z|y) implicitly assumes that p(y) is invariant.

The above issue motivates us to introduce the Cauchy-
Schwarz (CS) divergence [Principe et al., 2000b,a] to the
problem of unsupervised domain adaptation (UDA), in
which the target domain is unlabeled. Firstly, we demon-
strate that CS divergence can explicitly align the discrepancy
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of p(y|z) between source and target domains. Secondly,
utilizing the CS divergence, we establish a tighter gener-
alization bound in comparison to the commonly adopted
KL divergence. This offers a theoretical guarantee on the
improved performance of our overall model compared to
other state-of-the-art (SOTA) approaches.

Our contributions can be summarized as follows:

1. To the best of our knowledge, this is the first attempt to
introduce CS divergence to UDA for aligning p(y|z).

2. We show that the CS divergence enables a tighter gen-
eralization bound on UDA than the popular KL diver-
gence. Unlike classic generalization error bound [Ben-
David et al., 2010] that only applies to the binary clas-
sification setup and is hard to optimize in practice, our
bound applies to general domain adaptation tasks in-
cluding multi-class classification and regression.

3. We provide a simple, non-parametric approach of es-
timating the CS divergence for both p(z) and p(y|z)
between source and target domains, without relying on
any distributional assumptions.

4. We show that the proposed CS divergence can be con-
veniently used in both distance metric- or adversarial
training-based UDA frameworks. The CS divergence
can also be smoothly integrated as a flexible plug-in
module to improve modern UDA approaches.

2 RELATED WORK

Domain Adaptation Prior research in the field has pre-
dominantly concentrated on aligning the marginal distribu-
tion p(z) with a valid distance metric or in an adversarial
training manner.

The most popular distance metric is Mean Maximum Dis-
crepancy (MMD) [Gretton et al., 2012], which has been
widely used in domain adaptation task [Pan et al., 2010,
Ding et al., 2018, Long et al., 2015]. Similar to MMD,
CORAL [Sun and Saenko, 2016] matches the first two
moments of distributions. Other distance metrics, such as
Wasserstein distance [Shen et al., 2018], manifold match-
ing [Wang et al., 2018], optimal transport [Courty et al.,
2017b], and margin disparity discrepancy (MDD) [Zhang
et al., 2019] have also been used in matching the marginal
distributions. Another line of methods utilizes the adver-
sarial training [Ganin et al., 2016, Saito et al., 2018] for
matching p(z) through a min-max optimization.

However, such methods only consider matching marginal
distributions. Aligning the conditional distributions of the
source (ps(y|z)) and target (pt(y|z)) domains presents a
considerable challenge due to the continuous and high-
dimensional nature of z, and the fact that the ground truth
y in the target domain is unknown in UDA setting. To ad-
dress this issue, several attempts such as class condition

MMD [Zhang and Wu, 2020, Ge et al., 2023] and condi-
tional kernel Brues (CKB) metric [Zhang and Wu, 2020]
have been developed. It is important to note that the term
“conditional" here refers to matching p(z|y) =

∑
p(y =

ci)p(z|y = ci). Such formulation has two major limita-
tions: 1) it implicitly assumes p(y) is invariant (see Sec-
tion 3.2 for a detailed discussion); 2) the scalability could
be a problem when the number of classes is large, e.g., more
than 1, 000 classes as commonly seen in vision tasks. Opti-
mal transport has been used to match the joint distribution
p(z, y) [Courty et al., 2017a, Damodaran et al., 2018, Fatras
et al., 2021]. Typically, the transportation cost is represented
as a weighted combination of costs in both feature and label
spaces. In contrast, we match p(z, y) by explicitly mod-
eling both p(z) and p(y|z), following the decomposition
p(z, y) = p(y|z)p(z).

Generalization Error Bound A tight generalization error
bound coupled with a valid discrepancy measure plays a fun-
damental role in designing modern UDA approaches. Early
studies have explored generalization bounds for UDA on
binary classification with the aid ofH△H-divergence [Ben-
David et al., 2010, Mansour et al., 2009]. Later, [Cortes
and Mohri, 2011] extend the result to regression scenario,
[Medina, 2015, Mohri and Medina, 2012] provide a tighter
bound in on-line learning by introducing the Y-discrepancy.
[Cortes et al., 2019] use discrepancy minimization algorithm
and solve a semi-definite programming (SDP) problem.
Recently, [Acuna et al., 2021] refine the previous bounds
and generalize them to a multi-class classification setting
with the f -divergence, whereas [Richard et al., 2021] con-
sider multi-source domain adaptation for regression with
hypothesis-discrepancy.

Cauchy-Schwarz Divergence Motivated by the well-
known Cauchy-Schwarz (CS) inequality for square-
integrable functions:

(ˆ
p(x)q(x)dx

)2

≤
ˆ
p(x)2dx

ˆ
q(x)2dx, (1)

with equality if and only if p(x) and q(x) are linearly depen-
dent, the CS divergence [Principe et al., 2000a,b] defines the
distance between probability density functions by measur-
ing the tightness (or gap) of the left-hand side and right-hand
side of Eq. (1) using the logarithm of their ratio:

DCS(p; q) = − log

(
(
´
p(x)q(x)dx)2´

p(x)2dx
´
q(x)2dx

)
. (2)

Eq. (1) also applies for two conditional distributions p(y|x)
and q(y|x), the resulting conditional Cauchy-Schwarz



(CCS) divergence can be defined as [Yu et al., 2023]:

DCS(p(y|x); q(y|x)) = −2 log(
¨

X ,Y
p(y|x)q(y|x)dxdy)

+ log(

¨
X ,Y

p2(y|x)dxdy) + log(

¨
X ,Y

q2(y|x)dxdy)

= −2 log(
¨

X ,Y

p(x, y)q(x, y)

p(x)q(x)
dxdy)

+ log(

¨
X ,Y

p2(x, y)

p2(x)
dxdy) + log(

¨
X ,Y

q2(x, y)

q2(x)
dxdy).

(3)

So far, due to the favorable properties of the CS diver-
gence (e.g., enjoying closed-form expression for mixture-
of-Gaussians [Kampa et al., 2011]), it has been successfully
applied to deep clustering [Trosten et al., 2021], disentan-
gled representation learning [Tran et al., 2022], point-set
registration [Giraldo et al., 2017], just to name a few. How-
ever, several questions remain unanswered. For example,
how does the CS divergence relate to the MMD or the KL
divergence? Can these relations contribute to improving
domain adaptation and generalization? How such new no-
tions can be applied to construct practical domain adaptation
models that achieve superior performance? We shall answer
these questions in this paper.

3 METHOD

3.1 PRELIMINARY KNOWLEDGE OF UDA

In this paper, we focus on the unsupervised domain adap-
tation (UDA) problem. In UDA, we assume that there are
M labeled samples Ds = (xs

i , y
s
i )

M
i=1 from the source do-

main and N unlabeled samples Dt = (xt
j)

N

j=1
from the tar-

get domain. Here, x ∈ Rdx represents the dx-dimensional
samples observed, and y ∈ {1, ...,K} is the label of K
classes. Further, we denote the probability density function
for source and target domains by ps and pt, respectively.
The primary goal of UDA is to find a hypothesis function
h = g ◦ f : x 7→ y such that the risk on the target domain
is minimized. Here, f : x 7→ z is the feature extractor that
maps the observations into a latent space, where z ∈ Rdz is
the feature representation with dz dimensions. g : z 7→ y is
the classifier. We denote the prediction by ŷ = g(z).

Most of the previous methods aim to learn a domain invari-
ant feature representation p(z|x) by the feature extractor f
under the assumption of ps(x) ̸= pt(x). This means that the
distribution of the target domain is shifted from the source
domain. Hence, it is intuitive to align the distribution p(z)
by a divergence D(ps(z); pt(z)) . However, this ignores the
conditional shift p(y|z), which involves the label shift and
classifier adaptation. Note that in UDA, we do not have ac-
cess to y in the target domain. The common strategy is using
the discrete pseudo label from the prediction for matching

the class conditional discrepancy p(z|y). However, due to
the CCS divergence being able to handle the continuous
variables, we use the prediction vector from the classifier
ŷ = g(z) as the target label which leads to pt(ŷ|z).

3.2 DOMAIN SHIFT GENERALIZATION BOUND

We proceed by reviewing a newly developed KL-guided
bound [Nguyen et al., 2021b], which can be used for general
scenarios (including multi-class classification and regres-
sion) and makes no assumptions about the labeling mech-
anism (can be probabilistic or deterministic). According
to [Nguyen et al., 2021b], the loss ltest in the test distribution
(a.k.a., target domain) satisfies:

ltest = Ept(x,y)[− log p̂(y|x)] ≤ Ept(z,y)[− log p̂(y|z)]

=

ˆ
− log p̂(y|z)ps(z, y)dzdy+

ˆ
− log p̂(y|z)[pt(z, y)− ps(z, y)]dzdy

= ltrain +

ˆ
− log p̂(y|z)[pt(z, y)− ps(z, y)]dzdy

≤ ltrain +
M

2

ˆ
|pt(z, y)− ps(z, y)|dzdy

≤ ltrain +
M

2

√
2

ˆ
pt(z, y) log

pt(z, y)

ps(z, y)
dzdy

= ltrain +
M√
2

√
DKL(pt(z, y); ps(z, y))

= ltrain +
M√
2

√
DKL(pt(z); ps(z)) +DKL(pt(y|z); ps(y|z)),

(4)
in which ltrain is the loss in the source domain, and the
fourth line assumes that − log p̂(y|z) is upper bounded by a
constant M 1, the fifth line uses the famed Pinsker’s inequal-
ity [Pinsker, 1964], which states that the total variation (TV)
distance DTV = 1

2

´
|p(x)− q(x)|dx is upper bounded by

the KL divergence DKL =
´
p(x) log

(
p(x)
q(x)

)
in the form of

DTV ≤
√

1
2DKL. The last line follows the chain rule.

Referring to the second-to-last line of Eq. (4), achieving
small test errors necessitates matching the joint distribu-
tion p(z, y), rather than solely focusing on the marginal
distribution p(z). This result is also consistent with [Zhao
et al., 2019] and [Nguyen et al., 2021a]. Our paper uti-
lizes the chain rule p(z, y) = p(y|z)p(z), indicating align-
ments for both p(z) and p(y|z). By contrast, existing lit-
erature (e.g., [Ge et al., 2023, Luo and Ren, 2021, Zhang
and Wu, 2020]) often employs an alternative decomposition

1In classification, we can enforce this condition easily by aug-
menting the output softmax of the classifier so that each class
probability is always at least exp(−M) [Nguyen et al., 2021b].
For example, if we choose M = 4, then exp(−M) ≈ 0.02.



p(z, y) = p(z|y)p(y) but aligns only the classical condi-
tional distribution p(z|y), thereby overlooking the impact
of shift of p(y).

Before providing a possibly tighter generalization error
bound than the above-mentioned KL-guided bound, we first
establish the connection between the CS divergence with
respect to the KL divergence and the TV distance.

We proceed our analysis with a Gaussian assumption, in
which their connections are demonstrated in Propositions 1
and 2. Note that, the Gaussian assumption on the learned
representations (of deep neural networks) is commonly used
in vision tasks [He et al., 2015, Ioffe and Szegedy, 2015].

Proposition 1. For any d-variate Gaussian distributions
p ∼ N (µ1,Σ1) and q ∼ N (µ2,Σ2), where Σ1 and Σ2 are
positive definite, we have:

DCS(p; q) ≤ min
{
DKL(p; q), DKL(q; p)

}
. (5)

Proof. All proofs of this paper are available in Section A of
the Appendix.

Proposition 2. Let Φ be the cumulative distribution func-
tion of a standard normal distribution. Let p ∼ N (µ1,Σ1)
and q ∼ N (µ2,Σ2) be any d-dimensional Gaussian distri-
butions. We have:

DTV ≤
√
DCS, (6)

if one of the following conditions is satisfied:

1. Σ1 = Σ2 = Σ and 1/2
√
δ⊤Σ−1δ ≥

2Φ(∥Σ−1/2δ∥2/2)− 1, where δ = µ1 − µ2;

2.
∑d

i=1 log
(

2+λi+1/λi

4

)
≥ 4, where λi is the i-th

eigenvalue of Σ−1
2 Σ1.

The conditions above in Proposition 2 are easily met, es-
pecially when p and q are not sufficiently similar and
the variable dimension d is large. For example, when
d = 1024 as in our ResNet50 feature exactor, it suf-
fices to require 2+λi+1/λi

4 ≥ 1.003, which implies∑d
i=1 log

(
2+λi+1/λi

4

)
≥ 4. Note that, both CS and KL

divergences are unbounded, whereas the TV distance is
confined by an upper limit of 1.

In fact, the above connections can be extended to general
distributions without assuming Gaussianity, as demonstrated
in Propositions 3 and 4, respectively.

Proposition 3. For any density functions p : Rd → R≥0

and q : Rd → R≥0, let K be an integration domain over
which p and q are Riemann integrable. Suppose |K| <∞,
where |K| denotes the volume. Then

C1 [DCS(p; q)− log |K|+ 2 logC2] ≤ DKL(p; q), (7)

where C1 =
´
K
p(x) dx, C2 =

C1

(´
K
p2(x) dx

´
K
q2(x) dx

)−1/4
. Clearly, for K

such that |K ∩ S| ≫ 0, where S =
{
x : p(x) > 0

}
, one

can have C1 ≈ 1.

Figure 1: A graphical illustration of the sets Aϵ and A∁
ϵ

defined in Proposition 4.

Proposition 4. For any density functions p and q, and
any ϵ > 0, let Aϵ = {x : p(x) ≤ ϵ} ∪ {x : q(x) ≤ ϵ}
and A∁

ϵ be its complement (see Fig. 1). Moreover, define

TA∁
ϵ
= sup

{
p(x)q(x), x ∈ A∁

ϵ

}
and

∣∣∣A∁
ϵ

∣∣∣ to denote the

“length” of the set A∁
ϵ (strictly speaking, the Lebesgue mea-

sure of the set A∁
ϵ ). Suppose there exists an ϵ > 0 such

that TA∁
ϵ

∣∣∣A∁
ϵ

∣∣∣ < ∞ and C3 =
´
p2(x) dx

´
q2(x) dx ≥

exp(2)
(
2ϵ+ TA∁

ϵ

∣∣∣A∁
ϵ

∣∣∣)2, then

DTV(p; q) ≤
√
DCS(p; q). (8)

In our context, where p and q may differ substantially,
using DTV can be too restrictive to yield meaningful re-
sults. This is because DTV measures the largest possible
difference between p and q, and it rapidly reaches its up-
per bound of 1, particularly when the location parameters
of p and q differ. In this case, one is no longer be able to
distinguish the distance between any sufficiently distinct
pairs of (p, q). Furthermore, as shown in Proposition 3,
the inequality C1 [DCS(p; q)− log |K|+ 2 logC2] ≤
DKL(p; q) holds for any density functions p and
q, where C1 =

´
K
p(x) dx > 0 and C2 =

C1

(´
K
p2(x) dx

´
K
q2(x) dx

)−1/4
. Note that C1 and C2

are not conditions, but two constant values that depend
on the distributions themselves. Furthermore, according
to Proposition 4, if p and q do not sufficiently overlap,
as ensured by the condition

´
p2(x) dx

´
q2(x) dx ≥

exp(2)
(
2ϵ+ TA∁

ϵ

∣∣∣A∁
ϵ

∣∣∣)2 for some ϵ > 0, then DTV ≤√
DCS.

By combining these results, we have the following general



error bound:

ltest ≤ ltrain +MDTV(p
t(z, y); ps(z, y))

≤ ltrain +M
√
DCS(pt(z, y); ps(z, y))

≤ ltrain+

M

√
C−1

1 DKL(pt(z, y); ps(z, y)) + log |K| − 2 logC2 ,

(9)

if
´
p2(x) dx

´
q2(x) dx ≥ exp(2)

(
2ϵ+ TA∁

ϵ

∣∣∣A∁
ϵ

∣∣∣)2 for
some ϵ > 0. The latter condition is quite feasible to be
satisfied. More discussion is in Remark 4 in the Appendix.

Similar to TV distance and most of f -divergence mea-
sures [Collet, 2019], the CS divergence does not satisfy
the chain rule, indicating that the joint CS divergence can-
not be expressed as the sum of marginal and conditional
divergence. However, in practice, one can nevertheless con-
trol the joint divergence by minimizing the marginal and
conditional counterparts separately. For simplicity, in this
paper, we aim at minimizing:

ltrain +M
√
DCS(pt(z); ps(z)) +DCS(pt(y|z); ps(y|z)).

(10)

Although the KL-guided bound in Eq. (4) implies the ne-
cessity of minimizing the conditional divergence of p(y|z),
[Nguyen et al., 2021b] neglect this term (due to difficulty of
estimation) and assume pt(y|z) and ps(y|z) are sufficiently
close, which may not hold true [Zhao et al., 2020].

3.3 ESTIMATION OF CAUCHY-SCHWARZ
DIVERGENCE

Suppose we have M labeled samples {xs
i , y

s
i }Mi=1 from

the source domain and N unlabeled samples {xt
i}Ni=1

from the target domain, let us denote the predicted class
probabilities for {xs

i}Mi=1 and {xt
i}Ni=1 are respectively

{ŷsi }Mi=1 and {ŷti}Ni=1, the following two propositions pro-
vide the empirical estimator of DCS(p

s(z); pt(z)) and
DCCS(p

s(y|z); pt(y|z)). Moreover, in the following two re-
marks, we discuss the relationship and difference between
(conditional) CS divergence and (conditional) MMD.

Proposition 5 (Empirical Estimator of
DCS(p

s(z); pt(z)) [Jenssen et al., 2006]). Given ex-
tracted features from two domains {zsi}Mi=1 and {zti}Ni=1,
the empirical estimator of DCS(p

s(z); pt(z)) is given by:

D̂CS(p
s(z); pt(z)) = log(

1

M2

M∑
i,j=1

κ(zsi , z
s
j))+

log(
1

N2

N∑
i,j=1

κ(zti, z
t
j))− 2 log(

1

MN

M∑
i=1

N∑
j=1

κ(zsi , z
t
j)),

(11)
where κ is a kernel function such as Gaussian κσ(z, z′) =
exp(−∥z− z′∥22/2σ2).

Remark 1. The CS divergence is closely related to the
MMD [Gretton et al., 2012]. In fact, the empirical estimator
of the “biased" MMD can be expressed as:

M̂MD
2
(ps; pt) =

1

M2

M∑
i,j=1

κ(zsi , z
s
j)

+
1

N2

N∑
i,j=1

κ(zti, z
t
j)−

2

MN

M∑
i=1

N∑
j=1

κ(zsi ,x
t
j).

(12)

Comparing Eq. (11) with Eq. (12), we observe that the CS di-
vergence estimator puts a “logarithm" on each term of that
of MMD. Both estimators capture the within-distribution
similarity subtracted by cross-distribution similarity, similar
to the energy distance [Sejdinovic et al., 2013].

Proposition 6 (Empirical Estimator of
DCCS(p

s(ŷ|z); pt(ŷ|z)) [Yu et al., 2023]). Given fea-
tures z and the corresponding predictions ŷ from two
domains, {zsi , ŷsi }Mi=1 and {zti, ŷti}Ni=1. Let Ks and Ls

denote, respectively, the Gram matrices for the variable
z and the predicted output ŷ in the source distribution.
Similarly, let Kt and Lt denote, respectively, the Gram
matrices for the variable z and the predicted out ŷ in
the target distribution. Meanwhile, let Kst ∈ RM×N

(i.e., (Kst)ij = κ(zsi − ztj)) denote the Gram matrix
from source distribution to target distribution for input
variable z, and Lst ∈ RM×N the Gram matrix from source
distribution to target distribution for predicted output ŷ.
Similarly, let Kts ∈ RN×M (i.e., (Kts)ij = κ(zti − zsj))
denote the Gram matrix from target distribution to source
distribution for input variable z, and Lts ∈ RN×M the
Gram matrix from target distribution to source distribution
for predicted output ŷ. The empirical estimation of
DCCS(p

s(ŷ|z); pt(ŷ|z)) is given by:

D̂CCS(p
s(ŷ|z); pt(ŷ|z))

≈ log(

M∑
j=1

(

∑M
i=1K

s
jiL

s
ji

(
∑M

i=1K
s
ji)

2
)) + log(

N∑
j=1

(

∑N
i=1K

t
jiL

t
ji

(
∑N

i=1K
t
ji)

2
))

− log(

M∑
j=1

(

∑N
i=1K

st
jiL

st
ji

(
∑M

i=1K
s
ji)(
∑N

i=1K
st
ji )

))

− log(

N∑
j=1

(

∑M
i=1K

ts
jiL

ts
ji

(
∑M

i=1K
ts
ji )(
∑N

i=1K
t
ji)

)).

(13)

Remark 2. Estimating the divergence between ps(ŷ|z) and
pt(ŷ|z) is a non-trivial task. An alternative choice is the
conditional MMD by [Ren et al., 2016]:

D̂MMD(p
s(ŷ|z); pt(ŷ|z)) = tr(Ks(K̃s)−1Ls(K̃s)−1)+

tr(Kt(K̃t)−1Lt(K̃t)−1)− 2 tr(Kst(K̃t)−1Lts(K̃s)−1),

(14)



in which tr denotes the trace, K̃ = K + λI . Obviously, CS
divergence avoids introducing a hyperparameter λ and the
necessity of matrix inverse, which improves computational
efficiency and stability. See also experiments in Section 4.1.

3.4 NETWORK TRAINING

We demonstrate how to use CS and conditional CS (CCS)
divergences in both distance metric- and adversarial training-
based UDA frameworks in a convenient way.

Distance Metric Minimization Given a neural network
hθ = f ◦ g, where z = f(x) is the learned features and
g : z 7→ y is a classifier. It is straightforward to use distance
metrics to learn domain-invariant f and g (without intro-
ducing any new modules or training schemes). Specifically,
the objective to train hθ consists of the training loss on the
source domain and a distribution discrepancy loss on both
p(z) and p(y|z). For the former, we adopt the cross-entropy
loss LCE = 1

M

∑M
i=1−ysi log ŷsi . For the latter, we include

both DCS(p
s(z); pt(z)) and DCCS(p

s(ŷ|z); pt(ŷ|z)), esti-
mated with Eq. (11) and Eq. (13), respectively.

Conditional Adversarial Training We incorporate our
CS and CCS divergences into a popular bi-classifier adver-
sarial training framework [Saito et al., 2018] to attain SOTA
performance. The bi-classifier adversarial training method
utilizes two classifiers g1 and g2 as a discriminator. By max-
imizing the discrepancy between the two classifiers’ output,
the framework detects target samples that are outside the
support of the source domain. Then, minimizing the discrep-
ancy is for fooling the generator (feature extractor), which
makes the features inside the support of the source with
respect to the decision boundary.

As shown in Fig. 2, we model the alignment in two
parts: 1) the minimization of DCS(p

s(z); pt(z) for learn-
ing domain-invariant representation; 2) the minimization of
DCCS(p

t
1(ŷ|z); pt2(ŷ|z)) for the conditional classifier adap-

tation adversarial training. We elaborate on the details of
our training procedures by the following steps:

Step 1 Learn feature extractor f and two classifiers, g1
and g2, jointly by minimizing the classification loss Lcls

and the discrepancy loss DCS +DCCS between the source
domain and the target domain:

min
f,g1,g2

Lcls + λDCS(p
s(z), pt(z))

+ β

2∑
n=1

DCCS(p
s
n(ŷ|z), ptn(ŷ|z)),

(15)

where λ, β are weighting hyperparameters, Lcls is the em-
pirical risk over two classifiers in the source domain with
additional entropy constraints in the target domain. Namely,

Lcls =
1

2

2∑
n=1

(LCE(gn(f(x
s)), ys) + γLEnt(gn(f(x

t)))),

(16)

where γ is a trade-off parameter, LCE is the cross-entropy
loss, and LEnt =

1
N

∑N
i=1−ŷti log ŷti ([Grandvalet and Ben-

gio, 2004, Long et al., 2018, Luo and Ren, 2021, Du et al.,
2021]) is a widely used constraint in domain adaptation.
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𝑓

𝑧!

𝑧"

𝑧"

𝑧!

𝑔#

𝑔$

#𝑦#! #𝑦#"

#𝑦$! #𝑦$"

Adversarial
Loss𝐷%& 𝐷%%&

Figure 2: The framework of the proposed conditional bi-
classifier adversarial learning method with CS and CCS
divergences. Feature extractor f is used to obtain represen-
tations zs and zt for the source and target domains, respec-
tively. Two classifiers g1 and g2 are used as a discriminator.
CS divergence directly minimizes the discrepancy of p(z)
between two domains. CCS divergence measures the dis-
agreement between two classifiers (adversarial loss).

Step 2 We fix parameters of the feature extractor f , and
subsequently update the classifiers g1 and g2. By maximiz-
ing the conditional divergence between the two classifiers on
the target domain, the discriminator (classifiers) is trained
to identify the target samples that are outside the support of
decision boundaries. To maintain classification accuracy on
the source domain, classification loss is also used.

min
g1,g2

Lcls −DCCS(p
t
1(ŷ|z); pt2(ŷ|z)). (17)

Step 3 We fix the parameters of the two classifiers g1 and
g2, and subsequently update the feature extractor f . The
aim is to minimize the divergence between the probabilistic
outputs of the two classifiers for training the feature exactor
to fool the discriminator. This can be formalized as follows:

min
f
DCCS(p

t
1(ŷ|z); pt2(ŷ|z)). (18)

4 EXPERIMENTS

We denote our distance metric-based approach as CS+CCS
and adversarial training-based approach as CS-adv, and
evaluate their performance on both synthetic and real-world
datasets. Our experimental evaluation is divided into three
parts: 1). advantages of CS divergence over other popular
distance measures such as MMD and KL divergence in
terms of statistical power (Sec. 4.1.1) and practical UDA
performance (Sec. 4.1.2); 2). the superior performance of
CS-adv with respect to other SOTA (Sec. 4.2); 3). the flexi-
bility of CCS divergence as an injective module (Sec. 4.3).

Datasets We use three datasets in our experiments. 1)
Digits The Digits dataset [Long et al., 2018] consists of two



parts, MNIST and USPS, which leads to two adaptation
tasks, M→U and U→M. 2) Office-Home The Office-Home
dataset [Venkateswara et al., 2017] has four domains: Art
(Ar), Clipart (Cl), Product (Pr), and Real-World (Rw), which
results in 12 domain adaptation tasks. The overall dataset
has 15,500 images with 65 classes. 3) Office-31 The Office-
31 dataset [Saenko et al., 2010] has three domains: Amazon
(A), Webcam (W), and DSLR (D), which results in 6 tasks.
The overall Office-31 dataset contains 4,652 images with 31
categories. 4) VisDA17 Additionally, we use a large scale
real-world dataset VisDA17 [Peng et al., 2017] to have a
fair comparison with KL [Nguyen et al., 2021b].

4.1 COMPARISONS AMONG (CONDITIONAL) CS
DIVERGENCE, MMD AND KL DIVERGENCE

In this section, we first demonstrate that our conditional
CS (CCS) divergence is statistically more powerful to
discriminate two conditional distributions ps(y|x) and
pt(y|x). Then, we compare our CS+CCS with both MMD-
based approaches and the recently developed KL-based
approach [Nguyen et al., 2021b]. Note that, all approaches
are implemented without adversarial training, but only use
different distance metrics to match p(z) (or p(y|z)).

4.1.1 Statistical Test

For comparison purpose, we evaluate the performance of
both conditional KL divergence estimated with the k-NN
estimator [Wang et al., 2009] (k = 3) and the conditional
MMD. In domain adaptation, MMD(ps(y|x); pt(y|x)) is
rarely explicitly evaluated, due to the difficulty of estima-
tion. Rather, a much more popular strategy is to evaluate
the class conditional MMD (i.e.,

∑K
i=1 MMD(ps(x|y =

ci); p
t(x|y = ci)) and ci indicates the i-th class). For the

sake of comprehensiveness, we test the performances of
both strategies and measure MMD(ps(y|x); pt(y|x)) with
the estimator in [Ren et al., 2016].

We follow [Zheng, 2000] and generate 3 sets of data that
have distinct conditional distributions: (a) t = 1+

∑d
i=1 xi+

ϵ, where d refers to the dimension of explanatory variable x,
ϵ denotes standard normal distribution; the labeling rule is
y = 1 if t ≥ 0, otherwise y = 0. (b) t = 1+

∑d
i=1 log(xi)+

ϵ; the labelling rule is again y = 1 if t ≥ 0, otherwise y = 0.
(c) t = 1+

∑d
i=1 xi+ϵ; the labelling rule becomes y = 1 if

t ≥ 1, otherwise y = 0. For each set, the input x is fixed to
be Gaussian, i.e., p(x) remains the same, but p(y|x) differs.

We generate 200 samples from each set and set d = 10.
We apply a permutation test with significance level α =
0.05 to test for the null hypothesis H0 stating that two sets
of data share a common conditional distribution, against
the alternative hypothesis H1 that suggests the conditional
distributions are different. The results in Table 1 suggest

that our CCS is much more powerful. Details about the
permutation test and data visualization are provided in the
Appendix (Section C.1).

More specifically, by stating that a test statistic is more (sta-
tistically) powerful, we mean that it has a greater probability
in finite samples of correctly rejecting the null hypothesis
(i.e., two conditional distributions are equal) in favor of
the alternative hypothesis (i.e., the two conditional distri-
butions differ). That is, the statistic has a smaller Type-II
error. Table 1 shows that our CCS method exhibits an empir-
ical probability of 0.72 in correctly distinguishing between
distribution (a) and distribution (c), while the probabilities
associated with class CMMD and CMMD are notably lower
at 0.20 and 0, respectively.

The main diagonal elements in the table refer to empirical
Type-I error (i.e., the probability of falsely rejecting the
null hypothesis). Given our chosen significance level of
α = 0.05, one would ideally expect the main diagonal
elements to be close to 0.05. The results indicate that all
methods exhibit similar performance in terms of size control.
Hence, it can be concluded that the CCS approach offers
statistically higher power with good size control.

CCS class CMMD CMMD CKL

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

(a) 0.06 1 0.72 0.05 1 0.17 0.02 0 0.01 0.01 1 0.25
(b) 1 0.08 1 1 0.03 1 0 0.05 0 1 0.07 1
(c) 0.72 1 0.07 0.20 1 0.06 0 0 0.04 0.25 1 0.07

Table 1: Percent of rejecting H0 hypothesis for conditional
CS in Eq. (13), class conditional MMD, conditional MMD
with estimator in [Ren et al., 2016], conditional KL with
k-NN estimator [Wang et al., 2009]. An ideal result is a
full-one matrix with α = 0.05 on the main diagonal.

4.1.2 The Performance of CS+CCS

Comparison with MMD We demonstrate the advantages
of CS and CCS over MMD in practical UDA tasks. To this
end, we conduct an ablation study on the Digits M→U task.
In this example, we match the marginal and conditional
distributions with plain CS and CCS divergences without
any adversarial training techniques. We use LeNet [LeCun
et al., 1998] as the feature extractor and a nonlinear classifier
with two fully connected layers and ReLU activation.

We compare CS, CCS, and CCS+CS divergences with
MMD and joint probability MMD (JPMMD) [Zhang
and Wu, 2020] that approximates D(ps(z, y); pt(z, y))
with µ1D(ps(z); pt(z)) + µ2D(ps(z|y); pt(z|y)) (not
D(ps(y|z); pt(y|z))). As shown in Fig. 3, all our CS
divergence-based adaptations are consistently better than
MMD and JPMMD. This means that our CCS divergence
is better in modeling conditional alignment. Also, CCS has
a better adaptation ability than CS divergence, while com-
bining the CS and CCS divergences (CCS+CS) has the best



Figure 3: The ablation study of the CS and CCS components
in MNIST to USPS task, comparing with MMD and joint
distribution MMD (JPMMD).

performance. To have a better understanding of the learned
representations on the two domains, we draw t-SNE [Van der
Maaten and Hinton, 2008] visualization in Section C.4 in
the Appendix. Additionally, we aim to add the comparison
with conditional MMD in Eq. (14). However, the training
fails due to the unstable numerical matrix inverse. This issue
can also be observed in our statistical test in Table 1.

Comparison with KL Furthermore, we draw a compar-
ison with KL-based approach [Nguyen et al., 2021b]. We
observed that its performance is very sensitive to network ar-
chitecture choices. Moreover, with a nonlinear classifier, the
model hardly converges. This point is also acknowledged by
the authors2. The unstability of KL divergence can also be
attributed to the term log(p(x)q(x) ) which is likely to explode
when q(x)→ 0. In contrast, our CS divergence can easily be
adapted to different frameworks. To ensure fairness, we in-
corporated our CS and CCS divergences into [Nguyen et al.,
2021b] framework, maintaining the identical architecture
and hyperparameters. The comparative results are presented
in Table 2. The proposed CS+CCS surpasses KL on both
the Digits and VisDA17 datasets. Note that our reproduced
results for KL on the VisDA17 dataset are lower than the
reported scores. This may be attributed to the different com-
puting environments and our adoption of a batch size of 128,
as opposed to the original 256, due to memory limitations.
Furthermore, we show that the performance of KL [Nguyen
et al., 2021b] can be further improved by integrating our
CCS regularization (KL+CCS). This result indicates that the
assumption made by [Nguyen et al., 2021b] on the sufficient
closeness between ps(y|z) and pt(y|z) may be stringent.

4.2 THE PERFORMANCE OF CS-ADV

In this section, we demonstrate how CS-adv can achieve
competitive results against other SOTA methods.

Implementation Details Our experiments were carried
out using the PyTorch framework [Paszke et al., 2019], on an

2https://shorturl.at/abgM0, lines 172-175.

Method M→U U→M VisDA17

KL (Reproduced) 98.2 97.2 52.3

KL+CCS 98.4 97.3 64.1
CS+CCS 98.3 97.9 64.5

Table 2: Results on Digits and VisDA17 datasets. KL+CCS
integrates CCS divergence with KL. CS+CCS replaces KL
with CS and CCS divergences.

NVIDIA GeForce RTX 3090 GPU. We use SGD optimizer
with batch size 32. For Office-Home and Office-31 datasets,
we resize the images to dimensions of 224× 224× 3. We
use the ResNet-50 model [He et al., 2016], pretrained on the
ImageNet dataset [Deng et al., 2009], as the feature extractor,
f . In addition, for the classifiers, g1 and g2, we use two fully
connected layers with Leaky-ReLU activation functions
(similar to [Acuna et al., 2021]). For the hyperparameters,
we set λ and β as 1, and γ as 0.1. For the Digit datasets,
we follow the implementation in [Long et al., 2018, Acuna
et al., 2021], utilizing LeNet [LeCun et al., 1998] as the
backbone feature extractor, f . The two classifiers, g1 and g2,
are structured identically, each comprising two linear layers,
with ReLU activation functions. In our implementation, we
normalize z and ŷ and set kernel size σ = 1, which is a
common heuristic [Greenfeld and Shalit, 2020].

Baselines We compare the proposed conditional adver-
sarial training method with some state-of-the-art domain
adaptation approaches in real-world datasets that are pre-
sented in Tables 3 and 4. We compare our method with
three classical adversarial training methods for domain adap-
tation, namely, DANN [Ganin et al., 2016] CDAN [Long
et al., 2018], and MDD [Zhang et al., 2019]. We additionally
compare our method with the f -divergence-based domain
adversarial learning method, f-DAL [Acuna et al., 2021].
We consider f-DAL for comparison since it also uses a new
family of divergence, f -divergence in an adversarial training
framework. f-DAL-Alignment is a variant of f-DAL, which
combines a Sampling-Based Alignment [Jiang et al., 2020]
module for label shift. We further compare KL [Nguyen
et al., 2021b] due to its similar motivation in offering a
tighter generalization bound. We also compare our approach
with Wasserstein distance-based methods (optimal trans-
port) such as DEEPJDOT [Damodaran et al., 2018] and
JUMBOT [Fatras et al., 2021], which belong to another line
of related research (aligning the joint distribution p(z, y),
but assuming z and y are independent).

Results From the results on Office-Home in Table 3, we
observe that the proposed method significantly outperforms
the rest of the methods in most of the adaptation tasks, and
has the best performance at 71.2% on average. Also, we ob-
serve that in some tasks where the alignment for label shift
leads to large improvement for f-DAL (Ar→Pr, Cl→Rw),
our method yields a similar or better performance. This im-

https://shorturl.at/abgM0


Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet [He et al., 2016] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [Ganin et al., 2016] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [Long et al., 2017] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN [Long et al., 2018] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CKB [Luo and Ren, 2021] 54.7 74.4 77.1 63.7 72.2 71.8 64.1 51.7 78.4 73.1 58.0 82.4 68.5
DEEPJDOT [Damodaran et al., 2018] 50.7 68.6 74.4 59.9 65.8 68.1 55.2 46.3 73.8 66.0 54.9 78.3 63.5
JUMBOT [Fatras et al., 2021] 55.2 75.5 80.8 65.5 74.4 74.9 65.2 52.7 79.2 73.0 59.9 83.4 70.0
MDD [Zhang et al., 2019] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
f-DAL [Acuna et al., 2021] 54.7 71.7 77.8 61.0 72.6 72.2 60.8 53.4 80.0 73.3 60.6 83.8 68.5
f-DAL+Alignment [Acuna et al., 2021] 56.7 77.0 81.1 63.0 72.2 75.9 64.5 54.4 81.0 72.3 58.4 83.7 70.0

CS-adv (Ours) 59.1 74.3 81.1 67.5 75.5 75.7 66.2 57.0 82.1 71.8 61.5 83.0 71.2

Table 3: Comparative results (Accuracy %) of different methods on Office-Home.

Method A→W D→W W→D A→D D→A W→A Avg

ResNet [He et al., 2016] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN [Ganin et al., 2016] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
JAN [Long et al., 2017] 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
GTA [Sankaranarayanan et al., 2018] 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
MCD [Saito et al., 2018] 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
MDD [Zhang et al., 2019] 94.5±0.3 98.4±0.1 100.0±.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9
KL [Nguyen et al., 2021b] 87.9±0.4 99.0±0.2 100.0±0.0 85.6±0.6 70.1±1.1 69.3±0.7 85.3
CDAN [Long et al., 2018] 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
f-DAL [Acuna et al., 2021] 95.4±0.7 98.8±0.1 100.0±.0 93.8±0.4 74.9±1.5 74.2 ±0.5 89.5

CS-adv (Ours) 95.1±0.6 98.8±0.1 99.7±0.1 94.0±0.5 76.2±0.3 76.4±0.4 90.0

Table 4: Comparative results (Accuracy %) of different methods on Office-31.

plies that the proposed CCS divergence has the ability to
alleviate the label shift problem. The experiment results on
Office-31 are shown in Table 4. It appears that the proposed
method has the best performance on average. More results
on Digits can be found in the Appendix (Section C.3).

4.3 CCS AS AN INJECTIVE MODULE

We finally provide two examples to demonstrate that the
CCS divergence alone (i.e., Eq. 13) can be used as a plug-in
module in existing methods.

CCS in f-DAL We choose f-DAL[Acuna et al., 2021]
as the first base model and simply integrate our CCS diver-
gence into the adversarial training loss of f-DAL (f-DAL-
CCS) without hyperparameter tuning. As shown in Fig. 4,
CCS improves f-DAL consistently, which implies the neces-
sity of aligning conditional distribution by CCS.

CCS with kSHOT The most recent UDA approach, like
kSHOT [Sun et al., 2022], uses additional prior knowledge
such as the target class distribution, resulting in superior
performance compared to most methods that rely solely on
adversarial training. However, by integrating the CCS diver-
gence, the performance of kSHOT is consistently improved
on different tasks on Office-Home, with 0.4 percent on av-
erage. Details can be found in Section C.4 in the Appendix.

Figure 4: Integrating CCS with f-DAL in M→U task.

5 CONCLUSION

We introduce CS divergence to the problem of UDA, leading
to an elegant estimation of the mismatch for both marginal
(i.e., D(ps(z); pt(z))) and conditional distributions (i.e.,
D(ps(y|z); pt(y|z))). Compared to the MMD, it is more
powerful and computationally efficient to distinguish two
conditional distributions. Compared to the KL divergence,
it is more stable and ensures a tighter generalization er-
ror bound. Integrating these favorable properties into a
bi-classifier adversarial training framework, our method
achieves SOTA performance in three UDA datasets.

Finally, our result in Eq. (9), which combines CS divergence
with the fundamental Pinsker’s inequality, holds the poten-
tial to tighten bounds in various other applications. Further
exploration of these possibilities is left for future work.
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A MAIN PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition 1. For any d-variate Gaussian distributions p ∼ N (µ1,Σ1) and q ∼ N (µ2,Σ2), where Σ1 and Σ2 are positive
definite, we have:

DCS(p; q) ≤ min
{
DKL(p; q), DKL(q; p)

}
. (19)

Proof. The KL divergence for p and q is given by:

DKL(p; q) =
1

2

(
tr(Σ−1

2 Σ1)− d+ (µ2 − µ1)
⊤Σ−1

2 (µ2 − µ1) + log

(
|Σ2|
|Σ1|

))
, (20)
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where | · | signifies the determinant of a matrix, and tr denotes the trace of a matrix. Moreover, the CS divergence for p and
q can be written as [Kampa et al., 2011]:

DCS(p; q) = − log(z12) +
1

2
log(z11) +

1

2
log(z22), (21)

where

z12 =
exp(− 1

2 (µ1 − µ2)
⊤)(Σ1 +Σ2)

−1(µ1 − µ2)√
(2π)d|Σ1 +Σ2|

,

z11 =
1√

(2π)d|2Σ1|
,

z22 =
1√

(2π)d|2Σ2|
.

(22)

We can simplify the expression to:

DCS(p; q) =
1

2
(µ2 − µ1)

⊤(Σ1 +Σ2)
−1(µ2 − µ1) + log

(√
(2π)d|Σ1 +Σ2|

)
− 1

2
log

(
(
√

(2π)d|2Σ1|
)
− 1

2
log

(√
(2π)d|2Σ2|

)
=

1

2
(µ2 − µ1)

⊤(Σ1 +Σ2)
−1(µ2 − µ1) +

1

2
log

(
|Σ1 +Σ2|

2d
√
|Σ1||Σ2|

)
.

(23)

Part 1. We first consider the difference between DCS(p; q) and DKL(p; q) results from mean vector discrepancy, i.e.,
µ1 − µ2 ̸= 0d×1 and Σ1 = Σ2 = Σ. Consider two positive semi-definite Hermitian matrices A and B of size n× n. It is
known that A − B is positive semi-definite if and only if B−1 − A−1 is also positive semi-definite [Horn and Johnson,
2012]. Using this result, we observe that Σ−1

2 − (Σ1 + Σ2)
−1 is positive semi-definite, as (Σ1 + Σ2) − Σ2 is positive

semi-definite. Therefore, conditional on Σ1 = Σ2, we have

2(DCS(p; q)−DKL(p; q)) = (µ2 − µ1)
⊤(Σ1 +Σ2)

−1(µ2 − µ1)−
(
µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1) ≤ 0. (24)

Part 2. Now we consider the difference between DCS(p; q) and DKL(p; q) results from covariance matrix discrepancy, i.e.,
Σ1 − Σ2 ̸= 0d×d and µ1 = µ2. We have

2(DCS(p; q)−DKL(p; q)) = log

(
|Σ1 +Σ2|

2d
√
|Σ1||Σ2|

)
− log

(
|Σ2|
|Σ1|

)
− tr(Σ−1

2 Σ1) + d.

= −d log 2 + log (|Σ1 +Σ2|)−
1

2
(log |Σ1|+ log |Σ2|)

− log |Σ2|+ log |Σ1| − tr(Σ−1
2 Σ1) + d

= −d log 2 + log

(
|Σ1 +Σ2|
|Σ2|

)
+

1

2
log

(
|Σ1|
|Σ2|

)
− tr(Σ−1

2 Σ1) + d

= −d log 2 + log
(
|Σ−1

2 Σ1 + I|
)
+

1

2
log
(
|Σ−1

2 Σ1|
)
− tr(Σ−1

2 Σ1) + d,

(25)

where I represents a d-dimensional identity matrix. Consider the terms |Σ−1
2 Σ1| and |Σ−1

2 Σ1 + I|. For convenience, let
{λi}di=1 denote the eigenvalues of Σ−1

2 Σ1. Since Σ−1
2 Σ1 is positive semi-definite, we have λi ≥ 0, i = 1 . . . , d. We have:

|Σ−1
2 Σ1| =

( d∏
i=1

λi

)1/d
d

≤

[
1

d

d∑
i=1

λi

]d
=

(
1

d
tr(Σ−1

2 Σ1)

)d

, (26)

where the inequality arises from the property that a geometric mean is no greater than its arithmetic counterpart. Similarly,
one can have

|Σ−1
2 Σ1 + I| =

d∏
i=1

(1 + λi) ≤

[
1

d

d∑
i=1

(1 + λi)

]d
=

(
1 +

1

d
tr(Σ−1

2 Σ1)

)d

. (27)



Substituting Eqs. (26) and (27) into Eq. (25), we arrive at

2(DCS(p; q)−DKL(p; q)) ≤ −d log 2 + d log
(
1 +

1

d
tr(Σ−1

2 Σ1)
)
+
d

2
log
(1
d
tr(Σ−1

2 Σ1)
)
− tr(Σ−1

2 Σ1) + d. (28)

We now show that 2(DCS(p; q)−DKL(p; q)) ≤ 0 conditional on µ1 = µ2. Let f be a map given by

f(x) = −d log 2 + d log
(
1 +

x

d

)
+
d

2
log
(x
d

)
− x+ d, x ≥ 0. (29)

Since f ′(d) = 0 and f ′′(d) < 0, we then conclude that

2(DCS(p; q)−DKL(p; q)) = f
(
tr(Σ−1

2 Σ1)
)
≤ f(d) = 0, (30)

where tr(Σ−1
2 Σ1) =

∑d
i=1 λi ≥ 0, conditional on µ1 = µ2.

Part 3. Note thatDCS(p; q)−DKL(p; q) captures the differences in both the mean vector and covariance matrix discrepancies
when µ1 ̸= µ2 and Σ1 ̸= Σ2. Namely,

2(DCS(p; q)−DKL(p; q)) =
[
(µ2 − µ1)

⊤(Σ1 +Σ2)
−1(µ2 − µ1)− (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

]
+

[
log

(
|Σ1 +Σ2|

2d
√
|Σ1||Σ2|

)
− log

(
|Σ2|
|Σ1|

)
− tr(Σ−1

2 Σ1) + d

]
≤ 0,

using Eqs. (24)) and (30).

The above analysis also applies to DKL(q; p). That is, 2(DCS(p; q) −DKL(q; p)) ≤ 0 regardless of the parameter values.
The combination of these results implies (19).

A.2 PROOF OF PROPOSITION 2

We first present Lemma 1 that proves to be useful in Proposition 2.

Lemma 1. Let p ∼ N (µ1,Σ1) and q ∼ N (µ2,Σ2) be any d-dimensional Gaussian distributions, the TV distance between
p and q in case Σ1 = Σ2 = Σ (positive semidefinite) can be expressed as:

DTV = 2Φ
(1
2
∥Σ−1/2δ∥2

)
− 1, (31)

where δ = µ1 − µ2, and Φ is the cumulative distribution function of a standard normal distribution.

Proof. Recall:

DTV =
1

2

ˆ
|p(x)− q(x)|dx =

1

2

ˆ ∣∣∣1− q(x)

p(x)

∣∣∣ p(x) dx. (32)

Before continuing, we first note that for any a,b ∈ Rd, and S ∈ Rd×d,

a⊤Sa− b⊤Sb = (a− b)⊤S(a− b) + 2(a− b)⊤Sb. (33)

Using this identity, we have

q

p
(x) = exp

{
− 1

2
[(x− µ2)

⊤Σ−1(x− µ2)− (x− µ1)
⊤Σ−1(x− µ1)]

}
= exp

{
− 1

2
[(µ1 − µ2)

⊤Σ−1(µ1 − µ2) + 2(µ1 − µ2)
⊤Σ−1(x− µ1)]

}
= exp

{
− 1

2
∥δ̃∥22 + δ̃⊤Σ−1/2(µ1 − x)

}
,

(34)



where δ̃ = Σ−1/2δ. Therefore,

DTV =
1

2

ˆ ∣∣∣1− exp
{
− 1

2
∥δ̃∥22 + δ̃⊤Σ−1/2(µ1 − x)

}∣∣∣p(x) dx.
Define a transformation Y = δ̃⊤Σ−1/2(µ1 −X), where X ∼ N (µ1,Σ). Then, DTV can be equivalently written as

DTV =
1

2
EY

∣∣∣1− exp
(
Y − 1

2
∥δ̃∥22

)∣∣∣, (35)

where Y ∼ N (0, ∥δ̃∥22). Note that for any Z ∼ N (µ, σ2), one can derive

E|1− exp(Z)| = 1− 2Φ
(µ
σ

)
+ exp

(
µ+

1

2
σ2
)(

2Φ
(µ+ σ2

σ

)
− 1
)
. (36)

Taking µ = − 1
2∥δ̃∥

2
2 and σ = ∥δ̃∥2 above, we have

DTV =
1

2

{
1− 2Φ

(
− 1

2
∥δ̃∥2

)
+ 2Φ

(1
2
∥δ̃∥2

)
− 1
}
= 2Φ

(1
2
∥δ̃∥2

)
− 1 = 2Φ

(1
2
∥Σ−1/2δ∥2

)
− 1, (37)

where the second equality follows from the symmetry property of Φ.

Now, we proceed to the proof of Proposition 2.

Proposition 2. Let Φ be the cumulative distribution function of a standard normal distribution. Let p ∼ N (µ1,Σ1) and
q ∼ N (µ2,Σ2) be any d-dimensional Gaussian distributions. We have:

DTV ≤
√
DCS, (38)

if one of the following conditions is satisfied:

1. Σ1 = Σ2 = Σ and 1/2
√
δ⊤Σ−1δ ≥ 2Φ(∥Σ−1/2δ∥2/2)− 1, where δ = µ1 − µ2;

2.
∑d

i=1 log
(

2+λi+1/λi

4

)
≥ 4, where λi is the i-th eigenvalue of Σ−1

2 Σ1.

Proof. First, note that DTV ≤ 1/2
( ´

p(x) dx+
´
q(x) dx

)
≤ 1, whereas DCS is unbounded and can easily exceed values

of 1. Recall δ = µ1 − µ2. The closed-form expression of CS divergence is:

DCS(p; q) =
1

2
δ⊤(Σ1 +Σ2)

−1δ +
1

2
log

(
|Σ1 +Σ2|

2d
√
|Σ1||Σ2|

)
, (39)

where the first term and the second term quantify the discrepancy resulting from the difference of mean vectors and
covariance matrices, respectively.

Part 1. Consider Σ1 = Σ2 = Σ. By Lemma 1, we have DTV = 2Φ(∥Σ−1/2δ∥2/2)− 1. Hence,

DTV ≤
√
DCS ⇐⇒

1

2

√
δ⊤Σ−1

1 δ ≥ 2Φ(∥Σ−1/2
1 δ∥2/2)− 1. (40)

Part 2. More generally, given that the TV distance for two Gaussian distributions lacks a closed-form expression, it suffices
to examine the conditions under which DCS ≥ 1. We have

DCS ≥
1

2
ln

(
|Σ1 +Σ2|

2d
√
|Σ1||Σ2|

)

=
1

2

(
1

2
ln

(
|Σ1 +Σ2|
|Σ1|

)
+

1

2
ln

(
|Σ1 +Σ2|
|Σ2|

)
− d ln 2

)
=

1

2

(
1

2
ln
(
|Σ−1

1 Σ2 + I|
)
+

1

2
ln
(
|Σ−1

2 Σ1 + I|
)
− d ln 2

)
.

(41)



Let λi denotes the i-th eigenvalue of Σ−1
2 Σ1, then 1/λi is the i-th eigenvalue of Σ−1

1 Σ2. We have

|Σ−1
1 Σ2 + I| =

d∏
i=1

(1/λi + 1), |Σ−1
2 Σ1 + I| =

d∏
i=1

(λi + 1). (42)

It leads to

DCS ≥
1

2

d∑
i=1

(
1

2
ln(λi + 1) +

1

2
ln(1/λi + 1)− ln 2

)
=

1

4

d∑
i=1

log

(
2 + λi + 1/λi

4

)
. (43)

Given the condition
∑d

i=1 log
(

2+λi+1/λi

4

)
≥ 4, we have DTV ≤ 1 ≤

√
DCS. The proof is now completed.

Remark 3. In fact, the conditions outlined in Proposition 2 are easily satisfied, particularly when p and q exhibit
significant dissimilarity, and the variable dimension d is large. For simplicity, let’s consider a diagonal covariance matrix

Σ = diag
(
σ2
1 , σ

2
2 , . . . , σ

2
d

)
. In this case, the condition 1/2

√
δ⊤Σ−1

1 δ ≥ 2Φ(∥Σ−1/2
1 δ∥2/2)− 1 reduces to:

1

2

√√√√ d∑
i=1

(
δi
σi

)2

≥ 2Φ


√∑d

i=1(δi/σi)
2

2

− 1. (44)

The R.H.S. of Eq. (44) is upper bounded by 1, whereas the L.H.S. of Eq. (44) is unbounded and is prone to increase with the
addition of new dimension (if other dimensions remain unchanged). On the other hand, since log

(
2+λi+1/λi

4

)
≥ 0, the

L.H.S. of Eq. (43) is unbounded and is prone to increase with the addition of new dimension (if λi, i = 1, 2, .., d− 1, remain
unchanged).

(a) |δ = µ|, σ1 = σ2 = 1. (b) δ = 0, σ1 ̸= σ2.

Figure 5: Values of DTV and
√
DCS for 1-dimensional Gaussian data in case (a) µ is different, σ > 0 is the same; and (b) σ

is different, µ is the same.

Moreover, from Fig. 5, it is easy to observe that, when d = 1, the TV distance is too conservative and quickly reaches its
upper bound 1, whereas the CS divergence is unbounded and larger than the TV distance if p and q are not sufficiently
similar.



A.3 PROOF OF PROPOSITION 3

We first present a lemma (without proof), referred to as the Jensen weighted integral inequality, which proves to be useful in
the subsequent proof.

Lemma 2. [Dragomir et al., 2003] Assume a convex function f : I 7→ R. Moreover, g, h : [x1, x2] 7→ R are measurable
functions such that g(x) ∈ I and h(x) ≥ 0, ∀x ∈ [x1, x2]. Also suppose that h, gh, and (f ◦ g) · h are all integrable
functions on [x1, x2] and

´ x2

x1
h(x) dx > 0, then

f

(´ x2

x1
g(x)h(x) dx´ x2

x1
h(x) dx

)
≤
´ x2

x1
(f ◦ g)(x)h(x) dx´ x2

x1
h(x) dx

. (45)

Let f(x) = x log(x), which is a convex function. For some positive functions a, b, set h = b and g = a/b in Lemma 2. We
have (ˆ x2

x1

a(x) dx

)
log

(´ x2

x1
a(x) dx´ x2

x1
b(x) dx

)
≤
ˆ x2

x1

a(x) log
a(x)

b(x)
dx. (46)

The inequality above holds for any integration range, provided the Riemann integrals exist. Moreover, this inequality can
be easily extended to general ranges, including possibly disconnected sets, using Lebesgue integrals. In fact, Eq. (46) can
be understood as a continuous extension of the well-known log sum inequality. For simplicity, we denote

´ x2

x1
a(x) dx =´

K
a(x) dx, where |K| = x2 − x1 ≫ 0 refers to the length of the integral’s interval.

Proposition 3. For any density functions p : Rd → R≥0 and q : Rd → R≥0, let K be an integration domain over which p
and q are Riemann integrable. Suppose |K| <∞, where |K| denotes the volume. Then

C1 [DCS(p; q)− log |K|+ 2 logC2] ≤ DKL(p; q), (47)

where C1 =
´
K
p(x) dx, C2 = C1

(´
K
p2(x) dx

´
K
q2(x) dx

)−1/4
. Clearly, for K such that |K ∩ S| ≫ 0, where

S =
{
x : p(x) > 0

}
, one can have C1 ≈ 1.

Proof. The following results hold for multivariate density functions. Without loss of generality, we focus on the univariate
case. Construct the following two functions:

a(x) = p(x)/C2, b(x) =
√
p(x)q(x). (48)

Clearly,
√
p(x)/q(x) =

(
a(x)/b(x)

)
C2. We have

DKL(p; q) =

ˆ
K

p(x) log
p(x)

q(x)
dx

= 2

ˆ
K

p(x) log

√
p(x)

q(x)
dx

= 2

ˆ
K

a(x)C2 log

(
a(x)

b(x)
C2

)
dx

= 2C2

[ˆ
K

a(x) log

(
a(x)

b(x)

)
dx+ logC2

ˆ
K

a(x) dx

]
≥ 2C2

[(ˆ
K

a(x) dx

)
log

(´
K
a(x) dx´

K
b(x) dx

)
+ logC2

ˆ
K

a(x) dx

]
= 2C2

ˆ
K

a(x) dx

[
log

(´
K
a(x) dx´

K
b(x) dx

)
+ logC2

]
,

(49)

where the inequality is due to Eq. (46). Note that
ˆ
K

a(x) dx =

ˆ
K

p(x)

C2
dx =

1

C2

ˆ
K

p(x) dx =

(ˆ
K

p2(x) dx

ˆ
K

q2(x) dx

)1/4

, (50)



and, using the Cauchy-Schwarz inequality,

(ˆ
K

b(x) dx

)2

=

(ˆ
K

√
p(x)q(x) · 1 dx

)2

≤
(ˆ

K

p(x)q(x) dx

)(ˆ
K

1 dx

)
=

(ˆ
K

p(x)q(x) dx

)
|K|. (51)

Substituting (50) and (51) into (49), we have

DKL(p; q) ≥ 2C2

ˆ
K

a(x) dx

[
log

(´
K
a(x) dx´

K
b(x) dx

)
+ logC2

]
= C1

[
log

(´
K
a(x) dx´

K
b(x) dx

)2

+ 2 logC2

]

= C1

[
log

((´
K
p2(x) dx

´
K
q2(x) dx

)1/2(´
K
b(x) dx

)2
)

+ 2 logC2

]

≥ C1

[
log

((´
K
p2(x) dx

´
K
q2(x) dx

)1/2(´
K
p(x)q(x)

)
|K|

)
+ 2 logC2

]
= C1 [DCS(p; q)− log |K|+ 2 logC2] .

(52)

The proof is completed.

A.4 PROOF OF PROPOSITION 4

Figure 6: A graphical illustration of the sets Aϵ and A∁
ϵ defined in Proposition 4.

Proposition 4. For any density functions p and q, and any ϵ > 0, let Aϵ = {x : p(x) ≤ ϵ} ∪ {x : q(x) ≤ ϵ} and A∁
ϵ

be its complement. Moreover, define TA∁
ϵ
= sup

{
p(x)q(x), x ∈ A∁

ϵ

}
and

∣∣∣A∁
ϵ

∣∣∣ to denote the “length” of the set A∁
ϵ

(strictly speaking, the Lebesgue measure of the set A∁
ϵ ). Suppose there exists an ϵ > 0 such that TA∁

ϵ

∣∣∣A∁
ϵ

∣∣∣ < ∞ and

C3 =
´
p2(x) dx

´
q2(x) dx ≥ exp(2)

(
2ϵ+ TA∁

ϵ

∣∣∣A∁
ϵ

∣∣∣)2, then

DTV(p; q) ≤
√
DCS(p; q). (53)



Proof. Note that DCS(p; q) = − log(
´
p(x)q(x) dx) + 1/2 log(C3). For the term

´
p(x)q(x) dx, we can write

ˆ
p(x)q(x) dx =

ˆ
Aϵ

p(x)q(x) dx+

ˆ
A∁

ϵ

p(x)q(x) dx

≤
ˆ
Aϵ

ϵmax{p(x), q(x)} dx+

ˆ
A∁

ϵ

p(x)q(x) dx

≤ ϵ
ˆ

(p(x) + q(x)) dx+

ˆ
A∁

ϵ

p(x)q(x) dx

= 2ϵ+

ˆ
A∁

ϵ

p(x)q(x) dx

≤ 2ϵ+ TA∁
ϵ

∣∣∣A∁
ϵ

∣∣∣ .

(54)

Hence, DCS(p; q) ≥ − log
(
2ϵ+ TA∁

ϵ

∣∣∣A∁
ϵ

∣∣∣ )+ 1/2 log(C3) ≥ 1 ≥ DTV(p; q).

Remark 4. We provide some explanation of the conditions in Proposition 4. These conditions imply that as two densities
p, q exhibit less and less overlap (i.e., in the case of a small ϵ > 0) the integral of pq tends toward 0. Consequently,
− log

(´
p(x)q(x)dx

)
≫ 0 inDCS(p; q) dominates log

(´
p2(x)dx

)
+log

(´
q2(x)dx

)
because

´
p2(x)dx and

´
q2(x)dx

are constants unaffected by the extent of overlap between p and q. Therefore, DCS(p; q) can rapidly surpass 1 when the
shapes of p and q are markedly distinct.

For illustration, let p be the pdf of N (µ1, σ
2
1) and q be the pdf of N (µ2, σ

2
2). For ϵ > 0, we consider two examples: (i)

µ2 = µ1 + δϵ > µ1 and σ1 = σ2 = σ > 0; (ii) µ1 = µ2 = µ and σ2 = σ1 + δϵ > σ1, where δϵ > 0 relies on ϵ.

(i) For ϵ > 0, we have

A =
(
−∞, µ2 − σ

√
− log (2πσ2ϵ2)

]
∪
[
µ1 + σ

√
− log (2πσ2ϵ2),+∞

)
,∣∣∣A∁

∣∣∣ = 2σ
√
− log (2πσ2ϵ2)− δϵ,

TA∁ ≤
(
2πσ2

)−1
exp

(
− (2µ1 + δϵ)

2

4σ2

)
,

C3 =
(
4πσ2

)−1
.

It is not hard to see that for any ϵ > 0, when δϵ is sufficiently large, indicating that p and q substantially differ from each
other, one can achieve TA∁

∣∣∣A∁
∣∣∣ ≤ 2ϵ because TA∁ decays to 0 exponentially fast when δϵ increases. Additionally, satisfying

C3 ≥ exp(2)
(
2ϵ+ TA∁

ϵ

∣∣∣A∁
ϵ

∣∣∣)2 is not challenging if ϵ is chosen small.

(ii) Similarly, for ϵ > 0, we have

A =

(
−∞, µ1 − σ1

√
− log (2πσ2

1ϵ
2)

]
∪
[
µ1 + σ1

√
− log (2πσ2

1ϵ
2),+∞

)
,∣∣∣A∁

∣∣∣ = 2σ1

√
− log (2πσ2

1ϵ
2),

TA∁ ≤ [2πσ1(σ1 + δϵ)]
−1
,

C3 = [4πσ1(σ1 + δϵ)]
−1
.

As before, for any ϵ > 0, as long as δϵ is sufficiently large, we can have TA∁

∣∣∣A∁
∣∣∣ ≤ 2ϵ and C3 ≥ exp(2)

(
2ϵ+ TA∁

ϵ

∣∣∣A∁
ϵ

∣∣∣)2.

A.5 EMPIRICAL VALIDATION OF RELATIONSHIP BETWEEN DIFFERENT DIVERGENCE MEASURES

We finally provide an empirical validation to show that the following relationship generally holds:

DTV ≲
√
DCS and DCS ≲ DKL, (55)



where p and q need not be Gaussian, and the symbol ≲ denotes “less than or similar to”.

We start our analysis for discrete p and q for simplicity. This is because, unlike the CS divergence, TV distance and KL di-
vergence do not have closed-form expressions for neither Gaussian distributions nor a mixture-of-Gaussian (MoG) [Devroye
et al., 2018]. Hence, it becomes challenging to perform Monte Carlo simulations for continuous cases.

Consider the probability mass functions p and q with the support X = {x1, x2, . . . , xK} (i.e., there are K different discrete
states). Namely,

∑K
i=1 p(xi) =

∑K
i=1 q(xi) = 1. We have

DTV(p; q) =
1

2

∑
|p(xi)− q(xi)|, (56)

DCS(p; q) = − log

( ∑
p(xi)q(xi)√∑

p(xi)2
√∑

q(xi)2

)
, (57)

DKL(p; q) =

K∑
i=1

p(xi) log

(
p(xi)

q(xi)

)
. (58)

For some K, we randomly generate probability pairs
{
(pi, qi), i = 1, . . .K

}
. Fig. 7 demonstrates the values of DTV with

respect to
√
DCS (first row) and DKL with respect to DCS (second row) when K = 2 (first column) K = 3 (second column)

and K = 10 (third column), respectively. We only show results of 1, 000 replicates.

(a) K = 2 (b) K = 3 (c) K = 10

(d) K = 2 (e) K = 3 (f) K = 10

Figure 7: Values of DTV with respect to
√
DCS (first row) and DKL with respect to DCS (second row) for 1, 000 replicates of

randomly generated probability pairs
{
(pi, qi), i = 1, . . .K

}
, when K = 2 (first column), K = 3 (second column), and

K = 10 (third column). The diagonal indicates DTV =
√
DCS or DKL = DCS.

B EMPIRICAL ESTIMATOR OF CS AND CONDITIONAL CS

We now use subscripts to denote the domain index for notational convenience.



B.1 EMPIRICAL ESTIMATOR OF CS

Proposition 5 (Empirical Estimator of DCS(ps(z); pt(z)) [Jenssen et al., 2006]). Given observations {zsi}Mi=1 and {zti}Ni=1,
the empirical estimator of DCS(ps(z); pt(z)) is given by:

D̂CS(ps(z); pt(z)) = log
1

M2

M∑
i,j=1

κ(zsi , z
s
j))+

log(
1

N2

N∑
i,j=1

κ(zti, z
t
j))− 2 log(

1

MN

M∑
i=1

N∑
j=1

κ(zsi , z
t
j)).

(59)

where κ is a kernel function such as Gaussian κσ(z, z′) = exp(−∥z− z′∥22/2σ2).

Proof. The CS divergence is defined by:

DCS(ps; pt) = − log

(
(
´
ps(z)pt(z) dz)

2´
ps(z)2 dz

´
pt(z)2 dz

)
. (60)

By the kernel density estimation (KDE), we have:

p̂s(z) =
1

M

M∑
i=1

κσ(z− zsi ), (61)

and

p̂t(z) =
1

N

N∑
i=1

κσ(z− zti). (62)

By substituting Eq. (61) into
´
p̂2s(z) dz, we have:

ˆ
p̂2s(z) dz =

ˆ (
1

M

M∑
i=1

κσ(z− zsi )

)2

dz

=
1

M2

ˆ  M∑
i=1

M∑
j=1

κσ(z− zsj) · κσ(z− zsi )

 dz

=
1

M2

M∑
i=1

M∑
j=1

ˆ
κσ(z− zsj) · κσ(z− zsi ) dz

=
1

M2

M∑
i=1

M∑
j=1

κ√2σ(z
s
j − zsi ).

(63)

The final equation is derived by using the property that the integral of the product of two Gaussians equals the value of the
Gaussian computed at the difference of the arguments with the variance being the sum of the variances of the two original
Gaussian functions [Bromiley, 2003].

Similarly, ˆ
p̂2t (z) dz =

1

N2

N∑
i=1

N∑
j=1

κ√2σ(z
t
j − zti), (64)

and ˆ
p̂s(z)p̂t(z) dz =

1

MN

M∑
i=1

N∑
j=1

κ√2σ(z
t
j − zsi ). (65)



By substituting Eqs. (63)-(65) into the definition of CS divergence in Eq. (60), we obtain:

D̂CS(pa; pt) = log

 1

M2

M∑
i,j=1

κ√2σ(z
s
j − zsi )

+ log

 1

N2

N∑
i,j=1

κ√2σ(z
t
j − zti)


−2 log

 1

MN

M∑
i=1

N∑
j=1

κ√2σ(z
t
j − zsi )

 .

(66)

Connection to MMD Interestingly, we found the CS divergence is closely related to the MMD. Here, we demonstrate the
connection between the CS divergence and MMD. A natural choice for measuring the dissimilarity between ps and pt is the
Euclidean distance:

DED(ps; pt) =

ˆ
(p̂s(z)− p̂t(z))2 dz

=

ˆ
p̂2s(z) dz +

ˆ
p̂2t (z) dz −

ˆ
p̂s(z)p̂t(z) dz

(67)

Combining Eqs. (63)-(65), we have:

DED(ps; pt) =
1

M2

M∑
i,j=1

κ√2σ(z
s
j − zsi ) +

1

N2

N∑
i,j=1

κ√2σ(z
t
j − zti)

− 2

MN

M,N∑
i,j=1

κ√2σ(z
t
j − zsi ).

(68)

Note that Eq. (68) is exactly the same (in terms of mathematical expression) as the square of MMD using V-statistic
estimator [Gretton et al., 2012]:

M̂MDv[ps(z), pt(z)] =

 1

M2

M∑
i,j=1

κ(zsi , z
s
j) +

1

N2

N∑
i,j=1

κ(zti, z
t
j)−

2

MN

M,N∑
i,j=1

κ(ztj , z
s
i )

 1
2

, (69)

by using a Gaussian kernel κ with variance
√
2σ. Also, we have:

M̂MD
2
(ps; pt) = ⟨µs, µt⟩2H =

1

M2

M∑
i,j=1

κ(zsi , z
s
j) +

1

N2

N∑
i,j=1

κ(zti, z
t
j)−

2

MN

M∑
i=1

N∑
j=1

κ(zsi ,x
t
j) (70)

By comparing Eq. (59) with Eq. (70), it is interesting to find that the empirical estimator of CS divergence just adds a
logarithm on each term of that of MMD.

B.2 EMPIRICAL ESTIMATOR OF CCS

The conditional CS divergence for ps(y|z) and pt(y|z) is expressed as:

DCS(ps(y|z); pt(y|z)) =

− 2 log

(ˆ
Z

ˆ
Y

ps(z,y)pt(z,y)

ps(z)pt(z)
dzdy

)
+ log

(ˆ
Z

ˆ
Y

ps
2(z,y)

ps2(z)
dzdy

)
+ log

(ˆ
Z

ˆ
Y

pt
2(z,y)

pt2(z)
dzdy

)
.

(71)

which contains two conditional quadratic terms (i.e.,
´
Z
´
Y

ps
2(z,y)

pt
2(z) dzdy and

´
X
´
Y

pt
2(z,y)

pt
2(z) dzdy) and a cross term (i.e.,´

Z
´
Y

ps(z,y)pt(z,y)
ps(z)pt(z)

dzdy). Note, we use y instead of ŷ in Proposition 2 in the main manuscript to represent label for the
convenience and clear demonstration.



Proposition 6 (Empirical Estimator of DCCS(ps(y|z); pt(y|z))). Given observations {zsi , ysi }Mi=1 and {zti, yti}Ni=1. Let Ks

and Ls denote, respectively, the Gram matrices for the variable z and the predicted output ŷ in the source distribution.
Similarly, let Kt and Lt denote, respectively, the Gram matrices for the variable z and the label y in the target distribution.
Meanwhile, let Kst ∈ RM×N (i.e., (Kst)ij = κ(zsi − ztj)) denote the Gram matrix from source distribution to target
distribution for input variable z, and Lst ∈ RM×N the Gram matrix from source distribution to target distribution for
predicted output ŷ. Similarly, let Kts ∈ RN×M (i.e., (Kts)ij = κ(zti−zsj)) denote the Gram matrix from target distribution
to source distribution for input variable z, and Lts ∈ RN×M the Gram matrix from target distribution to source distribution
for predicted output y. The empirical estimation of DCCS(ps(y|z); pt(y|z)) is given by:

D̂CCS(ps(ŷ|z); pt(ŷ|z)) ≈ log(

M∑
j=1

(

∑M
i=1K

s
jiL

s
ji

(
∑M

i=1K
s
ji)

2
)) + log(

N∑
j=1

(

∑N
i=1K

t
jiL

t
ji

(
∑N

i=1K
t
ji)

2
))

− log(

M∑
j=1

(

∑N
i=1K

st
jiL

st
ji

(
∑M

i=1K
s
ji)(
∑N

i=1K
st
ji )

))− log(

N∑
j=1

(

∑M
i=1K

ts
jiL

ts
ji

(
∑M

i=1K
ts
ji )(
∑N

i=1K
t
ji)

)).

(72)

In the following, we first demonstrate how to estimate the two conditional quadratic terms (i.e.,
´
Z
´
Y

ps
2(z,y)

ps
2(z) dzdy and´

Z
´
Y

pt
2(z,y)

pt
2(z) dzdy) from samples. We then demonstrate how to estimate the cross term (i.e.,

´
Z
´
Y

ps(z,y)pt(z,y)
ps(z)pt(z)

dzdy).
We finally explain the empirical estimation of DCS(ps(y|z); pt(y|z)).

Proof. The following proof follows directly from [Yu et al., 2023].

[The conditional quadratic term]

The empirical estimation of
´
Z
´
Y

p2
s(z,y)
p2
s(z)

dzdy can be expressed as:

ˆ
Z

ˆ
Y

ps
2(z,y)

ps2(z)
dzdy = Eps(Z,Y )

[
ps(Z, Y )

ps2(Z)

]
≈ 1

M

M∑
j=1

ps(zj ,yj)

ps2(zj)
. (73)

By kernel density estimator (KDE), we have:

ps(zj ,yj)

ps2(zj)
≈M

∑M
i=1 κσ(z

ps

j − zps

i )κσ(y
ps

j − yps

i )(∑M
i=1 κσ(z

ps

j − zps

i )
)2 . (74)

Therefore,
ˆ
Z

ˆ
Y

ps
2(z,y)

ps2(z)
dzdy ≈

M∑
j=1

∑M
i=1 κσ(z

ps

j − zps

i )κσ(y
ps

j − yps

i )(∑M
i=1 κσ(z

ps

j − zps

i )
)2

 . (75)

Similarly, the empirical estimation of
´
Z
´
Y

pt
2(z,y)

pt
2(z) dzdy is given by:

ˆ
Z

ˆ
Y

pt
2(z,y)

pt2(z)
dzdy ≈

N∑
j=1

∑N
i=1 κσ(z

pt

j − zpt

i )κσ(y
pt

j − ypt

i )(∑N
i=1 κσ(z

pt

j − zpt

i )
)2

 . (76)

[The cross term]

Again, the empirical estimation of
´
Z
´
Y

ps(z,y)pt(z,y)
ps(z)pt(z)

dzdy can be expressed as:

ˆ
Z

ˆ
Y

ps(z,y)pt(z,y)

ps(z)pt(z)
dzdy = Eps(Z,Y )

[
pt(Z, Y )

ps(X)pt(Z)

]
≈ 1

M

M∑
j=1

pt(zj ,yj)

ps(zj)pt(zj)
. (77)



By KDE, we further have:

pt(zj ,yj)

ps(zj)pt(zj)
≈M

∑N
i=1 κσ(z

ps

j − zpt

i )κσ(y
ps

j − ypt

i )∑M
i=1 κσ(z

ps

j − zps

i )
∑N

i=1 κσ(z
ps

j − zpt

i )
. (78)

Therefore, ˆ
Z

ˆ
Y

ps(z,y)pt(z,y)

ps(z)pt(z)
dzdy ≈

M∑
j=1

( ∑N
i=1 κσ(z

ps

j − zpt

i )κσ(y
ps

j − ypt

i )∑M
i=1 κσ(z

ps

j − zps

i )
∑N

i=1 κσ(z
ps

j − zpt

i )

)
. (79)

Note that, one can also empirically estimate
´
Z
´
Y

ps(z,y)pt(z,y)
ps(z)pt(z)

dxdy over pt(z,y), which can be expressed as:

ˆ
X

ˆ
Y

ps(z,y)pt(z,y)

ps(z)pt(z)
dzdy = Ept(X,Y )

[
ps(X,Y )

ps(X)pt(X)

]
≈ 1

N

N∑
j=1

ps(zj ,yj)

ps(zj)pt(zj)

≈
N∑
j=1

( ∑M
i=1 κσ(z

pt

j − zps

i )κσ(y
pt

j − yps

i )∑M
i=1 κσ(z

pt

j − zps

i )
∑N

i=1 κσ(z
pt

j − zpt

i )

)
.

(80)

[Empirical Estimation]

Let Ks and Ls denote, respectively, the Gram matrices for the input variable z and output variable y in the distribution ps
from the source domain. Further, let (K)ji denotes the (j, i)-th element of a matrix K (i.e., the j-th row and i-th column of
K). We have: ˆ

Z

ˆ
Y

ps
2(z,y)

ps2(z)
dzdy ≈

M∑
j=1

(∑M
i=1K

s
jiL

s
ji

(
∑M

i=1K
s
ji)

2

)
. (81)

Similarly, let Kt and Lt denote, respectively, the Gram matrices for input variable z and output variable y in the distribution
pt from the target domain. We have:

ˆ
Z

ˆ
Y

pt
2(z,y)

pt2(z)
dzdy ≈

N∑
j=1

(∑N
i=1K

t
jiL

t
ji

(
∑N

i=1K
t
ji)

2

)
. (82)

Further, let Kst ∈ RM×N denote the Gram matrix between distributions ps and pt for input variable z, and Lst the Gram
matrix between distributions ps and pt for output variable y. According to Eq. (79), we have:

ˆ
Z

ˆ
Y

ps(z,y)pt(z,y)

ps(z)pt(z)
dzdy ≈

M∑
j=1

( ∑N
i=1K

st
jiL

st
ji

(
∑M

i=1K
s
ji)(
∑N

i=1K
st
ji )

)
. (83)

Therefore, according to Eqs. (81)-(83), an empirical estimate of DCS(ps(y|z); pt(y|z)) is given by:

DCS(ps(y|z); pt(y|z)) ≈ log

 M∑
j=1

(∑M
i=1K

s
jiL

s
ji

(
∑M

i=1K
s
ji)

2

)+ log

 N∑
j=1

(∑N
i=1K

t
jiL

t
ji

(
∑N

i=1K
t
ji)

2

)
− 2 log

 M∑
j=1

( ∑N
i=1K

st
jiL

st
ji

(
∑M

i=1K
s
ji)(
∑N

i=1K
st
ji )

) .

(84)

Note that, according to Eq. (80), DCS(ps(y|z); pt(y|z)) can also be expressed as:

DCS(ps(y|z); pt(y|z)) ≈ log
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Therefore, to obtain a consistent and symmetric expression, we estimate DCS(ps(y|z); pt(y|z)) by:

DCS(ps(y|z); pt(y|z)) ≈
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C ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

The demo code of the proposed CS-adv in the OfficeHome data is provided in https://anonymous.4open.
science/r/CS-adv-58E5.

C.1 DETAILS ON CONDITIONAL DIVERGENCE TEST

The conditional KL divergence, by the chain rule, can be decomposed as:

DKL(p
s(y|x); pt(y|x)) = DKL(p

s(x, y); pt(x, y))

−DKL(p
s(x); pt(x)).

(87)

We estimate both terms in Eq. (87) with the k-NN estimator [Wang et al., 2009] (k = 3), due to its popularity, simplicity and
effectiveness. However, we would like to emphasis here that the k-NN estimator itself is not differentiable, which hinders its
practical usage in deep UDA.

The empirical estimation of DCCS(p
s(ŷ|x); pt(ŷ|x)) is given by:
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As an alternative, the conditional MMD can be estimated as [Ren et al., 2016]:

D̂MMD(p
s(ŷ|x); pt(ŷ|x))

= tr
(
Ls(K̃s)−1Ks(K̃s)−1

)
+ tr

(
Lt(K̃t)−1Kt(K̃t)−1·

)
− 2 · tr

(
Lst(K̃t)−1Kts(K̃s)−1·

)
,

(89)

in which K̃ = K + λI .

Fig. 8 demonstrates the three synthetic datasets in which the set (a) and set (b) have much obvious difference in the
conditional density p(y|x); whereas the difference in set (a) and set (c) is relatively weak. Algorithm 1 summarizes the way
to test the equivalence between two conditional densities.

C.2 DETAILS ON DISTANCE METRIC MINIMIZATION

We illustrate the training scheme of our CS divergence-based distance metric minimization method in Fig. 10. For matching
the latent representation z extracted by the feature extractor f , we use DCS. For the conditional distribution p(ŷ|z) alignment
(classifier adaptation), we adopt DCCS. Additionally, we use cross entropy loss LCE on the source domain. In the end, we
train three losses jointly:

L = LCE + λDCS + βDCCS, (90)
where λ and β are the weighting hyeprparameters.

https://anonymous.4open.science/r/CS-adv-58E5
https://anonymous.4open.science/r/CS-adv-58E5


Algorithm 1: Test for the equivalence between two conditional densities

Input: Two groups of observations ψs = {(xs
i ,y

s
i )}Mi=1 and ψt = {(xt

i,y
t
i)}Ni=1; Permutation number P ; Significance

level α.
Output: Test decision (IsH0 : ps(y|x) = pt(y|x) True or False?).

1: Compute conditional divergence value d0 on ψs and ψt with one of the conditional divergence measures (e.g.,
conditional KL, or class conditional MMD, or conditional MMD, or conditional CS divergence).

2: for m = 1 to P do
3: (ψm

s , ψ
m
t )← random split of ψs

⋃
ψt.

4: Compute conditional divergence value dm on ψm
s and ψm

t with the selected conditional divergence measure.
5: end for
6: if 1+

∑P
m=1 1[d0≤dt]

1+P ≤ α then
7: decision←False
8: else
9: decision←True

10: end if
11: return decision

-3 -2 -1 0 1 2 3
x

1

-3

-2

-1

0

1

2

3

x 2

Class 1
Class 0

(a) Synthetic distribution (a)

-3 -2 -1 0 1 2 3
x

1

-3

-2

-1

0

1

2

3

x 2

Class 1
Class 0

(b) Synthetic distribution (b)

-3 -2 -1 0 1 2 3
x

1

-3

-2

-1

0

1

2

3

x 2

Class 1
Class 0

(c) Synthetic distribution (c)

Figure 8: Visualization of the synthetic datastes to test the power to discriminate two conditional distributions. In each
plot, x-axis is the first dimension of x, denote as x1; y-axis is the second dimension of x, denote as x2. Different labels are
marked with red and green, respectively.

(a) No adaptation (b) CS divergence (c) CCS divergence (d) CCS+CS

Figure 9: t-SNE visualization of feature trained without adaptation (9a), with CS divergence (9b, with CCS divergence (9c),
and with both CCS and CS divergences (9d).
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Figure 10: The diagram of distance metric minimization framework. DCS is used to align the latent representation p(z),
while DCCS matches the conditional distribution p(ŷ|z)

.

C.3 COMPARISON ON DIGITS

M→U U→M Avg
DANN [Ganin et al., 2016] 91.8 94.7 93.3
CDAN [Long et al., 2018] 93.9 96.9 95.4
f-DAL [Acuna et al., 2021] 95.3 97.3 96.3

CS-adv (ours) 95.5 98.1 96.8

Table 5: Accuracy on the Digits datasets.

In Table 5, we present the comparison between the proposed CS-adv method and other methods on the Digits dataset. It
shows that the proposed method outperforms other methods, including f-DAL.

C.4 ADDITIONAL ABLATION STUDY

t-SNE visualization In order to better understand the adaptation ability of CS and CCS divergence, we use t-SNE [Van der
Maaten and Hinton, 2008] to visualize the feature trained without adaptation (Fig. 9a), with CS divergence (Fig. 9b, with
CCS divergence (Fig. 9c), and with both CCS and CS divergences (Fig. 9d). The model is trained as introduced in Section 4.2
in the main text. Fig 9 shows the aligned quality on M→U task. As shown in Fig 9, CS divergence has a worse performance
on inter-class separability, while CCS divergence can alleviate this issue. This can also be observed in Fig. 9d, where CCS
divergence is added on top of CS divergence and leads to better separability compared with Fig. 9b. Hence, modeling the
conditional distribution alignment is necessary and the proposed CCS divergence has an advantage.

CCS with kSHOT We investigate integrating the CCS divergence into kSHOT [Sun et al., 2022], an representative SOTA
UDA approach. As kSHOT is based on SHOT [Liang et al., 2020] which freezes the classifier for the target domain, we
only fine-tune the classifier part using CCS divergence to further enhance it by transferring the conditional distribution. The
results in Table 6 show improvements on the Office-Home dataset.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

kSHOT [Sun et al., 2022] 58.2 80.0 82.9 71.1 80.3 80.7 71.3 56.8 83.2 75.5 60.3 86.6 73.9
CCS+KSHOT 58.9 81.6 83.4 71.3 81.2 80.8 71.6 56.5 82.9 75.8 61.2 86.7 74.3

Table 6: Compare with KSHOT [Sun et al., 2022] on Office-Home.

Kernel Density Estimation visualization In order to show that it is reasonable to use the predicted pseudo ŷ (similar
to previous papers) and the necessity of aligning both marginal and conditional distribution, we draw the Kernel Density
Estimation (KDE) visualization of p(z, y) and p(z, ŷ) in Fig. 11. We train our model on the Digits M→U task and visualize
the KDE of p(z, y) and p(z, ŷ) in the target domain (dimension reduction is performed). As the same z is used for both
p(z, y) and p(z, ŷ), p(z, ŷ) is close to p(z, y) only when p(ŷ|z) effectively approximates p(y|z). In each subfigure, the



(a) Without adaptation. (b) Adapt only p(z). (c) Adapt both p(z) and p(ŷ|z).

Figure 11: No adversarial training. Kernel Density Estimation (KDE) visualization of p(z, y) and p(z, ŷ) in the target
domain(after dimension reduction). y and ŷ are ground truth and predicted pseudo labels, respectively. p(z, ŷ) is close to
p(z, y) only when p(ŷ|z) effectively approximates p(y|z). Aligning p(z) only (11b) cannot ensure the approximation of
p(z, y), while adding conditional alignment with pseudo labels closely approximates p(z, y).

left shows the joint distribution p(z, ŷ) from the model prediction, while the right illustrates the joint distribution with the
ground truth label p(z, y). Fig. 11 shows aligning p(z) only (Fig. 11b) cannot ensure the approximation of p(z, y), while
adding conditional alignment with pseudo labels (Fig. 11c) shows a close approximation of p(z, y).

Comparison on Office-Caltech-10 In this section, we present an additional ablation study analogous to Section 4.1.2 in
the main manuscript. We employ another toy dataset, Office-Caltech-10 [Fernando et al., 2014], to conduct a comprehensive
comparison with both MMD and Joint Distribution MMD (JPMMD). The Office-Caltech-10 dataset comprises 10 classes
with an image size of 3 × 28 × 28. It includes four domains: Amazon, Webcam, Caltech, and DSLR. We selected the
Webcam-to-DSLR task for demonstration. The network architecture used mirrors that in Section 4.1.2, where LeNet and
two fully connected layers serve as the feature extractor and nonlinear classifier, respectively. Results are depicted in Fig. 12.
Both CS and CCS methods surpass MMD and Joint Distribution MMD, with CS+CCS delivering the best performance.

Figure 12: The ablation study of the CS and CCS components in Webcam to DSLR task, comparing with MMD and joint
distribution MMD (JPMMD).

C.5 THE EFFECT OF HYPERPARAMETERS

We conduct ablation studies on batch size and kernel size in Fig 13 on MNIST to USPS task. First, we fix the kernel size as
1 and increase the batch size. With larger batch size, the method has a better performance. Subsequently, with the batch size
set at 128, we explore various kernel sizes within a specific range. It shows that our method has a stable performance with
respect to kernel size in a certain range.

Additionally, in Table 7, we provide additional sensitivity analysis for λ and β for CS and CCS in the MNIST to USPS task.
It shows that CS and CCS have stable performance for different regularization strengths. To have the same regularization
strength with MMD, we keep λ and β as 1.



(a) The ablation study of Batch Size. (b) The ablation study of Gaussian kernel size.

Figure 13: The ablation study of batch size and kernel size on MNIST to USPS task.

λ or β 0.1 0.5 1 2 5 10
CS 84.8 86 87.4 87.8 88.7 88.7
CCS 90.1 90.3 90.1 90.2 90.1 89.8

Table 7: Sensitivity analysis for λ and β.
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