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Abstract—In this work, we propose a novel online knowledge
distillation (OKD) approach, built upon the classical deep mutual
learning framework in which peer networks (students) treat
each other as teachers by learning from their predictions. The
proposed method traces and leverages two levels of informa-
tion encoded in each peer’s learning trajectory to dynamically
construct superior teachers to supervise other students. We
first build a recurrent neural network associated with each
peer, which takes both the network’s current and previous
logits as input and outputs integrated logits with the same
dimension as the transferred knowledge. By doing so, the teachers
provide an enhanced representation of knowledge. Beyond that,
we also build a weight-averaged surrogate for each network,
which maintains the exponential moving average of its learned
parameters during the online training procedure. The proposed
approach exploits the hidden information behind the online
learning process instead of myopically learning from peers’
outputs at a single time/iteration step. It potentially reduces
uncertainties from peers as suffered in previous OKD studies
with more stabilized transferred knowledge. We evaluate the
proposed approach with benchmark image classification datasets
and network architectures. Experimental results demonstrate its
effectiveness with clear performance improvement over state-of-
the-arts.

Index Terms—online knowledge distillation, history-aware
knowledge, network-based OKD, learning trajectory

I. INTRODUCTION

Although deep neural networks (DNNs) have achieved
state-of-the-art performance on many machine learning tasks,
the issue of over-parameterization has prevented them from
being deployed on resource-constrained edge devices [1], [2].
Network compression, naturally, becomes an essential research
subject. Besides network quantization [3], pruning [4]-[7],
and light-weight architecture design [8], knowledge distillation
(KD) [9]-[11] is another popular branch of approaches for
constructing a compact network structure without sacrificing
accuracy. Classic KD trains a compact DNN (student net-
work) by leveraging the transferred knowledge from a pre-
trained, usually cumbersome DNN (teacher network). With
the teacher’s supervision, the student network usually exhibits
superior performance than being trained independently.

In practice, the pre-trained powerful teacher does not always
exist, making it difficult to utilize classic KD for model
compression. To overcome this limitation, online knowledge
distillation (OKD) [12]-[14] has been developed in recent
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years. OKD simultaneously trains a group of student networks
from scratch. Each network considers its peers as teachers
during training. Surprisingly, networks trained with OKD can
achieve comparable, if not better, performance than their
counterparts with the attendance of a powerful pre-trained
teacher using classic KD.

Despite the huge success of OKD in training compact
DNNS, there are still issues remain. Within the general OKD
framework, a student learns its own parameters while serving
as an instructor for its peers, introducing more uncertainty into
the training procedure [15], [16]. Unpredictable behaviors, like
oscillation, saturation, or failure, may happen [15], [17] in
the middle of the training process. In this work, we argue
that the history information collected during the course of
learning/training can be utilized to yield a more stable outcome
from OKD.

We propose to leverage the information encoded in the
learning trajectory of peer networks during training to generate
superior knowledge transferred through OKD. Specifically, we
embody the learning trajectory at two levels, i.e., logits-level
and weight-level, with two plug-and-play modules. In the
first module, we employ a recurrent neural network (RNN)
[18] associated with each peer network for the logits-level
ensembling. In specific, the RNN takes a network’s historical
sequence of logits as well as current logits as the input and
constructs integrated logits as a superior target for other peers
to learn from. In the second module, we establish a surrogate
model with the identical architecture for each student net-
work, whose weights are replaced by the exponential moving
average (EMA) of the student’s weights at every iteration
during training. Each student network takes supervision from
the associated surrogates of peers instead of directly from
the peers. The two proposed history-aware modules tend to
distill knowledge [19]-[21] with more certainty, and as a
consequence, potentially improve the performance of OKD.

Our main contribution is summarized as follows.

« Instead of learning with the knowledge generated at each
single iteration step as used in existing approaches, we
propose to leverage the history information to distill
trajectory-aware knowledge for OKD.

o Two proposed modules, i.e. logits ensembling and weight
ensembling, track the learning trajectory at two different
levels, which enhance the quality of knowledge trans-
ferred and thus improve the performance.
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o The proposed approach achieves state-of-the-art perfor-
mance on the image classification task with multiple
benchmark networks and datasets evaluated.

II. RELATED WORK

A. Online Knowledge Distillation

Classic knowledge distillation (KD) approaches [22]-[26]
aim to learn a compact student model using a pre-trained,
over-parameterized teacher model as the guidance. Although
KD effectively helps the student network to achieve higher
performance, its success heavily relies on the existence of the
pre-trained model. In contrast, online knowledge distillation
(OKD) trains multiple peers from scratch, treating each other
as the teacher while learning its parameters. OKD fills in the
gap where a pre-trained teacher model is missing which is
common in many practical scenarios while achieving surpris-
ingly competitive performance.

Existing OKD approaches can be mainly categorized into
two classes based on the learning structure [9], [27], i.e.,
branch-based approaches [13], [14] and network-based ap-
proaches [12], [28]-[30]. On the other hand, these methods
(branch or network-based) can also be categorized based on
the type of knowledge transferred [29], [31]-[34].

Branch-based OKD. Branch-based OKD approaches use
a single network with multiple auxiliary branches that share
lower-level layers. Each branch is considered as an individual
model. Among this line of research, a representative work
is ONE [14], which ensembles the auxiliary branches with
a gating module to provide a stronger teacher. Following
ONE, OKDDip [13] proposes a similar framework with two-
level distillation, where an extra attention-based mechanism
for the predictions of each branch is introduced to enhance
peer diversity. Branch-based OKD approaches have achieved
competitive performance, but they have some limitations. First
of all, networks need to be manually redesigned to effectively
ensemble information from branches and auxiliary branches
need to be pruned after the training process. Second, it
is difficult to ensemble student networks with significantly
different architectures.

Network-based OKD. Network-based OKD approaches,
on the other hand, are a more flexible scheme in which
each network holds its own parameters. That is, students can
have completely different structures. DML [28], as the first
OKD mechanism, leverages the KL divergence loss between
the logits of peers as the objective function in addition to
the cross-entropy loss for the classification task. By doing
so, the performance of networks outperforms those being
trained independently with a clear margin. Chung et al. [29]
proposed to use a discriminator associated with each model,
which identifies the source of the feature maps and uses this
information to transfer the feature representation with each
other. Online collaborative learning is investigated in [12],
which manipulates the training samples by adding noises to
improve the peer networks’ performance. [35] also presented
a peer collaborative learning framework for OKD.

Some work presents both branch-based versions and
network-based versions. For example, OKDDip [13] also has
a network-based version with a similar strategy to diversify
the outputs of peers. In this study, the proposed history-aware
OKD is essentially a network-based framework.

B. Investigating Learning Process

Some literature has explored the potentials to use the infor-
mation encoded in the learning process for specific tasks [36].
Laine and Aila [20] proposed to ensemble a model’s outputs
at different training stages to label the samples with unknown
ground truths so that the model can be learned with only a
small portion of labeled images in a semi-supervised manner.
In [21], the authors discovered that by averaging weights of
a model temporally instead of predictions, consistency target
can improve the performance of semi-supervised learning.
Flennerhag et al. [37] introduced a meta-learning framework,
which aims to minimize the gradient paths in the learning
procedure on task manifolds so that the learned model can be
generalized to the new, unseen tasks with much fewer data.

Inspired by these studies, we propose to leverage the learn-
ing trajectory generated by each peer in the OKD process as an
extra alignment among peers to enrich the knowledge learned
by each student network. In specific, two modules are pro-
posed that encode logits-level and weight-level information,
respectively.

III. THE PROPOSED METHOD

In this section, we elaborate on our proposed method that
leverages the learning trajectory during the OKD training
process to build history-aware “teachers”. We first briefly
present the overall framework and motivations. After the
necessary preliminaries regarding KD and OKD, we describe
the design of the two ensembling components in our approach.

A. Overview

Like other existing methods, [12], [28], the proposed OKD
method is built upon the paradigm that the student networks
are trained in a peer-teaching manner. Considering two student
networks in the context of the image classification task, each
network learns with knowledge distilled from its peers in
addition to traditional classification loss. However, the dy-
namics of learning in deep neural networks during training
can be very complicated. Sometimes, learning can be slow,
saturated, frozen, or even worse — dying out [15]. Hence,
knowledge distilled from single steps/iterations can be chaotic
or misleading. The rich information encoded in the learning
trajectory is substantially ignored by previous OKD studies.
To fill in this research gap, we propose to aggregate history
information throughout the training process to build more
superior teachers.

The proposed method consists of two components en-
sembling history information of logits and weights during
the training process, respectively, as shown in Fig. 1. The
proposed method potentially facilitates OKD by dampening
the oscillations in the high curvature directions while speeding
up the learning in the low curvature directions [38].
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Fig. 1. Illustration of the proposed method with two student networks in the context of images classification. Each student network is associated with two
modules for weight ensembling and logits ensembling, respectively. Lines directing to these two modules, with varying intensities, denote the current results
and their historical values. Red lines indicate the calculation of losses, where KL loss and CE loss represent Kullback—Leibler divergence and cross-entropy

loss, respectively.

B. Preliminaries

We first describe the basics of KD and OKD in the context
of image classification. The general framework of the classical
KD consists of a teacher network and a student network. The
widely-used embodiment of knowledge transferred from the
teacher network to the student network is the softened logits.
Let T and S denote the teacher and the student model, W; and
W denote their parameters, respectively, and X € X denote
the training samples. The teacher’s and the student’s softened
logits can be represented as in Eq. (1),

P =T(X,W;,7) = softmax(ﬁ),
? 1

S

PT =8(X,Wq, 1) = softmax(é),
-

where z; and z, are the logits of the teacher and the student
model, respectively, and 7 is the temperature that determines
the level of logits softening. A higher 7 results in more soft-
ened logits and the class probability distributed more evenly
among all classes. Besides the commonly used cross-entropy
loss, the student network also aims to mimic the softened
logits output by the teacher model via Kullback-Leibler (KL)
divergence loss as in Eq. (2),

Lxp = Lce(Ps,y) + Lxr(P],P), )

where y is the ground truth label and P; is the prediction of
the student. Log and Lxp represent the cross-entropy loss
and KL divergence loss, respectively.

In the context of OKD, all the models become each other’s
teachers while learning their own parameters. Without loss of
generality, we suppose that there are two peer models in the
OKD framework for convenience. Let M; and P; (i = 1,2) be
the peer models and their corresponding logits, respectively.

Then the objective function in OKD can be represented as in
Eq' (3)’

Loxp = Lce(Pi,y) + Lxn(P], P]), (3)

where 7,7 = 1,2 and i # j. In the OKD scenario, lower
temperatures usually exhibit better performance. As a result,
the temperature 7 is commonly set to 1. Hence, in the
following context, we omit the superscript 7 for simplicity.

C. Logits Ensembling

In order to extract superior knowledge from one peer for
others, we propose two modules associated with each student
network at different levels to incorporate knowledge from the
learning trajectories in the OKD procedure, i.e, logits-level
ensembling and weight-level ensembling.

The first module is referred to as the logits ensembling,
which incorporates the current logits and the historical values
to produce an enhanced target. Denote P} the output logits
of model ¢ at the t¢-th iteration. We leverage an LSTM
network that takes the logits sequence of the past L time steps
Pt = [p/~E7 pi==2) L prol Pt as the input, and

generates an integrated target ]32?5, which is presented in Eq.

(4). The procedure of the LSTM network is demonstrated in
Fig. 2.

P! = LSTM(P?). “)

Instefld of learning from P!, each model learns from the
target P! that encodes the temporal trajectory of the logits of
others peer as in Eq. (5),

Lip=Lxr(P,PL), )
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Fig. 2. The logits ensembling module. A classic LSTM [39] network takes
the logits of a model at the previous L — 1 time steps and the current step
as the input, and outputs an integrated target, which is used for other peers’
to learn towards. Solid arrows indicate the input and output; dashed arrows
indicate the hidden state.

where i # j.

For the training of the LSTM network, we use the ground
truth label as the target and cross-entropy as the objective
function. As a supplement, we also introduce the average logits
of the peers at the current time step t, i.e., % sz\; Pf (where
N is the number of peer models in the system), as an extra
hint. Eq. (6) shows a scenario where N = 2.

. o1
Lrstm = Lep(Ply) + Lxr(FP, 9

The LSTM network can be considered as encoding the
logits-level learning trajectory and becoming a stronger teacher
while regulated by the ground truth label.

(Pf + P})). (6)

D. Weight Ensembling

Besides the logits-level ensembling, we also propose to
utilize the history information of each model’s weight to
provide a further alignment among the peers. Inspired by
the previous weight averaging work in the semi-supervised
domain [21], we establish a surrogate model that has the
identical structure as that of each student network, whose
parameters are updated via the exponential moving average
of the student’s weights at each time step during the OKD
training procedure. Denote W} the parameters of the surrogate
model M/ associated with the student network M?. Then W
is periodically updated with Eq. (7),

WE= W+ (1= N W, (7)

3

where )., referred to as the EMA decay, can be viewed
as a smoothing term that controls how much history data is
involved. Therefore, the output of the surrogate model can be
represented as

P} = M{(X,W}), (8)

and the objective function for the weight ensembling module
can be written as in Eq. (9),

‘CWE:‘CKL(PitaP;)v (9)

where i # j.

Finally, the overall loss function of our proposed approach
can be represented as in Eq. (10),

L=Lcp(PLy)+NeLrE + MvelwE, (10)

where A\;. and )\, are the two scaling factors that balance the
importance of the logits-level and the weight-level modules,
respectively, compared to the cross-entropy loss.

IV. EXPERIMENTS

In this section, we evaluate the proposed method with
experiments on various benchmark datasets and structures.
Then we conduct several ablation studies on the effectiveness
of two proposed modules and the effect on varying their key
hyperparameters.

A. Setup

1) Datasets and Network Structures: We conduct several
experiments to evaluate the proposed method using a wide
range of benchmark network structures (including ResNets,
WRNs, VGG, and MobileNet) on various datasets (including
CIFAR-10, CIFAR-100, and ImageNet) for the task of image
classification. CIFAR-10 and CIFAR-100 [40] contain 60000
RGB images with a resolution of 32 x 32 out of 10 and 100
classes, respectively. These images are spilt into 50,000 as
the training set and 10, 000 as the test set. We pad the training
samples with two pixels on each side and then implement
a random crop that resizes it back to the original size. A
random horizontal flip is also used for augmentation purposes.
ImageNet (ILSVRC 2012) [41] is a large-scale object classifi-
cation dataset with 1000 categories and 1.2 million images. For
the training samples, we randomly crop the images and then
resize them to the resolution of 224 x 224. After that, a random
horizontal flip is also implemented. For the test samples, they
are center-cropped to a resolution of 224 x 224. We use
the standard implementation of ResNet-20, ResNet-32 [42],
WRN-16-4, WRN-28-2 [43], VGG-13 [44] and MobileNet
[45] as the peers in the proposed OKD approach.

2) Compared Methods: We use independent training (train-
ing the models solely with the cross-entropy loss) and Deep
Mutual Learning (DML) [28] as two baselines. In addition,
we compare the proposed method with several state-of-the-art
OKD methods, including KDCL [12], ONE [14], and OKDDip
[13]. Task-specific hyperparameters are described in related
sections.

B. Performance Comparison with CIFAR-10/100

We first evaluate our proposed approach with the CIFAR-
10 and CIFAR-100 datasets. We consider two scenarios, i.e.,
the peer networks in the OKD training are with (1) the same
and (2) different structures. For all the experiments, we train
each peer model for 240 epochs with a batch size of 64 and
an SGD optimizer (the momentum is set to 0.9). The learning
rate is initialized to 0.01 for MobileNet and 0.05 for others,
which is decayed by a factor of 10 at the 150th, 180th, and
210th epochs. The weight decay factor is set to 0.0005. We
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TABLE I
TOP-1 ERROR RATES (%) ON CIFAR-10 AND CIFAR-100 WITH SAME PEER STRUCTURES. THE FIRST AND SECOND COLUMNS OF EACH STRUCTURE
REPRESENT THE AVERAGE AND THE ENSEMBLE PERFORMANCE OF TWO NETWORKS, RESPECTIVELY.

Datasets Methods ResNet-20 ResNet-32 WRN-16-4 WRN-28-2 VGG13 MobileNet
Ind 8.11/- 7.23/- 5.43/- 5.66/- 9.42/- 12.47/-
DML 7.96/7.37 6.90/6.32 5.04/4.65 5.25/4.84 9.45/8.87 12.08/11.50
CIFAR-10 ONE 7.37/6.79 6.21/5.81 4.55/4.39 5.16/4.76 7.18/7.17 10.81/10.80
KDCL 7.29/6.82 6.37/5.53 4.90/4.55 4.97/4.47 6.52/6.05 10.11/8.96
OKDDip 7.04/6.79 6.20/5.79 5.76/5.70 5.00/4.91 5.85/5.84 -/-
Ours 6.71/6.03 5.85/5.42 4.39/4.09 4.91/4.17 5.41/4.76 9.78/8.86
Ind 32.52/ - 31.01/- 24.62/- 26.50/- 25.36/- 35.40/-
DML 31.08/29.29  28.83/27.02  23.87/22.34  24.64/22.77  26.38/25.01  36.54/34.72
CIFAR-100 ONE 29.48/27.79  27.31/25.59  22.59/21.60  23.26/21.58  24.51/23.89  36.68/36.73
KDCL 29.53/27.42  27.31/25.58  21.04/19.49  22.75/20.48 26.05/24.66  33.90/31.53
OKDDip  29.60/28.08  26.89/25.18  23.60/22.53  23.31/21.63  24.82/24.77 -/-
Ours 28.91/27.31  26.69/24.82  20.48/19.53  22.28/20.72  24.01/21.66  32.90/31.51

stick to the same set of the above hyperparameters for the
implementation of the compared approaches.

For the logits ensembling module, we employ a two-layer
LSTM network with the number of features in the hidden state
set to 20. We use a sequence of the last 10 logits produced
by each peer as the input of the module. The learning rate
for training the LSTM network is set to 0.05. We tried to
decay this learning rate inconsistent with the peer model’s
learning rate and it resulted in similar performance. Therefore,
we use the constant learning rate across the experiments.
For the weight ensembling surrogate model, we set the mo-
mentum coefficient \,, to 0.5, which is proved to be the
most effective selection among the massive empirical studies
(details presented in the Ablation Study section IV-D). We
warm up the learning procedure for 15 epochs by training
each peer independently with the cross-entropy loss, which
provides a proper initial path of the learning trajectory. It is
worth mentioning that both the logits ensembling and weight
ensembling can be updated on the fly during the training
procedure with constant overhead.

1) Evaluation with Same-structure Peers: We start with
the evaluation using two peers with the same structure. The
experimental results are presented in Table I. Both the average
and the ensemble performance of two networks in terms of
top-1 error rates (%) are reported. Our proposed approach
outperforms all the compared methods except for the accuracy
of the ensemble of two cases with WRNs on CIFAR-100. In
most cases, using the proposed method with two trajectory-
involved modules in the OKD procedure results in a substantial
decrease in top-1 errors on both the average of individual peers
and the ensemble of them. The proposed approach generally
lowers the error rates (%) by the value in the range of from
0.3 to 0.4 over existing methods. It is also observed that the
performance improvement of model ensemble against individ-
ual models with our approach is higher than others. These
results indicate that peers learn more diversified information
by incorporating historical information.

2) Evaluation with Different-structure Peers: We also eval-
uate the proposed approach with the scenario where the peers
are with different architectures. We use the structures in Table

I and five different combinations for pairs in this experiment.
Since branch-based approaches (ONE and OKDDip') cannot
deal with the situation in which network structures are differ-
ent, we only compare with DML and KDCL.

The experimental results are shown in Table II. We also
report the averaged performance of the two networks and
the performance of their ensemble on top-1 error rates (%).
Similar to the experiments with the same structure peers, the
proposed approach exhibit better performance compared to
DML and KDCL. It is worth noting that the performance of the
models with smaller capacity among the peers is significantly
improved. For example, when a ResNet-32 learns from a
WRN-16-4, an error rate of 25.66% is achieved, which is
1.03% better than learning from another ResNet-32 model
and is 1.06% better than the state-of-the-art, i.e., KDCL.
These results demonstrate that (1) the learning trajectories
of the models with larger capacity indeed encode plentiful
knowledge and (2) the proposed approach effectively catches
and leverages this information. We also notice that KDCL
achieves quite satisfactory performance in our evaluations.
This might be because that although KDCL is an OKD
approach, it makes a great effort in manipulating the training
samples by adding noises for the adversarial training purpose.
Without this kind of manipulation, our approach still achieves
competitive performance.

C. Performance Comparison with ImageNet

To evaluate the effectiveness of the proposed approach on
large-scale tasks, we take ResNet-34 on the ImageNet dataset
as the experiment. Here we use two pre-trained ResNet-
34 models as the initial starting point. We take the pre-
trained ResNet-34 from the Torchvision package as one model,
and the other is trained from scratch for 90 epochs, with
a learning rate starting from 0.01 and divided by 10 every
30 epochs. The average performance of the two pre-trained
models in terms of the top-1 error rate is 26.69%, which is
considered as the baseline. Other hyperparameters remain the

'OKDDip can be extended to a network-based version but the source code
is not provided by the authors. So we do not compare to OKDDip here.
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TABLE 11
ToOP-1 ERROR RATES (%) ON CIFAR-10 AND CIFAR-100 WITH DIFFERENT PEER STRUCTURES. THE THREE NUMBERS IN EACH COMBINATION
REPRESENT THE PERFORMANCE OF THE FIRST NETWORK, THE SECOND NETWORK, AND THE ENSEMBLE OF TWO NETWORKS, RESPECTIVELY.

Datasets Methods ResNet-20 ResNet-32 WRN-16-4 MobileNet VGG13
ResNet-32 WRN-16-4 WRN-28-2 WRN-16-4 WRN-16-2
Ind 8.11/7.23/- 7.23/5.43/- 5.43/5.66/- 12.47/5.43/- 9.42/6.79/-
CIFAR-10 DML 7.84/7.37/6.79 6.78/5.45/5.49 5.07/5.50/4.92 11.15/6.95/8.10 7.12/6.94/6.34
KDCL 6.93/6.47/6.16 6.28/4.92/5.12 4.83/5.22/4.70 9.89/5.61/6.62 6.29/6.59/5.67
Ours 6.51/6.04/5.99 5.95/4.41/4.76 4.29/4.38/3.96 9.76/4.77/5.76 5.37/5.39/4.92
Ind 32.52/31.01/- 31.01/24.62/- 24.62/26.50/- 35.40/24.62/- 25.36/26.74/-
CIFAR-100 DML 31.69/29.72/28.74  28.10/23.39/24.07  23.06/24.67/22.04  36.16/27.13/28.63  28.10/28.70/25.76
KDCL 30.10/27.01/26.03  26.72/21.30/21.21  21.36/23.24/20.02  32.67/22.50/24.08  23.58/25.89/25.39
Ours 28.55/26.69/25.44  25.66/21.26/21.62  20.56/22.20/19.87  30.60/22.77/23.09  22.64/24.64/22.23

TABLE III

RATES OF THE DML AND THE ONE METHODS ARE FROM [13].

ToOP-1 ERROR RATES (%) ON IMAGENET WITH RESNET-34. THE REPORTED NUMBERS ARE THE AVERAGE ERROR RATES OF TWO MODELS. THE ERROR

Datasets Network Types Ind DML ONE OKDDip Ours
ImageNet ResNet-34 26.69 26.03 2592 25.60 25.18
same as the previous experiments. From the experiment results TABLE IV

(Table TV-B2) we can observe that our proposed approach
outperforms other recent OKD approaches. Specifically, the
top-1 error rate decreases by 1.51% and 0.85% compared to
the baseline and DML, respectively. Compared to the state-
of-the-art approach, i.e., OKDDip, we achieve a performance
improvement of 0.42% in terms of top-1 test accuracy. These
results validate the effectiveness of our proposed approach on
the large-scale object classification dataset.

D. Ablation Study

In this section, we conduct several groups of ablation studies
to illustrate the effectiveness of each principal component of
the proposed approach, as well as the selection of crucial
hyperparameters (lengths of history information and the impor-
tance of weight-level learning trajectory). We employ ResNet-
32 and WRN-28-2 with CIFAR-10 and CIFAR-100 for the
ablation studies.

1) Effect of Different Components: We first test if the
two proposed history-aware modules have any effect on the
performance of peer networks with the following ablation
experiments: (1) mutually training two peers without any of the
two proposed modules, i.e., training with the DML scheme;
(2) training with the weight-level ensembling module only,
i.e., the temporal mean surrogate model; (3) training with the
logits-level ensembling module only, i.e., the LSTM network;
and (4) training with both modules. Experiment results are
presented in Table IV, which validate that employing either
of the two modules substantially improves the models’ per-
formance over DML with a clear margin. When both modules
are implemented, the performance of both networks on both
datasets is further improved as expected.

In addition, we observe that the weight-level ensembling
module outperforms the logits-level module when only one of
the modules is used. For example, on the CIFAR-100 dataset,
when the weight-level module is used, the top-1 test errors
drop by 2.02% and 1.70% with ResNet-32 and WRN-28-2,

TOP-1 ERROR RATES (%) ON CIFAR-10 AND CIFAR-100 WITH
RESNET-32 AND WRN-28-2 WITH DIFFERENT COMPONENTS OF THE
PROPOSED METHOD. WE: WEIGHT ENSEMBLING, LE: LOGITS
ENSEMBLING. THE FIRST AND SECOND COLUMNS OF EACH EXPERIMENT
REPRESENT THE AVERAGE AND THE ENSEMBLE PERFORMANCE OF TWO
NETWORKS, RESPECTIVELY.

Component

Datasets WE LE ResNet-32 WRN-28-2
600/632  5.25/484
C 604554 502438
CIFAR-10 6.12/578  4.99/4.53
Vv 585542 491/417
38832700 246470277
/278502582  23.43/21.49
CIFAR-100 26.81/25.88  22.94/20.89
Vv 26692482 22282072

respectively. In comparison, the drops are only 0.98% and
1.21% when only the logits-level module is used. These results
indicate that the weight-level ensembling can involve more
useful information through averaging the whole parameters of
the network at each step of the training.

2) Effect of the Length of History Information: We con-
tinue to investigate whether varying the length of the history
information, i.e., the input sequences to the LSTM network
impacts the performance of the peer models. We continue to
use the same network structures (ResNet-32 and WRN-28-
2) and datasets (CIFAR-10 and CIFAR-100) for this ablation
study. We try different lengths of history information used in
the logits ensembling module, i.e., the lengths of 1, 5, 10, 15,
and 20, respectively. All the experiments are conducted with
3 trials and the averaged results are presented in Fig. 3.

With these experiments, we observe that with a sequence
length of 10, the models in all the four experiments achieve the
best performance in terms of not only the average error rates of
the two peer models but also the ensemble of them. When the
input sequence length gets smaller or larger, the performance
gradually degrades. These results are intuitively reasonable
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because an extremely short sequence length encodes very little
information of the learning trajectory and the performance
regresses to that as using DML. On the other hand, an
extremely long sequence is somewhat overstaffed, considering
outdated outputs that have been deviated too much from the
current stage as useful information. Besides, using longer
sequences as the input makes the training procedure more
time-consuming and introduces extra difficulties to the training
of LSTM networks. In the context of the experiments, using
an input length of 10 is an effective choice in terms of both
performance and efficiency.

3) How long does the weight-level learning trajectory need
to be?: Another essential hyperparameter is the EMA decay
Aw In the weight ensembling, which determines how much
history data is involved in the averaging. To evaluate the
sensitivity of the weight-level module to the \,,, we vary
its values in the range of 0.1, 0.3, 0.5, 0.7, 0.9, and report
the corresponding performance of the peer models. ResNet-32
and WRN-28-2 on CIFAR-10 and CIFAR-100 as in previous
ablation studies are used for the evaluation.

As shown in Fig. 4, when )\, = 0.5, the most superior
performance is achieved nearly in all cases, except for the case
of WRN-28-2 on CIFAR-10 in which using A\, = 0.3 leads
to a performance gain of 0.03% in terms of test accuracy.
These results indicate that, approximately, only the last two
or three time steps (i.e., A\, = 0.5) in the learning trajectory
dominate the hidden information during the learning process.
This is quite surprising because we expected this number to be
much larger (say, using ten-time steps with \,, = 0.9). One
of the potential explanations is that, compared to the logits

sequences, the peer model’s parameters change much more
dynamically, and averaging within a wide temporal window
size smooths out important information. Another hypothesis
is that the weight-level trajectory is too complicated for a
straightforward momentum ensembling to handle with. The
momentum ensembling pre-defines the integration scheme
without considering the dynamic learning process. With these
concerns, our immediate future work will focus on investi-
gating the possibility of leveraging more advanced encoding
strategies (for instance, designing an integration network as
implemented in the logits-level module) for the online mutual
learning of feature-level trajectories.

V. CONCLUSION

In this study, we proposed to leverage the learning trajectory
during the training process of each peer model in the online
knowledge distillation framework as an extra alignment to
guide the models towards stable and superior performance.
Two ensembling modules served as enhanced instructors,
were designed to encode the hidden information produced
during the online knowledge distillation training procedure at
distinct levels. Specifically, an LSTM network was employed
to integrate the temporal logits-level paths, while a surrogate
model associated with each peer was utilized to ensemble the
weight-level learning trajectory. Instead of learning mutually
from each peer model’s outputs at a single time step/iteration,
learning from peers’ learning trajectories at different levels
proved as a more effective paradigm with a variety of widely
used network structures and benchmark object classification
datasets.
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