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Abstract

LLMs are often claimed to be capable of Natu-001
ral Language Inference (NLI), which is widely002
regarded as a cornerstone of more complex003
forms of reasoning. However, recent works004
show that LLMs still suffer from hallucinations005
in NLI due to attestation bias, where LLMs006
overly rely on propositional memory to build007
shortcuts. To solve the issue, we design an008
unsupervised framework to construct counter-009
factual reasoning data and fine-tune LLMs to010
reduce attestation bias. To measure bias reduc-011
tion, we build bias-adversarial variants of NLI012
datasets with randomly replaced predicates in013
premises while keeping hypotheses unchanged.014
Extensive evaluations show that our frame-015
work can significantly reduce hallucinations016
from attestation bias. Then, we further evalu-017
ate LLMs fine-tuned with our framework on018
original NLI datasets and their bias-neutralized019
versions, where original entities are replaced020
with randomly sampled ones. Extensive results021
show that our framework consistently improves022
inferential performance on both original and023
bias-neutralized NLI datasets.024

1 Introduction025

Natural Language Inference (NLI) has long been026

recognized as a foundational understanding task in027

language understanding with various downstream028

applications (Cheng et al., 2023; Deng et al., 2023;029

Gao et al., 2023). It assesses the understanding030

ability of models by requiring them to determine if031

a given premise logically entails a hypothesis. Re-032

cently, with the rise of LLMs, the field of NLI has033

witnessed significant advancements (Brown et al.,034

2020; He et al., 2023; Liu et al., 2024b). These035

models, pre-trained on vast amounts of text data,036

have been claimed to capture inferential relations037

between statements enabling reasoning, position-038

ing them as state-of-the-art tools for NLI.039

However, despite the apparent success of LLMs040

on natural NLI tasks, they continue to embody re-041

Figure 1: An example of attestation bias. LLMs tend
to evaluate entailment with their memorized knowledge
rather than given premise.

sponse biases, leading to the phenomenon of hallu- 042

cination (Huang and Chang, 2023; Ji et al., 2023; 043

Gallegos et al., 2024). In NLI, this issue arises be- 044

cause models rely more on memorization from their 045

training corpus rather than inference from the given 046

premises, causing false positive entailment judg- 047

ments when the hypothesis is attested in the train- 048

ing data (Poliak et al., 2018; Rawte et al., 2023), the 049

phenomenon known as attestation bias (Mckenna 050

et al., 2023). The attestation bias leads to brittle- 051

ness in bias-adversarial cases, and poses challenges 052

in accurately assess the bias-free reasoning capa- 053

bilities of LLMs (Mckenna et al., 2023). 054

In this study, we explore the method of fine- 055

tuning LLMs to improve their robustness against 056

the attestation bias. We propose an unsupervised 057

approach to construct counterfactual but logically 058

consistent datasets for training LLMs. Our ap- 059

proach begin with unsupervised extraction of tex- 060

tual entailment relations between predicates from 061

large-scale open-domain corpora using semantic 062

parsing. The extracted data is then formatted into 063

Entailment Graphs (EGs) (Hosseini et al., 2018, 064

2021), which consist of typed predicate pairs. Fi- 065

nally, we generate counterfactual samples by ran- 066

domly selecting named entities and other argu- 067

ments to instantiate these types. 068

We evaluate the effectiveness of our method 069

along two dimensions: bias reduction and general 070
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Figure 2: The pipeline of our approach: Step 1: Build EGs in unsupervised manner. Step 2: Instantiate predicates
using random entities with matching types, then wrap instantiated predicates into prompts to generate training
corpus.

inferential performance improvement.071

First, to measure how well our training has re-072

duced the attestation bias, we compare LLMs be-073

fore and after our training on bias-adversarial vari-074

ants of NLI datasets. Specifically, we randomly075

alter the predicates in the premises while keeping076

the hypothesis fixed. The newly generated premises077

are non-entailing, so any positive judgments by the078

LLM are false positives, arising from attestation079

bias relating to the hypothesis. The results demon-080

strate that training LLMs with our method can sig-081

nificantly reduce attestation bias, ensuring a more082

reliable evaluation of their reasoning capabilities.083

Second, to evaluate the effectiveness of our train-084

ing in improving inferential performance on the085

original NLI tasks, we conduct experiments on086

both the standard and a further bias-neutralized087

NLI datasets, where entities in the original dataset088

are replaced with randomly selected entities of the089

same type. In both cases, our approach outperforms090

baseline models, demonstrating its robustness and091

effectiveness in enhancing inferential capability.092

The main contributions of this paper are summa-093

rized as follows:094

(a) To reduce attestation bias while enhancing in-095

ferential capabilities, we propose an unsupervised096

approach using EGs to generate a logically sound097

inference dataset, free of the artefacts that plague098

human-constructed NLI datasets, for fine-tuning099

LLMs.100

(b) We show that for 4 different LLMs, our ap-101

proach reduce attestation bias and improves perfor-102

mance in NLI tasks.103

(c) We introduce a bias-neutralized method for104

a more accurate evaluation of LLMs’ true infer-105

ential capabilities. This approach generates bias-106

neutralized test sets, where our EG-enhanced mod-107

els consistently achieve superior reasoning perfor-108

mance on both standard and these bias-neutralized109

inference datasets.110

2 Related Work 111

Hallucination in Inference: Hallucination in 112

LLMs has emerged as a significant area of con- 113

cern in NLP, as these models often generate con- 114

tent that is either factually inaccurate or contextu- 115

ally inappropriate. Talman and Chatzikyriakidis 116

(2019) report that many models struggle to gener- 117

alize across different NLI datasets, even when the 118

task format remains the same. In smaller language 119

models, Li et al. (2022) observed a reliance on 120

dataset artifacts when performing directional NLI 121

on predicates. Furthermore, Poliak et al. (2018) 122

found a range of NLI datasets containing artifacts 123

that are memorized by supervised models trained 124

on only sample hypotheses, causing overestimation 125

of their inference performance. Gulati et al. (2024) 126

proves that SOTA LLMs rely on memorized data 127

to answer math questions, and their performance 128

drops significantly once variable names are altered. 129

Carlini et al. (2023) found that LLMs are capable 130

of memorizing significantly more data compared 131

to smaller models, raising doubts on whether their 132

performance gains stem from advanced inferential 133

capabilities or more memorization. 134

Attestation Bias: The attestation bias occurs 135

when LLMs show a significantly higher probabil- 136

ity of predicting Entail when the hypothesis is 137

attested, indicating that the inference process of 138

LLMs is heavily influenced by their reliance on 139

memorization about hypotheses. As a result, LLMs 140

are inherently prone to disregarding the premise 141

and responding incorrectly by relying on memo- 142

rized information about hypothesis from their train- 143

ing corpus, as illustrated in Figure 1. 144

Mckenna et al. (2023) conducted a hypothesis- 145

only test on LLMs, revealing that when labels 146

contradict attestation bias, LLMs can be poor or 147

even near-random classifier. Their research demon- 148

strates that the attestation bias is the primary source 149
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of hallucination in LLMs on inference tasks.150

Entailment Graphs: EGs are symbolic graphs151

used to preserve entailment relations between pred-152

icates (Berant et al., 2010, 2011; Hosseini et al.,153

2018, 2021). Unlike sentence-level inference data,154

EGs are formatted as sets of triples, with each triple155

consisting of predicate pairs and typed arguments.156

For example, “(Person.X, visited, Location.Y) |=157

(Person.X, went to, Location.Y)”. EGs have been158

utilized in open-domain question answering and159

knowledge inference (Cheng et al., 2023; Wang160

et al., 2024).161

3 Methodology162

We propose an unsupervised approach for con-163

structing counterfactual reasoning datasets to fine-164

tune LLMs, enabling them to generalize beyond165

memorized knowledge and enhance inferential ca-166

pabilities.167

3.1 Constructing Counterfactual Reasoning168

Datasets169

As demonstrated in Figure 2, our counterfactual170

reasoning dataset is built in two key steps: unsuper-171

vised extraction of EGs (§3.1.1) and instantiating172

EG rules into NLI training sets (§3.1.2).173

3.1.1 Extracting Entailment Graph174

We adopt the approach proposed by Hosseini et al.175

(2018) for constructing EGs, which involves fol-176

lowing main steps:177

First, we employ a combinatory categorial gram-178

mar (CCG) parser (Steedman, 2000), GraphParser179

(Reddy et al., 2014), to extract binary relations180

between a predicate and its arguments from sen-181

tences. Each argument, typically a noun, is then182

linked to its corresponding FreeBase IDs and entity183

type using the Named Entity Linking tool Aida-184

light (Nguyen et al., 2014), formatting the extracted185

triple as predicates with typed arguments. Then,186

we compute the distributional similarity score1 by187

calculating the co-occurrence of predicates asso-188

ciated with entities of the same types, assuming189

that predicates linked to the same entities refer to190

the same event or episode. We generate negative191

examples by replacing predicates with the same192

typed arguments. Notably, the entire process is193

unsupervised.194

1We use the Weeds similarity score (Weeds and Weir, 2003)
as the entailment score in our construction.

Corpus: Following Hosseini et al. (2021), we 195

use the multiple-source NewsSpike (Zhang and 196

Weld, 2013) corpus to extract the EGs. NewsSpike 197

was deliberately built to include different articles 198

from different sources describing identical news 199

events. From this dataset, we extract 5,500 positive 200

and 5,500 negative samples. 201

3.1.2 Instantiating Premise-Hypothesis Pairs 202

Entailment graphs consist of entailment rules, each 203

rule in an EG involves a pair of predicates expect- 204

ing two typed arguments. To instantiate EG rules 205

into NLI data entries, we first replace the type ar- 206

guments with specific named entities. To ensure 207

consistent entity replacements, we categorize enti- 208

ties from the open-domain corpus into 48 FIGER 209

types (Ling and Weld, 2012), such as “person” or 210

“location”, aligning them with the types in Freebase 211

(Bollacker et al., 2008). We assign a default type 212

“thing” in failure cases. Using the entity-to-type 213

mapping, we randomly select entities that match 214

the corresponding types to instantiate typed EGs 215

into premise-hypothesis pairs. 216

EG rules are predicate focused and applies to any 217

context, so the instantiation process preserves the 218

entailment relationships within typed EGs. Figure 219

2 illustrates this process with an example, where 220

the entailment “(Person X, was assassinated in, Lo- 221

cation Y) |= (Person X, died in, Location Y)” is for- 222

matted into the following NLI format: “[Premise]: 223

Steve Jobs was assassinated in London. [Hypothe- 224

sis]: Steve Jobs died in London”. Our constructed 225

premise-hypothesis pairs preserve the logical infer- 226

ential relationship but are counterfactual. 227

We adopt the prompt templates from previous 228

studies (Schmitt and Schütze, 2021; Mckenna et al., 229

2023), formatting the premise-hypothesis pairs as a 230

two-way answer choice: A) True, B) False. These 231

generated natural questions are then used to query 232

the models. The full list of concrete prompts can 233

be found in Appendix E.1. 234

3.2 Training LLMs with Instantiated EGs 235

We use the counterfactual reasoning data gener- 236

ated from EGs to fine-tune DeepSeek-R1-Distill- 237

Llama-8B (DeepSeek-AI et al., 2025), Mistral- 238

7B, LLaMA-3-8B-instruct, and LLaMA-3-70B- 239

instruct models. These models are widely recog- 240

nized for their strong reasoning capabilities and 241

have drawn significant interest from researchers. 242

Following the llama-recipes tools published by 243
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Meta2, we fine-tune LLMs using LoRA (Hu et al.,244

2022) within the PEFT (Parameter-Efficient Fine-245

Tuning) (Ding et al., 2023) framework. During246

fine-tuning, we set a fixed learning rate of 1e−4247

and train for 12 epochs. The LoRA rank is set to 8,248

with LoRA dropout rate of 0.05.249

4 Experimental Setup250

To evaluate the effectiveness of our EG-enhanced251

models, we conduct two experiments: (1) exam-252

ining whether EG-enhanced models reduce attes-253

tation bias in §5, and (2) assessing their inferen-254

tial performance in NLI benchmarks in §6. Both255

evaluation experiments follow the same settings,256

including the evaluation datasets and baselines, as257

detailed in the following sections3.258

4.1 Evaluation Datasets259

Levy/Holt (Levy and Dagan, 2016; Holt, 2019)260

dataset is a widely used for NLI, which comprises261

premise-hypothesis pairs structured in a specific262

task format: “Given [premise P ], is it true that263

[hypothesis H]?”. Each P - and H-statement has264

the property of containing one predicate with two265

named entity arguments, where the same entities266

appear in both P and H . The Levy/Holt dataset267

contains inverse of all entailment pairs. Following268

Mckenna et al. (2023), we study the challenging269

directional subset, where the entailments hold in270

one direction but not both.271

SNLI (Bowman et al., 2015) is another widely272

used datasets for NLI. It consists of human-273

generated premise-hypothesis pairs with manually274

assigned labels. Unlike Levy/Holt, which contains275

named-entity artifacts, SNLI is composed of gen-276

eral sentences in both premises and hypotheses,277

typically without named entities.278

Fomatting as two-choice questions: For evalu-279

ation, premise-hypothesis pairs in Levy/Holt and280

SNLI are formatted as two-choice natural ques-281

tions using prompts, where choice A corresponds282

to Entail and choice B to No-Entail, ensuring283

alignment with the Levy/Holt and SNLI annota-284

tions4. These prompts are crafted by human ex-285

perts (Schmitt and Schütze, 2021; Mckenna et al.,286

2023), as shown in Appendix §E.3. During evalu-287

ation, all models successfully selected either A or288

2https://github.com/meta-llama/llama-recipes
3Our code and used data will be released upon publication.
4In SNLI, contradiction and neutral labels are categorized

as No-Entail.

B for every development set question, indicating 289

compatibility with the QA format. 290

4.2 Baselines 291

Standard LLMs with Few-Shot Setting: To 292

evaluate the performance of EG-enhanced LLMs, 293

we compare them against the original LLMs as 294

baseline models. During inference, we adopt a few- 295

shot approach, hand-annotating a minimal set of 4 296

examples in the style of the template. These exam- 297

ples are prepended before the query (see Appendix 298

E.3 for an example). Our goal is to analyze model 299

behavior as conditions change, rather than max- 300

imize the score on a specific dataset. Therefore, 301

we maintain a minimal 4-example setup to evoke 302

positive responses across LLMs. 303

Chain-of-Thought Reasoning: In our experi- 304

ments, we incorporate manually written expla- 305

nations in few-shot examples, providing step-by- 306

step reasoning before each answer to guide LLMs. 307

Specifically, we utilize a three-step analytical pro- 308

cess for guidance: analyzing the premise, analyz- 309

ing the hypothesis and clarifying the relationship 310

between premise and hypothesis. These explana- 311

tions, detailed in Appendix E.4, serve as Chain-of- 312

Thought (CoT) prompts, establishing a baseline for 313

evaluating LLM performance under CoT guidance. 314

5 Experiment 1: 315

Attestation Bias Reduction 316

To evaluate the effectiveness of our method in re- 317

ducing attestation bias, we measure attestation bias 318

by comparing estimated probabilities of predicting 319

Entail conditioned on whether the hypothesis is 320

predicted Attested or not. 321

However, in original NLI dataset entailments 322

may coincidentally refer to attested facts, which 323

could lead to spurious correlation between infer- 324

ence and attestation scores, making it difficult to 325

determine whether LLMs rely on memory or rea- 326

soning to generate predictions. To address this 327

issue, we adopt the Random Premise Inference 328

Task proposed by Mckenna et al. (2023), which 329

serves as a bias-adversarial benchmark for accu- 330

rately quantifying attestation bias. 331

The Random Premise Task (RPI) modifies 332

the original NLI dataset by replacing the original 333

premise predicate with a randomly selected predi- 334

cate while keeping the hypothesis fixed and main- 335

taining the same entity arguments. As a result, this 336

process create non-entailing premise-hypothesis 337

4
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Task Sample Query: [premise] ⇒ [hypothesis] Dataset Label
I George Bush was the governor of Texas ⇒ George Bush is a politician from Texas Entail

RPI George Bush lives in Texas ⇒ George Bush is a politician from Texas No-Entail

Table 1: A sample of generate RPI from original inference task I .

pairs, as the example illustrated in Table 1. This338

transformation produces a dataset in which all sam-339

ples are labeled as negatives (No-Entail), as two340

randomly paired predicates are highly unlikely to341

form entailment relations5. We determine whether342

LLMs can correctly identify these samples as neg-343

atives or if they rely solely on attested hypothe-344

ses to make false positive predictions. An ideal345

model should predict zero Entail. The RPI task346

effectively tests the model’s reliance on proposi-347

tional memory, as it prevents true entailments while348

maintaining the attestedness of the conclusions (hy-349

potheses).350

To calculate attestation biases, we first determine351

the attestedness of each hypothesis by prompting352

the LLM to classify it as true, false, or unknown,353

following the same prompts6 used in prior studies354

(Poliak et al., 2018; Mckenna et al., 2023). Then,355

we categorize all samples into two groups: attested356

and non-attested, depending on whether the LLM357

identifies the hypothesis as true. We calculate the358

proportion of Entail predictions in the attested set359

and compare it to the non-attested set, providing an360

effective measure of attestation bias by highlighting361

differences in prediction behavior between the two362

sets.363

We adopt the Levy/Holt dataset for this attes-364

tation bias measurement experiment because this365

dataset includes artifacts containing named enti-366

ties, allowing us to assess whether these artifacts in367

hypothesis are attested by LLMs.368

5.1 Scoring Attestation Bias369

Attestation bias reflects a significantly higher likeli-370

hood of predicting Entail for attested hypotheses371

compared to non-attested hypotheses. To quantify372

this bias, we define the Attestation Bias score as373

follows:374

AttBias = P (tok = Entail|Att(hypo))375

−P (tok = Entail|¬Att(hypo))376

5Mckenna et al. (2023) manually inspect the generated
random premise entries for the Levy/Holt dataset and found
only 9.6% to be true entailment.

6The attestation prompt is provided in Appendix E.2.

Model AttBias ∆AttBias

DeepSeek-R1-Llama-8B 26.04 -
DeepSeek-R1-Llama-8BCoT 15.10 -10.94
DeepSeek-R1-Llama-8BEG 7.58 -18.46

Mistral-7B 32.98 -
Mistral-7BCoT 22.64 -10.34
Mistral-7BEG 13.0 -19.98
Llama-3-8B 23.12 -

Llama-3-8BCoT 13.94 -9.18
Llama-3-8BEG 5.99 -17.13
Llama-3-70B 19.20 -

Llama-3-70BCoT 15.96 -3.24
Llama-3-70BEG 8.34 -10.86

Table 2: AttBias scores on the RPI Levy/Holt dataset
across various models (lower is better). The subscript
EG denotes LLMs trained on our constructed EGs, while
CoT refers to models employing chain-of-thought rea-
soning.

where P(tok = Entail | Att(hypo)) represents the 377

estimated conditional probability of predicting 378

Entail when the hypothesis is attested. When 379

the models achieve the same accuracy rate7, we 380

calculate the proportion of Entail predictions that 381

fall within the attested hypothesis set compared to 382

non-attested set. 383

Lower AttBias scores representing reduced in- 384

fluence from attested memorization, indicating less 385

impact of attestation bias. 386

5.2 Results of Experiment I: Degree of Bias 387

Reduction 388

Table 2 presents the Attestation Bias scores for the 389

RPI task. The results demonstrate that our EG- 390

enhanced LLMs significantly reduce attestation 391

bias, addressing the challenges of hallucination in 392

NLI. Additionally, we report the reduction of false 393

positives on attested hypotheses in Appendix C, 394

indicating reduced reliance on the model’s memo- 395

rization of the training corpus. 396

We observe that the reduction in attestation bias 397

is more pronounced in smaller models, compared 398

to larger models, such as LLaMA-3-70B. This sug- 399

gests that the fine-tuning with our EGs is more 400

effective for smaller-sized models, as larger mod- 401

7In our experiments, accuracy rate is set to 0.5.
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Figure 3: The Attestation Bias scores for the original
Levy/Holt, demonstrating a consistent attestation bias
reduction after fine-tuning with EGs.

els require more extensive EGs data for fine-tuning.402

To validate this, we fine-tune LLMs with increasing403

amounts of training data generated from EGs. Our404

results indicate that attestation bias in LLaMA-3-405

70B continues to decline as training data increases,406

reaching levels comparable to those observed in407

smaller LLMs (detailed in Appendix D).408

In addition to the RPI task, which is explicitly409

designed to be bias-adversarial, we also present the410

AttBias scores on the original Levy/Holt dataset in411

Figure 3, which demonstrate a consistent reduction412

in attestation bias following fine-tuning with EGs.413

The significant reduction in attestation bias can414

be attributed to the counterfactual nature of our415

EG-based training corpus. During fine-tuning, the416

LLMs learn entailment between predicates while417

incorporating counterfactual knowledge, thereby418

reducing their reliance on memorized artifacts for419

inference. Our method minimizes hallucinations420

from attestation bias and enhances overall robust-421

ness.422

6 Experiment 2:423

Evaluate Capability of Inference424

EG-enhanced LLMs exhibit a notable reduction425

in attestation bias. To further investigate how this426

attestation bias reduction affects their capability427

of inference, we evaluate their general inferential428

performance on original NLI tasks.429

However, attestation biases and reported data430

leakage (Gururangan et al., 2020; Balloccu et al.,431

2024; Ravaut et al., 2024) often lead to an over-432

estimation of LLMs performance on original NLI433

dataset, where LLMs rely on memorization to form434

reasoning shortcuts rather than genuinely reason-435

ing, making it challenging to accurately evaluating436

their true inference capabilities. 437

To address these challenges, we introduce a 438

method to generate bias-neutralized dataset from 439

original NLI datasets for evaluation. We neutralize 440

biases by replacing the original entities with others 441

of the same type, generating new inference data that 442

includes counterfactual statements while preserv- 443

ing original entailment labels. We then evaluate 444

our EG-enhanced LLMs on both original and bias- 445

neutralized NLI test sets, enabling a more accurate 446

assessment of their true inferential capabilities. 447

6.1 Neutralizing Biases 448

To neutralize the biases arising from memorization, 449

we generate counterfactual premise-hypothesis 450

pairs from the original dataset by randomly replac- 451

ing the original entities with other entities of the 452

same type. Since the entities are randomly selected, 453

the newly generated pairs are logically sound but 454

are likely not to exist in original training corpora. 455

This method generates novel statements without 456

changing their entailment labels, enabling an un- 457

biased assessment of the model’s true inferential 458

capability without interference of memorization. 459

We use entity type constraints here to ensure pol- 460

ysemous predicates maintain the same sense. For 461

instance, the verb “run” has different meanings in 462

“[person] runs [organization]" versus “[person] runs 463

[software]”, but when substituting entities of the 464

same type, the sense remains consistent. There- 465

fore, the specific entity names do not affect the 466

entailment labels (Yarowsky, 1993). Notably, this 467

approach ensures that the dataset remains distinct 468

from the original inference data and can allow for 469

building new datasets for every experiment, thereby 470

reducing potential overestimation caused by evalu- 471

ation data leakage. 472

6.2 Bias-neutralized Test Sets 473

We apply this method to construct bias-neutralized 474

test sets from the original NLI datasets. 475

Replaced Argument LevyHolt (LHrpArg): All 476

original entities in Levy/Holt are named entities. 477

We replace them with other real entities of the same 478

type, which are extracted using the named entity 479

linking tool Aidalight (Nguyen et al., 2014) from 480

NewsCrawl (Barrault et al., 2019), a decade-long 481

span of multi-source news text, in which entities 482

are typed into FIGER types (Ling and Weld, 2012). 483

Pre-trained LLMs are likely to contain more 484

memorized knowledge about high-frequent named 485
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Task Sample Query: [premise] ⇒ [hypothesis] Dataset Label
LH George Bush was the Governor of Texas ⇒ George Bush is a politician from Texas Entail

LHrpArg↓ Jan Hus was the Governor of Svaneti ⇒ Jan Hus is a politician from Svaneti Entail
LHrpArg↑ Elon Musk was the Governor of Paris ⇒ Elon Musk is a politician from Paris Entail

Table 3: An exapmle of generating LHrpArg↓ and LHrpArg↑ from original Levy/Holt data (LH).

entities. Thus these generated counterfactual sam-486

ples involving high-frequency entities have higher487

probability to conflict with the model’s memorized488

knowledge, exacerbating attestation biases. To fur-489

ther analyze the effect of entities frequency, we490

sample new entities uniform randomly from the 5%491

least common entities in NewsCrawl (LHrpArg↓),492

and the 5% most common (LHrpArg↑), separately.493

We insert the sampled entities while preserving the494

rest of each statement. Examples are shown in495

Table 3.496

Replaced Argument SNLI (SNLIrpArg): Since497

the SNLI dataset typically consists of general sen-498

tences without named entities, making it imprac-499

tical to directly extract real named entities from500

NewsCrawl to replace these general entities.501

To address this, we adopt the approach proposed502

by Liu et al. (2024a), using ChatGPT to identify503

entities with their types that co-occur in both the hy-504

pothesis and premise (these are general entities, not505

limited to named entities) and then generate new506

entities that match the specified types to replace507

them. For instance, an original SNLI sample such508

as “John gives Mary an apple ⇒ Mary receives an509

apple from John”, will be modified to “John gives510

Mary a book ⇒ Mary receives a book from John”.511

We manually check 50 samples from LHrpArg512

and SNLIrpArg separately, confirming that all of513

them are logically sound. Additionally, we also514

examine the attestedness of hypotheses in LHrpArg515

and SNLIrpArg and find only 0.89% are attested,516

ensuring that these bias-neutralized test sets are517

logically consistent and bias-free.518

6.3 Scoring Inferential Capability519

Following Mckenna et al. (2023), we analyze520

model performance across varying confidence521

thresholds by converting letter choices into proba-522

bilities using the following mapping:523

Sent = 0.5 + 0.5 ∗ I[tok = A] ∗ Stok524

− 0.5 ∗ I[tok = B] ∗ Stok525

Where I is the indicator function, and Sent esti-526

mates the probability of Entail from a textual out-527

put (0 ≤ Sent ≤ 1) with token probability Stok.528

Models Levy/Holt SNLI
DeepSeek-R1-Llama-8B 69.25 85.06

DeepSeek-R1-Llama-8BCoT 65.65 85.26
DeepSeek-R1-Llama-8BEG 71.49 85.80

Mistral-7B 69.78 85.47
Mistral-7BCoT 65.14 83.63
Mistral-7BEG 72.82 85.64
LLaMA-3-8B 66.87 87.49

LLaMA-3-8BCoT 62.40 85.63
LLaMA-3-8BEG 73.69 86.62
LLaMA-3-70B 77.40 90.01

LLaMA-3-70BCoT 76.53 89.03
LLaMA-3-70BEG 77.46 89.85

Table 4: AUC scores of original, EG-enhanced (EG) and
with chain-of-thought prompts (CoT ) LLMs versions on
original Levy/Holt and SNLI.

The linear transformation preserves the ordering of 529

model confidences, which is sufficient for calculat- 530

ing a precision-recall curve and Area Under the 531

Curve (AUC) score. 532

6.4 Results of Experiment II: Performance in 533

Inference Tasks 534

Table 4 presents the AUC scores for original NLI 535

datasets, demonstrating that EG-enhanced LLMs 536

consistently outperform original LLMs across vari- 537

ous model families on the Levy/Holt dataset. No- 538

tably, smaller models exhibit significant perfor- 539

mance gains from EGs tuning, surpassing the im- 540

provements observed in larger models. On the orig- 541

inal SNLI dataset, our EG-enhanced models yield 542

only modest improvements. One possible explana- 543

tion for this limited improvement is data leakage 544

(Balloccu et al., 2024), as the original SNLI dataset 545

may contain more memorized instances from pre- 546

trained LLMs, leading to an overestimation of in- 547

ferential capacities. 548

To assess the true capability of inference, we 549

evaluate bias-neutralized inference test sets and 550

present the AUC scores in Table 5. The results 551

highlight consistent improvements achieved by our 552

EG-enhanced models across all bias-neutralized 553

datasets. Additionally, the Precision-Recall curve 554

in Appendix B further illustrates that EG-enhanced 555

LLMs outperform the original models, with par- 556

ticularly notable gains in smaller LLMs. Notably, 557
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Models Tasks
LHrpArg↓ LHrpArg↑ SNLIrpArg

AUC ∆AUC AUC ∆AUC AUC ∆AUC

DeepSeek-R1-Llama-8B 66.17 - 61.04 - 76.13 -
DeepSeek-R1-Llama-8BCoT 59.57 -6.6 56.65 -4.39 69.66 -6.47
DeepSeek-R1-Llama-8BEG 67.37 +1.2 68.92 +7.87 77.87 +1.74

LLaMA-3-8B 61.80 - 59.05 - 78.31 -
LLaMA-3-8BCoT 53.69 -8.11 54.95 -4.1 70.11 -8.20
LLaMA-3-8BEG 71.27 +9.47 70.96 +11.91 80.03 +1.72

Mistral-7B 61.27 - 59.96 - 78.17 -
Mistral-7BCoT 59.78 -1.49 57.52 -2.44 75.62 -2.55
Mistral-7BEG 71.20 +9.93 72.27 +12.31 80.43 +2.26
LLaMA-3-70B 71.99 - 69.55 - 80.26 -

LLaMA-3-70BCoT 70.65 -1.34 67.34 -2.21 80.10 -0.16
LLaMA-3-70BEG 76.14 +4.15 76.71 +7.16 83.29 +3.03

Table 5: AUC scores of LLMs, LLMs with chain-of-thought prompt (CoT ) and their EG-enhanced versions (EG) on
bias-neutralized inference datasets.

across all bias-neutralized inference datasets, the558

EG-enhanced smaller models (DeepSeek-8BEG,559

LLaMA-3-8BEG and Mistral-7BEG) achieve per-560

formance on the same level of LLaMA-3-70B.561

These results suggest that after training on our562

EGs, smaller LLMs achieve inferential capabili-563

ties comparable to the standard extreme large mod-564

els. We further examine the impact of prompt565

templates in Appendix A, proving that LLMs are566

genuinely learning textual entailment during fine-567

tuning rather than merely memorizing the prompts.568

In Table 5, we also observe that standard LLMs569

are limited in LHrpArg↑ and the improvement570

achieved by our method on LHrpArg↑ is more pro-571

nounced compared to LHrpArg↓. This suggests that572

standard LLMs face greater challenges when pro-573

cessing counterfactual information involving high-574

frequency entities. The observation indicates that575

LLMs overly rely on memorization to build reason-576

ing shortcuts, ultimately undermining their reason-577

ing performance on high-frequent counterfactual578

tasks, which have higher probability to conflict with579

the model’s memorized knowledge. On the other580

hand, the improvement of our EG-enhanced models581

on LHrpArg↑ highlights their enhanced inferential582

capability and robustness, particularly in handling583

conflicts between given premise and memorization.584

Figure 4 presents that EG-enhanced model ex-585

hibit a more pronounced improvement on bias-586

neutralized test set compared to original test sets.587

The reduction of attestation bias explains theses588

findings, as EG-enhanced models increasingly rely589

on their enhanced inferential capabilities to pro-590

cess NLI tasks rather than retrieving memorized591

Deep
Seek

-8B

Deep
Seek

-8B EG

LLa
MA-3-8B

LLa
MA-3-8B EG

Mistr
al-7

B

Mistr
al-7

B EG

LLa
MA-3-70B

LLa
MA-3-70B EG

Deep
Seek

-8B

Deep
Seek

-8B EG

LLa
MA-3-8B

LLa
MA-3-8B EG

Mistr
al-7

B

Mistr
al-7

B EG

LLa
MA-3-70B
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MA-3-70B EG

55

60

65

70

75

80

85

90
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Performance on Standard and Bias-neutralized Inference Datasets
Standard Inference Bias-neutralized InferenceBias-neutralized Inference

Figure 4: AUC scores of baseline (outline) and EG-
trained (solid) LLMs on original (orange) and our bias-
neutralized (blue) Levy/Holt.

information from training corpus. 592

7 Conclusion 593

In NLI tasks, attestation bias in LLMs leads to false 594

positives, as models rely on memorization rather 595

than reasoning from the given premise, ultimately 596

undermining their robustness and accuracy in infer- 597

ence. To address this, we propose an unsupervised 598

method for constructing logically consistent coun- 599

terfactual EGs to fine-tune LLMs, enhancing their 600

robustness against attestation bias. Experimental re- 601

sults show that our method reduces attestation bias 602

and enhances inference by learning counterfactual 603

EGs, enabling models to learn predicate entailment 604

while without introducing artifacts, thereby mini- 605

mizing dependency on memorized patterns. Our 606

method improves robustness and effectiveness of 607

models in practical applications while providing a 608

more objective evaluation of inference capability 609

across LLMs. 610
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8 Limitation611

In this paper, we propose an unsupervised approach612

to construct counterfactual reasoning data by in-613

stantiating entailment graphs and demonstrate its614

effectiveness in reducing hallucinations, enhancing615

the reasoning capabilities of LLMs.616

A limitation of our current work is that the coun-617

terfactual reasoning data is used to fine-tune large618

LLMs for a specific task, natural language infer-619

ence, rather than across a broader range of tasks.620

Although inference is foundational to many NLP621

tasks, it remains uncertain whether our approach622

will generalize effectively to other tasks. In future623

work, we plan to integrate counterfactual reasoning624

data into instruction-tuning frameworks to evalu-625

ate its performance across a wider variety of NLP626

tasks.627
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A Analyzing the effects of prompt900

templates901

One concern is whether the observed improve-902

ments in LLMs performance stem from learning903

the predicate entailment in EGs or simply mem-904

orizing the structure of query prompt templates.905

To determine this, we conducted a series of con-906

trolled experiments where the predicates in the EGs907

were randomly shuffled while preserving the orig-908

inal prompt structure during fine-tuning. These909

controlled datasets contain incorrect entailment re-910

lations between predicates but maintain the same911

prompt template. For instance, a shuffled example912

might present: “If Steve Jobs was assassinated in913

London, then Steve Jobs was born in London. Is914

that true or false?”. As shown in Table 6, the re-915

sults show a significant performance drop (almost916

random predict) after fine-tuning on the randomly917

shuffled EGs. This confirms that the LLMs are in-918

deed learning textual entailment during fine-tuning,919

rather than simply memorizing prompt templates.920

Models Levy/Holt SNLI
DeepSeek-R1-Llama-8B 69.25 85.06

DeepSeek-R1-Llama-8BEG 71.49 85.80
DeepSeek-R1-Llama-8BrandEG 52.0 51.76

Mistral-7B 69.78 85.47
Mistral-7BEG 72.82 85.64

Mistral-7BrandEG 52.77 50.34
LLaMA-3-8B 66.87 87.49

LLaMA-3-8BEG 73.69 86.62
LLaMA-3-8BrandEG 51.03 49.07

LLaMA-3-70B 77.40 90.01
LLaMA-3-70BEG 77.46 89.85

LLaMA-3-70BrandEG 56.25 52.91

Table 6: The AUC score of original, EG-enhanced (EG),
with chain-of-thought prompts (CoT ) and the random-
shuffled-EG-enhanced (randEG) LLMs versions on orig-
inal Levy/Holt and SNLI dataset.

B Precision-Recall curve921

To reduce biases arising from memorization, we922

evaluate bias-neutralized inference dataset and923

present the Precision-Recall curve for LHrpArg in924

Figure 6. The results show that our EG-enhanced925

LLMs outperform original models, with particu-926

larly significant improvements observed in smaller927

LLMs. Additionally, Figure 7 shows the Precision-928

Recall curve for the original LH dataset, further929

demonstrating the consistent benefits of fine-tuning930

with EGs.931
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Figure 5: The probability of predicting Entail for RPI
LevyHolt, conditioned on the LLMs’ attestation of the
hypothesis. Since predicting Entail in this context rep-
resents a false positive hallucination, a lower probability
is better. The image clearly shows that hallucination
decrease significantly after fine-tuning with EGs.

Sizes of EGs Model
LLaMA-3-8BEG LLaMA-3-70BEG

0 samples 23.12 19.20
2k samples 14.03 18.63
5k samples 12.30 11.93
11k samples 5.99 8.34
18k samples 4.87 5.81

Table 7: The AttBias scores of various LLMs fine-tuned
with different sizes of EG datasets.

C Proportion of False Positives on PRI 932

Figure 5 presents the estimated probability of pre- 933

dicting Entail when the hypothesis is attested, high- 934

lighting a consistent decrease after fine-tuning with 935

EGs across all LLMs. This decrease presents fewer 936

false positives on attested hypotheses, indicating 937

reduced reliance on the model’s memorization of 938

the training corpus. 939

D Fine-tuning LLMs with different sizes 940

EGs 941

To evaluate the performance of LLMs trained on 942

varying sizes of generated counterfactual data, we 943

present the attestation bias scores in Table 7. The 944

results indicate that smaller LLMs are more sen- 945

sitive to fine-tuning, while extremely large LLMs 946

require larger amounts of generated data during the 947

fine-tuning process. 948

E Prompt Format Selection 949

Prompt templates are widely acknowledged for 950

their significant and sometimes decisive impact on 951

the behavior of LLMs. In our experiments, we 952
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Figure 6: The Precision-Recall curve of our method compared to standard LLMs on LHrpArg↓ and LHrpArg↑
datasets.

Figure 7: The Precision-Recall Curve of Levy/Holt
across LLMs and the EG-tuned version.

categorize the prompt templates into three distinct953

types based on their usage: (a) prompt templates954

for fine-tuning LLMs, (b) prompt templates for955

hypothesis attestation, and (c) prompt templates956

used during inference.957

E.1 prompt template for fine-tuning958

We adopt the manually crafted prompts utilized in959

prior inference studies (Schmitt and Schütze, 2021;960

Mckenna et al., 2023), which follow the format961

outlined below:962

If [PREMISE], then [HYPOTHESIS].963

To make LLMs better understanding the task,964

we format it as Boolean questions and include in-965

dicator words such as “Question:" and “Answer:".966

For each choice, we automatically provide expla- 967

nations for every answer by adding affirmation or 968

negation to the propositions. As a result, the data 969

in our counterfactual reasoning training corpus will 970

be structured as Table 8 shown. We fine-tune our 971

method on these templates. 972

E.2 prompt template for attesting hypothesis 973

In attesting hypothesis process, we using the same 974

prompt discussed in §E.1, but mask the premise. 975

Since the model may not be able to definitively 976

determine whether the hypothesis is true or false, 977

we use a question with three choices to evaluate 978

the hypothesis, as (A) True, (B) Unknown, and (C) 979

False. 980

In-context examples have been widely used for 981

interacting with LLMs since Brown et al. (2020). 982

Moreover, Wei et al. (2022) demonstrated that in- 983

corporating chain-of-thought reasoning, step-by- 984

step explanations, into in-context examples en- 985

hances LLMs’ understanding of tasks. To improve 986

the model’s comprehension of the attestation task, 987

we include a minimal set of three examples with ex- 988

planations in few-shot settings, ensuring that each 989

choice is represented by a corresponding example. 990

We present the manual-crafted examples in Table 991

9. 992
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E.3 prompt template for inference993

Similar to the hypothesis attestation experiments994

(§E.2), we employ the few-shot settings in our995

prompts for inference tasks. Specifically, we manu-996

ally created four examples for the inference tasks,997

consisting of two positive and two negative in-998

stances. These examples are presented in Table999

9.1000

E.4 Chain-of-Thought Prompts1001

Similar to the prompts used for inference (§E.3),1002

we employ the few-shot settings in our prompts for1003

inference tasks. Consistently, we manually created1004

four examples for the inference tasks, each with1005

step-by-step explanations to guide LLMs through1006

reasoning. These examples are presented in Table1007

10.1008

F Computing Costs1009

In our experiments, the extraction and learning of1010

entailment graphs from the NewsSpike corpus re-1011

quired approximately 220G of CPU resources over1012

a span of 20 hours. For the fine-tuning process,1013

we employed four NVIDIA RTX A6000 GPUs to1014

fine-tune the LLaMA-3-70B models, a process that1015

took 21 hours to complete. This setup ensured effi-1016

cient resource utilization while achieving optimal1017

performance for our large-scale model fine-tuning.1018
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Question: If [PREMISE], then [HYPOTHESIS]. Is that true or false?
(A) True; (B) false

label=True
(A) True.
Yes, it is true. [PREMISE] entails [HYPOTHESIS].

label=False
(B) False.
No, it is false. [PREMISE] does not entail [HYPOTHESIS].

Table 8: The table present the prompt template using in our training steps.

A. Few-shot Examples Instantiated Prompt for Inference Task
If Google bought Youtube, then Google owns Youtube. Is that true or false?
A) True
B) False
Answer: A) True. Owning is a consequence of buying.
If Google owns Youtube, then Google bought Youtube. Is that true or false?
A) True
B) False
Answer: B) False. Owning does not imply buying, the ownership may come from other means.
If John went to the mall, then John drove to the mall. Is that true or false?
A) True
B) False
Answer: B) False. John may have gone to the mall by other means.
If John drove to the mall, then John went to the mall. Is that true or false?
A) True
B) False
Answer: A) true. Driving is a means of going to the mall.
If John F. Kennedy was killed in Dallas, then John F. Kennedy died in Dallas. Is that true or
false?
A) True
B) False
Answer:
B. Few-shot Examples Instantiated Prompt for Attesting Hypothesis
Google bought Youtube. Is that true or false?
A) True
B) Unknown
C) False
Answer: A) True.
Yoshua Bengio likes oak trees. Is that true or false?
A) True
B) Unknown
C) False
Answer: B) Unknown.
The sun rises from the west. Is that true or false?
A) True
B) Unknown
C) False
Answer: C) False.
Answer:

Table 9: Example instantiated prompts in Few-shot settings, for the sample “PREMISE: [Google bought Youtube],
HYPOTHESIS: [Google owns Youtube]”. The few-shot prompts in part B are used throughout the main experiments
in this paper. We also present an example of the prompts we use for the hypothesis-only measure as described in
§E.2.

16



C. Few-shot Chain-of-Thought Prompts
If Google bought YouTube, then Google owns YouTube. Is that true or false?
A) True
B) False
Explanation:
1. Analyze Premise: the premise describe Google bought YouTube.
2. Analyze Hypothesis: the hypothesis state that Google owns the YouTube.
3. Reasoning: company A bought company B, it means that the company B belongs to company
A now. So the premise entails hypothesis.
Answer: A) True.
If Google owns YouTube, then Google bought YouTube. Is that true or false?
A) True
B) False
Explanation:
1. Analyze Premise: the premise state that Google owns the YouTube now.
2. Analyze Hypothesis: the hypothesis describe Google bought YouTube.
3. Reasoning: owning does not imply buying, the ownership may come from other means. So
the premise does not entail hypothesis.
Answer: B) False.
If John went to the mall, then John drove to the mall. Is that true or false?
A) True
B) False Explanation:
1. Analyze Premise: the premise state that a person go to someplace.
2. Analyze Hypothesis: the hypothesis describe a person went to someplace by driving car.
3. Reasoning: A person may have gone to the place by other ways, so the premise does not entail
hypothesis.
Answer: B) False.
If John drove to the mall, then John went to the mall. Is that true or false?
A) True
B) False
Explanation:
1. Analyze Premise: the premise describe a person went to someplace by driving car.
2. Analyze Hypothesis: the hypothesis state that a person go to someplace.
3. Reasoning: Driving present the way to went to the place, so the premise entails hypothesis.
Answer: A) true.
If John F. Kennedy was killed in Dallas, then John F. Kennedy died in Dallas. Is that true or
false?
A) True
B) False
Answer:

Table 10: Examples of CoT prompts, contains 3 steps: (1) analyze premise. (2) analyze hypothesis. (3) finding the
relation between hypothesis and premise.
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