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ABSTRACT

Current Machine Unlearning (MU) methods require full retraining or extensive
fine-tuning, lack formal removal criteria, and focus only on sample-level for-
getting, limiting their practicality. We address these gaps with two lightweight,
projection-only techniques operating above frozen feature extractors. Pull-to-
Outlier Unlearning (POU) offers a transparent, unsupervised geometric removal
method by displacing embeddings of unwanted samples or entire classes into syn-
thetic outlier regions, while preserving downstream performance and distilling
knowledge of the remaining data. To the best of our knowledge, Contrastive
Objective-level Unlearning (COU) is the first method to remove learned objec-
tives. It perturbs projection weights to eliminate a target task’s influence. Then it
realigns the original data manifold, which can provide the possibility for manag-
ing agentic learning behaviors. We validate POU on CIFAR10, CIFAR100, and
Caltech-256 with ResNet-based backbones, showing efficient instance and class
forgetting with minimal impact on retained accuracy. COU is tested on DINO
and CLIP feature representations, demonstrating effective objective-level erasure
while preserving all non-target tasks.

1 INTRODUCTION

Machine unlearning (MU) refers to a family of techniques that enable the selective removal of spe-
cific training data or learned behaviors from a trained machine learning model, without the need
to retrain the model from scratch. The motivation for MU arises from the growing legal, ethical,
and operational requirements in real-world deployments. For instance, the European Union’s Gen-
eral Data Protection Regulation (GDPR), particularly Article 17—the “right to erasure”—mandates
that individuals must be able to request the removal of their personal data from any system that has
used it (European Parliament and Council, 2016). Similarly, the California Consumer Privacy Act
(CCPA) enforces users’ rights to request deletion of their information, creating a pressing need for
compliant and practical unlearning mechanisms in AI systems (California State Legislature, 2018).

Beyond legal mandates, MU is increasingly essential in sensitive deployment contexts. In cyber-
security, models must revoke the influence of adversarially poisoned or malicious data that could
compromise the safety of predictions. However, studies reveal that traditional unlearning techniques
often fail to fully mitigate such attacks, underscoring the need for more resilient strategies (Pawel-
czyk et al., 2024). In healthcare analytics, institutions must ensure that withdrawn patient records
no longer influence clinical predictions, especially when consent is revoked after the data have al-
ready been used (Sakib & Xie, 2024). Federated learning scenarios present additional challenges:
individual clients may request removal of their contributions after global aggregation, necessitat-
ing efficient and non-disruptive unlearning methods (Wu et al., 2023). These examples collectively
highlight that MU is not only a theoretical safeguard but a practical necessity for deploying AI in
dynamic, privacy-sensitive environments.

Despite this progress, existing MU methods share four key limitations:
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Figure 1: Pipeline of the proposed Pull-to-Outlier Unlearning (POU) method. The process begins
with feature extraction using a frozen encoder, followed by prototype selection via clustering. Un-
learned samples are then mapped to synthetic outlier targets using expert-specific projection heads,
while a frozen loss preserves the structure of retained samples. Final outputs are aggregated for
evaluation.

1. They primarily focus on sample-level or class-level removal, offering no systematic mech-
anism to forget an entire learned objective or capability embedded within a model’s repre-
sentation.

2. They do not provide a transparent, per-example verification mechanism to determine
whether unlearning has been successfully achieved. As a result, many methods rely on
statistical heuristics or indirect metrics to assess success.

3. Existing methods typically require full or partial fine-tuning of the backbone network,
whereas our projection-only approach avoids backbone updates entirely, offering signifi-
cant computational advantages.

4. Only a limited number of approaches, such as Label-Agnostic Forgetting (LAF), support
fully unsupervised forgetting, where the method can operate without class labels or super-
vision during the unlearning process (Shen et al., 2024).

To address all four of these challenges, we propose two lightweight unlearning methods that operate
entirely above frozen feature extractors and, therefore, avoid any modification to the pretrained
backbone:

• Pull-to-Outlier Unlearning (POU) is designed for scalable, unsupervised forgetting of
specific samples or entire classes. It works by pushing the embeddings of targeted samples
outside the known data manifold, making them geometrically incompatible with down-
stream use. POU leverages a mixture-of-experts (MoE) framework: retained embeddings
are first clustered, and each cluster is anchored by a prototype. For every sample to be
unlearned, a small residual MLP “expert” is assigned and trained to map it to a synthetic
outlier vector located beyond the global min–max bounds. To preserve the rest of the repre-
sentation space, a frozen-loss term keeps all other embeddings near their original positions.
This modular design enables scalable deletion across large sets without updating the back-
bone, while also offering a transparent test, based on geometric displacement, to verify that
the unlearning has succeeded.

• Contrastive Objective-level Unlearning (COU) addresses a higher-level goal: the re-
moval of an entire learned capability, such as a class or behavior, rather than individual
samples. It begins with a projection head trained using supervised contrastive learning to
encode task-specific semantics. COU then selectively perturbs this projection to collapse
the representation of the target task, effectively erasing its contribution. A lightweight fine-
tuning step on retained data restores class separability for all remaining tasks. Unlike prior
instance-based or class-based methods, COU performs this forgetting entirely through pro-
jection weights, enabling the first objective-level unlearning without modifying the feature
extractor. This makes it particularly suitable for scenarios requiring selective capability
removal, such as the moderation of emergent behaviors.
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Figure 2: Pipeline of the proposed Contrastive Objective-level Unlearning (COU) method. A projec-
tion head is first trained on top of frozen backbone features using supervised contrastive loss. After a
new objective is externally introduced by modifying class associations, COU unlearns this objective
by pulling affected embeddings back to their original positions, restoring the original structure of
the representation space.

2 RELATED WORK

2.1 MACHINE UNLEARNING

Early efforts in machine unlearning focused on exact removal for simple models. One such founda-
tional approach proposed an algorithm for summation-based learners that could analytically revoke
the influence of specific training points, but this technique did not extend to modern deep archi-
tectures (Cao & Yang, 2015). While full retraining remains the most accurate method to ensure
data removal, it is computationally impractical for large-scale models and datasets. To mitigate
this, partition-based approaches like SISA (Sharded, Isolated, Sliced Aggregation) training were
introduced, which divide the training data into multiple disjoint subsets. When a removal request
is issued, only a subset of these partitions require retraining, significantly reducing computational
burden while maintaining fidelity (Bourtoule et al., 2019). Another line of work approximates the
unlearning process by reversing stochastic gradient descent updates. UnrollSGD simulates unlearn-
ing by backtracking the most recent optimization steps, enabling partial reversibility of training with
bounded approximation error (Thudi et al., 2021).

In contrast to these strategies, some methods attempt to remove information by adjusting model
gradients directly. One such method, commonly referred to as NegGrad, applies updates in the
negative gradient direction of the samples to forget. While effective in some cases, this approach
can cause undesirable shifts in the representation of non-target samples, especially when fine-tuning
deep backbones. More recently, unsupervised strategies have emerged. Label-Agnostic Forgetting
(LAF) addresses the removal of entire classes without relying on class labels. It uses a variational
distribution matching mechanism to suppress the influence of target distributions, enabling scalable
and label-free forgetting in deep neural networks (Shen et al., 2024).

Recent works have explored contrastive learning objectives to improve machine unlearning. For
instance, (kyu Lee et al., 2024) proposes to push embeddings of the data to be forgotten away from
their original classes and toward alternative representations, modifying InfoNCE-style objectives.
(Wang & Chen, 2024) introduces gradient-based constraints to diminish the influence of selected
data points in contrastive and supervised learning settings, requiring only a few fine-tuning steps.
(Wang et al., 2024) focuses on the auditing aspect by calibrating alignment metrics within contrastive
models to verify successful removal without full retraining. While these methods offer improve-
ments at the sample level, they still require backbone updates and do not support objective-level
unlearning.

2.2 PROTOTYPICAL LEARNING

Prototype-based methods represent each class with a centroid in the embedding space, offering
interpretability (Angelov & Soares, 2019; Angelov et al., 2025; Chen et al., 2018; Rymarczyk et al.,
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2021) and robustness, especially in few-shot learning (Snell et al., 2017). Prototypical Networks
classify by measuring distances to these centroids. Clustering-based approaches like DeepCluster
alternate between k-means (Lloyd, 1982) and classification via pseudo-labels (Caron et al., 2018),
while SwAV uses online cluster assignments to enable large-scale self-supervised learning without
labels (Caron et al., 2020).

These prototype-based strategies also support open-set recognition and anomaly detection by mod-
eling in-distribution regions. Our POU method leverages this by (i) using fixed prototypes as an-
chors for generating synthetic outliers, and (ii) preserving retained samples via a frozen-loss objec-
tive—thus maintaining the data manifold while selectively removing targets.

2.3 OUTLIER DETECTION

Outlier detection identifies data points that deviate from the underlying distribution. Classical meth-
ods include z-scores, Tukey’s fences, LOF for density comparison (Breunig et al., 2000), and DB-
SCAN for detecting sparse regions (Ester et al., 1996). With deep learning (Pang et al., 2020b),
approaches, such as one-class SVMs (Hearst et al., 1998; Schölkopf et al., 1999), Autoencoders
(Rumelhart et al., 1986), and GANs (Goodfellow et al., 2014) have been widely adopted for high-
dimensional settings. Surveys by Chandola et al. and Pang et al. highlight this shift toward learned
representations (Chandola et al., 2009; Pang et al., 2020a).

POU builds on these ideas by generating synthetic outlier targets beyond global feature bounds and
using σ-band checks around cluster prototypes to transparently verify that unlearned embeddings lie
outside valid class regions.

3 METHODOLOGY

3.1 PRETRAINING AND FEATURE EXTRACTION

For the POU, we begin by pretraining a ResNet-18 backbone (He et al., 2015) followed by a three-
layer residual MLP classifier using standard cross-entropy loss on the full training set. The residual
MLP acts as a lightweight head and forms the projection module for POU. During unlearning, we
continue updating this same MLP head while keeping the ResNet backbone frozen. This setup
ensures that the learned embedding space remains stable, and the unlearning process is confined to
the projection layer alone. Since POU is designed to operate in a label-free manner, this pretraining
step serves to construct a semantically meaningful feature space that remains decoupled from the
downstream forgetting mechanism.

For COU, we use pretrained feature extractors from DINOv2 (Caron et al., 2021; Oquab et al., 2023)
and CLIP (Radford et al., 2021) ViT-L/14 to obtain high-level representations of input images. On
top of these frozen vision transformer backbones, we train a linear projection head using super-
vised contrastive loss. This loss encourages intra-class compactness and inter-class separation in the
projected embedding space, establishing the structure needed for selective objective-level removal.
The linear head is later updated to remove the influence of a specific objective, while the backbone
remains unchanged.

3.2 INITIAL PROTOTYPE SPACE

Given a set of feature embeddings {zi}Ni=1 ⊂ Rd extracted from a frozen encoder and subsequent
projection layer, we apply K-means clustering to partition them into C clusters. Let {µc}Cc=1 denote
the resulting cluster centers, and let c(i) ∈ {1, . . . , C} be the cluster assignment for embedding zi.

To obtain representative samples, we define the prototype pc for cluster c as the sample closest to its
center:

pc = arg min
i : c(i)=c

∥∥zi − µc

∥∥
2
.

These prototypes are retained and fixed throughout the unlearning phase to provide semantic anchors
in the embedding space.

For POU, prototype selection is performed in the embedding space of the pretrained ResNet-18
followed by a three-layer residual MLP. These prototypes are used both to define synthetic outlier
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targets (based on global min-max bounds) and to verify forgetting via σ-band outlier detection. In
COU, the prototypes are selected from embeddings obtained using a linear projection head trained
on frozen DINOv2 or CLIP ViT-L/14 features with supervised contrastive loss. Here, prototypes
serve to define task-specific semantics and guide perturbation during the objective removal phase.
This shared prototype space provides a consistent geometric reference for both sample-level and
objective-level forgetting.

3.3 PULL-TO-OUTLIER UNLEARNING (POU)

Pull-to-Outlier Unlearning (POU) removes the influence of specific samples by relocating their em-
beddings beyond the semantic boundary of the retained dataset. The method updates only the pro-
jection head, using a combination of geometric target generation and two complementary loss terms.
Below, we describe each stage in detail.

3.3.1 OUTLIER TARGET GENERATION

Let {zi}Ni=1 ⊂ RD be the projected embeddings of all training samples, and let U denote the set
of indices to be unlearned. We first compute per-dimension bounds over the retained set N =
{1, . . . , N} \ U :

gmin,d = min
j∈N

zj,d, gmax,d = max
j∈N

zj,d, for d = 1, . . . , D.

Then, for each i ∈ U , we define a synthetic outlier target τi ∈ RD:

τi,d =

{
gmin,d − δ, with probability 0.5,

gmax,d + δ, otherwise,

where δ > 0 is a fixed margin. This ensures that τi lies outside the retained embedding manifold in
all dimensions.

3.3.2 PULL LOSS

We use a pull loss to push each unlearning sample zi toward its corresponding outlier target τi:

Lpull =
1

|U|
∑
i∈U

∥zi − τi∥22.

This displaces the embeddings of forgotten samples away from high-density regions of the training
distribution.

3.3.3 FROZEN LOSS

To maintain stability of the non-target data, we penalize movement of retained embeddings relative
to their original positions z(0)j :

Lfrozen =
1

|N |
∑
j∈N

∥zj − z
(0)
j ∥22.

This regularization preserves the semantic structure of the remaining dataset.

3.3.4 COMBINED OBJECTIVE

The total loss is a weighted combination LPOU = λpull · Lpull + λfrozen · Lfrozen. Only the projection
head is optimized.

3.3.5 OUTLIER DETECTION CRITERION

To verify successful forgetting, we additionally check whether the final embedding of each unlearned
sample lies outside all prototype regions. For each prototype pc, we compute the per-dimension
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standard deviation over samples Xc assigned to that cluster as σc,d =
√

1
|Xc|

∑
xi∈Xc

(zi,d − µc,d)2.
We then assess whether zi deviates from µc in a sufficient number of dimensions:

|{d : |zi,d − µc,d| > 3 · σc,d}| > τ ·D.

This 3-sigma criterion serves as a statistical boundary to detect whether a sample has exited the
semantic region defined by any cluster. If the condition holds for all c, the sample is flagged as
successfully forgotten. This mechanism provides an interpretable, prototype-aware certificate of
semantic removal.

All retained and test samples are classified using a nearest-prototype classifier, computed by assign-
ing each embedding to the closest prototype with Euclidean distance.

3.3.6 EXPERT AGGREGATION STRATEGY

To scale unlearning to large deletion sets while preserving frozen backbone features, POU adopts a
Mixture-of-Experts (MoE) design (Jacobs et al., 1991). The forget set is split into disjoint subsets,
each handled by a separate residual MLP expert initialized from the pretrained projection head and
trained independently using pull and frozen losses.

For retained samples, we apply soft aggregation by averaging outputs from all experts, promoting
stability. For unlearned samples, we adopt hard expert routing (Fedus et al., 2021), selecting the
expert whose output best matches the sample’s outlier target. This design enables scalable, modular
unlearning without modifying the backbone.

3.4 CONTRASTIVE OBJECTIVE-LEVEL UNLEARNING (COU)

Contrastive Objective-level Unlearning (COU) enables the removal of entire learned objectives
or capabilities through projection-only updates. Unlike conventional sample-wise unlearning ap-
proaches, COU suppresses a complete representational function by first perturbing the projection
space and then restoring it without modifying the backbone network. This process unfolds in two
distinct phases.

3.4.1 LEARNING WITH ARBITRARY OBJECTIVE

We begin by selecting a subset of training samples {xi}i∈U and assigning each to a pseudo-target
class, chosen as the second-nearest prototype pc such that c ̸= yi. This defines an arbitrary, synthetic
objective in the latent space that deviates from the model’s original class structure. To impose this
new objective, we optimize a perturbation loss that maximizes alignment between the sample and
its pseudo-target:

Lperturb =
1

|U|
∑
i∈U

[
1−max

c̸=yi

cos(zi, pc)

]
,

where zi denotes the projected embedding of xi. This updates the projection head to encode the
injected objective, leaving all other parts of the model untouched.

3.4.2 UNLEARNING

To remove the influence of the modified objective and revert to the original semantic geometry, we
apply a contrastive pull-back mechanism. For each perturbed sample, we restore its embedding to
its original location z

(0)
i recorded prior to the perturbation phase. The unlearning loss is defined as:

Lrestore =
1

|U|
∑
i∈U

[
1− cos(zi, z

(0)
i )

]
.

Importantly, no additional preservation terms are used for non-target samples, making the method
simple, scalable, and focused entirely on forgetting the injected objective.

COU may offer a valuable mechanism for self-improving or agent-driven learning systems, where
dynamic objectives are proposed, explored, and revised over time. In such settings, COU may
be useful for retracting undesired or unstable objectives introduced by agents, enabling selective
unlearning on top of foundational models through lightweight, head-only updates.
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Table 1: Instance-level unlearning results on CIFAR10, CIFAR100, and Caltech-256. We randomly
subsample 1% of the training set as the unlearning set and use the same set across all baselines.
Metrics include: Rem (Remaining Set Accuracy ↑), Unl (Unlearning Set Accuracy ↓), Test (Test
Set Accuracy ↑), TW (Trustworthiness ↑), and L2 Drift (Average L2 Embedding Drift ↓). Arrows
indicate whether higher (↑) or lower (↓) values are better.

Method CIFAR10 CIFAR100 Caltech-256

Rem ↑ Unl ↓ Test ↑ TW ↑ L2 ↓ Rem ↑ Unl ↓ Test ↑ TW ↑ L2 ↓ Rem ↑ Unl ↓ Test ↑ TW ↑ L2 ↓

Retrain 99.62% 86.80% 88.19% - - 99.24% 59.00% 61.98% - - 99.30% 47.01% 46.24% - -
NegGrad 10.02% 7.60% 10.00% 0.5335 > 2× 108 1.00% 0.80% 1.00% 0.5130 > 7.9× 108 0.65% 0.00% 0.57% 0.5123 > 5.5× 108

UnrollSGD 99.44% 93.08% 87.03% 0.9900 1.3633 98.78% 99.80% 60.91% 0.9931 1.3466 99.42% 100.00% 43.45% 0.9884 6.7948
SISA 99.52% 100.00% 88.01% 0.9941 7.2353 99.30% 96.90% 61.70% 0.9992 6.0514 86.86% 80.59% 45.28% 0.9816 7.6901
LAF 86.43% 83.20% 74.62% 0.4995 3.5835 57.31% 54.40% 34.34% 0.5008 6.1496 60.73% 36.07% 46.40% 0.4989 3.6107
POU (Ours) 99.07% 0.00% 86.89% 1.0000 0.9451 98.58% 0.00% 61.41% 1.0000 1.3388 98.25% 0.00% 39.02% 1.0000 0.8585

Table 2: Class-level unlearning results on CIFAR100 and Caltech-256 using POU and baseline
methods. We consistently select the 5th class for unlearning across all experiments.

Method CIFAR100 Caltech-256

Rem ↑ Unl ↓ Test ↑ TW ↑ L2 ↓ Rem ↑ Unl ↓ Test ↑ TW ↑ L2 ↓

Retrain 99.03% 0.00% 61.39% - - 98.43% 0.00% 44.42% - -
NegGrad 1.00% 0.00% 1.00% 0.5349 > 8.2× 104 0.57% 0.00% 0.65% 0.5117 > 5.2× 108

UnrollSGD 99.24% 97.26% 50.10% 0.9887 6.7679 98.52% 96.33% 44.83% 0.9884 6.7584
LAF 80.45% 100.00% 46.35% 0.5022 2.1888 98.19% 98.89% 45.03% 0.4976 4.3002
POU (Ours) 98.58% 0.00% 60.99% 1.0000 0.9662 98.27% 0.00% 39.02% 1.000 0.9609

4 EXPERIMENTS

4.1 DATASETS

We evaluate our proposed unlearning methods on three standard image classification benchmarks.
For CIFAR10 (Krizhevsky, 2009), POU is applied to the full dataset of 60,000 images across 10
classes, while COU uses a subsample of 10,000 images (1,000 per class) for fine-grained control
over learned objectives. For CIFAR100 (Krizhevsky, 2009), we use the complete set of 60,000
images across 100 fine-grained categories to test POU under greater class granularity and clustering
density. Caltech-256 (Griffin et al., 2007) includes 30,607 images from 256 diverse categories and
is used exclusively for POU to assess unlearning in high-variability domains with complex prototype
and semantic structures. For all datasets, we split 90% of the data for training and 10% for testing.

4.2 EVALUATION METRICS

To evaluate both the effectiveness of unlearning and the preservation of retained knowledge, we
adopt distinct metrics for instance-level unlearning (POU) and objective-level unlearning (COU).
For POU, we report: (1) Remaining Set Accuracy, the classification accuracy on retained samples,
where higher scores indicate preserved knowledge; (2) Unlearning Set Accuracy, the accuracy on
deleted samples, where values near 0% reflect effective forgetting; (3) Test Set Accuracy, mea-
suring performance on the original test set after unlearning; (4) Trustworthiness (Venna & Kaski,
2001), which evaluates local neighborhood consistency between the original and final embeddings
of retained data; and (5) L2 Drift, the average Euclidean distance between the original and updated
retained embeddings, quantifying collateral change.

For COU, we compute: (1) Trustworthiness (Post-Perturbation & Post-Unlearning), calculated
over all samples to assess the projection space’s structural changes and recovery; and (2) L2 Drift
(Post-Perturbation & Post-Unlearning), representing embedding displacement induced by pertur-
bation and reduced through unlearning.

4.3 BASELINES

Retrain: The most intuitive unlearning baseline involves full model retraining on the retained
dataset after the removal of target samples. While it provides an exact removal guarantee, it is
computationally infeasible in practice and scales poorly to frequent deletions.

7
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Table 3: Objective-level unlearning results on a subset of CIFAR10 using COU and NegGrad, eval-
uated on frozen DINOv2 and CLIP ViT-L/14 features. Metrics: Trustworthiness (TW) after pertur-
bation and unlearning phases, and L2 Drift after unlearning.

Method DINOv2 ViT-L/14 CLIP ViT-L/14
TW Pert TW Unlearn ↑ L2 ↓ TW Pert TW Unlearn ↑ L2 ↓

NegGrad 0.9747 0.9699 201.3660 0.9845 0.9607 93.3761
COU (Ours) 0.9747 1.0000 1.6496 0.9845 0.9999 0.8286

NegGrad: This method approximates forgetting by fine-tuning the model with reversed gradients
on the forget set. For COU, we report results using NegGrad as the sole baseline, although it was
not originally designed for objective-level unlearning and lacks explicit mechanisms for forgetting
latent objectives or projection-specific behavior.

Unrolling SGD (Thudi et al., 2021): UnrollSGD leverages optimization trajectory inversion by
tracking and reversing gradient steps associated with the target samples. It achieves approximate
unlearning with bounded error but requires storing past gradients and optimizer states, making it
memory-intensive.

SISA (Bourtoule et al., 2019): Sharded, Isolated, Sliced, and Aggregated (SISA) training splits the
dataset into multiple shards and slices to localize retraining when unlearning is required.

Label-Agnostic Forgetting (LAF) (Shen et al., 2024): A recent unsupervised method that removes
entire classes via variational distribution matching without relying on explicit labels. LAF demon-
strates that principled removal is possible even without supervision.

4.4 IMPLEMENTATION DETAILS

All experiments were conducted on a machine equipped with an AMD Ryzen 9 5900HX CPU,
32 GB RAM, and an NVIDIA RTX 3080 Laptop GPU with 16 GB memory.

We use a batch size of 64 and a learning rate of 1e−4 across all experiments. All baseline methods
are trained for 100 epochs, while the ResNet-18 + MLP backbone used in POU and Retrain is
pretrained for 120 epochs. For POU, we use the Adam optimizer and set λpull = 1.0, λfrozen = 50.0,
and margin δ = 20.0. We apply early stopping when both the pull loss value drops below 10 and the
frozen loss falls below 0.02, indicating sufficient displacement of unlearned samples and stability of
retained embeddings. For COU, we also use Adam and train the linear projection head for 5 epochs
using a supervised contrastive loss with temperature 0.07, and stop unlearning once the mean L2

drift of pulled-back samples falls below 2.

For the baselines: SISA uses 5 shards, 2 slices per shard, and 20 epochs per slice. LAF is trained
with 20 VAE epochs and 5 unlearning epochs. NegGrad uses λneg = 1.0 for gradient ascent on
the forget set. UnrollSGD performs 5 epochs of SGD trajectory recording and applies influence
reversal over 50 unroll steps.

4.5 INSTANCE AND CLASS-LEVEL UNLEARNING RESULTS

We evaluate instance-level and class-level forgetting using POU across CIFAR10, CIFAR100, and
Caltech-256. As shown in Table 1 and Table 2, POU consistently achieves perfect forgetting on
the unlearned subset (0% accuracy), while preserving accuracy on the remaining set and test set.
In contrast, prior baselines struggle to eliminate the target information without causing significant
collateral damage to the rest of the model. Notably, the slight accuracy drop of POU on the re-
maining and test sets compared to Retrain may stem from the difference in classification strategy,
as POU uses a nearest-prototype classifier instead of a standard softmax classification head; how-
ever, its perfect trustworthiness score indicates that the underlying representation structure is fully
preserved.

Trustworthiness and L2 drift metrics further reveal that POU maintains the integrity of the retained
representation space. These claims are visually supported in Figure 3, where POU preserves com-
pact cluster structure while cleanly displacing unlearned samples to synthetic outlier regions. Sim-
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ilarly, Figure 5 confirms that even when entire classes are forgotten, the semantic organization of
remaining data remains intact.

We also evaluated robustness using a Membership Inference Attack (MIA) (Table 4). For Attack A
(remain vs. test), methods like UnrollSGD reduce leakage closer to chance, while POU maintains
stable behavior for retained data, ensuring representation preservation. For Attack B (forget vs.
test), POU is clearly the best, driving leakage down to near-chance (2.89%) and thus providing
the strongest guarantee of effective forgetting. This highlights that POU achieves the best balance
between utility and privacy.

4.6 OBJECTIVE-LEVEL UNLEARNING RESULTS

In objective-level unlearning, the goal is to remove an injected latent capability rather than specific
samples. Table 3 demonstrates that COU effectively erases such injected objectives, restoring the
projection space to its original structure. This is achieved without modifying the frozen backbone,
relying solely on lightweight projection-level updates.

NegGrad, by contrast, shows an inability to reverse the impact of the learned objective, resulting in
high drift and a loss of semantic separability. Figure 4 visualizes this difference: COU successfully
restores original class-wise clusters after unlearning, while NegGrad collapses them into entangled
or flattened manifolds. These results indicate that COU provides the first effective solution for
capability-level forgetting via projection-only tuning.

4.7 DISCUSSION

4.7.1 ABLATIONS

To understand the role of each component in POU, we conduct an ablation study focused on the
frozen loss, as reported in Table 5. When the frozen loss is removed, forgetting becomes incomplete
and unlearned samples remain entangled with retained data. Although performance on the retained
set may appear high, the underlying structure is destabilized, leading to high drift and reduced
trustworthiness.

In contrast, incorporating the frozen loss consistently maintains the geometric alignment of retained
embeddings while allowing targeted forgetting of unwanted samples. This term proves essential for
balancing deletion and preservation objectives within the same embedding space.

4.7.2 VISUAL ANALYSIS OF STRUCTURAL PRESERVATION

Figures 3, 4, and 5 provide qualitative evidence supporting the numerical results. In instance-level
unlearning, POU visibly displaces unlearned samples far from their original clusters without disrupt-
ing the surrounding distribution. This demonstrates that forgetting is both complete and localized.

For objective-level unlearning, COU recovers the original projection layout after removing the ar-
bitrary objective, confirming that projection-space perturbations are reversible under our design.
In contrast, NegGrad leads to significant semantic collapse and deformation. These visualizations
underscore the importance of geometric regularity and prototype alignment in designing effective
unlearning mechanisms.

5 CONCLUSION

We introduced POCO, a unified framework for sample-level and objective-level machine unlearning
through projection-only techniques. Our POU method enables efficient instance and class forgetting
by geometrically displacing unwanted embeddings, while COU removes entire objectives by per-
turbing the projection space and then recovering its original structure. Both methods operate above
frozen feature extractors, offering scalable and interpretable forgetting without retraining. Extensive
evaluations on CIFAR10, CIFAR100, and Caltech-256 confirm that POCO achieves high retention,
minimal drift, and reliable forgetting. These results demonstrate the potential of our approach for
enabling efficient, interpretable unlearning in privacy-preserving and adaptable machine learning
systems.
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REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing implementation details in Section 4.4, including training
schedules, loss functions, hyperparameters, and early stopping criteria. All datasets (CIFAR10,
CIFAR100, and Caltech-256) are publicly available, with preprocessing steps included in the sup-
plementary code. Pseudocode for POU and COU is given in Algorithms 1 and 2, and an anonymized
implementation is included in the supplementary material for direct reproduction.
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A APPENDIX

Table 4: Threshold-based Membership Inference Attack (MIA) AUC (%): Attack A = remain vs.
test; Attack B = forget vs. test. Lower is better.

Method AUC-A Before AUC-A After AUC-B Before AUC-B After

POU 59.34% 59.75% 60.06% 2.89%
NegGrad 61.51% 50.26% 61.69% 49.05%
unroll sgd 63.01% 49.68% 63.46% 49.96%
LAF 61.79% 58.82% 63.95% 62.72%
SISA 62.94% 62.91% 61.98% 61.84%

Table 5: Ablation study of the POU method. We compare the full method with the variant that
removes the Lfrozen term across CIFAR10, CIFAR100, and Caltech-256. Metrics: Rem (↑), Unl (↓),
Test (↑), TW (↑), and L2 Drift (↓).

(a) CIFAR10
Setting Rem ↑ Unl ↓ Test ↑ TW ↑ L2 ↓

POU without Lfrozen 99.23% 22.45% 86.31% 0.9971 168.78
POU with Lfrozen 99.07% 0.00% 86.89% 1.0000 0.95

(b) CIFAR100
Setting Rem ↑ Unl ↓ Test ↑ TW ↑ L2 ↓

POU without Lfrozen 93.95% 16.34% 58.22% 0.9972 197.18
POU with Lfrozen 98.58% 0.00% 61.41% 1.0000 1.34

(c) Caltech-256
Setting Rem ↑ Unl ↓ Test ↑ TW ↑ L2 ↓

POU without Lfrozen 75.47% 7.82% 26.23% 0.9820 329.42
POU with Lfrozen 98.25% 0.00% 39.02% 1.0000 0.86
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(a) POU with frozen loss

(b) POU without frozen loss

(c) NegGrad

Figure 3: t-SNE visualizations of instance-level unlearning on CIFAR10. The comparison illustrates
the importance of the frozen loss in POU. With frozen loss (top), cluster structures are preserved and
unlearned samples are cleanly displaced to outlier regions. Without frozen loss (middle), forgetting
is incomplete and retained clusters are distorted. NegGrad (bottom) shows severe representation
collapse and poor separation.
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(a) COU: t-SNE visualizations before and after objective-level unlearning on DINOv2 features. Left: original
embedding space. Middle: after injecting arbitrary objective. Right: after COU unlearning. COU restores
clean cluster structure.

(b) NegGrad: t-SNE visualizations before and after objective-level unlearning on DINOv2 features. Left:
original embedding space. Middle: after injecting arbitrary objective. Right: after NegGrad-based unlearning.
Class structure is not recovered.

Figure 4: Qualitative comparison of COU and NegGrad for objective-level unlearning on DINOv2
embeddings. Only COU restores the original semantic structure of the projection space after remov-
ing injected objectives.

Figure 5: t-SNE visualization of class-level unlearning on CIFAR100 using POU. Left: The original
projection space before unlearning shows well-separated latent subclusters for each class. Right:
After unlearning, the deleted class samples (yellow) are successfully displaced to synthetic outlier
regions (black squares), while the rest of the latent structure remains stable. This confirms that POU
achieves class forgetting without disturbing non-target data.
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Algorithm 1 Pseudocode for Pull-to-Outlier Unlearning (POU)

Input: Pretrained MLP head fθ, training features Z, forget indices U , retained indices N , margin
δ, number of experts K
Initialize: Copy K expert MLPs from fθ as {θk}Kk=1
Split U into K disjoint chunks: U1, . . . ,UK

for k = 1 to K do
Compute global bounds gmin, gmax from retained set N
For each i ∈ Uk, compute outlier target τi using δ, gmin, gmax

Optimize θk on:
Pull loss Lpull =

∑
i∈Uk

∥fθk(zi)− τi∥2
Frozen loss Lfrozen =

∑
j∈N ∥fθk(zj)− fθ(zj)∥2

Total loss: LPOU = λpull · Lpull + λfrozen · Lfrozen
end for
Aggregation:

For retained samples, average outputs from all experts
For unlearned samples, select best expert based on closest match to τi

Evaluation: Run nearest-prototype classification and 3σ outlier check

Algorithm 2 Pseudocode for Contrastive Objective-Level Unlearning (COU)

Input: Pretrained projection fθ, features X, labels y, forget set U , prototypes {pc}, epochs E
Stage 1: Learning Arbitrary Objective
for e = 1 to E do

For each i ∈ U :
Compute second-nearest prototype pc′ , c′ ̸= yi
Apply perturbation loss:

Lperturb =
∑
i∈U

[
1−max

c̸=yi

cos(fθ(xi), pc)

]
Update θ via Lperturb

end for
Stage 2: Unlearning
For each i ∈ U :

Retrieve original embedding z
(0)
i

Apply contrastive pull-back loss:

Lrestore =
∑
i∈U

[
1− cos(fθ(xi), z

(0)
i )

]
Update θ via Lrestore
Evaluation: Measure trustworthiness and L2 drift on full dataset before and after both stages
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