
On the Theoretical Expressive Power and the Design Space of
Higher-Order Graph Transformers

Cai Zhou†1 Rose Yu∗ Yusu Wang∗

†Tsinghua University ∗University of California, San Diego
zhouc20@mails.tsinghua.edu.cn, {roseyu,yusuwang}@ucsd.edu

Abstract

Graph transformers have recently received
significant attention in graph learning, partly
due to their ability to capture more global
interaction via self-attention. Nevertheless,
while higher-order graph neural networks have
been reasonably well studied, the exploration
of extending graph transformers to higher-
order variants is just starting. Both theo-
retical understanding and empirical results
are limited. In this paper, we provide a
systematic study of the theoretical expres-
sive power of order-k graph transformers and
sparse variants. We first show that, an order-k
graph transformer without additional struc-
tural information is less expressive than the
k-Weisfeiler Lehman (k-WL) test despite its
high computational cost. We then explore
strategies to both sparsify and enhance the
higher-order graph transformers, aiming to
improve both their efficiency and expressive-
ness. Indeed, sparsification based on neighbor-
hood information can enhance the expressive
power, as it provides additional information
about input graph structures. In particular,
we show that a natural neighborhood-based
sparse order-k transformer model is not only
computationally efficient, but also expressive –
as expressive as k-WL test. We further study
several other sparse graph attention models
that are computationally efficient and provide
their expressiveness analysis. Finally, we pro-
vide experimental results to show the effective-
ness of the different sparsification strategies.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s). 1Work done as an intern at UCSD.

1 INTRODUCTION

Recent years have witnessed great success in using the
Transformer architecture for various applications, e.g.,
in natural language processing (Vaswani et al., 2017),
computer vision (Dosovitskiy et al., 2020), and more re-
cently graph learning (Rampasek et al., 2022; Bo et al.,
2023). However, applying transformers to graphs is
fundamentally different from texts or images because
the graph topology and structure information cannot
be easily captured by standard transformers. Further-
more, while graph neural networks benefit from higher-
order extensions known as Invariant Graph Networks
(IGN) (Maron et al., 2018; Geerts, 2020a), higher-order
transformers have not yet been well studied, whose
theoretical benefits and empirical strengths are still
largely unexplored.

Specifically, on the theoretical front, analysis of the
expressive power of graph transformers is currently lim-
ited, especially for the higher-order variants. Cai et al.
(2023) show that a Message Passing Neural Network
(MPNN) with a virtual node can approximate certain
kernelized graph transformers (Performer (Choroman-
ski et al., 2020) and Linear Transformer (Katharopoulos
et al., 2020)). Kim et al. (2021) proposed a higher-
order attention mechanism operating on k-tuples (in-
stead of graph nodes), inspired by a generalization of
linear equivariant layers (Maron et al., 2018). Kim
et al. (2022) introduced a high-order graph transformer
model called TokenGT, and showed that order-k To-
kenGT is as expressive as the so-called k-WL (order-k
Weisfeiler-Lehman (Cai et al., 1989)) test. However,
their result requires that the input k-tuples be equipped
with orthonormal vectors (of length O(n)) as node iden-
tifiers. Furthermore, it is not clear how to choose such
node identifiers in a permutation-invariant manner.

On the empirical front, k-transformers are computation-
ally expensive, and the order-k transformer of (Kim
et al., 2022) takes time O(n2k) for a graph with n
nodes. (Note that higher-order graph networks are also
expensive; for example, the expressive order-k Invariant

Higher-Order Graph Transformers

Graph Network (i.e. k -IGN) also takes O(n2k) time
to compute for each layer.) Hence, it is valuable to
explore sparse versions for improved efficiency.

Our Work. In this paper, we provide a systematic
study of the theoretical expressive power of order-k
graph transformers and their sparse variants. Our main
contributions are as follows. See also the summary of
some theoretical results in Table 1.

• In Section 3, after formally introducing a natural
formulation of order-k transformers Ak, we show
that without “indices” information of k-tuples, Ak

is strictly less expressive than k-WL. But when
augmented with the indices information, its ex-
pressive power is at least that of k-WL. Note that
however, each layer of Ak takes O(n2kd) time (see
Table 1) where d is the network width (latent di-
mension). Unfortunately, similar to (Kim et al.,
2022), the resulting model may not be invariant
to the choices of the indices.

• In Section 4, we explore strategies to improve
the efficiency of higher-order graph transformers
while maintaining strong expressive power. In fact,
sparsifying attention using the graph structure can
enhance the expressive power. We propose several
sparse high-order transformers in Section 4, and
analyze their expressiveness and time complexity.
A particularly interesting one is what we call the
neighbor-attention mechanism, which, as shown in
Table 1, significantly improves the time complexity
(from O(n2k) to O(nk) roughly speaking), while
is as expressive as k-WL. Furthermore, note that
this model doesn’t use indices, and is permutation
invariant. In Appendix C, we also study simplicial
complexes-based higher-order transformers.

• In Section 5 and Appendix E, we also provide
experimental results to show the relative perfor-
mances of these higher-order transformers (al-
though mostly of order 2), and compare them
with SOTA methods in graph learning.

2 PRELIMINARIES AND
BACKGROUND

In this section, we briefly review two notions: the order
k-Weisfeiler-Lehman (k-WL) test, which is commonly
used as a way to measure expressiveness of graph neural
networks, as well as the k-IGN (Maron et al., 2018),
which is the most expressive graph networks of a given
order(k-IGN is as expressive as k-WL).

k-WL test is a procedure to test whether two input
attributed graphs are potentially isomorphic or not. In

the literature on graph networks, the k-WL procedure
usually refers to the following iterative color-assignment
scheme for an input graphG. The k-WL test will return
that two graphs are “not isomorphic” if the collections
of colors assigned at any iteration differ; otherwise, it
will return “potentially isomorphic".

In particular, given a graph G, the k-WL procedure
assigns colors to all k-tuples of V (G) and iteratively
updates them. The initial color c0k(v, G) of the tuple
v ∈ V (G)k is determined by the isomorphism type of
the tuple v (Maron et al., 2019). At the t-th iteration,
the color updating scheme is

ctk(v, G) =Hash
(
ct−1
k (v, G),(

{{ct−1
k (ψi(v, u), G)|u ∈ V (G)}}|i ∈ [k]

)) (1)

where ψi(v, u) means replacing the i-th element in v
with u. The color of the entire graph is the multiset of
all tuple colors,

ctk(G) = Hash
(
{{ctk(v, G)|v ∈ V (G)k}}

)
(2)

As mentioned earlier, two graphs are considered “po-
tentially isomorphic" by k-WL if they have identical
tuple color multisets for all iterations ts. It is known
that 1-WL is equivalent to 2-WL in terms of differenti-
ating graphs, while k-WL is strictly less powerful than
(k + 1)-WL for k ≥ 2 (Cai et al., 1989).

k-IGN was introduced by Maron et al. (2018). An
order k Invariant Graph Network (k-IGN) is defined
as a function Fk : Rnk×do → R of the following form:

Fk = MLP ◦ Lk→0 ◦ L(T)
k→k ◦ σ ◦ . . . ◦ σ ◦ L(1)

k→k, (3)

where each L(t)
k→k is a (permutation) equivariant linear

layer Rnk×dt−1 → Rnk×dt , Lk→0 is an invariant linear
layer Rnk×dT → R, while σ is nonlinear activation
function such as ReLU. In particular, it turns out
that there exist bell(k + l) number of basis tensors Bµ

and bell(l) number of basis tensors Cλ, such that any
equivariant linear layer Lk→l : Rn

k×d → Rnl×d′ from
a k-order tensor to a l-order tensor can be written as
follows: for order k input X ∈ Rnk×d,

Lk→l(X)i =
∑
µ

∑
j

Bµ
i,jXjwµ +

∑
λ

Cλ
i bλ. (4)

Here i ∈ [n]l, j ∈ [n]k are multi-indices, wµ ∈
Rd×d′ , bλ ∈ Rd′ are weight and bias parameters, and
Bµ ∈ Rnl+k

. Note that an invariant layer is sim-
ply a special case of an equivariant layer Lk→l when
l = 0. It is known that k-IGNs are as expressive as
k-WL Maron et al. (2019); Geerts (2020a); Azizian and
Lelarge (2020). Analogous to the construction of k-
IGN, all graph networks including graph transformers
have permutation equivariant intermediate layers, and
permutation invariant final graph-level outputs.

Cai Zhou, Rose Yu, Yusu Wang

Table 1: Summary of expressiveness and complexity of high-order transformers Ak, their sparse variants, and
simplicial transformer ASk1:k2 . We also include the results of k-IGN of (Maron et al., 2018) for reference. Here n is
the number of nodes; D̄ is the average node degree; d is the latent dimension of model (sometimes omitted in main
text); Sk is the set of k-simplices; simplex neighbor includes coboundaries, boundaries, upper and lower adjacent
neighbors, while D̄S is the average number of these extended neighbors. Details of the simplicial transformers
AS∗s are in Appendix C.

Base Type Computation Sparse Enhancement Complexity Expressive
model reduction attention power

k-IGN (Maron et al., 2018) - - - - O(n2kd) = k-WL

Ak dense - - - O(n2kd) ≺ k-WL
Ak dense - - input indices O(n2kd) ⪰ k-WL(with ReLU)
Ak dense kernelization - - O(nkd2) ≺ k-WL

ANgbh
k sparse - neighbor - O(nk+1kd) = k-WL
ALN

k sparse - local neighbor - O(nkkD̄d) ⪰ δ-k-LWL
AVT

k sparse - virtual tuple - O(nkd) ≃ kernelized Ak

ASk dense - - Lk O(|Sk|2d) -
AS0:K dense - - L0:K O((

∑K
k=0 |Sk|)2d) ⪰MPSN

ASSN
0:K sparse - simplex neighbor - O((

∑K
k=0 |Sk|)D̄Sd) =MPSN

ASVS
0:K sparse - virtual simplex - O((

∑K
k=0 |Sk|)d) ≃ kernelized AS0:K

3 THEORETICAL ANALYSIS OF
HIGH-ORDER TRANSFORMERS

In this section, we first introduce a natural notion
of higher-order transformers, which is slightly more
general than the one in Kim et al. (2022). We show
that a plain order-k transformer without additional
structural information is strictly less expressive than k-
WL. On the other hand, adding explicit tuple indices as
part of the input tuple features leads to a k-transformer
that is at least as powerful as k-WL. However, it may
also break the permutation invariance (not invariant
to the choice of the indices). The proofs and some
additional results can be found in Appendix B.1.

Definition 3.1 (Order k1, k2-Transformer Layer). A
(cross-attention) transformer layer Ak1,k2 : Rnk1×d ×
Rnk2×d → Rnk1×d′ takes a query tensor X ∈ Rnk1×d

and a key tensor Y ∈ Rnk2×d as input, and is defined
as

Ak1,k2(X,Y) = softmax
(

(XQ)︸ ︷︷ ︸
∈Rnk1×dk

(Y K)⊤︸ ︷︷ ︸
∈Rdk×nk2

)
(Y V)︸ ︷︷ ︸

∈Rnk2×d′

.

(5)
Here Q ∈ Rd×dk , K ∈ Rd×dk , V ∈ Rd×d′ are the learn-
able weight matrices where dk is the latent dimension,
and the softmax is performed row-wise on an nk1 ×nk2
matrix. In practice d, dk, d′ are usually of the same
magnitude and are thus both denoted as O(d) regard-
ing complexity. We may also sometimes omit the O(d)
factor in the main text when we care more about the
complexity w.r.t number of nodes n.

A self-attention transformer layer is when X =
Y , k1 = k2 = k, which we also refer to as (order)
k-transformer layer, and denoted by Ak for simplicity.

Throughout the paper, we mostly talk about self-
attention transformers (which is standard in the litera-
ture). However, some experiments using cross-attention
transformers are given in Appendix E.

A k-transformer is composed of many layers of the
above k-transformer layers. Note that the above def-
inition is for single-head attention, but it is easy to
extend it to multi-head attention analogous to standard
transformers. Also, following the standard setting, we
allow bias terms after multiplying X with query, key
and value weight matrices; although these are omit-
ted in the above definition for clarity. Furthermore,
residual connection and input/output MLPs are always
allowed between these k-transformer layers. Note that
Definition 3.1 is generic and not limited to graph data.
For graph input, similar to the k-WL procedure, the
feature initialization of k-tuples can be based on the
isomorphism types of the tuples (Maron et al., 2019).

Theoretical Expressive Power of Order-k Trans-
former. Next, we investigate the expressive power
of order-k transformer in terms of the k-WL hierar-
chy. A subtle issue here is the use of indices: k-WL
test assumes that the graph nodes are indexed, and
a k-tuple is explicitly indexed by k indices of those
nodes in this tuple. This index is only used to compute
the “neighbors” of a specific k-tuple (see the use of
ψi(v, u) in Eqn (1). The entire procedure is still inde-
pendent to the indexing. Such structural information
unfortunately is lost in a k-transformer layer, where
the self-attention mechanism cannot differentiate such
“neighbors”. It is therefore not surprising that we have
the following negative result (proof in Appendix B.1.2).

Theorem 3.2. Without taking tuple indices as inputs,
Ak is strictly less expressive than k-WL.

Higher-Order Graph Transformers

The limited expressive power of Ak is not desirable:
It suffers from high computational cost – indeed, the
complexity for one Ak layer is the same as k-IGN,
which is O(n2k). Furthermore, it is less expressive than
k-IGN (which is as expressive as k-WL).

A natural step forward is to make Ak more expressive
through structural enhancements. Given the discussion
of the use of “indices” in k-WL earlier, a natural strategy
is to bring in structural information by augmenting the
inputs with tuple indices. Indeed, as Theorem 3.3 below
shows, this enhancement improves the expressiveness
to the same as k-WL. Here we take the k-dimensional
tuple indices as the model inputs, where each index
i ∈ [n]k is the multi-index of the same definition as in
k-IGN (Maron et al., 2018).

Theorem 3.3. For inputs X ∈ Rnk×(d+k) where each
element is a concatenation of a d-dimensional tuple fea-
ture and k-dimensional index of the tuple, one layer of
Ak with latent dimension O(k) and k heads augmented
with input MLPs, residual connection feed-forward lay-
ers can approximate one k-WL iteration arbitrarily
well. If the softmax function is replaced by element-
wise ReLU activation, Ak can exactly simulate k-WL.

Here we provide some brief comments on Theorem 3.3.
It is interesting to see that Ak with ReLU activation
augmented by tuple indices can simulate k -WL and
thus is permutation invariant. Unfortunately, unlike
k-IGN, the resulting model is not guaranteed to be
permutation invariant to choices of tuple indices - for
example, the output of the softmax version of Ak is
not permutation invariant to the tuple indices. Hence
the above theorem is only of theoretical interest. Note
that the same issue also applies to TokenGT (Kim
et al., 2022) – in fact, they assume that each node
has a distinct orthonormal vector as a “node identifier”,
which is an even stronger requirement than using just
indices. Each node identifier needs a size of O(n), thus
TokenGT requires more time complexity (O(n2k+1))
to achieve k-WL expressiveness than our construction
(O(n2k)). Our proof is also different from that of Kim
et al. (2022). Instead of approximating the equivalence
class basis in k-IGN as they do, we directly simulate
k-WL. See Appendix B.1.2 for the proof of the above
theorem, as well as more discussions regarding our
advantages over the result of Kim et al. (2022).

4 EFFICIENT AND EXPRESSIVE
HIGH-ORDER GRAPH
TRANSFORMERS

The plain order-k graph transformer model Ak suf-
fers from O(n2k) time complexity, limited expressive
power (Theorem 3.2) or broken permutation invariance

(Theorem 3.3). In this section, we explore sparse high-
order graph transformers to address these issues. In
particular, in Section 4.1, we study a more general
kernelization strategy to sparsify self-attentions. The
more interesting exploration is presented in Section
4.2, where we inject graph structure inductive biases to
improve efficiency, while maintaining or even improving
the expressive power of the resulting model. In Section
4.3, we also discuss how to reduce the computational
complexity by using a reduced set of k-tuples with most
details in Appendix C. The proofs of all the theorems
in this section are in Appendix B.2.

Contrary to the explicit use of indexing as in Theorem
3.3 (as well as the use of orthonormal node identifiers
for TokenGT Kim et al. (2022)), all the models in this
section do not require explicit indices as part of input
features, and the resulting attention layer is permuta-
tion equivariant.

4.1 Kernelized Attention

Kernelized attention has been commonly used for
(standard) transformers (Choromanski et al., 2020;
Katharopoulos et al., 2020). In this subsection, we gen-
eralize kernelized attention to higher-order transform-
ers, reducing the complexity from O(n2kd) to O(nkd2),
where d is the feature dimension. We also provide a
theoretical analysis of such generalization.

Such a generalization is rather straightforward. This
is because the order-k self-attention layer essentially
has the same structure as a standard self-attention
layer, where the only difference is that the input tokens
are now those k-tuples (instead of nodes in the stan-
dard transformer). For completeness, we include the
formulation here. Specifically, a single head order-k
self-attention layer can be re-formulated as

Xi =

nk∑
j=1

κ(XiQ,XjK)∑nk

l=1 κ(XiQ,XlK)
· (XjV) (6)

where κ : Rd×Rd → R is the softmax kernel κ(x,y) =
exp(x⊤y). The kernel trick approximates the softmax
via κ(x,y) =< Φ(x),Φ(y) >≈ ϕ(x)Tϕ(y) where the
first equation is by Mercer’s theorem and the latter is
a low-dimensional approximation with transformation
ϕ : Rd → Rm. In Performer (Choromanski et al., 2020),

ϕ(x) =
exp
(
− ||X||22

2

)
√
m

[exp(w⊤
1 x), . . . , exp(w

⊤
mx)] where

wk ∼ N (0, Id). In Linear Transformer (Katharopoulos
et al., 2020), ϕ(x) = elu(x) + 1. Then we can further
rewrite the attention as

Xi =

(
ϕ(XiQ)⊤

∑nk

j=1

(
ϕ(XjK)⊗ (XjV)

))⊤
ϕ(XiQ)⊤

∑nk

l=1 ϕ(XlK)
(7)

Cai Zhou, Rose Yu, Yusu Wang

1

2

3

Original graph

1,21,1 1,3

2,22,1 2,3

3,23,1 3,3

1,21,1 1,3

2,22,1 2,3

3,23,1 3,3

2 2

1&2

1

1

1,21,1 1,3

2,22,1 2,3

3,23,1 3,3

2

1

1

1,21,1 1,3

2,22,1 2,3

3,23,1 3,3

VT

(a) Global attention (b) Neighbor attention

(c) Local neighbor attention (d) Virtual tuple attention

j

i

VT

j

j

Tuple j

Query tuple i

Virtual tuple

Attention with
global tuple

Attention with tuple

in j-th k -neighbor

Attention with tuple
in j-th local neighbor

Attention with
virtual tuple

Figure 1: Variants of k-th order self-attention, i.e. Ak and its sparse forms. In the figure order k = 2, number of
nodes n = 3. For simplicity, we only show the attention of query token i = (1, 2), and all nk (real) tuples are
calculated with the same rule. The dashed lines are only for aesthetic illustration. (a) Global attention (plain
Ak), the query token computes attention with all nk tuples. (b) Neighbor attention, the query token computes
attention with its k-neighbors; k-neighbor is of the same definition as in k-WL. (c) Local neighbor attention,
where the query token computes attention with only its local neighbors; local neighbor is of the same definition
as in (Morris et al., 2020). (d) Virtual tuple attention, the query token only computes attention with the virtual
tuples (we only display one for simplicity), while each virtual tuple computes attention with all other real tuples.

where ⊗ is the outer product. Note that the two
summations

∑nk

j=1

(
ϕ(XjK) ⊗ (XjV)

)
∈ Rmd′ and∑nk

l=1 ϕ(XlK) are shared for all query tokens, while
the former has the bottleneck complexity O(nkmd′).
Again, since m, d′ are comparable to d in scale , the
total time complexity of kernelized Ak is O(nkd2). The
following results show whether k-IGN and kernelized
Ak can approximate each other.
Theorem 4.1. k-IGN can approximate kernelized Ak

with Linear Transformer or Performer architectures
arbitrarily well. Kernelized Ak is strictly less powerful
than k-IGN.

4.2 Sparse Attention via Neighbor, Local
Neighbor and Virtual Tuple

The aforementioned kernel tricks reduce model com-
plexity from the perspective of computation and are
applicable to general higher-order transformer. How-
ever, their attention mechanisms are still dense, in the
sense that every query token aggregates information
from all other tokens. Additionally, we haven’t incor-
porated any inductive biases of graph and topology.

In this section, we aim to design sparse attention mech-
anisms that have the same or even stronger expressive
power compared with full attention Ak. This could
be possible, because when each tuple only computes
attention with local tuples (generalized ’neighbors’ de-
fined according to certain rules), the model becomes
not only sparse in computation, but also aware of part
of structural information, which could be regarded as
some sort of enhancement.

In particular, we explore three types of sparsification
strategies (see Figure 1), and study both their compu-
tational complexity and expressiveness. Let [n] denote
the set of integers from 1 to n. In all the constructions
below, we will index all graph nodes (arbitrarily) from 1
to n, and index each k-tuple by i = (i1, . . . , ik) ∈ [n]k.
These indices will only be used in the selection of
“neighbors”, and the resulting attention layer will be
permutation equivariant/invariant.

Neighbor Attention. The first variant is called
neighbor attention mechanism. Similar to the k-WL
procedure (recall Eqn (1)), given a k-tuple i ∈ [n]k, its
j-th k-neighbor is the n number of k-tuples in the set

Higher-Order Graph Transformers

{{ψj(i, u) | u ∈ [n]}}, where ψj(i, u) means replacing
the j-th element in i with u. In the (multi-head) k-
order neighbor attention, denoted as ANgbh

k , each query
tuple i only computes its attention with its k number
of k-neighbors (each consists of n number of k-tuples)
in each head respectively and concatenates the results.
Particularly, when the model has k heads,(

ANgbh
k (X,X)

)
i
= Concat

[
softmax

(
(xiQ

j)⊤

(
x[ψj(i,u)|u∈[n]]K

j
))(

x[ψj(i,u)|u∈[n]]V
j
∣∣j ∈ [k]

)] (8)

where x[ψj(i,u)|u∈[n]] ∈ Rn×d, j ∈ [k] is just the fea-
ture of j-th neighbor of i, and Qj ∈ Rd×dk ,Kj ∈
Rd×dk , V j ∈ Rd×d′(j ∈ [k]) are weight matrices (pa-
rameters) of the j-th head. One may easily observe
that this neighbor attention ANgbh

k resembles k-WL
algorithm, as they both update their representations
using its k-neighbors. Now we show (proof in Ap-
pendix B.2.2) that neighbor attention ANgbh

k is as pow-
erful as k-WL, making it more expressive than Ak while
enjoying much lower complexity.

Theorem 4.2. Neighbor attention ANgbh
k with residual

connection, output MLPs, and k heads is as powerful as
k-WL. Each such layer has O(nk+1kd) time complexity.

Interestingly, while ANgbh
k may assign different weights

to the n tuples inside each k-neighbor via attentions,
it has the same theoretical expressive power as k-IGN.
But neighbor attention is much more efficient than k-
IGN (O(nk+1kd) vs O(n2kd)). Furthermore, we think
that this more flexible attention might make neighbor
attention better than k-IGN in real-world tasks, even
regardless of their time complexity.

Local Neighbor Attention. Morris et al. (2020)
proposed a family of δ-k-dimensional WL algorithms,
which is strictly more powerful than k-WL. Denote by
ij the j th element in tuple i and N(i) the neighbors
of node i. Compared with the k-neighbor in k-WL,
δ-k-WL augments each j-th k-neighbor with the con-
nectivity between the node being replaced ij and the
n nodes replacing it. Formally, δ-k-WL computes

ctδ-k(i, G) = Hash
(
ct−1
δ-k (i, G),(

{{
(
ct−1
δ-k (ψj(i, u), G), adj(ij , u)

)
|u ∈ V (G)}}

∣∣j ∈ [k]
))
(9)

where adj(ij , u) = 1(u ∈ N(ij)) is a boolean variable
indicating whether node ij and node u are connected.
Using the idea of δ-k-WL, we can make ANgbh

k poten-
tially more expressive than k-WL by incorporating
adj(ij , u) via attention bias or attention reweighting,

which we denote as ANgbh+
k , see Appendix B.2 for de-

tails.

However, despite being potentially more expressive,
ANgbh+
k has the same O(nk+1kd) complexity as ANgbh

k .
Now we continue to present a more sparse attention
variant, namely local neighbor attention. Recall Morris
et al. (2020) proposed a local variant algorithm named
δ-k-LWL, which only updates each tuple with its local
neighbors. Specifically, the j-th local neighbor of a
k-tuple i is defined as

NLocal
j (i) := {{ψj(i, v)|v ∈ N(ij)}} (10)

which is a multi-set consists of D(ij) k-tuples where
D(ij) is the degree of node ij - each tuple replacing
element ij with its neighboring nodes N(ij) (instead
of all n possible nodes as in k-WL). More detailed
descriptions are given in Appendix B.2.2.

Inspired by Morris et al. (2020), we propose the (k-
head) order-k local neighbor attention ALN

k ,(
ALN
k (X,X)

)
i
= Concat

[
softmax

(
(xiQ

j)⊤

(
x[ψj(i,u)|u∈N(ij)]K

j
))(

x[ψj(i,u)|u∈N(ij)]V
j
∣∣j ∈ [k]

)]
(11)

where Qj ,Kj , V j(j ∈ [k]) are weight parameters of the
j-th head. In other words, ALN

k updates each query
tuple according to its local neighbors defined in Equa-
tion (10). For example, it is easy to see that the
attention in Figure 1 (c) is sparser than Figure 1 (b);
e.g., tuple (1, 3) is in the 2-th 2-neighbor of query tuple
(1, 2), but not in the 2-th local neighbor of (1, 2) since
nodes 2 and 3 are disconnected.

Theorem 4.3. Local neighbor attention ALN
k with resid-

ual connection, output MLPs, and k heads is at least as
powerful as δ-k-LWL. Each such layer has O(nkkD̄d)
time complexity, where D̄ is the average node degree.

Virtual Tuple Attention. We now present the last
model of sparse attention, virtual tuple attention. Vir-
tual node is a widely adopted heuristic technique for
message-passing neural networks (MPNNs), and more
recently graph transformers (Shirzad et al., 2023). The
approximation power and expressive power of MPNN
+ virtual node have been studied in Cai et al. (2023).

Similar to the idea of the virtual node, we introduce a
virtual tuple and propose the virtual tuple attention
AVT
k , where the virtual tuple computes attention with

all other real tuples. Each real tuple only computes
attention with the virtual tuple (as there is only one
key in this case, the softmax always outputs 1, thus
similar to message passing). The time complexity of
virtual tuple attention is O(nkd), since each of the nk

Cai Zhou, Rose Yu, Yusu Wang

real k-tuples only needs to compute attention with the
virtual tuple. Note that in practice, we can use multiple
virtual tuples to capture more complex patterns.

Mathematically, denote the feature of the virtual tu-
ple as x′, the input is augmented to X ′ = [X, x′] ∈
R(nk+1)×d, then AVT

k is calculated as

AVT
k (X ′,X ′)nk+1 = softmax

(
(x′Q1)⊤(XK1)

)
XV 1

(12)

AVT
k (X ′,X ′)i = x′V 2 (13)

Note that as Ak does not include tuple indices nor
equivalence class basis, its properties are the same as
first-order transformer with nk one-dimensional input
tokens. Therefore, when allowed to be augmented with
input and output MLPs, virtual tuple attention can be
regarded as a natural extension of “simplified MPNN
+ virtual node” (Cai et al., 2023), and analysis of that
“simplified MPNN + virtual node” can be applied di-
rectly to AVT

k . See Appendix B.2 for more precise
descriptions and details. Following the results of (Cai
et al., 2023), we thus obtain:
Proposition 4.4. O(1) depth and O(1) width virtual
tuple attention AVT

k can approximate kernelized Ak with
Performer or Linear-Transformer architecture arbitrar-
ily well.

Analogously, as O(1) depth and O(nd) width MPNN +
VN can simulate full standard transformer (Cai et al.,
2023), the O(1) depth and O(nkd) width virtual tuple
attention can thus simulate full Ak transformer.

4.3 Reducing Input k-tuples

The three sparse attention models in the previous sec-
tion require O(nk) complexity which is dictated by the
number of input tokens (i.e. the number of k-tuples).
An orthogonal direction to reduce computational com-
plexity is to reduce the number of query tokens.

Simplicial Attention. Instead of all k-tuples, one
can select a subset of k-tuples according to certain sys-
tematic rules. Simplicial complexes provide a language
to model such choices. For example, in applied and
computational topology, one approach is to view an
input graph as the 1-skeleton of a hidden space, and
there have been various works to construct a simplicial
complex from the graph that can reflect low or high-
dimensional topological features of this hidden space
(Dey and Wang, 2022). Note that a p-dimensional sim-
plex is intuitively spanned by p+ 1 number of vertices.
As an example, a simple way to construct a p-simplicial
is to include all those (p+1)-tuples of graph nodes that
form a clique in the input graph. (The resulting sim-
plicial complex is the so-called flag complex, or clique

complex.) In general, the number of (k − 1)-simplices
is much smaller than all possible k-tuples of graph
nodes. In Appendix C, we propose simplicial atten-
tion variants and analyze their theoretical properties.
To distinguish from the tuple-based transformers in our
main text, we use AS to denote simplicial transformers
both in Table 1 and in experimental results.

Random Sampling. Finally, we remark that one can
also use a random subset of k-tuples (either uniformly,
or w.r.t. some probabilistic distribution depending on
input graph structure). We provide some empirical
results of sampling connected 3-tuples in Appendix E.
It will be an interesting future direction to explore how
to obtain theoretical guarantees in expressiveness or
approximation power under certain sampling strategies.

5 EXPERIMENTS

We conduct experiments on both synthetic datasets
and real-world datasets. Using our sparse attention
techniques, we can now scale order-2 graph transform-
ers to datasets containing relatively large graphs, such
as the long-range graph benchmark (LRGB) (Dwivedi
et al., 2022). Our higher-order graph transformers
and simplicial transformers show superior expressivity
on synthetic datasets, and achieve competitive perfor-
mance across several real-world datasets.

Due to limited space, we leave most experimental re-
sults, implementation details, and in-depth analysis in
Appendix E. As representative results, we report the
performance of our different higher-order transformer
variants on (1) synthetic datasets with structure aware-
ness tasks (Muller et al., 2023), including detecting
edges and distinguishing non-isomorphic circular skip
links (CSL) graphs, see Table 2; (2) Zinc12k (Dwivedi
et al., 2020), a popular molecular property prediction
dataset, see Table 3. See Appendix E for more results,
including substructure counting for synthetic tasks, as
well as OGB (Hu et al., 2020) and LRGB (Dwivedi
et al., 2022) benchmarks for real-world tasks. Our main
goal is to verify the theoretical properties or scalability
of different models, and provide empirical analysis on
their pros and cons.

Results on Synthetic Datasets. Table 2 shows the
results on some synthetic datasets to study the capa-
bility of various models to capture graph “structures”.
Edge detection is a binary classification task to predict
whether there is an edge connecting two given nodes,
while the CSL test is a ten-way classification task to
distinguish non-isomorphic circular skip links (CSL)
graphs, which requires awareness of distance. We adopt
the same experimental settings and baseline choices as
(Muller et al., 2023). Edge detection is an easier task,

Higher-Order Graph Transformers

Table 2: Structure awareness tasks on synthetic
datasets. Shown is the mean ± std of 5 runs with
different random seeds. Perfect results are shown in
bold. The experimental settings and baseline results
are adopted from (Muller et al., 2023).

Model Edge detection CSL
2-way Accuracy ↑ 10-way Accuracy ↑

GIN 98.11± 1.78 10.00± 0.00
Graphormer 97.67± 0.97 90.00± 0.00

Transformer 55.84± 0.32 10.00± 0.00
Transformer+LapPE 98.00± 1.03 100.00 ± 0.00
Transformer+RWSE 97.11± 1.73 100.00 ± 0.00

A2 100.00 ± 0.00 10.00± 0.00
A2+LapPE 100.00 ± 0.00 100.00 ± 0.00
A2+RWSE 100.00 ± 0.00 100.00 ± 0.00

ALN
2 100.00 ± 0.00 100.00 ± 0.00

ALN
2 +LapPE 100.00 ± 0.00 100.00 ± 0.00

ALN
2 +RWSE 100.00 ± 0.00 100.00 ± 0.00

AS0:1+attn.bias 97.80± 0.33 36.67± 0.00
AS0:1+attn.bias+LapPE 98.47± 0.11 100.00 ± 0.00
AS0:1+attn.bias+RWSE 98.10± 0.25 100.00 ± 0.00

ASSN
0:1 96.16± 0.37 20.00± 0.00

ASSN
0:1+LapPE 99.98± 0.01 100.00 ± 0.00

ASSN
0:1+RWSE 99.54± 0.08 100.00 ± 0.00

while CSL requires expressivity more powerful than
1-WL. Indeed, without position/structure encodings
(PE/SE), we see that GIN, Transformer, and A2 fail
in CSL task. Order-2 transformer with local neighbor
attention ALN

2 achieves perfect results in both tasks
without any PE/SE, indicating that it sometimes can
distinguish non-isomorphism graphs that 1-WL fails.
This is consistent with our theory in Theorem 4.3, as
it is at least as expressive as δ-2-LWL, which might dif-
ferentiate graphs not distinguished by 1-WL (although
it may also fail to distinguish graphs that can be differ-
entiated by 1-WL). In general, these high-order models
also benefit from PE and SE.

Results on Real-World Datasets. Zinc-
12k (Dwivedi et al., 2020) is a popular real-world
dataset containing 12k molecules. The task is a
graph-level molecular property (constrained solubility)
regression. We adopt the experimental settings and
SOTA baseline results from (Rampasek et al., 2022).
The results in Table 3 reveal that: (1) A2-Performer
and AVT

2 achieve similar results, verifying Theorem 4.4;
however, there are no theoretical guarantees in
their expressive power, which aligns with the fact
that their results are not highly competitive. (2)
Both A2 and simplicial transformer AS0:1 achieve
satisfactory results (< 0.09 test MAE) when using only
(local) neighbors or simplex neighbors, revealing the
importance of local structure awareness. (3) Although
virtual tuple/simplex attention does not provably
enhance expressivity, these empirical mechanisms can

Table 3: Results on ZINC (Dwivedi et al., 2020). Shown
is the mean ± std of 5 runs with different random
seeds. Highlighted are the first, second and third results.
Experimental settings and baseline results are adopted
from (Rampasek et al., 2022).

Model Test MAE ↓
GCN (Kipf and Welling, 2016) 0.367± 0.011
GAT (Velickovic et al., 2017) 0.384± 0.007
GatedGCN (Bresson and Laurent, 2017) 0.282± 0.015
PNA (Corso et al., 2020) 0.188± 0.004

CIN (Bodnar et al., 2021a) 0.079± 0.006
GIN-AK+ (Zhao et al., 2021) 0.080± 0.001

SAN (Kreuzer et al., 2021) 0.139± 0.006
Graphormer (Ying et al., 2021) 0.122± 0.006
EGT (Hussain et al., 2021) 0.108± 0.009
GPS (Rampasek et al., 2022) 0.070± 0.004

A2-Performer (ours) 0.155± 0.008
AVT

2 (ours) 0.186± 0.009

ANgbh
2 (ours) 0.081± 0.005

ANgbh+
2 (ours) 0.075± 0.005

ALN
2 (ours) 0.086± 0.006

ALN+VT
2 (ours) 0.069± 0.005

ASSN
0:1 (ours) 0.080± 0.004

ASSN+VS
0:1 (ours) 0.073± 0.004

improve the practical performance of other sparse
attentions: ALN+VT

2 and ASSN+VS
0:1 achieve 0.069 and

0.073 test MAE respectively (better or comparable
with SOTA GPS results (Rampasek et al., 2022),
indicating the empirical strength of global information.

In addition, we also consider positional encoding for
our high-order transformers. The approaches to add
positional encoding to our high-order transformers are
detailed in Appendix E.1. We verify the effective-
ness of positional encoding to our models on Zinc and
Alchemy (Chen et al., 2019), both of which are graph-
level regression datasets to predict molecule proper-
ties. In both datasets, we consider positional encodings
(PE), including SignNet/BasisNet Lim et al. (2022),
SPE Huang et al. (2023) and MAP Ma et al. (2023a).
Baseline results are adopted from these papers corre-
spondingly.

As shown in Table 4 and Table 5, on both Zinc and
Alchemy datasets, our high-order transformers can
benefit from positional encoding, and achieve much
more competitive performance compared with simple
message-passing based GNNs.

In summary, our models are the first second-order
attention-only methods that achieve results compara-
ble to SOTA methods on Zinc (and also other real-
world datasets in Appendix E). From the perspective

Cai Zhou, Rose Yu, Yusu Wang

Table 4: More results on ZINC with positional encod-
ings (PE). Shown is the mean ± std of 4 runs with
different random seeds.

Model PE Test MAE ↓
GatedGCN SignNet(8) 0.121± 0.005
GatedGCN SignNet(All) 0.100± 0.007
GatedGCN MAP(8) 0.120± 0.002
GINE SignNet(16) 0.147± 0.005
GINE SignNet(All) 0.102± 0.002
PNA SignNet(8) 0.105± 0.007
PNA SignNet(All) 0.084± 0.006
PNA MAP(8) 0.101± 0.005
GIN SPE(8) 0.074± 0.001
GIN SPE(All) 0.069± 0.004

ASSN
0:1 (ours) SignNet(8) 0.079± 0.005

ASSN
0:1 (ours) SignNet(All) 0.078± 0.006

ASSN+VS
0:1 (ours) SPE(8) 0.072± 0.005

ASSN+VS
0:1 (ours) SPE(All) 0.067± 0.005

Table 5: Experiments on Alchemy Chen et al. (2019)
with positional encodings (PE). Shown is the mean ±
std of 4 runs with different random seeds.

Model PE Test MAE ↓
GIN None 0.112± 0.001
GIN SignNet(All) 0.113± 0.001
GIN BasisNet(All) 0.110± 0.001
GIN SPE(All) 0.108± 0.001

ANgbh+
2 (ours) SPE(All) 0.094± 0.001

ALN+VT
2 (ours) SPE(All) 0.090± 0.001

ASSN+VS
0:1 (ours) SPE(All) 0.087± 0.001

of model size and time complexity, our models are com-
parable to graphGPS Rampasek et al. (2022) (SOTA
graph transformer): our models have similar numbers
of parameters as GPS. In terms of running time: local
neighbor, virtual tuple attention ALN+VT

2 and simpli-
cial transformers have similar running time as GPS
(∼ 20s/epoch). Our slowest variant ANgbh

2 is only about
two times slower than GPS. See Appendix E for full
details.

6 CONCLUDING REMARKS

In this work, we theoretically analyze the expressive
power of higher-order graph transformers and systemat-
ically explore the design space for efficient and expres-
sive high-order graph transformers. We propose sparse
high-order attention mechanisms that enjoy both low
computational complexity and high expressivity. More-

over, the theoretical results and architectural designs
can be naturally extended to simplicial transformers.
We provide preliminary experimental results to verify
the performance of our high-order graph transformers
and their scalability.

For future work, we note that most existing theoretical
analysis of graph neural networks and their higher-
order analysis center around expressiveness w.r.t. k-
WL hierarchies. However, expressive power is only
one interesting factor and may not be able to capture
other dimensions of the effectiveness of a graph model.
For example, while a graph transformer does not have
more expressive power than a standard MPNN, it is
believed to be more effective in capturing certain long-
range interactions. It will be interesting to explore
other ways to measure the power of graph learning
models and study the pros and cons of transformer vs.
non-transformer models.

Acknowledgements

This work was supported in part by the U.S. Army
Research Office under Army-ECASE award W911NF-
07-R-0003-03, the U.S. Department Of Energy, Office of
Science, IARPA HAYSTAC Program, CDC-RFA-FT-
23-0069, NSF Grants #2205093, #2146343,#2134274,
#2112665 and #2310411.

References

Alberti, S., Dern, N., Thesing, L., and Kutyniok, G.
(2023). Sumformer: Universal approximation for
efficient transformers. ArXiv, abs/2307.02301.

Azizian, W. and Lelarge, M. (2020). Expressive power
of invariant and equivariant graph neural networks.
In International Conference on Learning Represen-
tations.

Beaini, D., Passaro, S., L’etourneau, V., Hamilton,
W. L., Corso, G., and Lio’, P. (2020). Directional
graph networks. In International Conference on
Machine Learning.

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Long-
former: The long-document transformer. ArXiv,
abs/2004.05150.

Bo, D., Shi, C., Wang, L., and Liao, R. (2023). Spec-
former: Spectral graph neural networks meet trans-
formers. ArXiv, abs/2303.01028.

Bodnar, C., Frasca, F., Otter, N., Wang, Y. G., Lio’,
P., Montúfar, G., and Bronstein, M. M. (2021a).
Weisfeiler and lehman go cellular: Cw networks. In
Neural Information Processing Systems.

Bodnar, C., Frasca, F., Wang, Y. G., Otter, N., Mon-
túfar, G., Lio’, P., and Bronstein, M. M. (2021b).

Higher-Order Graph Transformers

Weisfeiler and lehman go topological: Message pass-
ing simplicial networks. ArXiv, abs/2103.03212.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein,
M. M. (2023). Improving graph neural network ex-
pressivity via subgraph isomorphism counting. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 45(1):657–668.

Bresson, X. and Laurent, T. (2017). Residual gated
graph convnets. ArXiv, abs/1711.07553.

Briand, E. (2004). When is the algebra of multisym-
metric polynomials generated by the elementary mul-
tisymmetric polynomials.

Cai, C., Hy, T. S., Yu, R., and Wang, Y. (2023). On
the connection between mpnn and graph transformer.
ArXiv, abs/2301.11956.

Cai, J.-Y., Fürer, M., and Immerman, N. (1989). An
optimal lower bound on the number of variables for
graph identification. Combinatorica, 12:389–410.

Chen, G., Chen, P., Hsieh, C.-Y., Lee, C.-K., Liao,
B., Liao, R., Liu, W., Qiu, J., Sun, Q., Tang,
J., et al. (2019). Alchemy: A quantum chemistry
dataset for benchmarking ai models. arXiv preprint
arXiv:1906.09427.

Chen, Z., Chen, L., Villar, S., and Bruna, J. (2020).
Can graph neural networks count substructures?
CoRR, abs/2002.04025.

Choromanski, K., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlós, T., Hawkins, P., Davis, J.,
Mohiuddin, A., Kaiser, L., Belanger, D., Colwell,
L. J., and Weller, A. (2020). Rethinking attention
with performers. ArXiv, abs/2009.14794.

Correia, G. M., Niculae, V., and Martins, A. F. T.
(2019). Adaptively sparse transformers. In Con-
ference on Empirical Methods in Natural Language
Processing.

Corso, G., Cavalleri, L., Beaini, D., Lio’, P., and Velick-
ovic, P. (2020). Principal neighbourhood aggregation
for graph nets. ArXiv, abs/2004.05718.

Cybenko, G. V. (1989). Approximation by superposi-
tions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2:303–314.

Dey, T. K. and Wang, Y. (2022). Computational Topol-
ogy for Data Analysis. Cambridge University Press.
452 pages.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Min-
derer, M., Heigold, G., Gelly, S., Uszkoreit, J., and
Houlsby, N. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. ArXiv,
abs/2010.11929.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y.,
and Bresson, X. (2020). Benchmarking graph neural
networks. ArXiv, abs/2003.00982.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y.,
and Bresson, X. (2021). Graph neural networks with
learnable structural and positional representations.
ArXiv, abs/2110.07875.

Dwivedi, V. P., Rampáek, L., Galkin, M., Parviz, A.,
Wolf, G., Luu, A. T., and Beaini, D. (2022). Long
range graph benchmark. ArXiv, abs/2206.08164.

Ebli, S., Defferrard, M., and Spreemann, G. (2020).
Simplicial neural networks. ArXiv, abs/2010.03633.

Geerts, F. (2020a). The expressive power of kth-order
invariant graph networks. ArXiv, abs/2007.12035.

Geerts, F. (2020b). Walk message passing neural
networks and second-order graph neural networks.
ArXiv, abs/2006.09499.

Ghani, R. (2001). Cmu. world wide knowledge base
(web-kb) project.

Giusti, L., Battiloro, C., Lorenzo, P. D., Sardellitti,
S., and Barbarossa, S. (2022). Simplicial attention
neural networks. ArXiv, abs/2203.07485.

Goh, C. W. J., Bodnar, C., and Lio’, P. (2022). Sim-
plicial attention networks. ArXiv, abs/2204.09455.

Hornik, K. (1991). Approximation capabilities of multi-
layer feedforward networks. Neural Networks, 4:251–
257.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. (2020). Open graph
benchmark: Datasets for machine learning on graphs.
ArXiv, abs/2005.00687.

Huang, Y., Lu, W., Robinson, J., Yang, Y., Zhang,
M., Jegelka, S., and Li, P. (2023). On the stability
of expressive positional encodings for graph neural
networks. arXiv preprint arXiv:2310.02579.

Hussain, M. S., Zaki, M. J., and Subramanian, D.
(2021). Global self-attention as a replacement for
graph convolution. Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret,
F. (2020). Transformers are rnns: Fast autoregressive
transformers with linear attention. In International
Conference on Machine Learning.

Kim, J., Nguyen, T. D., Min, S., Cho, S., Lee, M.,
Lee, H., and Hong, S. (2022). Pure transformers are
powerful graph learners. ArXiv, abs/2207.02505.

Kim, J., Oh, S., and Hong, S. (2021). Transformers
generalize deepsets and can be extended to graphs
and hypergraphs. ArXiv, abs/2110.14416.

Cai Zhou, Rose Yu, Yusu Wang

Kipf, T. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. ArXiv,
abs/1609.02907.

Kitaev, N., Kaiser, L., and Levskaya, A. (2020).
Reformer: The efficient transformer. ArXiv,
abs/2001.04451.

Knill, O. (2023). Spectral monotonicity of the hodge
laplacian. ArXiv, abs/2304.00901.

Kreuzer, D., Beaini, D., Hamilton, W. L., L’etourneau,
V., and Tossou, P. (2021). Rethinking graph
transformers with spectral attention. ArXiv,
abs/2106.03893.

Lim, D., Robinson, J., Zhao, L., Smidt, T., Sra, S.,
Maron, H., and Jegelka, S. (2022). Sign and basis
invariant networks for spectral graph representation
learning. arXiv preprint arXiv:2202.13013.

Ma, J., Wang, Y., and Wang, Y. (2023a). Laplacian
canonization: A minimalist approach to sign and
basis invariant spectral embedding. arXiv preprint
arXiv:2310.18716.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P. H. S., and Lim, S. N.
(2023b). Graph inductive biases in transformers
without message passing. ArXiv, abs/2305.17589.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman,
Y. (2019). Provably powerful graph networks. ArXiv,
abs/1905.11136.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman,
Y. (2018). Invariant and equivariant graph networks.
ArXiv, abs/1812.09902.

Morris, C., Rattan, G., and Mutzel, P. (2020). Weis-
feiler and leman go sparse: Towards scalable higher-
order graph embeddings. In Advances in Neural
Information Processing Systems.

Muller, L., Galkin, M., Morris, C., and Rampávsek,
L. (2023). Attending to graph transformers. ArXiv,
abs/2302.04181.

Rampasek, L., Galkin, M., Dwivedi, V. P., Luu, A. T.,
Wolf, G., and Beaini, D. (2022). Recipe for a gen-
eral, powerful, scalable graph transformer. ArXiv,
abs/2205.12454.

Roddenberry, T. M. and Segarra, S. (2019). Hodgenet:
Graph neural networks for edge data. 2019 53rd
Asilomar Conference on Signals, Systems, and Com-
puters, pages 220–224.

Roy, A., Saffar, M. T., Vaswani, A., and Grangier, D.
(2020). Efficient content-based sparse attention with
routing transformers. Transactions of the Association
for Computational Linguistics, 9:53–68.

Sanford, C., Hsu, D., and Telgarsky, M. (2023). Repre-
sentational strengths and limitations of transformers.
ArXiv, abs/2306.02896.

Segol, N. and Lipman, Y. (2019). On universal equiv-
ariant set networks. ArXiv, abs/1910.02421.

Shirzad, H., Velingker, A., Venkatachalam, B., Suther-
land, D. J., and Sinop, A. K. (2023). Ex-
phormer: Sparse transformers for graphs. ArXiv,
abs/2303.06147.

Spielman, D. (2009). Spectral graph theory. In lecture
notes.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. (2017). Attention is all you need. In NIPS.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Lio’, P., and Bengio, Y. (2017). Graph attention
networks. ArXiv, abs/1710.10903.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma,
H. (2020). Linformer: Self-attention with linear
complexity. ArXiv, abs/2006.04768.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018).
How powerful are graph neural networks? ArXiv,
abs/1810.00826.

Yang, M. and Isufi, E. (2023). Convolutional learning
on simplicial complexes. ArXiv, abs/2301.11163.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D.,
Shen, Y., and Liu, T.-Y. (2021). Do transformers
really perform bad for graph representation? In
Neural Information Processing Systems.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie,
J., Alberti, C., Ontañón, S., Pham, P., Ravula, A.,
Wang, Q., Yang, L., and Ahmed, A. (2020). Big
bird: Transformers for longer sequences. ArXiv,
abs/2007.14062.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R., and Smola, A. (2018). Deep sets.

Zhao, L., Jin, W., Akoglu, L., and Shah, N. (2021).
From stars to subgraphs: Uplifting any gnn with
local structure awareness. ArXiv, abs/2110.03753.

Zhou, C., Wang, X., and Zhang, M. (2023a). Facili-
tating graph neural networks with random walk on
simplicial complexes. In Thirty-seventh Conference
on Neural Information Processing Systems.

Zhou, C., Wang, X., and Zhang, M. (2023b). From
relational pooling to subgraph gnns: A universal
framework for more expressive graph neural networks.
In International Conference on Machine Learning.

Higher-Order Graph Transformers

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes/No/Not Applicable]

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable]

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes/No/Not Applicable]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes/No/Not Applicable]

(b) The license information of the assets, if appli-
cable. [Yes/No/Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes/No/Not
Applicable]

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Yes/No/Not Appli-
cable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Yes/No/Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applica-
ble]

Cai Zhou, Rose Yu, Yusu Wang

A RELATED WORK

Sparse Transformers. Transformers have achieved great success in natural language processing and, more
recently, computer vision tasks. Since Transformers were proposed, researchers have been making an effort to
reduce the computational complexity through linear or sparse attention mechanisms. It is noticeable that most
relevant works focus on transformers for NLP and are not specially designed for graph learning. These methods
can be broadly classified into two categories: (1) computing internal sparse attention through architecture design,
which reduces the complexity; (2) computing full attention while encouraging the models to learn sparse patterns.
The former categories try to capture global information at a lower computation cost. In comparison, the latter
categories do not reduce complexity; instead, they expect the learned patterns are sparse so that the extracted
representations contain important features of the data, which also eases interpretability.

The first class of internal sparse transformers have low complexity via designing their algorithms and mechanisms
to compute attention scores. In the following complexity analysis, the length of sequence is denoted as n, while we
ignore the hidden dimension d. Linformer (Wang et al., 2020) proposes to project n keys and values into k groups,
so that the complexity is reduced from O(n2) to O(n× k). In practice, however, nk is usually set to a constant
factor like 4, so Linformer actually reduces the complexity by a constant scale, while revealing worse performance
than full attention. Routing Transformer (Roy et al., 2020) only computes attention between queries and a small
subset of their nearest keys found by k-means, reducing the complexity to O(n1.5). Similarly, Reformer (Kitaev
et al., 2020) also computes local attention, except that the nearest keys are sorted by locality sensitive hashing
(LSH), which results in a complexity of O(n log n). Longformer (Beltagy et al., 2020) introduces a localized
sliding window based mask and a few global mask to reduce computation. Moreover, BigBird (Zaheer et al., 2020)
combines three types of sparse attention mechanisms: random attention, sliding window attention, and attention
with global tokens. Further, Performer (Choromanski et al., 2020) uses the Fast Attention through Positive
Orthogonal Random features (FAVOR+) mechanism to approximate Softmax kernels in attention, which reduces
the computation to linear complexity. Linear transformer (Katharopoulos et al., 2020) also applies linearized
attention with kernel tricks, which approximates another nonlinear activation kernel.

Now we turn to the second category of transformers, which compute full attention but encourage the models to
discover sparse patterns. Since reducing complexity is our main purpose, we will not pay much attention on this
type. As a representative model, Correia et al. (2019) enables attention heads to have flexible, context-dependent
sparse patterns, which is achieved by replacing softmax with α-entmax: a differentiable generalization of softmax
that allows low-scoring items to be assigned precisely zero weight.

Graph Transformers. Graph transformers have recently achieved great attention. Since global self-attention
across nodes is unable to reflect graph structures, there are a number of works exploring graph-specific architectural
designs. For example, GAT (Velickovic et al., 2017) restricts attention within local neighboring nodes, and
Graphormer (Ying et al., 2021) injects edge information into the attention mechanism via attention bias. More
recently, some graph transformers (Rampasek et al., 2022; Bo et al., 2023; Ma et al., 2023b; Shirzad et al., 2023)
have achieved even greater success with State-of-the-Art performance in a variety of tasks. GPS (Rampasek
et al., 2022) combines the attention mechanism with message passing and positional/structure encodings, while
Specformer (Bo et al., 2023) embeds spectral features into graph transformers. GRIT (Ma et al., 2023b) builds
a transformer architecture without message passing, which consists of learned relative positional encodings
initialized with random walk probabilities and a flexible attention mechanism that updates node and node-pair
representations. However, while there are a great number of high-order graph networks like k-IGN (Maron et al.,
2018), high-order graph transformers have been rarely studied besides primary results in Kim et al. (2021, 2022).
People also have limited understanding towards the theoretical expressive power of graph transformers, especially
for high-order cases.

Simplicial Networks. Besides applying transformers directly on higher order k-tuples, there is another
direction worth exploring, namely higher order simplicial complexes. Instead of all k-tuples, simplicial networks
and simplicial transformers focus on k-order (directed) simplices that are usually much more sparse. For example,
there are always n2 2-tuples in a graph with n vertex, while there are m 2-simplices in the simplicial complex
extended from the vertex of the original (directed) graph, where m ≤ n2 is the number of edges in the graph. The
internal sparsity nature of simplices indicates the advantages of attention computed within higher-order simplices
over higher-order tuples.

Higher-Order Graph Transformers

Early simplicial networks are mainly based on message-passing or convolution mechanisms. Roddenberry and
Segarra (2019) is the first to generalize GNN to 1-simplicial (edge) data. Bodnar et al. (2021b); Yang and
Isufi (2023) formulate the message-passing and convolutional networks on simplices and simplicial complexes.
Bodnar et al. (2021a) further generalize the message-passing and convolutional networks to cellular complexes. In
comparison, attention-based methods on simplicial complexes are less complete. Goh et al. (2022); Giusti et al.
(2022) still restrict their attention within the scope of upper and lower adjacent simplices. There is no current
work that computes full attention across all k-simplices (and more generally simplices of different orders), nor has
the expressive power of these simplicial attention networks been analyzed.

High Order Transformers. Kim et al. (2022) proposed a possible form of high-order transformers, which
computes attention for input order-k tensors X ∈ Rnk

as follows,

Attn(X)j =

H∑
h=1

∑
i

αhi,jXiV
hOh (14)

αh = softmax

(
XQh(XKh)⊤√

dk

)
(15)

where the attention αh ∈ Rnk×nk

, and Qh,Kh ∈ Rd×dk , V h ∈ Rd×dv , Oh ∈ Rdv×d are learnable weights.

Kim et al. (2022) proves that with augmented node and type identifiers as input, the above attention can
approximate any equivalence class basis tensor Bµ ∈ Rn

2k

of linear equivariant layer Lk→k (Maron et al., 2018)
arbitrary well. Consequently, Kim et al. (2022) concludes that a k-Transformer with node and type identifiers is
at least as expressive as k-IGN, and hence k-WL. In our work, we incorporate this type of architecture into a
larger family of transformers. We also show that a slightly modified transformer can simulate k-WL in a different
way from approximating the equivalence class basis as described in Kim et al. (2022).

In the previously described transformer, the input is a high-order tensor X ∈ Rnk

, while the parameters
Qh,Kh, V h, Oh are actually the same as the standard transformer. Sanford et al. (2023) propose another form
of “high-order” transformer, which has the same X ∈ Rn input tokens as in the standard transformer, but is
parameterized with high-order weight.

Recall the notations for the column-wise Kronecker product. For vectors v1 ∈ Rn1 ,v2 ∈ Rn2 , their Kronecker
product v1 ⊗ v2 ∈ Rn1n2 is defined as (v1 ⊗ v2)i1−1n2 + i2 = v1

i1
v2
i2

. The column-wise Kronecker product of
matrices A1 ∈ Rn1×m and A2 ∈ Rn2×m is defined as

A1 ⋆A2 =
[
A1

1| . . . |A1
m

]
⋆
[
A2

1| . . . |A2
m

]
=
[
A1

1 ⊗A2
1| . . . |A1

m ⊗A2
m

]
∈ Rn1n2×m (16)

The s-order self-attention in Sanford et al. (2023) is then defined as follows (Definition 7 in Sanford et al.
(2023)). For order s ≥ 2, input dimension d, output dimension d′, and weight matrices Q,K1, . . . ,Ks−1 ∈ Rd×dk ,
V 1, . . . , V s−1 ∈ Rd×d′ , an s-order self-attention unit is a function fQ,K,V : Rn×d → Rn×d′ defined as

fQ,K,V (X) = softmax
(

XQ︸︷︷︸
∈Rn×dk

(
(XK1) ⋆ · · · ⋆ (XKs−1)

)⊤)︸ ︷︷ ︸
∈Rdk×ns−1

(
(XV 1) ⋆ · · · ⋆ (XV s−1)

)︸ ︷︷ ︸
∈Rns−1×d′

(17)

Sanford et al. (2023) gives some primary analysis on the representation strength of the above high-order transformer
over standard transformer (referred as 2-order in their paper, yet 1-order in our framework). Since the transformers
in (Sanford et al., 2023) are different from our formulation, we leave relevant discussions in Appendix D.

B PROOF AND ADDITIONAL RESULTS

B.1 Proof and Additional Results for Section 3

B.1.1 Notations and Preliminaries

To start with, we first recall the definitions of k-neighbors in k-WL and k-FWL. For k-WL, recall

Cai Zhou, Rose Yu, Yusu Wang

Nj(i) =

{
(i1, . . . , ij−1, i

′, ij+1, . . . , ik)
∣∣∣i′ ∈ [n]

}
. (18)

Nj(i), j ∈ [k] is the j-th neighbor of tuple i in WL algorithm, which is a set of n different k-tuples. Each tuple i
has k such k-neighbors, and during the update stage of the k-WL algorithm, these k neighbors are aggregated as
an ordered set of multisets:

WL :Ct+1
i = hash

(
Ct

i ,

(
{{Ct

v

∣∣v ∈ Nj(i)}}
∣∣∣j ∈ [k]

))
(19)

Note that this expression is equivalent to Equation (1) in the main text. There is another form of graph isomorphic
algorithm called Folklore Weisfeiler-Lehman (FWL) test, and the difference between k-WL and k-FWL lies in
their tuple color update process. Concretely, the neighbors for k-FWL (Maron et al., 2019) are defined as

NF
j (i) =

(
(j, i2, . . . , ik), (i1, j, . . . , ik), . . . , (i1, . . . , ik−1, j)

)
(20)

NF
j (i), j ∈ [n] is the j-th neighborhood of tuple i used by FWL, which is an ordered set of k different k-tuples.

Each tuple has n such k-neighbors, while they are aggregated as a multi-set of ordered sets in FWL update rule:

FWL :Ct+1
i = hash

(
Ct

i ,

{{(
Ct

v

∣∣v ∈ NF
j (i)

)∣∣∣j ∈ [n]

}})
(21)

We clarify the following technical details following (Maron et al., 2019), which are applied in most of the relevant
papers on expressive power. We adopt these techniques and conclusions throughout our proof. The techniques
explain how neural networks (including transformer variants) can implement WL-like algorithms.

• (Remark 1) Color representation. We use tensors to represent colors. Concretely, the color of the k-tuple
i ∈ [n]k is represented by a vector x ∈ Rd for some latent dimension d, and the entire color set of all k-tuples
is X ∈ Rnk×d.

• (Remark 2) Multiset representation. Unlike tuples, the multiset should be invariant to the order of nodes, i.e.,
g ·X should be the same for all permutations g ∈ Sn, where Sn is the symmetric group. As pointed out by
(Maron et al., 2019), Power-sum Multi-symmetric Polynomials (PMP) (Briand, 2004) are Sn invariant, thus
can be used to encode multisets. As shown in (Maron et al., 2019), PMP generates a unique representation
of each multiset, which enables us to represent multisets as tensors.

• (Remark 3) Hash function. Suppose that there are two color tensors C ∈ Rnk×a,C ′ ∈ Rnk×b, the hash
function in Equation (19) and Equation (21) can be implemented through a simple concatenation, that is,
the new tensor representation for each k-tuple i of color pair (Ci,C

′
i) is simply (C,C ′) ∈ Rnk×(a+b).

• (Remark 4) Input and initialization. We adopt the same input and initialization of k-tuples as in Appendix
C.1 of (Maron et al., 2019), which can faithfully represent the isomorphism type of each k-tuple. That is,
two tuples have identical initialization if and only if they have the same isomorphism types.

• (Remark 5) Update step of WL-like algorithm. In every update step of WL-like algorithms, when we
use PMP to represent tuple colors, the color representation of a new multiset {{j}} consisting of tuples
j with known colors Bj can be implemented by the summation of polynomial transform over Bj , i.e.
C({{j}}) =

∑
j τ(Bj), where τ is a specifically designed polynomial function that is injective, see (Maron

et al., 2019) for more details. In practical networks, the polynomial function can be replaced by an MLP using
the universal approximation power of MLPs (Hornik, 1991). When the approximation power is sufficiently
small, the injective properties can still be preserved to achieve the upper bound of the theoretical expressive
power (Maron et al., 2019). Most relevant papers adopt this assumption, and we follow this as well in this
paper. However, we emphasize that practical networks may not achieve their full expressive power when they

Higher-Order Graph Transformers

(a) G (b) H

Figure 2: A pair of non-isomorphic graphs that can be distinguished by 1-WL and 2-WL, but cannot be
distinguished by A1 and A2. For k ≥ 3, both k-WL and Ak can distinguish them.

are parameterized with learnable MLPs and embedding layers, other than strictly using PMP and polynomial
functions. As for new tuples consisting of known tuples, as discussed above, the new color representation is
simply the concatenation of known tuple colors.

• (Remark 6) Histogram computation. The final step to determine the graph isomorphism is the histogram
of tuple colors H(B). Suppose the number of colors is b (which is finite for finite graphs); we apply a
tuple-wise MLP m : Rd → Rb mapping each tuple color to a one-hot vector in Rb. Summing over the one-hot
vectors via a summing-invariant operator h : Rnk×b → Rb, we obtain an injective and permutation-invariant
representation of the color histogram: H(B) = h(m(B)).

In addition, while considering the approximation power of neural networks, we always assume that the inputs and
network weights are compact. Specifically, for input X, we have ∀i ∈ [n]k, ||Xi|| < C1, and for weight matrices of
the transformer, we have ||Q|| < C2, ||K|| < C2, ||V || < C2. This is a mild and proper condition on feature space
and parameter space which generally holds for practical networks.

B.1.2 Approximating Power and Theoretical Expressive Power

Now we prove the results of the expressive power of higher-order transformers.

Theorem B.1. (Theorem 3.2 in the main text.) Without additional input, Ak is strictly less expressive than
k-WL and k-IGN.

Proof. The proof is straightforward. Without any extra inputs (including positional encodings, structural
encodings, and tuple indices), the initialization of every k-tuple is the same as in k-WL, see Maron et al. (2019) for
more details. Then according to Definition 3.1 in the main text, tuples with identical initialization representations
(colors) always obtain identical updates, suggesting that the color histogram always remains the same as the
initial one. Consequently, the expressive power of Ak is the same as the 0-th step (initialization) of k-WL. There
exist non-isomorphic graphs that can be distinguished by stable k-WL histograms but not its initialization, yet
the other direction does not hold. Therefore, Ak is strictly less expressive than k-WL.

As a corollary, since the initialization of (k + 1)-WL is always strictly more powerful than the initialization of
k-WL, we conclude that Ak+1 is strictly more powerful than Ak.

Corollary B.2. ∀k ≥ 1, Ak+1 is strictly more powerful than Ak.

Proof. We have already shown in the above proof of Theorem 3.2 that Ak is as powerful as the initialization as
k-WL. It is known that for all k ≥ 1, the initialization of k+1-WL is strictly more powerful than the initialization
of k-WL. This holds because the initialization of (k+1)-WL can always distinguish whether there is a (k+1)-clique
in the graph, while the initialization of k-WL fails.

Figure 2 provides an example of a pair of non-isomorphic graphs that can be distinguished by 1-WL and 2-WL,
but cannot be distinguished by A1 and A2. Here we demonstrate the procedure. In the graph pairs, n = 4. In

Cai Zhou, Rose Yu, Yusu Wang

our illustration, for simplicity, we use different alphabets a, b, . . . to represent different features Xi using a hash
function.

For k = 1, we consider 1-WL and A1 (i.e., the standard first-order graph transformer). In the initialization stage,
both 1-WL and A1 have identical 1-tuple (node) feature initialization for both graphs G and H:

1−WL(G)(0) = {{a, a, a, a}}, 1−WL(H)(0) = {{a, a, a, a}} (22)

A1(G)
(0) = {{a, a, a, a}}, A1(H)(0) = {{a, a, a, a}} (23)

That is, both 1-WL and A1 cannot distinguish G and H through their initialization. However, after one iteration,
denote b = Hash(a, {{a, a}}), c = Hash(a, {{a}}), d = Hash(a, {{a, a, a}}), and e as the updated feature calculated
by A1, we have

1−WL(G)(1) = {{b, b, b, b}}, 1−WL(H)(1) = {{b, b, c, d}} (24)

A1(G)
(1) = {{e, e, e, e}}, A1(H)(1) = {{e, e, e, e}} (25)

Therefore, 1-WL can distinguish two graphs since all four nodes in G have degree 2, yet the degree histogram in
H is {{2, 2, 1, 3}}. In comparison, A1 has identical representation for G and H. The histograms calculated by
A1 are actually not updated compared with the initialization. By deduction, we can easily verify that for all
iterations t ≥ 1, we always have

A1(G)
(t) = {{a(t), a(t), a(t), a(t)}}, A1(H)(t) = {{a(t), a(t), a(t), a(t)}} (26)

which implies that A1 always fails in distinguishing G and H. This observation is also in agreement with the fact
that the plain first-order graph transformer cannot capture any edge information.

For k = 2 the same conclusion can be drawn. In the initialization stage, there are n2 = 16 number of 2-tuples.
Denote a = (i, i), b = (i, j), i ̸= j, eij = eji = 1 where eij = eji = 1 indicates that there is an undirected edge
between the nodes i, j, and finally c = (i, j), i ̸= j, eij = eji = 0 which implies that i, j are not connected. Thus,

2−WL(G)(0) = {{a, a, a, a, b, b, b, b, b, b, b, b, c, c, c, c}}, 2−WL(H)(0) = {{a, a, a, a, b, b, b, b, b, b, b, b, c, c, c, c}}
(27)

A2(G)
(0) = {{a, a, a, a, b, b, b, b, b, b, b, b, c, c, c, c}}, A2(H)(0) = {{a, a, a, a, b, b, b, b, b, b, b, b, c, c, c, c}}

(28)

After one iteration, denote

d = Hash(a, ({{a, b, b, c}}, {{a, b, b, c}})) (29)
e = Hash(a, ({{a, b, c, c}}, {{a, b, c, c}})) (30)
f = Hash(a, ({{a, b, b, b}}, {{a, b, b, b}})) (31)
g = Hash(b, ({{a, b, b, c}}, {{a, b, b, c}})) (32)
h = Hash(b, ({{a, b, b, b}}, {{a, b, c, c}})) (33)
o = Hash(b, ({{a, b, c, c}}, {{a, b, b, b}})) (34)
p = Hash(b, ({{a, b, b, b}}, {{a, b, b, c}})) (35)
q = Hash(b, ({{a, b, b, c}}, {{a, b, b, b}})) (36)
r = Hash(c, ({{a, b, b, c}}, {{a, b, b, c}})) (37)
s = Hash(c, ({{a, b, c, c}}, {{a, b, b, c}})) (38)
u = Hash(c, ({{a, b, b, c}}, {{a, b, c, c}})) (39)

Higher-Order Graph Transformers

Then 2-WL gives

2−WL(G)(1) = {{d, d, d, d, g, g, g, g, g, g, g, g, r, r, r, r}} (40)

2−WL(H)(1) = {{d, d, e, f, g, g, h, o, p, p, q, q, s, s, u, u}} (41)

The histogram of G and H are obvious different, therefore 2-WL can distinguish them within one iteration, which
is consistent with the fact that 2-WL is as powerful as 1-WL.

In comparison, although Ak is able to incorporate edge information in the initialization stage, it is unable to
learn further connectivity of the graph structure through the fully dense attention mechanism. Indeed, for ∀t ≥ 1,
the histogram of A2 after t iterations always gives

A2(G)
(t) = {{a(t), a(t), a(t), a(t), b(t), b(t), b(t), b(t), b(t), b(t), b(t), b(t), c(t), c(t), c(t), c(t)}} (42)

A2(H)(t) = {{a(t), a(t), a(t), a(t), b(t), b(t), b(t), b(t), b(t), b(t), b(t), b(t), c(t), c(t), c(t), c(t)}} (43)

hence always fail to distinguish two graphs.

For k ≥ 3, note that there is a 3-clique in H but not in G. Therefore, both 3-WL and Ak can distinguish them
via initialization.

In summary, a plain Ak is always strictly less expressive than k-WL and k-IGN in terms of distinguishing
non-isomorphic graphs. However, for real-world graphs where the features are represented by a continuous-
valued vector, the attention mechanism provides the potential for powerful representation learning. Particularly,
with enhancements such as positional/structural encodings (PE/SE) and our sparse attention mechanisms, we
can introduce asymmetry and variety into tuple features, obtaining powerful representations over graphs. See
Appendix B for more theoretical analysis, and Appendix E for more implementation details and practical benefits.

Now we analyze the enhancement of augmenting inputs with tuple indices. As emphasized in our main text, this
enhancement has potential drawbacks including breaking permutation invariance (which is also the case for (Kim
et al., 2022)), hence is only of theoretical interest.

Theorem B.3. (Theorem 3.3 in main text.) For inputs X ∈ Rnk×(d+k) where each element is a concatenation
of a d-dimensional tuple feature and k-dimension index of the tuple, one layer of Ak with hidden dimension O(k)
and k heads augmented with input MLPs and residual connection can approximate one k-WL iteration arbitrarily
well. If the softmax function is replaced by element-wise ReLU activation, Ak can exactly simulate k-WL.

Proof. We breakdown the update function of k-WL Equation (19) into several parts. The core idea of our
construction is to select k-neighbors in Equation (18) via the multiplication of queries and keys, so that the
update only involves the values (colors) of these neighboring tuples. As there are k different neighbors for each
tuple (depending on the position of indices being replaced), they are implemented by k heads of transformer,
and the concatenation of representations output by independent heads naturally implements the ordered set
of neighbors as k heads are allowed to be parameterized with different weights. Additionally, the color of the
previous iteration and the hash function can be implemented by residual connection and feed forward layers (see
Maron et al. (2019) for more details).

First, we show that the h-th head with input MLPs ϕj : Rd+k → R2(k−1) and the softmax function
softmax

(
ϕ(X)Q(ϕ(X)K)⊤

)
can approximate the selection of the h-th neighbor arbitrarily well. As we only want

to reserve the index information in this part, inspired by (Sanford et al., 2023), we define the tuple-wise MLP as

1

c
ϕh(xi)Q

h = ϕh(xi)K
h = ϕh

(
[zi, i]

)
=
[
cos(

2πi1
M

), sin(
2πi1
M

), . . . , cos(
2πih−1

M
), sin(

2πih−1

M
), (44)

cos(
2πih+1

M
), sin(

2πih+1

M
), . . . , cos(

2πik
M

), sin(
2πik
M

)
]
∈ R2(k−1) (45)

where i is the k-dimensional multi-index for the tuple, zi is the d-dimensional tuple feature being dropped for
queries and keys, M ≥ n is a constant integer and c ∈ R is a positive constant. That is to say, we drop the h-th
dimension of the index and reserve the remaining k − 1 ones to find the tuples as candidates of h-th neighbor,

Cai Zhou, Rose Yu, Yusu Wang

who have identical indices as the query except the h-th index. Then for query tuple i and potential target tuple
j, we have

(ϕh(xi)Q
h)⊤ϕh(xj)K

h = c
∑

l∈[k],l ̸=h

cos
(2π(il − jl)

M

)
(46)

Since M ≥ n, the above value reaches its maximum c(k − 1) if and only if il = jl for all l ∈ [k], l ̸= h, which
exactly corresponds to the indices of n tuples in the h-th neighbor of i. Then let c → ∞, the output of the
softmax would be

(
softmax

(
(ϕh(X)Qh)(ϕh(X)Kh)⊤

))
i,j

→
{

1
n , j ∈ Nh(i)
0, j /∈ Nh(i)

(47)

Then the output of the h-th head attention would be(
softmax

(
(ϕh(X)Qh)(ϕh(X)Kh)⊤

)
XV h

)
i

→ 1

n

∑
j∈Nh(i)

V h (48)

where the values xjV h only retain information of tuple features zj and drop the indices to represent the color
of tuple j in the last iteration (along with some possible injective transformation). Since n is constant, the 1

n
factor does not affect the injectivity. The above results show that we can successfully represent Nh(i), which is a
multiset of n different k-tuples. According to Remark 5, the summation operation can injectively represent the
color of Nh(i) - although another MLP τ is needed before summing the color representations, this could be easily
achieved by adding another input MLP (which is always the case whenever we need to use Remark 5).

It is remarkable that the above approximation can be exact if we replace the softmax with an element-wise ReLU
activation:

ReLU

(
(ϕh(xi)Q

h)⊤ϕh(xj)K
h − (c(k − 1− 1

M2
))

)
=

{
c
M2 , j ∈ Nh(i)
0, j /∈ Nh(i)

(49)

The rest of the proof is more straightforward. As we have k different heads with different parameters, we repeat
the above procedure to get all the k neighbors of i. The set of neighbors can be represented by concatenating the
output of these heads with the fixed order h = 1, . . . , k. The color of i in the previous iteration Ct

i is reserved
by residual connection. Then, according to Remark 3, the final hash function can be exactly implemented by
concatenation of Ct

i and Equation (48) (Equation (49)).

Our construction and proof are different from (Kim et al., 2022). Instead of directly simulating k-WL as we
do, they aimed to approximate equivalence class basis in k-IGN. In detail, they proposed to augment tuple
features with auxiliary inputs, namely ’node identifiers’ and ’type identifiers’ for Ak transformer, so that the latter
can approximate equivalence class basis in k-IGN and thus k-WL. However, compared with their constructions,
our version reveals at least the following advantages: (1) The input dimension of their construction is at least
O(d+kn) since they use orthogonal basis for each node as node identifiers, growing with n makes it unrealistic. In
comparison, our construction needs only d+ k input dimension and O(k) hidden dimension, which are constants
independent of n. Furthermore, since we need to index integers from 1 to n, we need k log n bits in total; in
comparison, since orthonormal vectors can consist of 0, 1, resulting kn bits. (2) Their node identifiers serve as
explicit features instead of only indexing, making their results stochastic and not permutation invariant. Actually,
the role of their identifiers is the labeling method in (Zhou et al., 2023b) to break the symmetry, but they do not
perform relational pooling (summing over all possible permutations of labeling orders) to maintain permutation
invariance of the models. In contrast, our output is deterministic, and if we use the exact parameterization of the
ReLU version as in the proof above, the output of our transformer is permutation invariant, although generally
the output is not permutation invariant for arbitrary parameterization. (3) The transformer parameters are
required to be infinite in their construction, while we can avoid this problem with the ReLU activation version.
We refer readers to (Kim et al., 2022) for more details of their methods.

Higher-Order Graph Transformers

B.2 Proof and Additional Results for Section 4

B.2.1 Kernelized Attention

Literature so far has already applied linear/kernelized attention to standard graph transformers (Rampasek et al.,
2022), yet rarely to high-order graph transformers. Kim et al. (2022) indeed applied Performer to their TokenGT,
but their TokenGT is actually not a strict second-order transformer since it apparently does not consider all
2-tuples. Moreover, the theoretical guarantees of the kernelized transformers are still left unexplored, especially
for high-order cases. We now formally state the definition of kernelized attention. Similar to the case for standard
(one-dimensional) transformer, a single head k-order self-attention layer can be reformed as

X
(l+1)
i =

nk∑
j=1

κ(Q(l)X
(l)
i ,K(l)X

(l)
j)∑nk

k=1 κ(Q
(l)X

(l)
i ,K(l)X

(l)
k)

(̇V (l)X
(l)
j) (50)

where κ : Rd × Rd → R is the softmax kernel κ(x,y) = exp(xTy). The kernel trick approximates the softmax via

κ(x,y) =< Φ(x),Φ(y) >≈ ϕ(x)Tϕ(y) (51)

where the first equation is by Mercer’s theorem and the latter is a low-dimensional approximation with random trans-

formation ϕ : Rd → Rm. In Performer Choromanski et al. (2020), ϕ(x) =
exp
(
− ||X||22

2

)
√
m

[exp(wT
1 x), . . . , exp(w

T
mx)]

where wk ∼ N (0, Id). In Linear Transformer Katharopoulos et al. (2020), ϕ(x) = elu(x)+ 1. Then we can further
rewrite the attention as

Xi =

(
ϕ(XiQ)⊤

∑nk

j=1

(
ϕ(XjK)⊗ (XjV)

))⊤
ϕ(XiQ)⊤

∑nk

l=1 ϕ(XlK)
(52)

where ⊗ is the outer product. Note that the two summations
∑nk

j=1

(
ϕ(XjK)⊗(XjV)

)
∈ Rmd′ and

∑nk

l=1 ϕ(XlK)

are shared for all query tokens, while the former has the bottleneck complexity O(nkmd′). Again, since m, d′ are
of the same magnitude as d, the total time complexity of kernelized Ak is O(nkd2).

Now we prove the approximation results of k-IGN to kernelized Ak in the main text.

Theorem B.4. (Theorem 4.1 in main text.) k-IGN can approximate kernelized Ak with Linear Transformer or
Performer architectures arbitrarily well. Ak with Linear Transformer or Performer architectures is strictly less
powerful than k-IGN.

Proof. First, we emphasize the fact that although having nk input tokens, a pure Ak treats all tuples homogeneously
regardless of equivalence classes. Consequently, the Ak with Linear Transformer or Performer architectures is of
the same form as DeepSets and Sumformer(Alberti et al., 2023).

To show that k-IGN can approximate kernelized Ak, we construct identical weights for all equivalence classes in
k-IGN, namely wµ = w, bλ = b,∀µ ∈ [bell(2k)],∀λ ∈ [bell(k)]. Then the update function in Equation (4) (in main
text) reduces to

Lk→k(X)i =
∑
j

Xjw + b (53)

Compared with MPNN of the first order, k-IGN aggregates global information from all nk tuples by design, hence
can recover the role of “virtual node” in MPNN (Cai et al., 2023). We will show that Equation (53) with residual
connection and output MLPs can approximate kernelized Ak with Linear Transformer and Performer architectures
arbitrarily well in O(1) depth and O(1) width. A similar technique is used in our proof of Theorem 4.4 and (Cai
et al., 2023).

Cai Zhou, Rose Yu, Yusu Wang

We now consider another k-IGN layer along with an input MLP. The input MLP computes ϕ(XjK)⊗ (XjV) for
all j, and the k-IGN layer computes

∑
j ϕ(XjK)⊗ (XjV).

Under the compactness assumption of inputs and weight matrices (stated in Appendix B.1.1), we consider the
following construction of two k-IGN layers along with residual connection and output MLPs ψ. Mathematically,

X
(new)
i := ψ

(
Xi,

∑
j

Xjw + b,
∑
j

ϕ(XjK)⊗ (XjV)
)
=

(
ϕ(XiQ)⊤

∑
j

(
ϕ(XjK)⊗ (XjV)

))⊤
ϕ(XiQ)⊤

∑
l ϕ(XlK)

(54)

where the first equality is our construction and the second equality is the target that we aim to approximate
arbitrarily well with O(1) width and O(1) depth. Analogously to (Cai et al., 2023), by the uniform continuity
of the functions, it suffices to show that 1) we can approximate ϕ, 2) we can approximate multiplication and
vector-scalar division, 3) the denominator ϕ(XiQ)⊤

∑
l ϕ(XlK) is uniformly lower bounded by a positive number

for any node features.

For 1), each component of ϕ (in both Performer and Linear Transformer)is continuous, and all inputs XjQ,XjK
lie in compact domain. Therefore, ϕ can be approximated arbitrarily well by MLP with O(1) width and O(1)
depth (Cybenko, 1989).

For 2), since multiplication and vector-scalar division operations are all continuous, it suffices to show that all
operands lie in a compact domain. This is true since X(0) and Q,K, V are all compact, ϕ is continuous and that
n is fixed. Lastly, since all these operations do not involve n, the depth and width of MLPs are constant in n.

For 3), we need to show that the denominator is bound by a positive constant. In Performer, ϕ(X) =

exp
(
− ||X||22

2

)
√
m

[exp(wT
1 X), . . . , exp(wT

mX)] where wk ∼ N (0, Id). As ||wT
i X|| ≤ ||wi|| · ||X||, which implies that

exp(wT
i X) is lower bounded by exp(−||wi|| · ||X||). Consequently, the demonimator ϕ(XiQ)

⊤∑
l ϕ(XlK) is

lower bounded. For Linear Transformer, the proof is essentially the same as Performer. It boils down to showing
that ϕ(x) = elu(x) + 1 is continuous and positive, which is indeed the case.

In conclusion, k-IGN along with residual connection and output MLPs can approximate kernelized Ak with
Linear Transformer or Performer architectures arbitrarily well.

For the second part that kernelized Ak is strictly less expressive than k-IGN, recall that we have already shown
that even Ak without kernelization is strictly less expressive than k-WL (and thus k-IGN). Kernelized Ak (either
with Linear Transformer or Performer architectures) cannot be more expressive than Ak without kernelization as
we can always find a set of parameters of Ak to implement a given kernelized Ak. Consequently, kernelized Ak

with Linear Transformer or Performer architectures is strictly less powerful than k-IGN.

Note that Linear equivalence layers in Equation (53) augmented with input and output MLPs suffices a
Sumformer (Alberti et al., 2023) by definition, which can simulate Ak (without kernelization) within O(1) depth
and

(
nk+d
d

)
− 1 width for continuous function (Alberti et al., 2023). The same conclusion can be drawn using the

concept of Deepset (Zaheer et al., 2018; Segol and Lipman, 2019). Although the computation complexity is not
practical (note that k-IGN and k-PPGN require the same complexity to achieve full expressivity as well (Maron
et al., 2019)), the theoretical implication is interesting: it verifies our previous conclusion that Ak cannot be more
expressive than k-IGN.

B.2.2 Sparse Attention Mechanisms

As we emphasize in the main texts, the plain global attention Ak has limited expressive power due to the
homogeneous dense attention scheme (Theorem 3.2). We now provide proofs for the expressive power of our
proposed sparse attention mechanisms.

Neighbor Attention. Analogous to k-WL, neighbor attention mechanism benefits from locality and sparsity,
revealing expressive power with a lower bound of k-WL. We first restate the definition of neighbor atention,(

ANgbh
k (X,X)

)
i
= Concat

[
softmax

(
(xiQ

j)
(
x[ψj(i,u)|u∈[n]]K

j
)⊤)(

x[ψj(i,u)|u∈[n]]V
j
)∣∣∣j ∈ [k]

]
(55)

Higher-Order Graph Transformers

where ψj(i, u) means replacing the j-th element in i with u, and thus x[ψj(i,u)|u∈[n]] ∈ Rn×d, j ∈ [k] is just the
feature of the j-th neighbor of tuple i.
Theorem B.5. (Theorem 4.2 in main text.) Neighbor attention ANgbh

k with residual connection, output MLPs
and k heads is as powerful as k-WL.

Proof. We first show that ANgbh
k simulates k-WL by constructing a set of parameter weights. Define

xiQ
j = 1⃗, i ∈ Rn

k

, j ∈ [k] (56)

xiK
j = 1⃗, i ∈ Rn

k

, j ∈ [k] (57)

where Qj ,Kj , V j(j ∈ [k]) are weight parameters of the j-th head. Note again that we always allow bias terms for
Q,K, V matrices in practical transformers; thus, the above equation can be easily obtained by setting weight
matrices as zero matrices and setting the bias as 1⃗ ∈ Rdk , where dk is the hidden dimension of query and keys
which is a constant.

Then the neighbor attention reduces to(
ANgbh
k (X,X)

)
i
= Concat

[
1

n

∑
u∈[n]

xψj(i,u)V
j
∣∣∣j ∈ [k]

]
(58)

In graph-level isomorphism task, we consider a fixed graph pair, thus n is a fixed constant for our interested
graphs, which will not affect the ability to implement hash function. Therefore, the neighbor attention aggregates
information from tuples in j-th k-neighbor through the j-th head, for j ∈ [k] respectively, which is exactly what
k-WL does in Equation (19). Then according to (Maron et al., 2019) (and similar to the techniques we used in
Section 3), the concat operation, residual connection and output MLPs implement an ordered set (), ct−1

k (v, G)
and the hash function in Equation (1) (in the main text) or Equation (19), thus completely simulating k-WL
with proper constructions.

The other side is because the attention described in Equation (8) (in the main text) is always an instance of
Equation (1) in the main text as long as we restrict the reception field to the k-neighbors.

In other words, ANgbh
k is actually a form of k-WL implementation. Although we need more layers of ANgbh

k (and
more k-WL iterations) to simulate one layer k-IGN, the neighbor attention is much lower in complexity while
having the same expressive power. Particularly, since one ANgbh

k layer is equivalent to one k-WL iteration, and
that (k − 1) iterations of k-WL simulates one k-IGN layer (Geerts, 2020a). Therefore, we need (k − 1) layers of
ANgbh
k to simulate one k-IGN layer, leading to O(nk+1k(k − 1)d) complexity (recall that in ANgbh

k each k-tuple
computes attention with k k-neighbors); it is still more efficient than one k-IGN with O(n2kd) complexity, though.
Additionally, as we discuss in the main text, although attention does not increase expressive power compared to
k-WL, it may improve real-world task performance due to more flexible attention-based aggregation compared
to naive homogeneous aggregation. A natural extension would be a dense Ak with complete tuple adjacent
information or equivalence class basis is as powerful as k-WL and thus k-IGN, yet the attention may lead to
stronger real-world performance.

Local Neighbor Attention. Now we move to the local neighbor attention ALN
k . Before we state our attention

mechanism, we first give a brief summary of the algorithms in (Morris et al., 2020).

Morris et al. (2020) proposed a family of δ-k-dimensional WL algorithms, which is more powerful than k-WL.
Additional to the k-neighbor in k-WL, δ-k-WL augments each j-th k-neighbor with the connectivity between the
node being replaced ij and the n nodes replacing it. Formally,

δ-k-WL :Ct+1
i = hash

(
Ct

i ,

(
{{Ct

j , adj(ij ,uj)
∣∣u ∈ Nj(i)}}

∣∣∣j ∈ [k]

))
(59)

Based on δ-k-WL, we can easily extend ANgbh
k to ANgbh+

k by incorporating additional structural information
adj(ij ,uj) via attention reweighting or attention bias, see Appendix E.1 for more details. Our ANgbh+

k can be

Cai Zhou, Rose Yu, Yusu Wang

regarded as the attention version of δ-k-WL and they are equivalent in expressive power, while both are strictly
more expressive than k-WL and ANgbh

k . Our experiments on both synthetic datasets and real-world datasets
verify the advantage of ANgbh+

k over ANgbh
k : the former universally reveal better performance without increasing

much computation cost: both ANgbh
k and ANgbh+

k have O(nk+1) complexity regarding n.

Now we continue to explain our local neighbor attention mechanism. Based on δ-k-WL, Morris et al. (2020)
further proposed a local variant of WL, namely δ-k-LWL, which defines the j-th local neighbor of tuple i:

NLocal
j (i) = {{ψj(i, v)|v ∈ N(ij)}} (60)

where ψj(i, v) means replacing the j-th element in i with v, and N(ij) refers to the (one-dimensional) neighbors
of node ij . δ-k-LWL is defined as

δ-k-LWL :Ct+1
i = hash

(
Ct

i ,

(
{{Ct

j

∣∣j ∈ NLocal
j (i)}}

∣∣∣j ∈ [k]

))
(61)

Morris et al. (2020) showed that δ-k-WL is at least as powerful than δ-k-LWL (the gap would be a histogram of
colors of full k-neighbor, as δ-k-WL is exactly as powerful as δ-k-LWL+, while the latter incorporates histogram
of k-neighbor colors compared with δ-k-LWL. Interested readers please refer to Morris et al. (2020) for more
details). While δ-k-WL is strictly more powerful than k-WL, the relation between δ-k-LWL and k-WL is unknown
due to the aforementioned gap. However, a significant advantage of δ-k-LWL over k-WL is its lower complexity
due to the sparsity of local neighbors compared with (full or global) k-neighbors, reducing the complexity from
O(nk+1)k to O(nkD̄k), where D̄ is the average node degree in the graph.

And now we are going to show that our local neighbor attention is at least as powerful as δ-k-LWL. Recall that
the (k-head) local neighbor attention ALN

k is defined as(
ALN
k (X,X)

)
i
= Concat

[
softmax

(
(xiQ

j)
(
x[ψj(i,u)|u∈N(ij)]K

j
)⊤)(

x[ψj(i,u)|u∈N(ij)]V
j
)∣∣∣j ∈ [k]

]
(62)

where N(ij) denotes the set of neighbors of the j-th element in tuple i, and ψj(i, u) still refers to replacing the
j-th element in i with u.
Theorem B.6. (Theorem 4.3 in main text.) Local neighbor attention ALN

k with residual connection, output MLPs
and k heads is at least as powerful as δ-k-LWL.

Proof. We use the same construction as in our proof for ANgbh
k . Define

xiQ
j = 1⃗ ∈ Rdk , i ∈ Rn

k

, j ∈ [k] (63)

xiK
j = 1⃗ ∈ Rdk , i ∈ Rn

k

, j ∈ [k] (64)
(65)

where dk is still the constant latent dimension. Then the local neighbor attention reduces to(
ALN
k (X,X)

)
i
= Concat

[
1

d(ij)

∑
u∈N(ij)

xψj(i,u)V
j
∣∣∣j ∈ [k]

]
(66)

where d(ij) is the degree of node ij . This is an instance of δ-k-LGNN (Morris et al., 2020) with mean aggregation,
which has the same expressive power as δ-k-LWL (Morris et al., 2020).

We can also provide proof for local neighbor attention with slight modifications under our theoretical framework
as in (Maron et al., 2019). According to Remark 5, if we want to keep the representation of multisets injective, a
summation instead of the “averaging” operation is needed, i.e. we want to eliminate the d(ij) factor:(

ALN
k (X,X)

)
i
= Concat

[∑
u∈N(ij)

xψj(i,u)V
j
∣∣∣j ∈ [k]

]
(67)

Higher-Order Graph Transformers

Several solutions are applicable to obatin Equation (67): (1) replace the softmax in local neighbor attention
with element-wise relu activation, so that the local neighbor attention changes to summation over tuples in each
local neighbor; (2) attach node degrees as part of the input, so that the output MLPs can multiply d(ij) back to
recover the summation operation. Hence, the local neighbor attention exactly aggregate information from tuples
in j-th local neighbor in the j-th head, for j ∈ [k] respectively. Then according to Remark 3 and Remark 5, the
concat operation, residual connection, and output MLPs completely simulate δ-k-LWL in Equation (61) with
proper constructions.

A direct corollary is that ALN
k is strictly less expressive than ANgbh+

k , since δ-k-LWL is strictly less expressive
than δ-k-WL (while the latter is strictly more expressive than k-WL). However, the relation between ALN

k and
k-WL is unknown: there are some non-isomorphic graph pairs that ALN

k can distinguish but k-WL fails (see the
CSL experiment in our main text), while the other direction is still an open question.

Virtual Tuple Attention. Finally we provide proofs for the virtual tuple attention mechanism. Recall the
definition of virtual tuple attention AVT

k is

AVT
k (X ′,X ′)nk+1 = softmax

(
(x′Q1)(XK1)⊤

)
XV 1 (68)

AVT
k (X ′,X ′)i = x′V 2 (69)

where the feature of virtual tuple is denoted as x′, and the input is augmented to X ′ = [X, x′] ∈ R(nk+1)×d.

Proposition B.7. (Proposition 4.4 in main text.) O(1) depth and O(1) width virtual tuple attention AVT
k can

approximate Ak with Performer or Linear-Transformer architecture arbitrarily well.

Proof. As stated before, all tuples are treated as one single equivalence class in Ak, its calculation in the Performer
or Linear-Transformer architecture is the same as the standard transformer A1 except for the number of tuples.
Therefore, Ak with kernel tricks can be directly reformed to the normal Performer or Linear-Transformer with
nk inputs from the same equivalence class. Hence the O(1) depth and O(1) width simplified MPNN + virtual
tuple (Cai et al., 2023) operating on nk input tokens can approximate Ak with Performer or Linear-Transformer
architecture arbitrarily well. As in (Cai et al., 2023), here ’simplified’ suggests that we ignore message passing
within real node neighbors, and the update function is parameterized with heterogeneous parameters for virtual
tuples and real tuples. However, all real tuples are treated as the same equivalence class.

Therefore, we only need to show that virtual tuple attention can recover simplified message passing neural
networks (operating on homogeneous k-tuples) + virtual tuple. To this end, we simply define

x′Q1 = 1,XK1 = 1⃗nk (70)

The virtual tuple attention reduces to

AVT
k (X ′,X ′)nk+1 =

1

nk

nk∑
i=1

XiV
1 (71)

AVT
k (X ′,X ′)i = x′V 2 (72)

When the above update function is augmented with input and output MLPs, it is exactly reduced to the update
function of the simplified MPNN + virtual tuple with mean aggregation function (Cai et al., 2023) which treats
all tuples as one equivalence class.

Denote input features as X(0), the kernelized Ak computes (the same as in Equation (52))

X
(new)
i =

(
ϕ(X

(0)
i Q)⊤

∑nk

j=1

(
ϕ(X

(0)
j K)⊗ (X

(0)
j V)

))⊤
ϕ(X

(0)
i Q)⊤

∑nk

l=1 ϕ(X
(0)
l K)

(73)

Cai Zhou, Rose Yu, Yusu Wang

Under the compactness assumption of the inputs and weight matrices (stated in Appendix B.1.1), we consider
the following construction of two layers of virtual tuple attention (along with the residual connection and MLP).
Intuitively, in the first layer (denoted by (1)), we first process each real node with an input MLP θ to compute
θ(X

(0)
j) := ReshapeTo1D

(
ϕ(X

(0)
j K)⊗ (X

(0)
j V)

)
; then through the first attention computation, the virtual tuple

has the feature x′(1) = 1
nk

∑nk

i=1[X
(0)
i , θ(X

(0)
i)]V 1(1), where [·, ·] means concatenation, and the the input dimension

for V 1(1) would be (m+ 1)d instead of d. We will show that along with the output MLPs ψ(1) and the feature
x′(1), the virtual tuple can approximate

∑nk

j=1

(
ϕ(X

(0)
j K)⊗ (X

(0)
j V)

)
and

∑nk

l=1 ϕ(X
(0)
l K). Then in the second

layer denoted by (2), the virtual tuple sends the message back to each real tuple, and each real tuple i can
approximate Equation (52) along with the feature x′(1)V 2(2), X(0)

i (via residual connection) and the output MLPs
ψ(2).

In detail, in the first layer along with the MLPs ψ(1), the virtual tuple updates as follows,

x′(1) := ψ(1)(
1

nk

nk∑
i=1

[X
(0)
i , θ(X

(0)
i)]V 1(1)) =

[nk∑
l=1

ϕ(X
(0)
l K),ReshapeTo1D

(nk∑
j=1

ϕ(X
(0)
j K)⊗ (X

(0)
j V)

)]
(74)

where ϕ(X(0)
j K)⊗ (X

(0)
j V) ∈ Rmd′ is reshaped into 1-dimensional feature vector by ReshapeTo1D in raster order.

Therefore, the final dimension of the virtual tuple feature x′(1) is m(d′ + 1).

In the second layer, each real tuple i receives information x′(1) from the virtual tuple. The residual connection
reserve the input feature X

(0)
i , then with MLPs ψ(2)

X
(2)
i := ψ(2)(X

(0)
i , x′(1)V 2(2)) =

(
ϕ(X

(0)
i Q)⊤

∑nk

j=1

(
ϕ(X

(0)
j K)⊗ (X

(0)
j V)

))⊤
ϕ(X

(0)
i Q)⊤

∑nk

l=1 ϕ(X
(0)
l K)

(75)

We need to show that the above equations can be approximated arbitrarily well by MLPs ψ(1), ψ(2) with O(1)
width and O(1) depth. By the uniform continuity of the functions, it suffices to show that 1) we can approxiate ϕ,
2) we can approximate multiplication and vector-scalar division, 3) the denominator ϕ(X(0)

i Q)⊤
∑nk

l=1 ϕ(X
(0)
l K)

is uniformly lower bounded by a positive number for any node features.

For 1), each component of ϕ (in both Performer and Linear Transformer)is continuous, and all inputs X(0)
j Q,X

(0)
j K

lie in compact domain. Therefore, ϕ can be approximated arbitrarily well by MLP with O(1) width and O(1)
depth (Cybenko, 1989).

For 2), since multiplication and vector-scalar division operations are all continuous, it suffices to show that all
operands lie in a compact domain. This is true since X(0) and Q,K, V are all compact, ϕ is continuous, and n is
fixed. Lastly, since all these operations do not involve n, the depth and width of the MLPs are constant in n.

For 3), we need to show that the denominator is bound by a positive constant. In Performer, ϕ(X) =

exp
(
− ||X||22

2

)
√
m

[exp(wT
1 X), . . . , exp(wT

mX)] where wk ∼ N (0, Id). As ||wT
i X|| ≤ ||wi|| · ||X||, which implies that

exp(wT
i X) is lower bounded by exp(−||wi|| · ||X||). Consequently, the demonimator ϕ(X(0)

i Q)⊤
∑nk

l=1 ϕ(X
(0)
l K)

is lower bounded.

For Linear Transformer, the proof is essentially the same as Performer. It boils down to showing that ϕ(x) =
elu(x) + 1 is continuous and positive, which is indeed the case.

C SIMPLICIAL TRANSFORMERS

In this section, we will detail the theoretical properties and our designs for simplicial transformers. This part
provides results additional to the main text (where we do not discuss simplicial transformers in detail due to
limited space), yet can be regarded as a natural extension. Simplicial complex is a different concept compared
to the graph, which we will introduce in detail below. However, as discussed in the main text, k-simplices

Higher-Order Graph Transformers

are generally more sparse than k + 1-tuples and are always a subset of the latter. Hence, simplices can be
regarded as a result of sampling tuples, and the simplicial (complexes) transformer is a sparse variant of the
tuple-based transformer we discussed in the main text. Moreover, the sparse attention mechanisms and the design
principles we proposed for tuple-based transformers can be naturally extended to simplicial transformers with
slight modifications, resulting in more efficient models that are still powerful.

C.1 Background of Algebraic Topology Theories

To provide readers with basic knowledge related to simplicial complexes, we introduce some existing fundamental
algebraic topology theories in this subsection.

An abstract simplicial complex, denoted as K, is defined over a finite set V , which comprises subsets of V adhering
to the property of closure under inclusion. Specifically, V represents a set of vertices, denoted by [n] = 1, 2, . . . , n.
A subset within K, having cardinality k+1, is termed a k-simplex. To illustrate, vertices are 0-simplices, directed
edges are 1-simplices, and oriented triangles or 3-cliques are 2-simplices. The set of all k-simplices in K is
represented as Sk(K). A k-simplices has a dimension of k, and the dimension of the complex K itself is the
maximum dimension among all its faces.

When two (k + 1)-simplices share a common k-face (a subset of a simplex), they are termed as k-down neighbors.
Conversely, two k-simplices that share a (k + 1)-simplex are known as (k + 1)-up neighbors. Furthermore, a
k-cochain or k-form is a function defined on Kk+1, f : V × · · · × V → R that is equivariant to the permutation.
Although k-cochains have the structure of vector spaces, they are usually called cochain groups Ck(K,R). Chain
groups Ck(K,R) are defined as duals of co-chain groups.

The simplicial coboundary maps δk : Ck(K,R) → Ck+1(K,R) is defined as

(δkf)([v0, . . . , vi+1]) =

k+1∑
j=0

(−1)jf([v0, . . . , V̂
j , . . . , vk+1]) (76)

where V̂ j suggests that the vertex vj is omitted. Further, we can define the adjoint of coboundary operator:
δ∗k : Ck+1(K,R) → Ck(K,R).

Utilizing the concept of boundary and coboundary, the Hodge k-Laplacian operator (also called the combinatorial
Laplace operator) is defined as:

Lk = Lk,down + Lk,up = δk−1δ
∗
k−1 + δ∗kδk (77)

where we omit the reference to simplicial complex K from the notation for simplicity. By definition, all three
operators Lk,Lk,up,Lk,down are self-adjoint, nonnegative and compact.

In the Hilbert space, the matrix representation for boundary and co-boundary operators are equivalent to adjacent
matrix of k and k + 1 order simplices. We write the matrix representation for δ∗k as Bk+1 ∈ R|Sk|×|Sk+1| (one
can view it as the adjacent matrix of k-th and k + 1-th simplices). Therefore, in this paper we use the following
definition for Hodge Laplacians:

Lk = B∗
kBk +Bk+1B

∗
k+1 (78)

where B∗
k = BT

k is the adjoint of Bk, which is equivalent to the transpose of Bk in the Hilbert space. Specifically,
when k = 0, L0 is exactly the graph Laplacian L0 = D−A.

Furthermore, the Hodge Laplacian of the entire K-dimensional simplicial complex K is a block diagonal matrix
L(K), with the k-th block being Lk(K) for k = 0, . . . ,K. If δ is the exterior derivative of a finite abstract simplicial
complex K, then

L(K) = D2 = (δ + δ∗)2 = δδ∗ + δ∗δ (79)

where D = δ + δ∗ is the Dirac matrix.

Zhou et al. (2023a) further defines the inter-order Hodge Laplacian for a K-order simplicial complex K, denoted
as L0:K(K). This generalized inter-order Hodge Laplacian contains information (Hodge Laplacians, boundaries,
coboundaries) for all k ∈ [K], which is defined as:

Cai Zhou, Rose Yu, Yusu Wang

L0:K(K) =


L0 B1

BT
1 L1 B2

...
...

BT
K−1 LK−1 BK

BT
K LK

 (80)

L0:K(K) contains information for all k ≤ K order simplices, which is a block matrix with Lk in the k-th diagonal
block, BT

k and Bk+1 in the offset ±1 diagonal blocks, while all other blocks are zeros.

As discussed in (Zhou et al., 2023a), a number of previous works such as (Bodnar et al., 2021b) can be reformatted
and unified by L0:K . We will show that simplicial transformer encoding L0:K as attention bias can generalize
simplicial convolutions in the next subsection.

In addition, we can make use of Lr0:K to build random walk-based positional encoding for all simplices in the
K-dimensional simplicial complex that contains more information than random walks within the same order
simplices. Similar to (Bodnar et al., 2021a), we can also introduce any form of local structure (such as rings
and cycles) as expanded complex cells and perform random walk on them, which can greatly facilitate graph
learning by incorporating higher order structures other than simplicial complexes (nodes, edges, triangles, and
four-cliques).

C.2 Simplicial Transformer with Global Attention

As discussed in Appendix A, although there are some networks defined on simplices and simplicial complexes,
most of them are in convolutional or message passing manners (Bodnar et al., 2021b; Yang and Isufi, 2023). Other
attention-based models all restrict their attention reception field within the range of boundaries, co-boundaries,
upper and lower adjacent neighbors (Goh et al., 2022; Giusti et al., 2022), which can be viewed as weighted
convolutional simplicial networks.

In this subsection, we propose our novel full simplicial transformer, theoretically analyze the pros and cons
brought by global reception field, and systematically discuss the design spaces of simplicial transformers.

Full Simplicial Transformer with Global Attention. The simplicial transformer with global attention is
defined as follows.

Definition C.1. Denote k-simplices of an abstract simplicial complex K as Sk(K), whose corresponding features
are X ∈ R|Sk(K)|×d. The k-dimensional simplicial self-attention is defined as ASk:

ASk(Sk(K)) = softmax
(
XQ(XK)⊤

)
XV (81)

where we use the notation ASk to differentiate the transformer defined on k-simplices from the one defined
on k-tuples in our previous sections. For simplicity, both the k-dimensional simplicial self-attention and the
simplicial transformer (i.e. self-attention along with components such as residual connections and output MLPs)
are denoted as ASk due to their mild difference.

The above ASk involves only k-simplices, yet it is natural to extend the input tokens to all simplices with order
k ≤ K for a K-dimensional simplicial complex K.

Definition C.2. Denote the set of all k-simplices of a K-dimensional abstract simplicial complex K where
k ≤ K as S0:K(K), whose corresponding features are X ∈ R

∑K
k=0 |Sk(K)|×d. The 0 : K-dimensional simplicial

self-attention is defined as AS0:K :

AS0:K(S0:K(K)) = softmax
(
XQ(XK)⊤

)
XV (82)

Hodge Laplacians as Attention Bias. Similar to the lost of connectivity information in standard graph
transformer due to dense attention, one may observe that the dense simplicial transformer ASk and AS0:K are
also unaware of the connectivity and structure information, including coboundaries, boundaries as well as upper
and lower adjacent neighbors. To address this problem of standard (first order) graph transformer, a variety of

Higher-Order Graph Transformers

models are proposed to encode structure information via different approaches, among which Graphormer (Ying
et al., 2021) is a well known model. Concretely, Graphormer embeds node degrees, edge features and pair-wise
shortest path distances to the n× n attention matrix. In its first order case, node degree and edge information
can be summarized into the standard graph Laplacian L0.

Now we generalize this design to the arbitrary-order simplicial transformer. For k-simplices, Hodge k Laplacian
Lk summarizes the upper adjacent and lower adjacent information into a |Sk(K)| × |Sk(K)| matrix, where Sk(K)
is the number of k-simplices in K. Therefore, ASk and AS0:K with attention biases are defined as:

ASk(Sk(K)) = softmax
(
XkQ(XkK)⊤ + ϕ(Lk)

)
XkV (83)

AS0:K(Sk(K)) = softmax
(
XQ(XK)⊤ + ϕ(L)

)(
Concat

[
(X0V

0)⊤, (X1V
1)⊤, . . . , (XKV

K)⊤
])⊤

, k = 0, . . . ,K

(84)

where Xk ∈ R|Sk(K)|×d is the feature of Sk(K) (i.e. the k-faces), X ∈ R
∑K

k=0 |Sk(K)|×d is the concatenation of Xk,
L is the Hodge Laplacian of K, and Lk is the k-th order Hodge Laplacian; ϕ is an element-wise function, e.g. an
identity function, an element-wise MLP etc.

In addition, we also introduce an augmented Hodge Laplacian L0:K , see Appendix C.1 for more details. The key
difference between L0:K and the standard Hodge Laplacian L is that the former has co-boundary and boundary
operators in the ±1 off-diagonal blocks, which are zeros in the latter.

Furthermore, by reweighting the attention using the Hodge Laplacians, we can recover the simplicial message
passing networks. In particular,

AS0:K(Sk(K)) =
(
softmax

(
XQ(XK)⊤

)
⊙ ϕ(L)

)(
Concat

[
(X0V

0)⊤, (X1V
1)⊤, . . . , (XKV

K)⊤
])⊤

, k = 0, . . . ,K

(85)

where ⊙ is the Hadamard product (element-wise product). We will show the benefit of including Hodge-k Laplacian
in simplicial transformers in the following subsection, making connections between simplicial transformers and
simplicial message passing networks, Ak defined on k-tuples as well as k-WL hierarchy. For each order k, the
diagonal block Lk in L enable information aggregation from upper and lower adjacent neighbors, which are also
k-simplices. However, the message cannot be passed among simplices of different orders through boundaries and
coboundaries through L, and L0:K addresses this problem by introducing boundary and coboundary operators
into off-diagonal blocks.

C.3 Theoretical Analysis on Simplicial Transformers

In this subsection, we present our theoretical results concerning simplicial transformers. Concretely, we establish
the connections between our proposed simplicial transformers and two existing families of models: simplicial
message passing networks and k-IGN (k-WL). We also put forward a spectral monotonicity result of the
attention matrix of the simpilcial transformer, which gives more insights into the relationship between simplicial
complex-based models and tuple-based models.

Simplicial Transformer Generalizes Simplicial Message Passing Networks. We show that our simplicial
transformer with global attention and Hodge Laplacian as attention bias is a more general version of simplicial
networks in message-passing or convolution manners.
Theorem C.3. Simplicial transformers AS0:K reweighted by augmented Hodge Laplacian L0:K encodings (in
Equation (85)) can approximate message passing and convolutional simplicial networks.

Proof. Bodnar et al. (2021b) already proved that their Message Passing Simplicial Network and WL variant SWL
generalizes convolutional simplicial networks such as (Ebli et al., 2020). Now we only need to show that AS0:K

with L0:K encodings as attention bias can exactly simulate the Message Passing Simplicial Network. WLOG, we
first consider the update function of k-simplices (0 < k < K). Let Xk ∈ R|Sk(K)|×d represent the feature of all
k-faces, we construct

XjQ = 1⃗1|Sj |,XjK = 1⃗|Sj |, j = 0, . . . ,K (86)

Cai Zhou, Rose Yu, Yusu Wang

We define the element-wise function as ϕ(·) = · × 1(·), where 1(·) = 1 if the element is in the non-zero block of
L0:K and 0 otherwise. Define V k =Wk × (

∑K
k=0 |S − k|), the update function can becomes,

AS0:K(Xk) → δk−1Xk−1Wk−1 + LkXkWk + δ∗kXk+1Wk+1 (87)

According to the definition of δk−1,Lk, δ
∗
k, the three terms on the right recover the message from the boundaries,

the lower and upper adjacent neighbors, and the co-boundaries, respectively. This is exactly the update function
of MPSN, see Equations (2)-(6) in (Bodnar et al., 2021b). Therefore, our AS0:K with L0:K encodings as attention
bias approximates MPSN and other convolutional simplicial networks arbitrarily well.

While our sipmlicial transformer with attention bias has the capability to recover MPSN (Bodnar et al., 2021b)
and other convolutional simplicial networks, the other direction is obviously not true due to the local reception
field of the message passing scheme. Hence, taking advantage of the global nature of simplicial transformers may
be a promising direction.

Spectral Monotonicity of Simplicial Attention. Now we provide some additional results on the spectral
monotonicity of the simplicial attention, which helps us better understand the behaviors of our simplicial
transformer given a series of monotonic simplicial complexes K1 ⊂ · · · ⊂ KN , thus establishing connections with
transformers on tuples.

To start with, we consider two simplicial complexes K1 and K2 with m1 < m2 elements respectively, where K1

is a sub-simplicial complex of K2. To make their spectra comparable, define λi(K1) = 0 for i ≤ m2 −m1 and
λm2−m1+i(K1) = µi(K1), where µi are the original m1 eigenvalues of Hodge Laplacian L(K1) ordered in ascending
order. Together, spectra of two simplicial complexes can be seen as left-padded non-descending sequences, thus
comparable.

We first introduce a known result on spectral monotonicity of Hodge Laplacian.

Lemma C.4.

λj(K1) ≤ λj(K2),∀j ≤ m2 (88)

The original proof is given in Knill (2023). Next, we give a novel spectral monotonicity result on the attention
matrix of a simplicial transformer.

Theorem C.5. Suppose K1 ⊂ K2 , consider a simplicial transformer AS0:K that uses the Hodge Laplacian L(K)
as attention bias. Suppose the following mild conditions hold: (i) projection matrix Q = K, which guarantees
the symmetry of attention matrix; (ii) XQ has all elements positive, which can be easily achieved via a ReLU
activation. Denote the attention matrices of K1 and K2 (i.e. the mi ×mi matrices before placed in softmax,
i = 1, 2) as Ai = (XiQ)(XiQ)⊤ + L(Ki), i = 1, 2 follow the spectral monotonicity:

λj(A1) ≤ λj(A2),∀j ≤ m2 (89)

Proof. The padding rule of the eigenvalues is the same as we stated. If necessary, the feature XQ is allowed to
be zero-padded for the simplices in K2 but not in K1, thus X1 is padded to the same dimension as X2. Our proof
parallels those of Kirchhoff Laplacian L0 (Spielman, 2009) and Hodge Laplacian (Knill, 2023). Suppose G is a
finite set of non-empty sets closed under the operation of taking finite non-empty subsets, a set x ∈ G is then
called locally maximal if it is not contained in an other simplex. This suggests that the set U = {x} is an open
set in the non-Hausdorff Alexandroff topology O on G generated by the basis formed by U(x) = {y ∈ G, x ⊂ y}.
In this case the spectrum changes monotonically if we add a locally maximal simplex to a given complex (Knill,
2023). Now, since K1 ⊂ K2, L(K1) ≤ L(K2) is in the Loewner partial order. Recalling that L(K) = D(K)2, the
following statement always holds:

If u := K2 → R is a vector, then the quadratic form of the attention matrix A is

Higher-Order Graph Transformers

⟨u,Au⟩ = ⟨u, (XQ)(XQ)⊤ + L)u⟩ (90)

= ⟨u, (XQ)(XQ)⊤ +D2)u⟩ (91)

= ⟨Du,Du⟩+ ⟨(XQ)⊤u, (XQ)⊤u⟩ (92)

= ||Du||2 + ||(XQ)⊤u||2 (93)

According to the spectral monotonicity of Hodge Laplacians in Theorem C.4, we already have that ||D1u||2 ≤
||D2u||2 always holds for any vector u. We aim to show that the second quadratic form also always increases
when adding new maximal simplices. When adding the m2 −m1 components that exist only in K2, we have

||(X2Q)⊤u||2 − ||(X1Q)⊤u||2 =

m2∑
i=m1+1

||(X2Q)iui||2 ≥ 0 (94)

where we use (X2Q)1:m1
= (X1Q)1:m1

, (X1Q)m1+1:m2
= 0⃗, i.e. we use zero padding. Together, ⟨u,A1u⟩ <

⟨u,A2u⟩ always holds, indicating that adding new maximal simplices only increases the total quadratic form.
Then, Courant Fischer Theorem gives the result using Sk = {V ⊂ Rn,dim(V) = k}

λk(A1) = minV ∈Sk
max

|u|=1,u∈V
⟨u,A1u⟩ ≤ minV ∈Sk

max
|u|=1,u∈V

⟨u,A2u⟩ = λk(A2) (95)

The spectral monotonicity result may give us some intuitions of the connection between simplicial transformers
and tuple transformers mentioned before. As a tuple transformer always takes all tuples into account, it can be
viewed as a simplicial transformer operating on all possible faces defined on V = [n] (or, briefly speaking, on a
complete graph), whose attention matrix always has the largest corresponding values compared to other simplicial
complexes. In specific, an order-k simplicial transformer computes attention between the simplicial complexes, a
subset of all k-tuples considered by an order-k tuple transformer. Consequently, their attention matrices follow
the spectral monotonicity analyzed in Theorem C.5. To some extent, the computation of simplicial transformer
is more sparse and stable compared with the full transformer defined on tuples, although the latter may avoid
the expansion of attention matrix via breaking the two conditions of symmetric attention and positive inputs.
More comparison and theoretical connections between simplicial transformers and tuple transformers are worth
exploring in the future, including their theoretical expressive power and practical performance.

Connections with k-WL Hierarchy. Analogous to Ak, a pure AS0:K cannot effectively update its repre-
sentations in the sense of distinguishing non-isomorphic graphs due to the dense and homogeneous attention
mechanism. However, by incorporating Hodge-Laplacians as attention bias or taking PE/SE defined on simplicial
complexes as input, the theoretical expressive power and real-world performance of simplicial transformers can
both be boosted.

It is still an open question to establish complete connection between simplicial networks (either convolutional or
attention-based) and k-WL hierarchy. However, we can give some primary results to show the benefit of using
sparse k-simplices instead of all k-tuples.

Theorem C.6. AS0:3 with L0:3 as attention bias can distinguish a pair of non-isomorphic strongly regular graph,
namely Rook’s 4× 4 graph and the Shrikhande graph, which cannot be distinguished by 3-WL.

Proof. We have already shown that AS0:3 approximates the message passing simplicial network (MPSN) with
order 3 arbitrarily well. Bodnar et al. (2021b) prove that MPSN of order 3 can distinguish Rook’s 4× 4 graph
and the Shrikhande graph. It is a well-known fact that 3-WL cannot distinguish strongly regular graphs.

Cai Zhou, Rose Yu, Yusu Wang

C.4 Sparse Simplicial Transformers

Analogously to tuple-based transformers, our simplicial transformers also benefit from various techniques including
sparse attention mechanisms, thus improving both expressive power and real-world performance.

The sparse attention mechanisms we proposed for tuple-based high order transformers can be naturally extended
to simplicial transformers with only a minor modifications, where each token now becomes simplices (either of
same order or of different orders, e.g. from 0-simplices to K-simplices) instead of k-tuples. For neighbor attention,
the concept of (local) k-neighbor for tuples now switches to a broader definition for simplices. For a k-order
simplex , we consider its coboundaries (which are k + 1-simplices), boundaries (which are k − 1-simplices) and
upper/lower adjacent simplices (which are k-simplices) as its extended ’neighbor’, see (Bodnar et al., 2021b) for
more details. We denote the simplex neighbor attention implementation as ASSN

k1:k2 , where k1 and k2 are the lowest
and highest order of the simplices we consider. Simplex neighbor attention is sparse and capable of capturing
local structures. To improve its expressiveness, different types of relations (including coboundary, boundary
and upper/lower adjacent, depending on the position in Hodge Laplacian Lk1:k2) are embedded to re-weight
the attention matrix. As for virtual tuple attention, it is now naturally converted to virtual simplex attention,
which we denote as ASVS

k1:k2 . The advantage of virtual simplex attention is that it can capture global information,
similar to the virtual node in MPNNs. However, it may also suffer from over-smoothing or over-squashing.

D DISCUSSION

D.1 Further Discussion on Related Work

In Appendix A we already introduce high-order transformers in (Kim et al., 2022; Sanford et al., 2023). In this
subsection, we give some in-depth discussion on related works, mainly (Sanford et al., 2023).

Sanford et al. (2023) proposed another family of high-order transformers, see Appendix A for descriptions. Besides
the theoretical expressive power compared with k-WL and k-FWL hierarchy mentioned in our main text, we now
provide additional results from the perspective of the representation power, and particularly the ability to solve
Match-m problem.

Match-m Problem. Sanford et al. (2023) presents problems of pair detection (Match2) and triple detection
(Match3), which are defined for inputs X = (x1, . . . , xn) ∈ [M]n×d (for some M = poly(n)) as

Match2(X)i∈[n] = 1
(
∃j s.t. xi + xj = 0⃗ (modM)

)
(96)

Match3(X)i∈[n] = 1
(
∃j1, j2 s.t. xi + xj1 + xj2 = 0⃗ (modM)

)
(97)

Sanford et al. (2023) conclude that a single layer of standard transformer (i.e. A1) with input and output MLPs
and an O(d)-dimensional embedding can efficiently compute Match2, but fails to compute Match3 unless the
number of heads H or the embedding dimension dk grows polynomially in n. However, they show that a certain
“third-order tensor self-attention" (which resembles A1,2 in our formulation) can efficiently compute the Match3
problem with a single unit.

Their matching problem can be easily generalized to arbitrary order, called the Match-m problem, which is
defined for X = (x1, . . . , xn) ∈ [M]n×d (for some M = poly(n)) as

Matchm(X)i∈[n] = 1
(
∃j1, . . . , jm−1 s.t. xi + xj1 + · · ·+ xjm−1

= 0⃗ (modM)
)

(98)

Following (Sanford et al., 2023), we allow a single blank token x′ = 0⃗ to be appended at the end of sequence
X = (x1, . . . , xn), and allow the existence of a positional encoding with xi,0 = i. Thus, the input to the attention
is augmented as X ′ = (x1, . . . , xn, x

′). Additionally, the input can be transformed by an element-wise MLP
ϕ : Rd → Rm. We next show the ability of A1,k

1,1 transformer to address Match-m problem, which is a generalization
of the conclusions in (Sanford et al., 2023).

Higher-Order Graph Transformers

Proposition D.1. Order-1,m− 1 Transformer in (Sanford et al., 2023) can efficiently solve the MATCH-m
problem with d× 2m−1 + 1 hidden width.

The proof essentially follows the proof of Theorem 6 and Theorem 18 in (Sanford et al., 2023). We cuse a similar
construction related to the trigonometric function, except that we need more terms.

Sanford et al. (2023) also give an augmented variant of high-order graph transformer (Definition 8 in (Sanford
et al., 2023)), which determines each element of the self-attention tensor based on both its respective inner product
(attention score) and on the presence of edges among the corresponding inputs (provided by an input adjacency
matrix of the graph). This enhancement somewhat resembles our sparse mechanisms, both of which improve the
representation power by forcing some elements in the attention to be zero. Some results on substructure counting
using their edge-augmented high-order transformers.

Connection with Our Models. The definition of their general s-order order transformer (Definition 7 in
(Sanford et al., 2023)) strongly resembles our cross-attention A1,s−1. The difference lies in that they reconstruct
the s− 1-order key and value tensor from the input 1-order via tensor product in every layer, while we explicitly
maintain representations of the s− 1-order tensor. Their method is a sort of hierarchical pooling (Zhou et al.,
2023b) (they only maintain representations for 1-order tensor), and the reconstruction may not recover full
information of the original s− 1-order tensor. As a result, their method may be weaker in expressive power and
representation power. Their high-order graph transformer (Definition 8 in (Sanford et al., 2023)) is augmented
with an input adjacency matrix, allowing the attention to incorporate edge information and graph structure. Our
model also has the ability via: (1) initialization based on isomorphism types of tuples, and (2) sparse attention
mechanism based on (local) neighbor information. It would be an interesting future direction to theoretically
investigate the strict relationship between our transformers and theirs. Empirically, there are some common
inspirations that can be applied to practical models of both ours and theirs, including reweighting the attention
score via edge information and calculating high-order tensor representations from first-order tensors. We also
implement cross attention A1,2, which to some extent recovers their “3-order transformer”, see Appendix E for
more details.

D.2 Discussion on Other Theoretical Properties

Comparison Between Transformer and MPNN/WL/IGN. For standard transformer and MPNN, it is
obvious that standard transformers without special design are not aware of structure information, while MPNN
does via the edge information. Instead, MPNN can approximate the linear transformer with a virtual node (Cai
et al., 2023).

The same holds for higher-order cases. Higher order (simplified) transformer without equivalence class basis (and
the designs in (Kim et al., 2022)) is homogeneous, which means that all tokens play equal roles in updating one
token. The only input of structural information is through the initialization of k-tuple representations. Instead,
k-WL and k-IGN can distinguish different classes of k-tuples with the internal design of k-neighbor and equivalence
class basis, respectively. Essentially, these designs are based on indices and are only dependent on the order k
(or possibly the number of nodes). Each k-IGN layer alone is capable of aggregating all k-tuples’ information,
while k-WL does so in [k/2] + 1 steps (and simulates one k-IGN layer in k − 1 steps). As a consequence, without
’virtual node’ k-IGN can still capture global information as a kernelized high-order transformer (e.g. k-Performer),
and it has even more equivalence classes other than the sum of all k-tuples. Thus, the key difference between
k-transformers and k-IGN lies in the pairwise multiplication in attention computation and the existence of
equivalence class basis.

It is remarkable that deepsets for one dimension and high-order functions have internal gap: graph isormorphism
problems cannot be reformed into deepsets, but can be reformatted to the problem on k >= 2 dimensions,
yet k-IGN and k-WL cannot solve them. Therefore, k-IGN are not universal approximators on k-dimensional
tensors, while transformers cannot even approximate k-IGN without input indices or equivalence class basis
(dense connection lose expressivity).

Computation Complexity. 2-IGN needs n4 spaces, or more generally, n2k for equivariant linear layer from
nk to nk; this can be verified in Equation (9a,9b) and (10a,10b) in Maron et al. (2018) . In other words, each
k-tuple receives information from all nk tuples, which highly resembles the computation in the transformer Ak.

Cai Zhou, Rose Yu, Yusu Wang

As a matter of fact, these two architectures have computational complexities of the same magnitude. Again, the
key difference between k-transformers and k-IGN lies in the pairwise multiplication in attention computation and
the existence of equivalence class basis. Attention may lead to stronger performance in real-world tasks, similar
to the SOTA performance in CV and NLP; yet the equivalence class basis in k-IGN is crucial to distinguish
non-isomorphism graphs. By introducing equivalence class basis (or equivalently, adjacency relations of k-tuples),
Ak can be as power as k-IGN but cannot surpass the latter since attention does not increase expressive power.

Tensor Multiplication Ability. 2-PPGN can simulate matrix multiplication and Maron et al. (2019) actually
generalize it to any order k, so k-PPGN (as powerful as k-FWL or k + 1-WL) can implement a certain class of
k-order tensor multiplication. However, this is different from the column-wise Kronecker product in (Sanford
et al., 2023) and the normal matrix multiplications.

Separation Speed. An interesting thing is that the tensor multiplication ability does not necessarily increase
the expressive power. As an example for order 2, Geerts (2020b) propose a walk-MPNN which is bounded by
2-PPGN and 2-FWL. Walk-MPNN allows multiple matrix (as it is for order-2 tensors) multiplication, but this
does not increase its expressive power (still bounded by 2-FWL). Instead, multiple matrix multiplication only
makes it distinguish graphs faster than 2-FWL. A similar phenomenon would be: Geerts (2020a) shows that
(k-1) iterations of k-WL simulate one k-IGN layer. Therefore, k-IGN is faster (in the sense of distinguishing
graphs or representation power, not computation efficiency) than k-WL due to its global computation (k-IGN
makes use of all k-tuples, while k-WL only makes use of k-neighbors). Although equivalent in their expressive
power, the different separation speeds of k-WL and k-IGN may lead to distinct practical performance, which also
applies to our high-order transformers. Our sparse attention mechanisms resemble k-WL and are more ’local’
than k-IGN. Particularly, one our neighbor attention layer is equivalent to one k-WL iteration, and (k − 1) layers
of our neighbor attention is equivalent to one k-IGN layer with less complexity (O(nk+1k(k− 1) for (k− 1) layers
of neighbor attention v.s. O(n2k) for one layer of k-IGN).

E EXPERIMENTS AND EMPIRICAL ANALYSIS

E.1 Model Implementation Details

Dense and Sparse Implementation. Generally, there are two principal ways to implement our attention:
dense tensor multiplication and sparse attention. The former can be based on Einstein sum or other fast tensor
multiplication methods, which is applicable to all the categories of our dense attention mechanisms. The latter
can be efficiently implemented via torch-geometric relevant libraries. The efficiency of dense implementation can
be improved via advanced techniques, yet the general memory and time consumption are internally higher than
the sparse one, which is one of the main motivations of our work.

Initialization. As stated in our theoretical analysis, the initialization of tuples should depend on their
isomorphism types. To implement this, we first embed node and edge features through an embedding layer. Then
we concatenate the corresponding node and edge features according to the indices in the tuple in order, which
implement an ordered set according to Remark 3. To keep the latent dimension consistent with the rest of the
network, we apply MLPs to project the concatenated tuple features onto the common network width. We also
offer an optional initialization method that simply sums up all node and edge features. Though not theoretically
expressive, we observe that this implementation generally performs similarly to (or slightly weaker than) the
concatenation initialization.

Pooling. We implement a comprehensive family of pooling functions for tuple transformers and simplicial
transformers. For tuple transformers, (a) in node-level task, we perform k-times of hierarchical pooling, each
pooling obtains a nt−1 tensor from the nt tensor, eventually resulting in a tensor of size n corresponding to
n nodes; (b) in edge-level task, if the order is 2, we directly extract the tuples containing the target edge; if
the order is not 2, we perform pooling to obtain node representations as in (a), then calculate the target edge
feature according to the two node features; (c) in graph-level task, we directly operate on all tuples and support
the common max/mean/add pooling methods. For simplicial transformers, as they internally contain node
(0-simplices) features and edge (1-simplices) features, the pooling only extracts the corresponding simplices. The
graph-level pooling is similar to tuple transformers; additionally, we support both operating on all simplices or

Higher-Order Graph Transformers

only on 0-simplices.

Attention Reweighting and Attention Bias. In our simplicial transformer we have already described
attention bias as an enhancement in terms of structure awareness, expressive power and practical performance.
Consider the attention score the attention score Ai,j calculated by inner-product of query token i and key token j,
both the attention reweighting and the attention bias provide additional information based on the pairwise relation
of r(i, j). Formally, we embed the relation with an embedding layer E , then attention reweighting modifies the
attention score to Ai,j ∗E(r(i, j)), while attention bias calculates Ai,j+E(r(i, j)). For instance, in (local) neighbor
attention r(i, j) indicates which (local) neighbor of i is j in (or not in); in ANgbh+

k , r(i, ψj(i, u)) = adj(ij , u), which
provides additional structural information on the connectivity between ij and u as δ-k-WL does; in simplicial
transformer r is just the Hodge Laplacian L or L0:K to indicate boundary, coboundary and adjacent information.
Similar techniques are also adopted in other graph transformers (Ying et al., 2021; Ma et al., 2023b; Shirzad
et al., 2023).

Positional and Structural Encodings. Extensive literature provided evidence that positional encodings
(PE) and structural encodings (SE) can significantly improve the theoretical expressive power and real-world
performance of graph transformers (Muller et al., 2023). Similarly, we can make use of PE and SE for high-order
tuples to facilitate high-order graph transformers. The first way to incorporate PE and SE into high-order graph
transformers is to concatenate existing PE and SE for nodes and edges (e.g. RWSE (Dwivedi et al., 2021) and
LapPE (Kreuzer et al., 2021)) to compose PE/SE for tuples or simplicial complexes. Another way is to design
novel PE/SE for high-order structures from scratch, yet current PE and SE for general k-tuples are limited. In
comparison, PE and SE for k-simplicial complexes are better studied and reveal more elegant properties (Zhou
et al., 2023a). Following GPS (Rampasek et al., 2022), we choose our PE and SE exactly the same as GPS
(including LapPE and RWSE).

Third-Order Variants. Since there are n3 many 3-tuples, including all tuples A3 would result in O(n6)
complexity regarding n, which is obviously not practical. Even local neighbor attention ALN

3 has O(n3D̄)
complexity, where D̄ is the average node degree. Consequently, we implement A3 with sampling tuples. Instead
of random sampling, we want to take graph structure into account; thus we sample those connected 3-tuples.
On average there are O(nD̄2) connected 3-tuples, therefore even dense attention would not exceed O(n2D̄4)
complexity. However, note that the dense attention again does not provide the connectivity of these sampled
3-tuples, which may have a negative impact on performance. We report the results of sampling connected 3-tuples
in Table 12.

Cross Attention. We implement cross attention A1,2 for ablation study. The first-order tensors are updated
according to the definition; yet, we also want to update representations of second-order tensors. Inspired by
(Sanford et al., 2023) which reconstructs high-order tensors from first-order tensor, we modify A1,2 as follows.
Denote the first-order query tensor X ∈ Rn, second-order key tensor Y ∈ Rn2

, and eij as the feature of edge
connecting nodes i, j. For each layer l the update procedure is as follows,

X(l+1) = Al
1,2(X

l,Y l) (99)

e
(l+1)
ij = ψle(e

l
ij ,X

(l+1)
i ,X

(l+1)
j) (100)

Y
(l+1)
i,j = ψlv(Y

l
i,j ,X

(l+1)
i ,X

(l+1)
j , e

(l+1)
ij) (101)

where ψe, ψv are MLPs, and superscripts (l) refer to the l-th layer. The experimental results of A1,2 are reported
in Table 12.

Furthermore, inspired by our sparse attention mechanism for self-attention, we also implement dense (original)
and sparse A1,2. In the dense version, all n query tokens compute attention with all n2 key tokens, resulting in
O(n3) complexity. In the sparse version (denoted as ANgbh

1,2), every query token only computes attention with
those 2-tuples that contain the query node itself, and hence enjoy only O(n2) complexity. We experimentally find
that the sparse A1,2 is not only more efficient in running time, but also usually demonstrates better performance
than the dense version. This observation again verifies our motivation: our sparse attention not only reduces
computation complexity, but also introduces structure information which improves model performance.

Cai Zhou, Rose Yu, Yusu Wang

Table 6: Overview of the graph learning datasets used in the paper

Dataset #Graphs Avg. # Avg. # Directed Prediction Prediction Metricnodes edges level task

Edge detection 12,000 23.2 24.9 No edge binary classif. Accuracy
CSL 150 41 82 No graph 10-way classif. Accuracy

Substructure counting 5000 18.8 31.3 No graph regression Mean Abs. Error

WebKB-Cornell 1 183 298 Yes node 10-way classif. Accuray
WebKB-Texas 1 183 325 Yes node 10-way classif. Accuray

WebKB-Wisconsin 1 251 515 Yes node 10-way classif. Accuray

ZINC 12,000 23.2 24.9 No graph regression Mean Abs. Error
Alchemy 202,579 10.0 10.4 No graph regression Mean Abs. Error

ogbg-molhiv 41,127 25.5 27.5 No graph binary classif. AUROC

Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

E.2 Dataset Description and Experiments Overview

We provide dataset statistics in Table 6. Our experiments include both synthetic and real-world datasets.

For synthetic datasets, we have already provided the results of edge detection (derived from ZINC (Dwivedi et al.,
2020), see (Muller et al., 2023) for more details) and CSL in the main text. We provide an additional substructure
counting task in Appendix E.3, since counting substructure is another important capability of graph learning
models in addition to expressive power.

For real-world datasets, we conduct extensive experiments on various datasets and report the results in Ap-
pendix E.4. We have already reported comprehensive results of almost all our models on ZINC (Dwivedi et al.,
2020) in our main text. Additional results include node classification tasks in WebKB (Ghani, 2001), graph-level
regression task on Alchemy (Chen et al., 2019), graph-level classification task on OGBG-molhiv (Hu et al., 2020)
and two datasets from Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022).

As emphasized in our main text, since our main goal is to verify the scalability and empirical benefits of our
models, we directly adopt experimental settings and hyper-parameters from the survey paper (Muller et al., 2023)
for simulation tasks, and from the GraphGPS (Rampasek et al., 2022) paper (a recent SOTA and popular MPNN
+ graph transformer baseline) for real-world tasks. Even if we do not perform hyperparameter search, our models
still reveal highly competitive performances. For computing infrastructure, all our experiments are carried out
with NVIDIA GeForce RTX 3090 and 4090. Code available at https://github.com/zhouc20/k-Transformer.

E.3 Simulation Results

The ability of substructure counting is an important perspective in measuring a graph learning model. The ability
to count substructures has close connections to theoretical expressive power, but also not completely equivalent.
Substructure counting ability may have more detailed and complex results, as well as more practical impacts on
real-world tasks. For example, in molecular graphs detecting cycles and rings is crucial in predicting molecule
properties.

Substructure Counting. We provide the results of substructure counting in Table 7. The dataset is derived
from (Chen et al., 2020) which contains five thousand random regular graphs. There are four target substructures:
triangle, tailed triangle, star and chordal-cycle. We measure the performance by MAE, lower MAE corresponding
to stronger substructure counting ability. Note that when the model has extremely small MAE (∼ 0.01), we
regard it capable of counting the target substructure and ignore the difference in absolute MAE value at such a
low magnitude. Such a small difference does not necessarily reflect comparison among models - the MAE may
depend more on training configurations and hyper-parameters instead of models (and that difference models may
vary in their best configurations, so the comparisons are not completely fair).

For baseline models, we choose GCN (Kipf and Welling, 2016), GIN (Xu et al., 2018) PNA (Corso et al., 2020) as

https://github.com/zhouc20/k-Transformer

Higher-Order Graph Transformers

Table 7: Substructure counting performance (test MAE ↓). Highlighted are the first, second and third results.

Model Triangle Tailed triangle Star Chordal-Cycle

GCN 0.4186 0.3248 0.1798 0.2822
GIN 0.3569 0.2373 0.0224 0.2185
PNA 0.3532 0.2648 0.1278 0.2430
PPGN 0.0089 0.0096 0.0148 0.0090
Transformer 1.0712 0.8929 1.3634 0.9682

ANgbh
2 0.3780 0.2764 0.0133 0.2467

ANgbh+
2 0.0121 0.0186 0.0146 0.0158

ALN
2 0.0165 0.0201 0.0458 0.0380

ASSN
0:1 0.0103 0.0133 0.0199 0.1893

the baseline models that are basically equivalent to 1-WL, and PPGN (Maron et al., 2019) that has provable
3-WL equivalent expressive power. We also report the performance of Transformer A1, i.e. the commonly used
plain transformer.

It is known that 1-WL cannot count triangles, tailed triangles and chordal-cycles, but it can count stars (Chen
et al., 2020). With their theoretical expressive power upper-bounded by 1-WL, we observe that GCN, GIN and
PNA all have relatively huge loss while counting triangles, tailed triangles and chordal-cycles; only GIN with
provable 1-WL expressivity can count stars with a small MAE. PPGN can count all substructures well with low
MAE (∼ 0.01), however at the cost of O(n3) complexity. The poor performance of the plain transformer A1 is
not surprising: its MAE is almost two magnitudes higher than PPGN, which indicates that A1 cannot count any
substructures. This aligns perfectly with our theory that A1 is strictly less expressive than 1-WL.

Interestingly, the results of our proposed models also align quite well with our theories, which verify the effectiveness
of our sparse high-order transformers.

• We already theoretically proved that ANgbh
2 is as powerful as 2-WL (hence 1-WL as well as GIN). The

performance of our ANgbh
2 model highly resembles that of 1-WL equivalent GIN for all tasks, which is

consistent with the theory. ANgbh
2 even achieves SOTA on counting stars, which implies the empirical benefit

of bringing in global information (recall the definition of 2-neighbor) - although it does not increase theoretical
expressive power, the global information helps in algorithmic alignment.

• ANgbh+
2 is proved to be strictly more powerful than ANgbh

2 , which is verified by the experimental results.
When counting triangles, tailed triangles and chordal-cycles that ANgbh

2 fails, ANgbh+
2 all complete perfectly

(the same MAE magnitude as PPGN). This verifies that ANgbh+
2 is strictly more expressive than 2-WL,

otherwise it would not be able to count any of triangles, tailed triangles and chordal-cycles.

• In Appendix B we show that ALN
2 is strictly less expressive than ANgbh+

2 , which is attributed to the fact that
ALN

2 has slightly higher MAE compared to ANgbh+
2 in all four tasks. However, ALN

2 is much more efficient
than ANgbh+

2 as well as PPGN, and the absolute MAE values of ALN
2 are still at a low magnitude compared

with 1-WL baseline models. In summary, ALN
2 strikes a good balance between expressivity and efficiency.

• The results of the simplicial transformer with simplex neighbor attention mechanism ASSN
0:1 are also consistent

with our theory in Appendix C. Leveraging the connectivity of 0-simplices (nodes), 1-simplices (edges), and
partially 2-simplices (triangles), ASSN

0:1 performs highly competitive in counting triangles and tailed triangles.
However, it fails to count chordal-cycles, which indicates that it is more powerful than 1-WL yet does not
achieve full 3-WL expressivity. It has O((n +m)D̄S) complexity where m = |E| is the number of edges,
while D̄S is the average number of extend neighbors (including boundaries, coboundaries, and upper/lower
adjacent neighbors); hence ASSN

0:1 is generally even more efficient than ALN
2 on sparse graphs.

Again, both PPGN and most of our models are completely capable of counting these substructures. However,
since PPGN needs internal O(n3) complexity, our model variants are much more efficient.

Cai Zhou, Rose Yu, Yusu Wang

Table 8: Results on ogbg-molhiv (Hu et al., 2020). Shown is the mean ± std of 5 runs with different random
seeds. Highlighted are the first, second and third results.

Model AUROC ↑
GCN+virtual node 0.7599± 0.0119
GIN+virtual node 0.7707± 0.0149
PNA 0.7905± 0.0132
DGN (Beaini et al., 2020) 0.7970± 0.0097
CIN 0.8094± 0.0057
GIN-AK+ 0.7961± 0.0119
GSN (Bouritsas et al., 2023) 0.8039± 0.0090

SAN 0.7785± 0.2470
GPS 0.7880± 0.0101

ALN+VT
2 (ours) 0.7901± 0.0082

ANgbh
1,2 (ours) 0.7981± 0.0097

ASSN+VS
0:1 (ours) 0.7981± 0.0114

E.4 Additional Results on Real-World Datasets

In addition to the highly competitive performance on ZINC (see the main text), we also provide experimental
results on other real-world datasets, including ogbg-molhiv (Hu et al., 2020) and two datasets from Long Range
Graph Benchmark (LRGB) (Dwivedi et al., 2022). We directly adopt experimental settings and hyper-parameters
from the GraphGPS (Rampasek et al., 2022).

Molecular Property Prediction. For classification task, we choose ogbg-molhiv dataset from the OGB
benchmark (Hu et al., 2020), which contains 41k molecules. The task is a binary graph-level classification to
predict whether a molecule inhibits HIV virus replication or not. The performance is measured by AUROC.

We report our results in Table 8. It is notable that complex models tend to suffer from overfitting on this dataset,
and SOTA models usually contain manually extracted feature, e.g. CIN (Bodnar et al., 2021a) and GSN (Bouritsas
et al., 2023) both contain artificially extracted substructures. In comparison, our models completely learn from the
graph structures without any additional manually crafted information. In detail, ALN+VT

2 , ANgbh
1,2 and ASSN+VS

0:1

all outperform GPS, showing the empirical benefit of high-order models. In particular, the results of ANgbh
1,2 and

ASSN+VS
0:1 are highly competitive, which implies that global information and local structures may both play an

important role in the prediction of graph-level properties.

Table 9: Experiments on two datasets from long-range graph benchmarks (LRGB) (Dwivedi et al., 2022). Shown
is the mean ± std of 5 runs with different random seeds. Highlighted are the first, second and third results.

model Peptides-func (AP ↑) Peptides-struct (MAE ↓)
GCN 0.5930± 0.0023 0.3496± 0.0013
GINE 0.5498± 0.0079 0.3547± 0.0045
GatedGCN 0.5864± 0.0077 0.3420± 0.0013

Transformer+LapPE 0.6326± 0.0126 0.2529± 0.0016
SAN+LapPE 0.6384± 0.0121 0.2683± 0.0043
SAN+RWSE 0.6439± 0.0075 0.2545± 0.0012
GPS 0.6535± 0.0041 0.2500± 0.0005

ASSN
0:1 (ours) 0.5876± 0.0079 0.2703± 0.0015

ASSN+VS
0:1 (ours) 0.6486± 0.0063 0.2524± 0.0009

AS0:1-dense+attn.bias (ours) 0.6445± 0.0082 0.2486± 0.0007

Higher-Order Graph Transformers

Table 10: Scalability of proposed models on datasets of different scales (Avg. # nodes and Avg. # edges are
listed in Table 6). Hyperparmeters are the same as GPS (Rampasek et al., 2022) for all models.

Model ZINC ogbg-molhiv Peptides-func/struct

A2-dense % % %

A2-Performer ! % %

ANgbh
2 ! % %

ALN
2 ! ! %

AVT
2 ! ! !

ANgbh
1,2 ! ! !

AS0:1-dense ! ! !

AS0:1-Performer ! ! !

ASSN
0:1 ! ! !

ASVS
0:1 ! ! !

Long Range Interaction Prediction. Empirically, one of the advantages of graph transformers over message-
passing GNNs is that the former are able to capture long-range information via attention, while the latter suffer
from restricted reception field. Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022) is a recently
proposed benchmark to evaluate models’ capacity in capturing long-range interactions within graphs. We choose
two datasets, namely Peptides-func and Peptides-struct from LRGB to evaluate our models. Both datasets consist
of atomic graphs of peptides. The task for Peptides-func is a multi-label graph classification into 10 nonexclusive
peptide functional classes measure by average precision. The task for Peptides-struct is graph regression of 11
3D-structural properties of the peptides measured by MAE.

As shown in Table 10, since these datasets contain large graphs, A2 with neighbor attention and local neighbor
attention mechanisms cannot scale to them unfortunately. The results of our simplicial transformers are reported
in Table 9, while performance of cross-attention and sampling connected 3-tuples are displayed in Table 12 as
ablation study. To the best of our knowledge, our simplicial transformers are the first second-order models that
scale to LRGB datasets.

According to Table 9, our ASSN+VS
0:1 and AS0:1-dense+attn.bias both outperform other transformers with PE/SE,

including Transformer (A1) and SAN (Kreuzer et al., 2021). Interestingly, the virtual simplex in ASSN+VS
0:1 leads to

a significant performance gain compared with ASSN
0:1, indicating that global information aggregated by the virtual

simplex indeed helps model to predict long-range interactions and global properties better. AS0:1-dense+attn.bias
internally capture global information due to the dense attention mechanism, and the (extended) Hodge Laplacian
as attention bias provides beneficial structural information - it even surpasses GPS on the Peptides-struct dataset.

E.5 Ablation Study and Empirical Analysis

E.5.1 Scalability and Efficiency Analysis

To verify the scalability and efficiency of our proposed models, we summarize the scalability of different models
to various datasets in Table 10, and report the number of parameters and the running time of our models on
ZINC in Table 11.

As summarized in Table 6, the small molecular graphs in ZINC (Dwivedi et al., 2020) have the smallest average
size, while the Peptides-func/struct contain large graphs with hundreds of nodes and edges. Interestingly, A2

with different attention mechanisms form a step-like scalability in Table 10, which verifies the fact that A2-dense,
ANgbh

2 , ALN
2 and AVT

2 gradually reduce their complexity.

In Table 11, we provide the number of parameters as well as the running time of our models on ZINC. As
mentioned in the main text, all these models have similar number of parameters compared with GPS when
sharing common hyper-parameters (e.g. number of layers and network width). Regarding running time, all our
models have the same magnitude as GPS, which is completely acceptable. Remarkably, our sparse attention

Cai Zhou, Rose Yu, Yusu Wang

Table 11: # parameters and running time (s/epoch) of our models on ZINC. Other hyper-parameters are the
same as in (Rampasek et al., 2022).

Model # parameters running time (s/epoch)

GPS (Rampasek et al., 2022) 423,717 21

A2-Performer 863,269 107
ANgbh+

2 322,613 69
ALN+VT

2 389,173 37

A1,2-dense 607,253 64
ANgbh

1,2 601,253 37

AS0:1-dense 342,813 35
ASSN+VS

0:1 340,069 24

Table 12: Ablation of A3 with connected 3-tuples and cross-attention A1,2. Shown is mean ± std of 5 runs with
different random seeds.

Model ZINC (MAE ↓) Peptides-func (AP ↑) Peptides-struct (MAE ↓)
A3(connected) 0.138± 0.007 0.6329± 0.0117 0.2529± 0.0023

ANgbh
1,2 0.076± 0.005 0.6419± 0.0108 0.2612± 0.0013

mechanisms significantly improve efficiency. Simplicial transformers are generally more efficient than tuple-based
transformers. All these observations are consistent with our theoretical analysis.

E.5.2 Cross Attention and Sampling Strategy

In Appendix E.1 we detail the implementation of cross-attention A1,2 and A3 with sampling connected 3-tuples.
The corresponding results are reported in Table 12, where ANgbh

1,2 refers to the sparse implementation of A1,2

in which each first-order query token computes attention with the 2-tuples containing the query node (i.e.,
2-neighbors). We observe that the performances vary from datasets. Specifically, ANgbh

1,2 achieves competitive
0.076 MAE, in comparison, the dense implementation of A1,2 has 0.091 MAE (not reported in the table). Despite
that these methods do not achieve SOTA, they open a chance of leveraging the benefits of higher-order methods
in graph learning in the future.

E.5.3 Node Classification and Over-smoothing

It is widely believed that MPNN suffers from problems including over-smoothing and over-squashing, while
graph transformers can (partly) address these problems (Muller et al., 2023). However, there is still a lack of
thorough and systematical analysis. It is natural to ask whether higher-order graph transformers can address
these problems.

Here we primarily and empirically analyze the performance of high-order transformers in heterophilic transductive
node classification tasks on heterogeneous graphs. Cornell, Texas, and Wisconsin are three popular datasets
from WebKB (Ghani, 2001). We follow the experimental settings and hyperparameters of (Muller et al., 2023),
and report the performance of two-layer simplicial transformers in Table 13. We do not report tuple-based
transformers since the graphs are directed, thus the concept of tuples is not applicable.

Our simplicial transformer without PE/SE significantly outperforms GPS with PE/SE, verifying the advantages
of the global attention mechanism. Our models also have similar performance compared to Transformer with
RWSE/LapPE, leveraging the advantage of structure awareness brought by attention bias. An interesting
phenomenon is that Transformer alone perform better without GCN - adding GCN as in GPS would even decrease
the test accuracy. Muller et al. (2023) anticulated that this is due to the oversmoothing of message-passing GNNs
on heterophilic graph. Our results somewhat support this explanation; however, more future work is needed to

Higher-Order Graph Transformers

Table 13: Node classification performance on three heterophilic transductive datasets. Shown is the mean ± std
of 10 runs with different random seeds.

Model Cornell Texas Wisconsin

GCN 53.78± 3.07 65.95± 3.67 66.67± 2.63
GCN+LapPE 56.22± 2.65 65.95± 3.67 66.47± 1.37
GCN+RWSE 53.78± 4.09 62.97± 3.21 69.41± 2.66
GCN+DEG 53.51± 2.65 66.76± 2.72 67.26± 1.53

GPS(GCN+Transformer)+LapPE 66.22± 3.87 75.41± 1.46 74.71± 2.97
GPS(GCN+Transformer)+RWSE 65.14± 5.73 73.51± 2.65 78.04± 2.88
GPS(GCN+Transformer)+DEG 64.05± 2.43 73.51± 3.59 75.49± 4.23

Transformer+LapPE 69.46± 1.73 77.84± 1.08 76.08± 1.92
Transformer+RWSE 70.81± 2.02 77.57± 1.24 80.20± 2.23
Transformer+DEG 71.89± 2.48 77.30± 1.32 79.80± 0.90

Graphormer+DEG 68.38± 1.73 76.76± 1.79 77.06± 1.97
Graphormer+attn.bias 68.38± 1.73 76.22± 2.36 77.65± 2.00

AS0:1-dense+attn.bias 70.27± 2.96 76.84± 1.66 77.45± 0.98

give a comprehensive answer to the question. Moreover, it is also worth exploring the empirical advantages of
(high-order) transformers over MPNN and other non-transformer models.

