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Abstract

In this paper we introduce an activation-matching–based approach to generate1

minimal, faithful explanations for the decision-making of a pretrained classifier on2

any given image and reveal the underlying compact internal circuits that suffice for3

its decisions. Given an input image x and a frozen model f , we train a lightweight4

Autoencoder to output a binary mask m such that the explanation e = m ⊙ x5

preserves both the model’s prediction and the intermediate activations of x. Our6

objective combines: (i) multi-layer activation matching with KL Divergence to7

align distributions and cross-entropy to retain the top-1 label for both the iamge and8

the explanation; (ii) mask priors—L1 area for minimality, a binarization penalty for9

crisp 0/1 masks, and total variation for compactness; and (iii) abductive constraints10

for faithfulness and necessity. Beyond producing per-image explanations, we also11

introduce a circuit readout procedure wherein using the explanation’s forward pass,12

we identify active channels and construct a channel-level graph, scoring inter-layer13

edges by ingress weight magnitude times source activation and feature-to-class14

links by classifier weight magnitude times feature activation. This reveals sparse15

data-dependent sub-circuits and or internal pathways providing a practical bridge16

between explainability in the input space and mechanistic circuit analysis.17

1 Introduction18

Explanations are increasingly recognized as essential for understanding and trusting the decision-19

making of modern machine learning models. Deep neural networks, despite their remarkable20

predictive performance, often arrive at their outputs through complex, high-dimensional computations21

that are not directly human-interpretable. These models typically learn a vast repertoire of decision22

rules, any of which may be activated for a given input. As a result, simply observing the final23

prediction provides little insight into why the decision was made or which aspects of the input were24

most responsible.25

Minimality has therefore emerged as a favored criterion for explanations. By isolating the smallest26

possible set of input features that suffices for a given prediction, one obtains an explanation that27

is both human-readable and faithful to the model’s internal computation. Minimal explanations28

highlight a compact subset of pixels in the case of images, or features in general, that directly support29

the output. Such explanations serve not only as cognitive aids for human understanding but also as30

a practical diagnostic tool: they can expose spurious correlations, highlight shortcut learning, and31

reveal when the model relies on inappropriate evidence. This is critical in safety-sensitive applications32

such as medical diagnostics, autonomous driving, and security, where knowing the precise basis for a33

decision can determine whether the system is trustworthy.34
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In this work, we propose an activation-matching approach that, given an image and a frozen pretrained35

classifier, learns a lightweight autoencoder to produce a binary mask selecting a minimal set of pixels36

whose masked input preserves the model’s behavior. We further use the explanation’s activations37

to derive a concise, channel-level view of the model’s internal computation, revealing sparse, data-38

dependent subcircuits sufficient for the decision. Together, these components bridge input-level39

explanations with mechanistic insight; providing detailed understanding of the working on the40

machine learning model.41

2 Prior Work42

Inversion attempts to reconstruct inputs that elicit desired outputs or internal activations of a neural43

network. Unlike explanations, which are tied to a specific input and model decision, inversion focuses44

on synthesizing representative patterns that expose what a model has learned. Early studies on45

multilayer perceptrons applied gradient-based inversion to visualize decision rules, but these often46

yielded noisy or adversarial-like images Kindermann and Linden [1990], Jensen et al. [1999], Saad and47

Wunsch [2007]. Evolutionary search and constrained optimization were explored as alternatives Wong48

[2017]. Later work introduced prior-based regularization, including smoothness constraints and49

pretrained generative models, to improve realism and interpretability of reconstructions Mahendran50

and Vedaldi [2014], Yosinski et al. [2015], Mordvintsev et al. [2015], Nguyen et al. [2016, 2017].51

Recent advances include learning surrogate loss landscapes to stabilize inversion Liu et al. [2022], and52

generative methods that conditionally reconstruct inputs likely to produce a given output Suhail and53

Sethi [2024]. Alternative formulations recast inversion into logical reasoning frameworks, encoding54

classifiers into CNF constraints for deterministic reconstruction Suhail [2024].55

While inversion aims to characterize model behavior in aggregate, explanation generation focuses56

on providing faithful rationales for a specific prediction. Explainable AI has therefore emerged as a57

major research area Ali et al. [2023], Hsieh et al. [2024], Gilpin et al. [2018], motivated by the need58

to enhance trust, transparency, and accountability in high-stakes applications. Post-hoc attribution59

methods remain dominant: LIME produces local surrogate models Hamilton et al. [2022], Grad-CAM60

highlights salient image regions via gradient-weighted activations Selvaraju et al. [2019], and more61

recent work emphasizes concept-based explanations that map predictions to semantically meaningful62

parts Lee et al. [2025]. The quality of explanations is itself a key open challenge, with surveys stressing63

the need for rigorous metrics combining fidelity, stability, and human-centered evaluation Zhou et al.64

[2021]. Explanations are also being integrated into interactive systems, allowing users to steer, debug,65

or refine models through explanation-guided feedback Teso et al. [2022]. Beyond heuristic methods,66

abductive reasoning approaches compute subset- or cardinality-minimal explanations with formal67

guarantees Ignatiev et al. [2018].68

Mechanistic interpretability seeks to discover the circuits within a model—sparse subgraphs of69

neurons and connections that implement specific algorithms. Minimal explanations highlight the70

smallest sufficient evidence for a model’s decisions providing mechanistic understanding of its71

internals. Early circuit analyses relied heavily on manual inspection, but recent work has introduced72

scalable discovery methods. Conmy et al. [2023] proposed ACDC, an automated framework that73

rediscovered known transformer circuits through activation patching. Rajaram et al. [2024] extended74

these ideas to vision models, extracting circuits responsible for concept recognition and showing that75

targeted edits can alter predictions and improve robustness. Nainani et al. [2024] investigated how76

circuits generalize across varied inputs, finding that networks often reuse core components while77

adapting connectivity—a form of representational superposition.78

3 Methodology79

We aim to generate minimal, faithful explanations for a frozen classifier f and use them to expose80

compact internal circuits. We use a lightweight autoencoder to generate a binary mask m, trained81

with a composite loss consisting of activation-matching, fidelity, sparsity, binarization, smoothness,82

and robustness terms, each weighted appropriately.83

Activation matching and output fidelity. Given an input image x and a frozen classifier f , our84

goal is to find a binary mask m such that the masked input e = m⊙x preserves the model’s behavior.85

Both x and e are passed through f , and we enforce that their internal representations remain aligned.86
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Figure 1: Top: Original Image, 0/1 Mask, and Explanation. Bottom: Channel-level circuits.

Specifically, we minimize a multi-layer activation distance Lact =
∑

ℓ αℓd(ϕℓ(x), ϕℓ(e)), where ϕℓ87

denotes features at layer ℓ. In addition, we encourage output fidelity using KL divergence between88

the softmax distributions of f(x) and f(e), together with cross-entropy to preserve the top-1 label.89

Mask priors for minimality. To ensure explanations are compact and interpretable, we impose90

priors on the mask. An area loss Larea = ∥m∥1 encourages sparsity, a binarization penalty Lbin =91

∥m−m2∥1 drives values toward 0/1, and a total variation term Ltv reduces speckle by promoting92

smooth, contiguous regions.93

Abductive constraint. Alonsode minimality we also enforce a robustness constraint: random94

perturbations outside the explanation should not change the prediction. Concretely, given a perturbed95

background r, we form ẽ = m⊙ x+ (1−m)⊙ r and apply a cross-entropy loss to ensure that f(ẽ)96

preserves the same label as f(x).97

Circuit discovery. Beyond input-level explanations, we analyze how evidence flows through the98

network. Using activations from e, we select the most energetic channels at each layer as nodes and99

assign edge weights between successive layers by ingress weight magnitude times source activation.100

Connections from the penultimate feature vector to class logits are similarly scored by |fc weight|×101

feature activation. This yields a sparse, channel-level graph that captures the dominant subcircuits102

sufficient for the model’s decision.103

3



Figure 2: Explanations for sample Images of Otter. (Top) With heavily weighted area loss, the mask
retains only about 2% of the image pixels, yet these are sufficient to classify the otter. (Bottom) For
an image containing multiple otters, the framework produces distinct explanations(only one shown).

4 Results104

While our approach is general, we use it to explain the decision-making of a pretrained ResNet-18105

classifier on ImageNet images. We define a simple U-Net–based autoencoder that generates a binary106

mask. Both the original image and the explanation are passed through the frozen ResNet, and we tap107

the post-ReLU activations at five layers along with the final logits. These activations are matched108

using mean squared error, while the outputs are aligned via KL divergence and cross-entropy. To109

enforce minimality, we heavily weight the area loss combined with the robustness constraint to110

generate crisp explanations.111

Figure 1 illustrates an example for the ImageNet class EntleBucher. The first row shows the original112

image, the binary mask, and the resulting explanation. The second row compares the circuit graphs113

obtained from the original image and from the explanation when passed through the ResNet. We114

observe that the explanation is highly minimal(only about 5% of active pixels), ignoring background115

regions of varying colors and textures, and focusing mostly on the object pixels. The explanation116

circuit highlights only the dominant pathways necessary for the decision. Interestingly, the top-1117

confidence of the explanation is higher than that of the original image, as irrelevant background pixels118

have been turned off.119

As shown in Figure 2, when strong minimality constraints are applied, the explanation for a single120

otter reduces to a remarkably small region—roughly 2% of pixels—focusing primarily on the facial121

features and fur texture. Despite this extreme sparsity, the classifier’s label is preserved with high122

confidence. In contrast, when applied to an image with multiple otters, the method produces separate123

explanations that selectively attend to each animal, demonstrating how the approach can adapt to124

multi-instance settings and highlight distinct decision-supporting evidence for each occurrence.125

Figure 3 shows how varying the relative weighting of area and smoothness terms affects the explana-126

tions. In the first case, heavily weighting the area and total variation losses yields a very compact127

mask that captures only a small discriminative region. In the second example, the explanation reveals128

shortcut learning, as the model highlights both the dog and the leash. In the third case, relaxing the129

minimality constraints results in broader coverage of the dog and partial inclusion of the background.130

Finally, further relaxation expands the mask to cover the entire object.131
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Figure 3: Effect of varying loss weights on generated explanations. Each triplet shows the original
image, the generated mask, and the resulting explanation. (1) With heavily weighted area and total
variation losses, the explanation becomes extremely small and localized. (2) Example of shortcut
learning: the model highlights not only the dog but also the leash, reflecting dataset biases where
dogs frequently appear with leashes. (3) With relaxed constraints, a larger portion of the dog and
some background regions are included. (4) Further relaxation of the area loss highlights the entire
dog, demonstrating how the approach can be extended toward instance-level segmentation.
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