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Abstract

In this paper we introduce an activation-matching—based approach to generate
minimal, faithful explanations for the decision-making of a pretrained classifier on
any given image and reveal the underlying compact internal circuits that suffice for
its decisions. Given an input image x and a frozen model f, we train a lightweight
Autoencoder to output a binary mask m such that the explanation e = m © x
preserves both the model’s prediction and the intermediate activations of z. Our
objective combines: (i) multi-layer activation matching with KL Divergence to
align distributions and cross-entropy to retain the top-1 label for both the iamge and
the explanation; (ii) mask priors—L]1 area for minimality, a binarization penalty for
crisp 0/1 masks, and total variation for compactness; and (iii) abductive constraints
for faithfulness and necessity. Beyond producing per-image explanations, we also
introduce a circuit readout procedure wherein using the explanation’s forward pass,
we identify active channels and construct a channel-level graph, scoring inter-layer
edges by ingress weight magnitude times source activation and feature-to-class
links by classifier weight magnitude times feature activation. This reveals sparse
data-dependent sub-circuits and or internal pathways providing a practical bridge
between explainability in the input space and mechanistic circuit analysis.

1 Introduction

Explanations are increasingly recognized as essential for understanding and trusting the decision-
making of modern machine learning models. Deep neural networks, despite their remarkable
predictive performance, often arrive at their outputs through complex, high-dimensional computations
that are not directly human-interpretable. These models typically learn a vast repertoire of decision
rules, any of which may be activated for a given input. As a result, simply observing the final
prediction provides little insight into why the decision was made or which aspects of the input were
most responsible.

Minimality has therefore emerged as a favored criterion for explanations. By isolating the smallest
possible set of input features that suffices for a given prediction, one obtains an explanation that
is both human-readable and faithful to the model’s internal computation. Minimal explanations
highlight a compact subset of pixels in the case of images, or features in general, that directly support
the output. Such explanations serve not only as cognitive aids for human understanding but also as
a practical diagnostic tool: they can expose spurious correlations, highlight shortcut learning, and
reveal when the model relies on inappropriate evidence. This is critical in safety-sensitive applications
such as medical diagnostics, autonomous driving, and security, where knowing the precise basis for a
decision can determine whether the system is trustworthy.
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In this work, we propose an activation-matching approach that, given an image and a frozen pretrained
classifier, learns a lightweight autoencoder to produce a binary mask selecting a minimal set of pixels
whose masked input preserves the model’s behavior. We further use the explanation’s activations
to derive a concise, channel-level view of the model’s internal computation, revealing sparse, data-
dependent subcircuits sufficient for the decision. Together, these components bridge input-level
explanations with mechanistic insight; providing detailed understanding of the working on the
machine learning model.

2 Prior Work

Inversion attempts to reconstruct inputs that elicit desired outputs or internal activations of a neural
network. Unlike explanations, which are tied to a specific input and model decision, inversion focuses
on synthesizing representative patterns that expose what a model has learned. Early studies on
multilayer perceptrons applied gradient-based inversion to visualize decision rules, but these often
yielded noisy or adversarial-like images|Kindermann and Linden|[1990], Jensen et al.|[1999], Saad and
‘Wunsch|[2007]]. Evolutionary search and constrained optimization were explored as alternatives Wong
[2017]. Later work introduced prior-based regularization, including smoothness constraints and
pretrained generative models, to improve realism and interpretability of reconstructions Mahendran
and Vedaldil [2014], |Yosinski et al.| [2015]], Mordvintsev et al. [2015]], Nguyen et al.| [2016,|2017]].
Recent advances include learning surrogate loss landscapes to stabilize inversion |Liu et al.|[2022], and
generative methods that conditionally reconstruct inputs likely to produce a given output |Suhail and
Sethi [2024]]. Alternative formulations recast inversion into logical reasoning frameworks, encoding
classifiers into CNF constraints for deterministic reconstruction [Suhaill [2024].

While inversion aims to characterize model behavior in aggregate, explanation generation focuses
on providing faithful rationales for a specific prediction. Explainable Al has therefore emerged as a
major research area|Ali et al.|[2023]], |[Hsieh et al.|[2024], Gilpin et al.[[2018]], motivated by the need
to enhance trust, transparency, and accountability in high-stakes applications. Post-hoc attribution
methods remain dominant: LIME produces local surrogate models Hamilton et al.|[2022], Grad-CAM
highlights salient image regions via gradient-weighted activations Selvaraju et al.|[2019], and more
recent work emphasizes concept-based explanations that map predictions to semantically meaningful
parts|Lee et al.|[2025]]. The quality of explanations is itself a key open challenge, with surveys stressing
the need for rigorous metrics combining fidelity, stability, and human-centered evaluation |[Zhou et al.
[2021]. Explanations are also being integrated into interactive systems, allowing users to steer, debug,
or refine models through explanation-guided feedback Teso et al.| [2022]]. Beyond heuristic methods,
abductive reasoning approaches compute subset- or cardinality-minimal explanations with formal
guarantees [gnatiev et al.|[2018].

Mechanistic interpretability seeks to discover the circuits within a model—sparse subgraphs of
neurons and connections that implement specific algorithms. Minimal explanations highlight the
smallest sufficient evidence for a model’s decisions providing mechanistic understanding of its
internals. Early circuit analyses relied heavily on manual inspection, but recent work has introduced
scalable discovery methods. |(Conmy et al.| [2023]] proposed ACDC, an automated framework that
rediscovered known transformer circuits through activation patching. [Rajaram et al.|[2024]] extended
these ideas to vision models, extracting circuits responsible for concept recognition and showing that
targeted edits can alter predictions and improve robustness. |[Nainani et al.|[2024]] investigated how
circuits generalize across varied inputs, finding that networks often reuse core components while
adapting connectivity—a form of representational superposition.

3 Methodology

We aim to generate minimal, faithful explanations for a frozen classifier f and use them to expose
compact internal circuits. We use a lightweight autoencoder to generate a binary mask m, trained
with a composite loss consisting of activation-matching, fidelity, sparsity, binarization, smoothness,
and robustness terms, each weighted appropriately.

Activation matching and output fidelity. Given an input image = and a frozen classifier f, our
goal is to find a binary mask m such that the masked input e = m © x preserves the model’s behavior.
Both x and e are passed through f, and we enforce that their internal representations remain aligned.
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Figure 1: Top: Original Image, 0/1 Mask, and Explanation. Bottom: Channel-level circuits.

Specifically, we minimize a multi-layer activation distance Ly = >, cyd(d¢(), de(e)), where ¢y
denotes features at layer ¢. In addition, we encourage output fidelity using KL divergence between
the softmax distributions of f(z) and f(e), together with cross-entropy to preserve the top-1 label.

Mask priors for minimality. To ensure explanations are compact and interpretable, we impose
priors on the mask. An area 1oss Lyea = ||m|1 encourages sparsity, a binarization penalty Ly, =
||m — m?||; drives values toward 0/1, and a total variation term L, reduces speckle by promoting
smooth, contiguous regions.

Abductive constraint. Alonsode minimality we also enforce a robustness constraint: random
perturbations outside the explanation should not change the prediction. Concretely, given a perturbed
background r, we form € = m ® z + (1 — m) @ r and apply a cross-entropy loss to ensure that f(€)
preserves the same label as f(x).

Circuit discovery. Beyond input-level explanations, we analyze how evidence flows through the
network. Using activations from e, we select the most energetic channels at each layer as nodes and
assign edge weights between successive layers by ingress weight magnitude times source activation.
Connections from the penultimate feature vector to class logits are similarly scored by |fc weight|x
feature activation. This yields a sparse, channel-level graph that captures the dominant subcircuits
sufficient for the model’s decision.
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Original Binarized Mask Explanation

Figure 2: Explanations for sample Images of Otter. (Top) With heavily weighted area loss, the mask
retains only about 2% of the image pixels, yet these are sufficient to classify the otter. (Bottom) For
an image containing multiple otters, the framework produces distinct explanations(only one shown).

4 Results

While our approach is general, we use it to explain the decision-making of a pretrained ResNet-18
classifier on ImageNet images. We define a simple U-Net-based autoencoder that generates a binary
mask. Both the original image and the explanation are passed through the frozen ResNet, and we tap
the post-ReLLU activations at five layers along with the final logits. These activations are matched
using mean squared error, while the outputs are aligned via KL divergence and cross-entropy. To
enforce minimality, we heavily weight the area loss combined with the robustness constraint to
generate crisp explanations.

Figure ] illustrates an example for the ImageNet class EntleBucher. The first row shows the original
image, the binary mask, and the resulting explanation. The second row compares the circuit graphs
obtained from the original image and from the explanation when passed through the ResNet. We
observe that the explanation is highly minimal(only about 5% of active pixels), ignoring background
regions of varying colors and textures, and focusing mostly on the object pixels. The explanation
circuit highlights only the dominant pathways necessary for the decision. Interestingly, the top-1
confidence of the explanation is higher than that of the original image, as irrelevant background pixels
have been turned off.

As shown in Figure 2] when strong minimality constraints are applied, the explanation for a single
otter reduces to a remarkably small region—roughly 2% of pixels—focusing primarily on the facial
features and fur texture. Despite this extreme sparsity, the classifier’s label is preserved with high
confidence. In contrast, when applied to an image with multiple otters, the method produces separate
explanations that selectively attend to each animal, demonstrating how the approach can adapt to
multi-instance settings and highlight distinct decision-supporting evidence for each occurrence.

Figure [3]shows how varying the relative weighting of area and smoothness terms affects the explana-
tions. In the first case, heavily weighting the area and total variation losses yields a very compact
mask that captures only a small discriminative region. In the second example, the explanation reveals
shortcut learning, as the model highlights both the dog and the leash. In the third case, relaxing the
minimality constraints results in broader coverage of the dog and partial inclusion of the background.
Finally, further relaxation expands the mask to cover the entire object.
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Figure 3: Effect of varying loss weights on generated explanations. Each triplet shows the original
image, the generated mask, and the resulting explanation. (1) With heavily weighted area and total
variation losses, the explanation becomes extremely small and localized. (2) Example of shortcut
learning: the model highlights not only the dog but also the leash, reflecting dataset biases where
dogs frequently appear with leashes. (3) With relaxed constraints, a larger portion of the dog and
some background regions are included. (4) Further relaxation of the area loss highlights the entire
dog, demonstrating how the approach can be extended toward instance-level segmentation.
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