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Abstract

We consider SGD-type optimization on infinite-dimensional quadratic problems
with power law spectral conditions. It is well-known that on such problems deter-
ministic GD has loss convergence rates L; = O(t~¢), which can be improved to
L; = O(t~2¢) by using Heavy Ball with a non-stationary Jacobi-based schedule
(and the latter rate is optimal among fixed schedules). However, in the mini-batch
Stochastic GD setting, the sampling noise causes the Jacobi HB to diverge; ac-
cordingly no O(t~2¢) algorithm is known. In this paper we show that rates up to
O(t~2¢) can be achieved by a generalized stationary SGD with infinite memory.
We start by identifying generalized (S)GD algorithms with contours in the com-
plex plane. We then show that contours that have a corner with external angle 67
accelerate the plain GD rate O(t~¢) to O(¢t~%). For deterministic GD, increasing
0 allows to achieve rates arbitrarily close to O(t_QC). However, in Stochastic GD,
increasing 6 also amplifies the sampling noise, so in general 6 needs to be opti-
mized by balancing the acceleration and noise effects. We prove that the optimal
rate is given by 6. = min(2, v, ﬁ), where v, ¢ are the exponents appearing
in the capacity and source spectral conditions. Furthermore, using fast rational
approximations of the power functions, we show that ideal corner algorithms can
be efficiently approximated by practical finite-memory algorithms.

1 Introduction

It is well-known that Gradient Descent (GD) on quadratic problems can be accelerated using the
additional momentum term (the “Heavy Ball” algorithm, [[19]). For ill-conditioned problem, Heavy
Ball with a suitable non-stationary (“Jacobi”) predefined schedule allows to accelerate a power-law
loss converge rate O(t~¢) to O(t~2¢), i.e. double the exponent ¢ [8,[16]. This acceleration is the
best possible for non-adaptive schedules.

On the other hand, for mini-batch Stochastic Gradient Descent (SGD) typically used in modern
machine learning, the convergence rate picture is much more complicated, and much less is known
about possible acceleration. The natural quadratic problem in this case is the fitting of a linear model
with a sampled quadratic loss. In the power-law spectral setting, it was found in [4] that plain SGD
has two distinct convergent phases: either the sampling noise is weak and the SGD rate is the same
O(t~¢) as for GD, or the convergence is slower due to the prevalence of the sampling noise. We
refer to these two scenarios as signal- and noise-dominated, respectively.

This picture was refined in several other works [18} 23} 24} 25| 29]. In particular, [29] examined
generalized SGDs with finite linear memory of any size (generalizing the momentum and similar
terms) and proved that with stationary schedules they all have the same phase diagram as plain SGD
(Figure [2|left); in particular, they do not accelerate the plain GD/SGD rate O(t~¢).

On the other hand, the non-stationary Jacobi Heavy Ball accelerating deterministic GD from O(t~¢)
to O(t2¢) fails for mini-batch Stochastic GD: it eventually starts to diverge due to the accumulating
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sampling noise. [23] have proposed a non-stationary modification of SGD that achieves a quadratic
acceleration, but only on finite-dimensional problems. [29] have proposed a non-stationary modifi-
cation of the Heavy Ball/momentum algorithm that is heuristically expected (but not yet proved) to
achieve rates O(t~9¢) with some 1 < 6 < 2 on infinite-dimensional problems.

To sum up, the topic of SGD acceleration in ill-conditioned quadratic problems is far from settled.

In the present paper we propose an entirely new approach to acceleration of (S)GD that both provides
a new general geometric viewpoint and proves that, in a certain rigorous sense, SGD in the signal-
dominated regime can be accelerated from O(t=¢) to O(t~%) with 6 up to 2.

Our contributions:

1. A view of generalized (S)GD as contours (Section . We show that stationary (S)GD
algorithms with an arbitrary-sized linear memory can be identified with contours in the
complex plane. This identification leverages the characteristic polynomials x and the loss
expansions of memory-M (S)GD from [29]. We show that all the information needed to
compute the loss evolution is contained in a response map ¥ : {z € C : |z] > 1} —» C
associated with x. The map U gives rise to the contour ¥({z € C : |z| = 1}) and,
conversely, can be reconstructed, along with the algorithm, from a given contour.

2. Corner algorithms (Section ). A crucial role is played by contours that have a corner
with external angle 07,1 < 6 < 2. We prove that the respective algorithms accelerate
the plain GD rate O(t~¢) to O(t~%). However, in Stochastic GD such algorithms have
the negative effect of amplifying the sampling noise. By balancing these two effects, we
establish the precise phase diagram of feasible accelerations of SGD under power-law spec-
tral assumptions (Figure [I]right). In particular, we identify three natural sub-phases in the
signal-dominated phase; in one of them acceleration up to O(¢~2¢) is theoretically feasible.

3. Implementation of Corner (S)GD (Section[5). Ideal corner algorithms require an infinite
memory, but can be fast approximated by finite-memory algorithms using fast rational ap-
proximations of the power function z?. Experiments with a synthetic problem and MNIST
confirm the practical acceleration.

2 Background
This section is largely based on the paper [29] to which we refer for details.

Gradient descent with memory. Suppose that we wish to minimize a loss function L(w) on a
linear space H. We consider gradient descent with size-// memory that can be written as

B _ T
<Wt-sl-11 Wt) _ ( e bD) (VL(Wt)> , t=0,1,2,... (1)
t+1 c Ui

The vector w; is the current step-¢ approximation to an optimal vector w,, and uy is an auxiliary
vector representing the “memory” of the optimizer. These auxiliary vectors have the form u =
(u® .. )T with u™ € H and can be viewed as size-M columns with each component
belonging to H. We refer to M as the memory size. The parameter o (learning rate) is scalar,
the parameters b, c are M-dimensional column vectors, and D is a M x M scalar matrix. The
algorithm can be viewed as a sequence of transformations of size-(M 4+ 1) column vectors (/)
with H-valued components. Throughout the paper, we only consider stationary algorithms, in the
sense that the parameters a, b, ¢, D do not depend on ¢. The simplest nontrivial special case of GD
with memory is Heavy Ball [19], in which M = 1 and u; is the momentum.

Our theoretical results will rely on the assumption that L is quadratic:

1
L(w) = inHw —wlq, 2)
with a strictly positive definite H. Throughout the paper, we will mostly be interested in infinite-
dimensional Hilbert spaces #, and we slightly abuse notation by interpreting w” as the co-vector
(linear functional (w, -)) associated with vector w. We will assume that H has a discrete spectrum
with ordered strictly positive eigenvalues \;, ~\, 0.
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Let w, be the optimal value of L such that VL(w,) = Hw, —q = 0, and denote Aw; = w; — w,.
Then, if Aw; and u; are eigenvectors of H with eigenvalue A, then

AWt 1 o Awt _ 1 bT —a T
(ut+1_>_5)\<ut>’ S’\_<O D)+)‘<c)(1’0 ) 3)

and the new vectors Awy 1, uy; 1 are again eigenvectors of H with eigenvalue A. As a result,
performing the spectral decomposition of Aw,, u, reduces the original dynamics (I)) acting in H ®
RM+1 to a M-indexed collection of independent dynamics each acting in R +1,

For quadratic L, evolution (I) admits an equivalent representation

M M
Wt+M+1 == Z pmwt+m + Z quL(Wt+m)7 t= 07 17 ceey (4)
m=0 m=0

with constants (p,,)M_g, (gm)M_, such that Zi\,«{:o Pm = 1. These constants are found from the
characteristic polynomial

M M
X(1, A) = det(u—52) = P(n) = AQ(n), P(p) = p™ =" prpt™, Q) = D gmpt™. (5)
m=0 m=0

Batch SGD with memory. In batch Stochastic Gradient Descent (SGD), it is assumed that the
loss has the form L(w) = Ex.,¢(x, w), where p is some probability distribution of data points x
and £(x, w) is the loss at the point x. In the algorithm (T, we replace VL by VLp,, where B; is a
random batch of | B| points sampled from distribution p, and V Lp is the empirical approximation
to L,i.e. Lp(w) = I%I > xep £(x, w). The samples B; at different steps ¢ are independent.

We assume / to have the quadratic form ¢(x, w) = 1(x”w —y(x))? for some scalar target function

y(x). Here, the inner product x” w can be viewed as a linear model acting on the feature vector x.
By projecting to the subspace of linear functions, we can assume w.l.o.g. that the target function
y(x) is itself linear in x, i.e. f(x) = x! w, with some optimal parameter vector w,. (Later we
will slightly weaken this assumption to also cover unfeasible solutions w,.) Then the full loss is
quadratic as in Eq. @): L(w) = Ex,3(xTAw)? = LAwT"HAw, where Aw = w — w, and the
Hessian H = E., [xx”].

Mean loss evolution, SE approximation, and the propagator expansion. Since the trajectory
w; in SGD is random, it is convenient to study the deterministic trajectory of batch-averaged losses
L, =Epg,, . B, ,L(w;). The sequence L, can be described exactly in terms of the second moments
of w;,u,; that admit exact evolution equations. An important aspect of this evolution is that it
involves 4’th order moments of the data distribution p and so cannot in general be solved using only
the second-order information available in the Hessian H = Ey.,[xx7].

A convenient approach to handle this difficulty is the Spectrally-Expressible (SE) approximation
proposed in [25]]. It consists in assuming that there exist constants 71, 7o such that for all positive
definite operators C in H

Exnp[xx” Cxx'] ~ 7 Tr[HCJH — (12 — 1)HCH. (6)

In fact, this approximation holds exactly for some natural types of distribution p (translation-
invariant, gaussian). Otherwise, if the r.h.s. is only an upper or lower bound for the Lh.s., this
implies a respective relation between the actual losses and the losses computed under the SE approx-
imation. Theoretical predictions obtained under assumption (6) show good quantitative agreement
with experiment on real data. We refer to [25, |29] for further discussion of the SE approximation.

The main benefit of the SE approximation is that it allows to write a convenient loss expansion

t
Ly = %(le + Z Z Uti1-6,, Uty —ton 1 Ut 1 —ty o =" Uty —ty th) @)

m=10<t;<...<tp, <t+1

with scalar noise propagators U, and signal propagators V;. The signal propagators describe the
error reduction during optimization in the absence of sampling noise, while the noise propagators
describe the perturbing effect of sampling noise injected at times 1, . . ., t,,.
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For our main results in Sections [3| ] we will assume that 7, = 0, implying particularly simple
formulas for Uy, V;:

T > — - -
Ui = 57 A0S V= Mulebwn(0m)ST G) @)
k=1 k=1

where ey, is a normalized eigenvector for Ay, and it is also assumed that optimization starts from
wo = 0so that Awy = wo — W, = —W,.

Importantly, the batch size | B| affects L; only through the denominator in the coefficient in U;. The
deterministic GD corresponds to the limit | B| — oo: in this limit U; = 0 and L; = § V1.

Convergence/divergence regimes. Given expansion (7)), we can deduce various convergence
properties of the loss from the properties of the propagators V;, U;.

Theorem 1 ([29]]). Let numbers L; be given by expansion with some Uy > 0,V; > 0. Let
Us =3 Uand Vs = > 2, Vs
1. [Convergence] Suppose that Us, < 1. Att — oo, if V; = O(1) (respectively, V; = o(1)),
then also Ly = O(1) (respectively, Ly = o(1)).
2. [Divergence] If Uy, > 1 and V; > 0 for at least one t, then SUP;—1 2, . L; = co.
3. [Signal-dominated regime] Suppose that there exist constants &y, Cy > 0 such that V; =
Cyt=¢V (1 +o(1)) as t — oc. Suppose also that Us, < 1 and U; = O(t~5V) with some
&u > max(&y, 1). Then
a 2(1 —Uys)
4. [Noise-dominated regime] Suppose that there exist constants &, > &y > 1,Cy > 0 such
that Uy = Oyt~ (14 0(1)) and Vi = O(t=%V) as t — oc. Let also that Us, < 1. Then

_ VaCu —€u
L, = 2(1 — Uz)Qt (1+0(1)). (10)

Ly t78 (14 o(1)). ©)

Spectral power laws. The detailed convergence results in items 3, 4 of Theorem [I] require us
to know the asymptotics of the propagators Uy, V;. To this end we introduce power-law spectral
assumptions on the eigenvalues and eigencomponents of w, in our optimization problem:

A =AET"(140(1)), k— oo, (11)
D Mlefw.)? =QA(1+0(1), ANO, (12)

E:Ak <A

with some constants A, () > 0 and exponents v > 0, > 0. Such power laws are common in kernel
methods or overparameterized models, and can be derived theoretically or observed empirically
[ 21 3 [7, 10}, 26} 27]]. Conditions (TT)), (I2) (or their weaker, inequality forms) are usually referred
to as the capacity and source conditions, respectively [9]. The exponent ¢ is akin to an inverse
effective condition number: lower ( means that the target and the solution have a heavier spectral
tail of eigencomponents with small A\, making the problem harder. The exponent v is akin to an
inverse effective dimensionality of the problem: lower v means a larger number of eigenvectors
above a given spectral parameter A. Only the source condition (T2)) matters for the non-stochastic
GD rates, but in SGD the capacity condition (TT)) also becomes important due to the sampling noise.

If 0 < ¢ < 1, then the source condition @I) is inconsistent with w, having a finite #{-norm, i.e.,
strictly speaking, w, is not an element of H. Such a solution is called unfeasible. In fact, unfeasible
scenarios are quite common both theoretically and in practice (see Section [F). The Corner SGD to
be proposed in Sectionwill be especially suitable for unfeasible scenarios. Note also that if v < %,
then U; = oo and so L; = o0, i.e. the loss immediately diverges.

Stability and asymptotics of the propagators. Let us say that a square matrix A is strictly stable
if all its eigenvalues are less than 1 in absolute value. It is natural to require the matrices S to be
strictly stable for all A € spec(H), since otherwise Uy, V;, and hence L;, will not generally even
converge to 0 as t — oo. At A = 0 the matrix S\— has eigenvalue 1 and additionally the eigenvalues
of the matrix D; accordingly, we will assume that D is strictly stable.
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L, = O(t79C)7 Omax = min(Qv v, ﬁ) Omax

2
) 1.8
2 Eventual divergence L; — 0o N 1.6

- YA < 00, Dop A = 00 =
1 1.4
Noise dominated

L, o t/v=2 1.2

1

1 ¢ 2 0 0.5 IC 1.5 2

Figure 1: Left: The phase diagram of stationary finite-memory SGD from [25] 29]. Right: Maxi-
mum acceleration factor 0y, = min(2, v, C%—zﬁ) for Corner SGD in the signal-dominated regime

(see Theorem [4).

Theorem 2 ([29]). Suppose that D and S, are strictly stable for all X € spec(H). Recalling the
characteristic polynomial x(p, A) = det(u — Sy) = P(u) — AQ (), define the effective learning

rate
ot = ~Q(1) /4E (1), (13)

and assume that o > 0. Then, under spectral assumptions (I1), (I2) with v > %, the propagators
Vi, Uy given by Eq. (8) obey, as t — oo,

Vi = (140(1)QT (¢ + 1) (2aest) ¢, (14)
Uy = (1+0(1)) (aeﬁA)UTEi@ 1Y) (g2, (15)

Combined with Theorem[I] this result yields the (¢, 1/v)-phase diagram shown in Figure [I]left. In
particular, the region ¥ > 1,0 < ¢ < 2 — 1/v represents the signal-dominated phase in which
the noise effects are relatively weak and the loss convergence L; o t~¢ has the same exponent ¢
as plain deterministic GD. This holds for all stationary finite- 1/ algorithms and so such algorithms
cannot accelerate the exponent. In the present paper we will focus on the signal-dominated phase
and propose an “infinite-memory”” generalization of SGD that does accelerate the exponent.

3 The contour view of generalized (S)GD

We consider the propagator expansion (7)) as a basis for our arguments. Observe that we can write
the expression (1 07 )S%(~2) appearing in the definition of propagator U, in Eq. (§) as
1 _
(107)S3() = —.f i1 o™ ) (i = Sx) T ), (16)
ll=r

211

where |u| = r is a contour in the complex plane encircling all the eigenvalues of S. Next, simple
calculation (see Section[A) shows that

Q(n) 1 1

107 ) (=51 ) = = = ; 17)
(rom)ln =)0 = By =3 ~ By~ () — A
Q)
where P(u) — AQ(u) is the characteristic polynomial of Sy introduced in Eq. (3), and
P(p)
W(p) = = (18)
Q(u)
We see, in particular, that the propagators U; depend on the algorithm parameters only through the
function W:
t 1d 2
i
_— . 19
Ue = |B| Z ‘2m %M_T (1) — A (19
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Figure 2: Left: The map ¥ = g for Heavy Ball with P(p) = (u — 1)(1 — 0.4) and Q(p) = —p.

The contour vy = ¥({p : |u| = 1}) encircles spec(H). The map ¥ bijectively maps {|x| > 1} to the
exterior open domain D., with boundary . See Sec. [B|for more examples and a general discussion
of memory-1 contours. Right: Contour -y corresponding to a corner map ¥ with angle 6.

A similar observation can also be made regarding the propagators V;. Indeed, V;’s are different
from U,’s in that they involve the expression (1 07 )S% () instead of (1 07 )S(~2). The contour

representation for (1 o7 )S%(§) is similar to Eq. (T6), and then a simple calculation gives

P (p)

(IOT)(/L_S/\)_l(é): (\P(M)*)\)(ufl) (20)
As aresult,
S (elw?| L p U (p)dp )2
e k;/\k( i) ‘27” ful—r (O(p) =N (p—=1)1" 2D

Recall from Eqs. (@),(5) that P can be any monic polynomial (i.e., with leading coefficient 1) of
degree M + 1 such that P(1) = 0, while @ can be any polynomials of degree not greater than
M. Since by Eq. (7) the loss trajectory L; is completely determined by the propagators Uy, V;, we
see that designing a stationary SGD with memory is essentially equivalent to designing a rational
function ¥ subject to these simple conditions. By (@), the function ¥ = 5 can be interpreted as

describing the (frequency) response of the gradient sequence (V L(w;)) to the sequence (wy).

Let us consider the map ¥ from the stability perspective. Recall that we expect S, to be strictly

stable for all the eigenvalues A\, € spec(H). In terms of ¥ = g this means that ¥(u) # A for all

w1 € C such that || > 1. This shows, in particular, that we can set the radius 7 = 1 in Egs. (I9),
(21). Additionally, if D is strictly stable, then Sy has only one simple eigenvalue of unit absolute
value, = 1, and so ¥(u) # 0 for |u| = 1, u # 1. Let us introduce the curve 7 as the image of the
unit circle under the map W. Then the last condition means that the curve y goes through the point
0 only once, at i = 1.

In general, the curve ~ can have a complicated shape with self-intersections, and the map ¥ may not
be injective on the domain || > 1. In particular, the singularity of ¥ at ;1 = oo is oc M T1-dea(@)
so in a vicinity of u = oo the function W is injective if and only if deg(Q) = M (and in general
¥ may also have other singularities at || > 1). However, we may expect natural, non-degenerate
algorithms to correspond to simple non-intersecting curves + and injective maps ¥ on |u| > 1.
For example, this is the case for plain (S)GD and Heavy Ball, where -y is a circle and an ellipse,
respectively (Fig. 2]left). See Section [B]for a general discussion of memory-1 algorithms.

Given a non-intersecting (Jordan) contour -, denote by D, the respective exterior open domain.
Then, by Riemann mapping theorem, there exists a bijective holomorphic map ¥., : {u € C :
|¢| > 1} — D,. Additionally, by Carathéodory’s theorenﬂ (see e.g. [LI]}, p. 13) this map extends
continuously to the boundary, ¥, : {x € C : |u| = 1} — ~. Such maps ¥, are non-unique, forming
a three-parameter family ¥, o f, where f is a conformal automorphism of { € C : |pu| > 1}.
However, recall that our maps ¥ = % had the properties U(co) = oo and ¥(1) = 0. These two
requirements for ¥, uniquely fix the conformal isomorphism and hence ¥.,.

!Carathéodory’s theorem considers bounded domains, but our domains {z € C : || > 1} and D., are
conformally isomorphic to bounded ones by simple transformations z = 1/(p — po).
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This suggests the following reformulation of the design problem for stationary SGD with memory.
Rather than starting with the algorithm in the matrix or sequential forms (T), (@), we start with a
contour -y or the associated Riemann map ¥, and ensure a fast decay of the respective propagators
Uy, V; given by (19), @I) (and hence, by Theorem[I] of the loss L;). Of course, the resulting map
., will not be rational in general, but we can subsequently approximate it with a rational function
5 and in this way approximately reconstruct the algorithm.

4 Corner algorithms

To motivate the algorithms introduced in this section, observe from Egs. (9), that in the signal-
dominated regime of stationary memory-AM SGD, we can decrease the coefficient C, in the asymp-
totic formula L; = (1 + o(1))Crt~¢ by increasing a.g while keeping the total noise coefficient
Us; < 1. Since ¥(1) = 0, aer can be reformulated in terms of ¥ as

QM) du N\
%H——ﬁu)_—&muﬁ . 22)

Thus, increasing a.g means making —%(1) a possibly smaller positive number. Regarding Us, =
> e Uy, note first that, by (T9), it can be written as

oo

e e t—1 2 T
1 2 P dp 1 2/ do
s — A ]{ - Yl 23
o= GE = vl ~ e L e

=1

Indeed, since the function (¥ (u) — A\)~! is holomorphic in {|;z| > 1} and vanishes as y — oo, the
integrals f here vanish for all nonpositive integers ¢ = 0, —1,—2,... so that ) _, collapses to the
squared L2 norm by Parseval’s identity. If the resulting series (23)) converges, we can always ensure
Us; < 1 by making the batch size | B| large enough.

It is then natural to try ¥ = W, with a contour  having a corner at 0 with a particular angle.
Denote the angle by f7 when measured in the external domain D., (Figure right). Such contours
correspond to maps ¥ : {|u| > 1} — D, such that

U(p) = —cu(p—1)"(1+0(1), p—1, (24)

with the standard branch of (12 — 1)? and some constant cg > 0. We will refer to such W as corner
maps and to the respective generalized SGD as corner algorithms. Formally,

dv _ 400, <1
R =1)~ ch 7191t7 — )
o= 1)~ f = 1) e = {10 05

so we are interested in 6 > 1. At the same time, we cannot take # > 2, since this would violate the
stability condition U{|u| > 1} N spec(H) = @. Thus, the relevant range of values for 6 is [1, 2].
Within this range, increasing 6 should have a positive aeg-related effect but a negative Us.-related
effect, since the contour v = U(|u| = 1) is getting closer to the spectral segment [0, Ayax], thus
amplifying the singularity |¥(e!?) — A\x|~2 in Eq. (23). Our main technical result is

Theorem 3 . Let U be a holomorphic function in {u € C : |u| > 1} commuting with complex
conjugation and obeying power law condition with some 1 < 6 < 2. Assume that VU extends
continuously to a C* function on the closed domain |p| > 1, U(u) — oo as pn — oo, and %\P(u) =

O(lp —1|°7Y) as p — 1. Assume also that W({p € C : || > 1,10 # 1}) N[0, Amax] = @, where
Amax = A1 is the largest eigenvalue of H. Let power-law spectral assumptions (I1),(12) hold with
some v > 1,0 < { < 2. Then propagators (19), 1)) obey the following t — co asymptotics.

(25)

1. (Noise propagators) U; = C;t?/V=2(1 + o(1)), with the coefficient

0 TZ
_ a1/ 2 2 —0/v 1 / edz
Cu=+=A Ff(r)d < oo, F =— [ ——.
U 5| /Oor o (r)dr 00 u(r) i Jip cu?® + 1

2. (Signal propagators) V; = Cyt=% (1 + o(1)), with the coefficient

Cy = Q/ F‘Q/(T)drec <00, Fy(r)= L/
0 iR

cp2?lem?dz

2w cpz? +1
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We see that the leading ¢ — oo asymptotics of the propagators are completely determined by the
A\ 0 spectral asymptotics of the problem and the ; — 1 singularity of the map . The functions
Fy, Fy can be written in terms of the Mittag-Leffler functions Ejy ¢, E (see Section [C).

Availability of the coefficients Cyr, Cy ensures that the leading asymptotics of Uy, V; are strict power
laws with specific exponents 2—6 /v and 6¢, respectively. Increasing 6 indeed improves convergence
of the signal propagators, but degrades convergence of the noise propagators.

The largest acceleration of the loss exponent ( possibly achievable with corner algorithms is by a
factor 0 arbitrarily close to 2, but in general it will be lower since, by Theorem |1} the exponent of
L, is the lower of the exponents of U; and V;; accordingly, the optimal 6 is obtained by balancing
the two exponents, i.e. setting ¢ = 2 — 0/v. Also, we need the noise exponent 2 — 6/v to be > 1,
since otherwise the total noise coefficient Us; = oo and L, diverges for any batch size | B| < oo.

Combining these considerations, we get the phase diagram of feasible accelerations (Figure|[I|right).

Theorem 4. Consider a problem with power-law spectral conditions (I1),(12) in the signal-
dominated phase, i.e. v > 1,0 < ( < 2 — 1/v. Let Oy,ax denote the supremum of those 0 for
which there exists a corner algorithm and batch size B such that Ly = O(t~%). Then

Opmax = min (2, v, ﬁ) (26)

The phase diagram thus has three regions:

I. Fully accelerated: 0,,, = 2, achieved forv >2,0<({ <1—1/v.
II. Signal/noise balanced: 6,,,x = ﬁ < 2, max(1/v,1 —1/v) < ( < 2—1/v. The
condition 1/v < ( ensures that Uy, is finite and less than 1 for | B| large enough.

III. Limited by Us-finiteness: 0. = v < 2,1 < v < 2,0 < ¢ < 1/v. The signal exponent
OmaxC is less than the noise exponent 2 — 6y,,.x /v, but increasing 6 makes Uy, diverge.

5 Finite-memory approximations of corner algorithms

Though corner maps W are irrational, they can be efficiently approximated by rational functions. It
was originally famously discovered by [17] that the function |z| can by approximated by order-M
rational functions with error O(e‘cm). This result was later refined in various ways. In particular,
[12] establish a rational approximation with a similar error bound for general power functions z

2% on complex domains. For 6 € (0, 1), this is done by writing

g sin(6r) /°° zdt sin(07) /C>O 2efmi/2 45 s o7
Z = = -
o Jo Y042 O oo €T/2H8/0 1 5

and then approximating the last integral by the trapezoidal rule with uniform spacing h = m/260/M.

In our setting, we start by explicitly defining a #-corner map. This can be done in many ways; we
find it convenient to set

1 2—-0 — _ oo —(2-0)s 1, —
dd Tp—1 e ds w—1
U(p)=-A =A((0-2 28

(1) (/0 ,u—1—|—5) 1 (( )/0 u—l—&-e—S) I (28)
with a scaling parameter A > 0.

Proposition 1 (D). Forany 1 < 0 < 2, Eq. [28) defines a holomorphic map ¥ : C \ [0,1] — C
such that

—Ap(1+o(1)), f — 00,
\\)J n) = _0)r (29)
(k) { AL (- 1014 o(1)), 1.
where 2° denotes the standard branch in C \ (—oo,0]. Also, ¥({|u| > 1}) N (0,24] = @.
Following [12]], we approximate the last integral in Eq. (28) as
0o M !
$(s)ds~h y_ ((m—3)h), h=—=, (30)
I A
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Figure 3: Training loss and final predictions of the kernel model (220) trained to fit the target y(z) =
{14,574 () using either plain or corner SGD with batch size |B| = 100. The loss trajectories
oscillate strongly, so their smoothed versions are also shown and used to estimate the exponents ¢ in
power laws L; o< t~¢. Corner SGD has # = 1.8 and is approximated using finite memory M = 5 as
in Proposition 2] We see that Corner SGD indeed accelerates the power-law convergence exponent
of plain SGD. See Sectionﬂfor details.

with some fixed constant /. Note that in contrast to (27)), our integral and discretization are “one-
sided” (s > 0), reflecting the fact that the corner map ¥(u) is power law only at u — 1, which is
related to the s — +oo behavior of the integrand.

Let (M) denote the map ¥ discretized with M nodes by scheme (30). Observe that ¥(*) is a
rational function, U(M) — g, where deg P = M + 1 and deg@Q < M (in particular, P(u) =
(n— D TIM_, (1w — 14 e~ (m=1/2h)) We can then associate to ) a memory-M algorithm (T)

m=1
with particular o, b, ¢, D, for example as follows.

Proposition 2 (E). Let h = 1/v/M and

D= diag(1 — e 2",... 1 — e (M=2)h) (31)
b=(1,...,1)T, (32)
c= (017 o ,CM)T, Co = —1(2 _ e)he—(2—9)(m—1/2)h(e—(m—1/2)h _ 1)7 (33)

1 — e—(2-0)Mh

- —5=o e—(2—0)h/2. (34)
— €

a=A"12-0)h

Then the respective characteristic polynomial x (1) = P(u) — ANQ(u) with g = gM),

Of course, as any stationary finite-memory algorithm, for very large ¢ the M -discretized corner

algorithm can only provide a O(¢~¢) convergence of the loss. But, thanks to the O(e~<V™) rational
approximation bound, we expect that even with moderate M, for practically relevant finite ranges
of ¢ the convergence should be close to O(t~%¢) of the ideal corner algorithm.

Experiments with a synthetic problem and MNIST confirm that corner algorithms accelerate the
exponents of plain SGD (see Appendix [F] and Figure [3). We also provide additional discussion
of corner algorithms in Appendix [G] In particular, we note that, while corner algorithms require
significantly more memory than plain SGD, the amount of computation they perform is typically
not much larger than for SGD. Our theoretical results significantly depended on the SE assumption
(6) with 7 = 0, but it appears that the theory can be extended to a more general setting (at the cost
of more complicated expansions).
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Figure 4: Contours v = U({u : |u| = 1}) corresponding to different memory-1 maps ¥ (see
Section [B). Left: plain Gradient Descent (a circle). Center: Heavy Ball (an ellipse; 5 = 0.5).
Right: general memory-1 algorithms (a Zhukovsky airfoil; 5 = 0.65, g9 = 0.125,¢; = —1).

A Derivations of Section

‘We have
P(p) = det(u — So) (35)
= det(pp — Sy + AM(&)(107) (36)
= det(p — Sx)det (14+A(~&)(107)(n—5Sx)"") (37)
= (P(1) = AQ(u)) (1 + A(1 07 ) (1 — Sx) "1 (")) (38)
It follows that
- 1/ —a) _ l P(p) _
(o) =507 ) = 3 (5o ans ~ 1) (39)
Q)
= 40
P(n) — AQ(1) 40
Next, by Sherman-Morrison formula and the above identity,
(h=50)" = (=S50 = A(&)(107)) " (41)
- —S0) ' () (107 ) (1 —So) !
— _ S 1 )\(M 0 c 42
e o) A o (= S0 &) 42
-9 —1( -« T _ S -1
sy A= S DG o) ) )
1 =A%
Using (107 )(p— So) "1 () = ﬁ, it follows that
T S =11y 1 A %ﬁ (44)
(107)(1—5x) (0)_,LL71+ 1_)\%
P(p)

B Memory-1 contours

In figure ] we show different contours v = W({|u| = 1}) corresponding to memory-1 algorithms
(see Section [3| for the introduction of contours). Below we discuss memory-1 algorithms and their
contours in the order of increasing generality.

Plain (S)GD. In (S)GD with learning rate o > 0 we have P(u) = p— 1 and Q(u) = —a, so

-1
W) = -1 (46)

(e

: - 1) _
Thus, 1 is the circle [z — | = .

12
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Heavy Ball. Heavy Ball with learning rate o and momentum parameter 3 has standard stability
conditions @ > 0, 8 € (—1,1) and Apax < # [20,22]. We have P(u) = (p — 1)( — ) and
Q) = —oup, so

D —
U(p) = _M. (47)
ap
If || = 1, then pui = 1 and hence
1
V(p) = ——(n+pFE—1-5). (48)
Writing i = x + iy, we get
1

W) =~ (14 Ba+i(1— By — 1 5). (49)

It follows that -y is an ellipse with the semi-axis % along z and the semi-axis % along y. The

learning rate « determines the size of the ellipse while the momentum parameter 3 determines its
shape. If 5 > 0, then the ellipse is elongated in the x direction, and otherwise in the y direction.
Assuming 3 > 0, the eccentricity of the ellipse equals e = /1 — (1 — 8)2/(1 + B)2 = %g Plain
GD is the special case of Heavy Ball with 8 = 0.

General memory-1 (S)GD. In a general memory-1 algorithm we have P(u) = (u — 1)(u — )
and Q(u) = qo + qup, 80
(n=1) (=5
U(p) = —2 22, (50)
W) qo + qi1pt

Heavy Ball is the special case of general memory-1 algorithms with ¢y = 0.

In [29] it was shown that on the spectral interval (0, Apayx] the strict stability of the generalized
memory-1 SGD is equivalent to the conditions

1-8 2423

71<B<17 qo > — ) do —

<q1 < —qo on

)\max )\max

(note that the Heavy Ball stability conditions result by setting go = 0,¢1 = —a).

Zhukovsky airfoil representation. The map U can be written as a composition of linear transfor-
mations and the Zhukovsky function

T =t (52)
Indeed, let
pr = fi(e) = qo + qup, (53)
then
Hr1—qo 1 H1—qo0 _B
W () = e s ) (54)
H1
20 41+ 8
=8, a0 (55)
qi H1 a1
29 41+ 8
:ﬁJ( H1 )_ I 7 (56)
q1 q1ﬁ q1
where
_ (D @
r= (q1 +1)(q1 +B> (57)

and /7 is imaginary if r < 0.

Thus, the contour v = W({|u| = 1}) is a rescaled image of a circle under the Zhukovsky transform,
i.e. a “Zhukovsky airfoil”.
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Conditions of injectivity. As discussed in Section [3] the case of maps ¥ injective on the domain
|pt| > 1 seems especially natural and attractive. Let us examine when the map ¥ given by Eq. (50) is
injective. We can assume without loss that g; # 0 since otherwise the map W is not locally injective
at oo.

The Zhukovsky transform can be written as a composition of two linear fractional transformations
and the function w = 22:

IT+w 9 p—1
J(pu) =2——, =z7, =—. 58
(=27, w=7 z=l74 (59)

The image of a generalized disc on the extended complex plane under a linear fractional map is
again a generalized disc, and the map w = 22 is injective on a generalized open disc if and only if
the disc does not contain 0 and co. Hence, a necessary and sufficient condition for J to be injective
on a generalized open disc is that this disc not contain the points £1. It follows that W is injective
on the generalized disc |p| > 1 iff

’f‘i‘)i\/?’g. (59)
q1

Let us henceforth assume the stability condition —1 < 8 < 1 as given in Eq. (5I). Consider
separately the cases of negative and positive 7.

1. r < Ocorresponds to —1 < I < —f. In this case condition (59) is equivalent to —1 < 2,
i.e. it holds.
However, the special case g—" = —1 is the degenerate scenario in which the denominator of

1
WU vanishes at © = 1 and the stability condition ¢; < —¢o in Eq. (51)) is violated, so we
will discard this special case.

2. r > 0 corresponds to ¢ < —1or & > —j. The option ¢ < —1 is inconsistent with
condition (39), leaving only the option £ > —3.

(a) If Z—‘; < 0, then condition (39) is equivalent to
Vr<1+4 Z—? (60)

which holds true thanks to the assumption 5 < 1.
(b) If £ > 0, then condition (59) is equivalent to

NESEE ©1)
q1
which holds iff )
o < ;ﬁ (62)
@~ 3+0
Summarizing, assuming the stability condition —1 < S < 1 and excluding the degenerate case
do = —q1, the condition of injectivity of the map ¥ on the domain |u| > 1 reads
1—
ISP U ) (63)
@ 3+p

We remark that this condition can also be reached in a different way. There are two obvious nec-
essary conditions of injectivity of ¥ on the set |u| > 1: the absence of poles of ¥ and zeros of the
derivative ¥’ from this domain (the latter ensures the local injectivity). The absence of poles means
that —1 < Z—‘l’ < 1. The zeros of the derivative are given by the equation

22l )% _pg=o. (64)
q1 q1
Both roots of a quadratic equation y%+au+b = 0 lie inside the closed unit circle iff |a] < 1+b < 2.
Applying this condition (and discarding the case qo/q1 = —1), we reach the same inequalities (63)).
In particular, the conditions of absence of poles and the roots of the derivative turn out to be not only
necessary, but also sufficient.
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Algebraic equation of the contour. The circle || = 1 is a real algebraic curve defined by the
polynomial equation 22 + 3% = 1, where y = x + iy. Images of real algebraic curves under rational
complex maps are again algebraic curves, and the corresponding equations can be found using, e.g.,
Macaulay resultants [21]. In the particular case of unit circle the computation can be performed in
terms of standard resultants as follows.

Recall that ¥(u) = %, where P is a polynomial of degree M + 1, and @ is a polynomial of
degree < M; we assume P and Q to have real coefficients. Denote w = W(yu), then

wQ(p) = P(p). (65)

Since p belongs to the unit circle, iz = 1. Applying complex conjugation and the identity 7 = 1/u
to the above equation, we get the second equation

wQ(1/p) = P(1/p). (66)

Note that Q () = ™ +1Q(1/p) and P(u) = ™+ P(1/p) are polynomials in  of degree M + 1
or less. It follows that p satisfies two polynomial conditions:

where
Ti(p) = P(p) —wQ(p), Talp) = P(p) — wQ(u), (68)

i.e. u is a common root of two polynomials, 7% (1) and T5 (). Two polynomials have a common
root iff their resultant vanishes. The polynomials T3 (), T5(p) have degree M + 1 or less and
include w and W linearly in their coefficients. It follows that the set ¥({|x| = 1}) can be described
by the equation

res(T1(p), T2(n)) =0, (69)
which is a polynomial equation in w and W of degree at most 2(M + 1).

We implement now this general program for M = 1. Given quadratic polynomials

Ty (p) = Ap? + Bu + C, (70
Ty(p) = Dp? + Ep+ F, (71)
their resultant can be written as
res(Ty,Tp) = (AF — CD)2 — (AE — BD)(BF — CE). (72)
In our case
A=1, B=-(B+1+wq), C=p—wq, (73)
D=§g-wq, E=-(F+1+wq), F=1. (74)

Considering real 3, qg, ¢1 and w = x + iy, we get

res(Ty, T2) = (1 — (B — qoz)® — ¢jy*)? (75)
— (B =1+ (g1 — 90)B — &1 — @l — qoq1 (2® + y?))? (76)
— (B+1)*(q0 + ¢1)*y* (77

It follows that the contour W ({|u| = 1}) can be described by the quartic (in general) equation

(1—(B—qo7)* —qgv*)* = (% — 1+ [(q1 — 90)B — ¢1 — 0] — qoq1 (2* + y?))? (78)
+(B+1)%(q0 + 01)*y>. (79)

As expected, in the Heavy Ball case gy = 0 this equation degenerates into the quadratic equation

(1=-p%2=(F -1+ (8- Dqz)’ + (B+1)%qiy> (80)
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C Proof of Theorem

C.1 The noise propagators

The function F;;. Let us introduce the values

1 put=tdp 1 [T €'"dg
U(t,\) 2mri f{m_l U(p)—A 27 [W W(ei®) — N (1)

so that, by Eq. (19), the propagator U; can be written as

U

= T%;fjij«killf(t7A>l2- (82)
k=1

With the change of variables ¢ = s\'/?,

/01 pm/ANE Gt %5 g
Ut \) = — : = AVOTLEL (A9 N, 83
( ) 21 /_ﬂ./)\l/e —\11(625/\1/6)/)\4- 1 U( ) (83)
where we have denoted
1 /AN €r3ds
Fy(r,\) = — - . 84
U(r ) 2 ‘/_77//\1/9 —\I/(e”)‘l/e)/A +1 (&

Recall that we assume W(u) = —cg(p — 1)?(1 + o(1)) as p — 1. By formally taking the limit
A\ 0 in the integral, we then expect Fy;(r, \) to converge to

def def 1 [ e ds
FU(T;O) = FU(T) - %\/_Oo C\Pei(signs)OTr/2|s|9+1 (85)
for any fixed r. This integral can be equivalently written as
1 e"*dz
F = — 86
U(r) 271 ~/i]R C\1129+17 ( )

assuming the standard branch of z¥ holomorphic in C \ (—oc, 0].

The function Fy; can be viewed (up to a coefficient) as the inverse Fourier transform of the function
s+ (cyeltiens)0m/2|519 1 1)~1 Note that, thanks to the condition § > 1, the latter function is
Lebesgue-integrable, so Fy;(r) is well-defined and continuous for all » € R. The function Fy; can
also be written in terms of the special Mittag-Leffler function Fy ¢ (see its integral representation

(6.8) in [13]): - , -
N 1 e et dt
Fo)="—Boa( = 2). Busle) = o [ et (87)
0l

o - 21 e — 2z
where the integration path  encircles the cut (—oo, 0] and the singularities of the denominator.

The following asymptotic properties of Fy(r) can be derived from the general asymptotic expan-
sions of Mittag-Leffler functions (sections 1 and 6 in [13]]), but we provide proofs for completeness.

Lemma 1.
1. Fy(r)=0forr <O.

2. Fy(r)=(1+ 0(1))@%@7’9’1 as N\ 0.

3 Fy(r)=(01+ 0(1))1{3)7"9*1 asr — +o0.

Proof. 1. Consider the function f(z) integrated in Eq. (86). For any » € R and 6 € (1,2),
the function f is holomorphic in any strip 7, = {0 < Rz < a},a > 0, and is bounded in 7,
as |f(z)| = O(|z|~%). It follows that the integration line iR can be deformed to iR + a without
changing the integral. If < 0, then by letting a — 400 we can make the integral arbitrarily small.
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2. By the change of variables 7z = 2/,

Fy(r) = u(r)r’~1, (88)
where ,
1 e* dz’
= . 89
u(T') 27TZC\I/ ,/Z]R ZIG + 0617“‘9 ( )

We can find lim,~ o u(r) as follows. Observe that the integration line iR can be deformed to the
line v,,a > 0, encircling the negative semi-axis:

Ya = Ya,1 YU Ya,2 U Ya,3s (90)
Va1 = {2z € C: 3z = —a, Rz < 0}, 91)
Va2 ={2€C:|z| =a,-F <argz < )}, (92)
Va3 ={2€C:3z=0a,RNz <0}. (93)

Indeed, if r is sufficiently small, then this deformation occurs within the holomorphy domain of the
integrated function. The integral is preserved since § > 0 and since we deform in the half-plane
where the argument of e has Rz’ < 0.

Thus, for any fixed a > 0 we have

lim u(r) = I 1 / e dz 1 / e dz' 1 / e dz’ 94)
m u(r) = 11m = =

N0 7\0 27TiC\1; Ya 20 + C\I,l’l“e 27TiCq; Ya 20 27TiC\1;(9 — ].) Ya 2/0-17
where in the last step we integrated by parts. In the last integral, thanks to the weakness of the
singularity 2’1 =% at 2’ = 0 (note that 1 — § > —1), we can let a — 0:

2 dy Foo , .
/ 2/0_’21 _ / 6788179(677”(170) 7 67”(170))(18 (95)
a 0
= 2isin(m(0 — 1))0(2 — 0) (96)
2mi
=TT 97)

where in the last step we used the identity I'(2)T'(1 — z) = S(nzy- This is essentially Hankel’s
representation of the Gamma function, valid for all § € C by analytic continuation. Summarizing,

. B 1 1
() = @I =1) ~ cal(0) ©8)

3. We start by performing integration by parts in Fys :

-1 1 4 722071
Fu(r) / e*d - / cx (99)
iR 1R

~ 2mir cgz? +1  2mir Jig (cy2? +1)2

Performing again the change of variables 7z = 2/, we have

Fy(r) = v(r)rf1, (100)

where et
0= 50 T .
To compute lim,_,, v(r), we again transform the integration line. Let 4" be a line that lies in the

domain C \ (—o0, 0) and can be represented as the graph of a function iz = f(32) such that

fy) = alyl = co (102)
with some constant ¢; > 0 and ¢g.

Note that the integrated function has two singular points z’ € C \ (—o0, 0] where the denominator
cy(2'/r)? +1 = 0. These two points depend linearly on 7. Require additionally that 7' lie to the
right of these points for all » > 0, so that iR can be deformed to 7' without meeting the singularities.
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This requirement is feasible with a small enough ¢; > 0 since, by the condition § < 2, the imaginary
parts of the singular points are negative.

With these assumptions, integration in Eq. (I0I) can be changed to integration over +’. Thanks to
condition (T02)), the integrand converges exponentially fast at z’ — oo, and we can take the limit
r— +00:

r—-+oo 271

0 /
lim v(r) = c / e 2071z (103)
’Y/

The contour 7’ can now be transformed to a contour encircling the negative semi-axis, and applying
Eq. @7) we get

. cvl —cy
1 = = . 104
Jm_(r) T(1-6) T(-0) (109
O
The formal leading term in U;. We have
U= 15 oAU AP = T SN FB N ). (105)
k=1 k
To extract the leading term in this expression, we set the second argument in FU(t)\Ilg/ 9, Ai) to 0:
(1) def 71 2/60 2 1/0y  T1 0/v—2
U< 3l zk: NORZ(NY) = ﬁatt , (106)
where ) 0 ) )
ar =270 S TNORR N ) = 0 e 2R N ). (107)
k k
Lemma 2.
0 0 0o
lim a; = Al/”/ r2F2(r)dr=0" = Al/”f/ =V E2(r)dr < oo, (108)
t—oo 00 v 0

Proof. Note first that the integral on the right is convergent. Indeed, by statement 2 of Lemma |l}
=0V E2(r) oc p1=0/v+2(0=1) — 0Q2=1/1)=1 pear - = (). Since we assume v > 1 and # > 1, the
function 71~%/¥ F2(r) is bounded near 7 = 0. Also, by statement 3 of Lemma 1] '~/ F2(r) o
p1=0/v=20041) — O(r=3) as r — +oo.

For any interval I in R, denote by Sy ; the part of the expansion (107) of a; corresponding to the
. 1/6
terms with tA\,’" € I :
Sre=t" 3" (@n/")2FEN/). (109)
kA %er
Recall that the eigenvalues ) are ordered and A\, = Ak~"(1 + o(1)) by capacity condition (TT)). It

follows that for a given fixed number > 0, the condition t/\i/ 0 > r holds whenever k < k,., where

k= (1 4+ o(1)AY" (t/r), t = oco. (110)

Then, for I = [u,v] with 0 < u < v < 0o we have
litrgior.}f Sri > A irég[rQFé(r)](u_e/” — v_e/”)7 (111)
li?isup S < AV 316111)[7"2F5(r)}(u*0/” — v, (112)

Moreover, for any interval I = [u,v] with 0 < u < v < 00 we can approximate [, r2F3 (r)dr=%/"
by integral sums corresponding to sub-divisions [ = I; Ul U...U I,,, apply the above inequalities
to each I, and conclude that

lim Sy, = Al/”/r2F5(r)dr’9/”. (113)
t—o0 T
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It remains to handle the two parts of a; corresponding to the remaining intervals I = [0, u] and
I = [v,00). It suffices to show that the associated contributions Sy ; can be made arbitrarily small
uniformly in ¢ by making v small and v large enough.

Consider first the interval I = [v, 00). Note that by Lemmafor all » > 1 we can write
r*FE(r) < Or—* (114)
with some constant C, and we also have for all k&
AE™Y <A < ALETY (115)

for suitable constants A_, A ;. It follows that

Spe <t=v > C(t(A_kv)1/0)=20 (116)
kit(Apk=v)1/0>p
ALY (t/0)8
e A S N 117)
k=1
— O(l)tfe/l/720(t/v)(e/u)(2V+1) (118)
= O(1)p~ /M@, (119)

with O(1) denoting an expression bounded by a ¢, v-independent constant. This is the desired con-
vergence property of Sy ;.

Similarly, for the other interval I = [0, u] we use the inequality
rPFAr)y < Cr?? r<i, (120)

also following by Lemma[l} Then

Sy <t > C(t(A k~v)1/0)%0 (121)
kit(A_k—v)1/0<uy
=t 0 Pony YT B (122)
k=AY (t/u)o/v
— O(l)t—G/u-l—QG(t/u)(e/u)(l—Qy) (123)
= O0(1)u?/MEv=1) (124)
which is the desired convergence property of St + since v > 1. O

Completion of proof. We have shown that if we replace Fiy (t/\,lﬁ/ 0 i) by Fy (t)\,lc/ 0) in Eq. (103),
we get desired asymptotics of U; in the limit ¢ — +o00. We will show now that this replacement
introduces a lower-order correction o(t/¥~2); this will complete the proof.

We start with a technical lemma (to be applied with f = W) giving a lower bound for deviations of
asymptotic power law functions with § < 2 from real values.

Lemma 3. Suppose that f : {1 € C : |u| = 1} — Cis continuous, f(u) = —c(p—1)%(1+0(1)) as
w— 1withsome 0 € [0,2) and ¢ > 0. Suppose also that f({ € C: |u| = 1, 1 # 1})N[0, Amax] =
& for some Amax > 0. Then there exist a constant C' > 0 such that

(€)= A > C(Is|” + 1), s € [-ma], A€ [0, Amax]- (125)

Proof. If we fix any small € > 0, then, by the condition f({u € C: |u] = 1,14 # 1}) N[0, Amax] =
@ and a compactness argument, there exist C’, C' > 0 such that

1F(e*) = A >C" > C(s|” + ), se[-m, —eN[ea], A€ [0, Amax)- (126)
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It remains to establish inequality (T23)) for |s| < e. Since f (1) = c¢(p—1)?(1+0(1)) and 6 € [0,2),

[F(e5%) = Al = [0 2] (1 + o(1)) + A (127)

— |0 41610 (1 4 o(1)) 4 Ae—iSEn()9m/4) (128)

> Rle" B0 40| 5|0(1 4 0(1)) + Ne~ SiEn()0m/4) (129)

= cos(O7/4)(c|s|?(1 + o(1)) + \) (130)

> L min(c, 1) cos(0m/4)(|s|” + ) (131)

for |s| small enough. O

Lemma 4.
1. |Fy(r,\) = Fy(r)| = o(1) as A — 0, uniformly in all r € R.

2. Fy(r,A) = O(L) for all v of the form v = tA\Y% t = 1,2,..., uniformly in all X €
(OvAmax}

Proof. 1. It suffices to show that, as A \, 0, the functions

fals) = —(@2m) (=T (eN ) A + D) e ja1/0 5 ya170)(5) (132)

converge in L' (R) to

fols) = —(2m) " (cye’ B2 |5 1), (133)

Let us divide the interval [—7/A'/? 7 /AY/?] into two subsets:
L) = [-A7" A", (134)
L) = [=n/ A0, 7 AN L), (135)

where h is some fixed number such that 9% <h< %.

By Lemma [W (XY /X = 1| > c|s|? uniformly for all s € [—w/AY¢ 7/A1/%] and X €
(0, Amax]- It follows that

inf (e YA =11 =A™, X € (0, A, (136)
sels

for some constant ¢ > (. Using the condition 9% < h, it follows that
| 1n)lds = 00N =01, AN (137)
I (\)

Thus, we can assume without loss that the functions f) vanish outside the intervals I; (). On these
intervals, thanks to the condition A < %7 we have

fals) = —(2m) " Hege ' )0m/2 5191 4 o(1)) + 1)1 (138)

uniformly in s € I;(\). We can then apply the dominated convergence theorem to the functions
|fx — fol, with a dominating function C(1 + |s|?)~!, and conclude that fy — fy in L'(R), as
desired.

2. We start by performing integration by parts in U (¢, \):

1 dp* 1 W' () ptdp
Umzi_]{ _ ]{ (139)
(5,) 2mit Jyp=1 W) — A 2mit J =1 (U(p) — A)?
implying e
1 ™ |W'(e*)|ds
< — _ 14
TN 5 /_W W(e) — AP (140

We will show that this integral is O(}).
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Note first that we can replace the integration on [—, 7| by integration on [—a,a] for any 0 <
a < 7. Indeed, by our assumptions ¥ is C'* on the unit circle, and ¥ () = 1 there only if p = 1.
Accordingly, the remaining part of the integral is non-singular as A ™\, 0 and so is uniformly bounded
forall A € (0, Apax]-

Recall that by our assumption ¥/ () = O(|p — 1|°71) as u — 1. Applying again Lemma

9 ld C’
U t)\|§0/ S—a (141)
with some constant C” independent of ¢, . It follows that
!
[Fu (A2, 0] = NYPU 0] < g (142)
as claimed. O

We return now to proving that replacing Fy;(tA, 1/9 , Ak ) by FU(t/\l/ 9) in Eq. (I03)) amounts to a
lower-order correction o(t?/¥~2). It suffices to prove that Aa; — 0, where

Aay = 270 STNYNER N ) - FRNT)) (143)
k

= 70NN FR N a) — FRN)). (144)
k

For any interval I C R, denote by AS;; the part of Aa; corresponding to the terms in (I44) such

that t)\l/a € I. By statement 1 of Lemma4| for any u > 0 we have, as ¢t — oo,
|AS(,u)el = 01270 N A/ (145)
kitay % <u
— O(l)tQ—G/uO((t/u) 9/1/)(1—21//9)) (146)
=o(1), (147)

where we have used the fact that 2v/6 > v > 1.

Now consider the remaining interval I = [u, 4-00). It suffices to prove that |AS[, ;)| can be
made arbitrarily small uniformly in ¢ by choosing u large enough. By statement 2 of LemmaE], we
can write

A ooyl < O ST A0 (ea/ )2 (148)
kitay/?>
i/”(t/u)e/'
<ot N (149)
k=1
< Clu—v (150)

with some ¢, u-independent constant C’. This completes the proof of statement 1 of Theorem

C.2 The signal propagators

The proof for the signal propagators follows the same ideas as for the noise propagators, with ap-
propriate adjustments.

The function Fy,. We introduce the values

_ L W' tdp L [T W(e?)e0dd
V(t,\) = 9 jl{”_l (T(p) = A)(p—1)  2m [ﬂ (T(ei®) — \)(eid — 1) (151)

so that, by Eq. (Z1)), the propagators V; can be written as

Vi=> el w2 [V (t, A (152)
k=1
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With the change of variables ¢ = s\'/?,

2\1/6 /A0 (7\11(61'5)\1/9)/)\)eit)\l/"sds
2 e (CHE@NTY A4 (@ 1)

V(t,\) = = Fy(tAY? N, (153)
where ,

1 . .
)\1/9 /A (_\Ij(ezskl/e)/)\)ezrsds

Fy A= "— .
virA) s —r/AL/0 (7\11(61'5/\1/9)//\ + 1)(6”)‘1/9 )

(154)

We again recall that ¥ () = —cg (11— 1)%(140(1)) as u — 1 and formally take the pointwise limit
A N\ 0 in the integrand to obtain the expression

o of 1 00 i(signs)0m /2| |0 irs g
Fo(r0) S R o [ ol eds
—o0

(C\Ijei(signs)Oﬂ'/2|s|9 + 1)8
1 o quei(sign s)(0—1)7r/2|8|9—1€irsd8
- ﬂ/ (cyeiiens)0m/2|50 4 1)

(155)

2mi

(156)

— 0o

for any fixed r. This integral can be equivalently written as

1 cpz? e dz
F = — —_ 157
V("") i /i]R C\pze +1 ) ( )

assuming again the standard branch of z? holomorphic in C \ (—occ,0]. The function Fy can be
written in terms of the Mittag-Leffler function Fg = Ejp; (the special case of F, ; given by Eq.

@)

0

Fy(r) = EQ( - (%) (158)

Note that, in contrast to Fy, the integrals @, (157) are not absolutely summable, due to the
271 fall off of the integrand at z — oco. However, the integrand is square-summable and so Fy,
as a Fourier transform of such function, is well-defined almost everywhere as a square-integrable
function.

In fact, Fy can be defined for each particular » # 0 by restricting the integration in (I36) to segments

[u, v] and letting u — —oo and v — oo. Indeed, the resulting Fourier transforms F‘(/“’U) converge
to Iy in L?(R). However, these transforms are continuous functions of 7, and as u — 00, v — 00
they converge pointwise, and even uniformly on the sets {r : |r| > €}, for any fixed € > 0.

To see this last property of uniform pointwise convergence, note that the integrand in (I56) has the
form (s~ + O(s7179))e!" as s — oo. The component O(s~'~%)) is in L', so the respective part

of F‘(/u’v) converges as u — —00, v — oo uniformly for all € R. Regarding the s~ component,
integrating by parts gives
v i'rsd irs |u 1 v irsd
/ e 5 _ e' e e : s. (159)
1 s irsls=1  ir J; s

This expression converges as v — oo uniformly for {r : |r| > €} with any fixed € > 0, as claimed.
. -1
The same argument applies to fu .

The above argument shows, in particular, that Fy is naturally defined as a function continuous on
the intervals (0, +-00) and (—o0,0).

We collect further properties of Fy (r) in the following lemma that parallels Lemmafor Fy. The
proofs are also similar to the proofs in Lemmall]

Lemma 5.
1. Fy(r)=0forr <O.
2. Fy(r) = lasr \,0.

3. Fy(r)=01+ 0(1))7F(§‘fa)r_9 asr — 4o00.
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Proof. 1. Like in Lemma [I] this follows by deforming the integration line in Eq. (I57) towards
—+00.

2. By the change of variables 7z = 2/,
1 20 1e? 4z
F = — _ 160
V(r) 27TZ \/Z]R 2/9 + C;lre ( )

As in LemmalT] the integration line ¢R can be deformed to the line 4, a > 0, encircling the negative
semi-axis:

Ya = Ya,1 U Ya,2 ) Ya,35 (161)
Vo1 ={2€C:3z=—a, Rz <0}, (162)
Yoo ={2€C:|z| =a,-F <argz < §)}, (163)
Va1 ={2€C:3z=a,Rz <0}. (164)
Taking the limit r \, 0, we get
1 2017 dz 1 e dz'
lim F = lim — _ = — =1 165
TI{‘% v(r) 7‘1{% 21 [/a 20 Jrc\;lre 2m /Ya z! ’ (165)
since the last integral simply amounts to the residue of e /2’ at 2/ = 0.
3. Using the same contour 4’ as in Lemmal|l}
1 ey le¥ d'
F — -0 = | == - 7 166
v(r)=v(r)r™"  o(r) I /y/ co(Z/r)? +1 (166)
Taking the limit » — 400 and deforming the contour to the negative semi-axis as in Lemmal[I]
. Cy 10-1,2" 5.1 ‘v
1 = dz = . 167
Jm v(r) =55 /7 SR T ) (167)
O
The formal leading term in V;. We have
Ve = > Melef w2 [VEN)P =Y Anlefw.)2F2(t0%, ). (168)
k=1 k
To extract the leading term in this expression, we set the second argument in Fy, (t)\llg/ 6, Ai) to O:
VO ES T e wa )RR (%) = bt 7%, (169)
k
where )
be = 173" A(el w.)2F2 (t0). (170)
k
The analog of Lemma 2] is
Lemma 6. . o
tlim by = Q/ F2(r)dr’s = QO(/ P TLE2 (1) dr < oo. (171)

Proof. First, observe that, by the source condition (I2) and Lemma [5] the integral converges near
r = 0 since 8¢ > 0, and near r = oo since { < 2.

We can establish convergence of the sequence b; using the same steps as in Lemma [2] We first
introduce the sums Sy ; comprising the terms of expansion (T70) such that t)\llc/ % € I. For intervals
I = [u,v] with 0 < u < v < oo we show, using the source condition (T2)) and approximation by

integral sums, that

lim Sy ; = teC/F‘Q,(r)dQ((r/t)e)C = Q/F&(r)dr“. (172)
t—o00 I T

23



659
660

661
662
663
664

665

666

667

668

669
670

671

672

673
674

675
676

677

678
679

680
681

682

683

684
685

After that we show that the contribution of the remaining intervals (v, +00) and (0, u) can be made

arbitrarily small uniformly in ¢ by adjusting u, v.

In particular, consider the interval I = (v,+00). Let R(A) = ..\ -, Ax(ef w.)? denote the
cumulative distribution function of the spectral measure. Since the spectral measure is compactly
supported, assumption (T2) implies that R(\) < Q'S for all A > 0 with some Q' > 0. Using

statement 3 of Lemma 5| and integration by parts, we can bound

Storoere <t 30 (el wa)on") ¥

k:tki/9>v
— 0C-2) /Oo dR(\)
W/ A
oy (RN > R(A\)dA
=D (== +2 / (
( A2 (/e wpye A )

<20Q't'¢2 / N ACT3dN
(v/1)°
< C'p(6—2)0
with some constant C’ independent of v, .
For the intervals I = (0, u) we have
S(O,u),t < ¢ Z )\k(egw*)QC
k:t)\i/6<u
< Ot Q((u/t)")*
= C'u’.

(173)

(174)

(175)

(176)

a77)

(178)

(179)
(180)
O

Completion of proof. It remains to show that the correction in V; due to the replacement of
Fu(tA? Xe) by Fy(tA?) in Bq. (T68) is o(t=%¢). We first establish an analog of Lemma

Lemma 7. Assuming thatr = t\Y? witht =1,2,.. .

1. |Fy(r,X) — Fy(r)] = o(1) as A — 0, uniformly for r > ¢, for any ¢ > 0.

2. |Fy(r,\)| < Cmin(2,1) forall t = 1,2,... and A\ € (0, \max], with some 7, \-

r

independent constant C.

Proof. 1. The proof of this property is more complicated than the earlier proof for Fy; because
the integrals defining Fy, are not absolutely convergent. Recall the integration by parts argument

(159) used to define Fy (r) as the pointwise limit of the functions F‘(,u’v) (r). We extend this ap-

proach to the functions Fy (1, A) with A > 0. Specifically, let F‘(,u) (r, A) be defined as Fy (r, A) in
Eq. (T54), but with integration restricted to the segment [—u, u]. By analogy with our convention

Fy(r) = Fy(r, A = 0), denote also F‘(/u) (r)= F‘(/“)(r, A = 0). We will establish the following two

properties:

(a) |F‘(/")(r7 A) = Fy(r,\)] < % forall 0 < A < Apax With a 7, u, A-independent constant C'.

(b) For any u,

F‘(,u) (ryA) — F‘(/u) (r)] = 0as A >\ 0 uniformly for r € R.

Observe first that these two properties imply the claimed uniform convergence |Fy (r, \) — Fy (r)| =

o(1) as A — 0. Indeed, given any § > 0, first set u = % so that by (a) we have

IF8 (r, ) = Fy(r,A)] < 6/3
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forall 7 > e and 0 < A < Apax. This inequality also holds in the limit A N\, 0, i.e.

F! () = Fo(r)] < 6/3. (182)
Now (b) implies that for sufficiently small \ we have
[F (1, 3) = B (r)| < 6/3 (183)
uniformly in » € R. Combining all three above inequalities, we see that for sufficiently small A
|Fy(r,\) — Fy(r)] <6 (184)

uniformly for r > ¢, as desired.

It remains to prove the statements (a) and (b). Statement (b) immediately follows from the uniform
A\ 0 convergence of the integrand in expression (I54) on the interval s € [—u, u).

To prove statement (a), we perform integration by parts, using the %-periodicity of the integrand:
[FS (r, A) = Fy (1, \)| (185)
2\1/0 (\P(eis)\l/e)/)\)eirsds
:2w[xwwmmﬂwwwﬂﬂmwwsn‘ (150
_ A\L/0 (\P(eisAl/e)/A)eirs e (187)
2 [ (W) A= DM = Dls=u Jim a0 = cug

z’)\l/e[(_\lﬂ(eis,\l/e)/)\)(eis,\l/e -1) - (\I;(eis,\l/e)/)\)(\ll(eis,\l/s)/)\ B 1)eis’\1/9]e”8d5
(\I/(eiS)‘l/e)/)\ . 1)2(6is)\1/9 _ 1)2 .

By our assumptions on ¥, Lemma[3|and standard inequalities, there exist A, s-independent constants
C, ¢ > 0 such that for all A € (0, Amax] and s € [~ 77, 5179]

(e ") < Ols|?, (188)
|\1,/(613A1/9>| < 09|s|9—1)\(9—1)/97 (189)
TN ) A — 1] > (1 + |s]), (190)
e’ — 1] > ¢|s| AL/, (191)

Applying these inequalities to Eq. (I87), we find that

’ 0 6
d
) - e < (s + )
( S

r \(1+u?)u 1 (14 [s]%)s?
C//
< —, (193)
U
as desired.
2. Note that
|Fy(r,\)| <€, C<oo, (194)

simply by setting u = 0 in the bound (I92)), since the first term on the r.h.s. of (I92) vanishes and
the second converges thanks to 8 > 1.

It remains to prove that Fy (r, A) is bounded uniformly in r, \. It suffices to prove this for r < e with

some fixed ¢ > 0, since for larger r this follows from bound (I94). Since r = t\!/? this means it is
sufficient to consider
A< (e/t)?. (195)

To this end consider the original definition (T51)) of V (¢, \) in terms of integration over the contour
{|u] = 1}. We will deform this contour within the analiticity domain {x € C : |u| > 1} to another
contour 7, to be specified below, that fully encircles the point px = 1:

t—1
V(t,\) = L]f (\II‘I’(M)M du (196)
Y

2w () =N(p—-1)
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1 (' tdp 1

It is convenient to subtract the residue of *~!/(u — 1) equal to 1:
8!

V(t,\) — tl@t % pt =g
T (W) - N - 1) 2w 2mi ) (U(0) — N — 1)
197)
We define now -y as the original contour perturbed to include an arc of radius 1/t centered at 1:
v =" U2, (198)
1 ={€}p,<p<2m—g1 (199)
Yo = {1+ G} pazoson: (200)

where ¢1 € (0, 5), ¢2 € (5, 7) are such that 7 is connected. Note that ¢ o % ast — oo.

Now we bound separately the contribution to the integral from ~; and 5. For v; and —7 < ¢ < 7
we use the inequalities

[W(e) = A > clgl’, (201)
€' —1] > clg| (202)
with a ¢, A-independent constant ¢ > 0. This gives, using Eq. (193)),

’ / - 1d“ ’ AC’ / " / <o X comit <o 203)
Y1 - - 1 o |¢‘0+1 ¢)0

For the v, component we use the inequalities

1+ €21 <e, (204)

WA+ =N = et —gy <6< gn. (205)

(Inequality (203) relies on the assumption # < 2 and can be proved similarly to Lemma [3]) This
gives

t ld t— 1d
A’/ “ AO‘/ ¢ ‘<C’)\t‘)<0” 0 (206)
Y2

Fixing some € > 0, we see from Eqs. @]), (206) that under assumption (I93) the expressions
[V (t, A) — 1|, and hence |V (¢, A)|, are uniformly bounded, as desired.

This completes the proof of the lemma. O

This lemma can now be used to show that replacing FV(tAllc/G, M) by Fy (t)\,lc/e) in Eq. (168)
amounts to a lower-order correction o(t~%) in the propagator V;. The argument is similar to the
respective argument for Fy; in the end of Section [C.I] Statement 1 of Lemma [7]is used to show

this for the contribution of the terms k with u < t)\l/e < wv,forany 0 < v < v < +o00. Then,

for terms with t)\k/ < u we use the uniform boundedness of Fy (r, A), i.e. the part Fy/ (r,\) < C
of statement 2, and show that their contribution can be made arbitrarily small by decreasing wu.
Finally, for terms with t/\,lc/ % S v we use the part Fy (r,\) < % of statement 2, and show that their
contribution can be made arbitrarily small by increasing v.

This completes the proof of Theorem 3]

D Proof of Proposition [I]

To simplify notation, set A = 1; results for general A’s are easily obtained by rescaling.

Note first that for any p € C \ [0, 1] the integral in Eq. converges and is nonzero. To see that
it is nonzero, note that if ;¢ has a nonzero imaginary part, then the integral has a nonzero imaginary
part of the opposite sign, hence is nonzero. On the other hand, if © > 1 or u < 0, then the integral
is strictly positive or negative, so also nonzero. It follows that the expression in parentheses is
invertible and so W (1) is well-defined for all € C \ [0, 1].
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The asymptotics ¥(p) = —p(1 + o(1)) at p — oo is obvious.
To find the asymptotics at 4 — 1, make the substitution z = §/(p — 1) in the integral:

1 520 1(u=1) 7,26
dé _ dz
/Ou—1+6:(“_1)91/0 1+z 207)

As p — 1 the last integral converges to a standard integral:

1/(p—1) 7.2—6 0 7.2-0 .
/ dz _>/ dz __ (2-0)r . (208)
0 1+z2 o l+z sin((2-0)m)

The integration line in the last integral is any line connecting 0 to oo in C \ (—o0, 0); the integral
does not depend on the line thanks to the condition 6 > 1.

We prove now that U({|u| > 1}) N (0,2] = @. Let us first show that if || > 1 and Sy # 0, then
U(u) ¢ (0,+00). To this end write

U(u) = ab, (209)
1 — 1 —
M e 1ds> —1__/ 620 -1
([ (B
2
b:(“ul)zﬂu)—z @11

where J(u) = pu + ,% is Zhukovsky’s function.

Suppose, for definiteness, that Su > 0. Regarding a, note that if Sp > 0, then the imaginary part
of the integrand in Eq. (ZI0) is also positive, and so Sa > 0.

Regarding b, recall that if S > 0 and |p| > 1, then SJ (1) > 0. On the other hand, if || = 1,
then J (1) € [—2,2]. Combining these observations, we see that if S > 0 and |u| > 1, then either
b > 0, or b < 0. Since Ja > 0, it follows that ab ¢ (0, +00).

We see that ¥(u) can be real and positive only if u € R. Clearly, ¥(u) > 0if p < —1, and
U(p) < 0if u > 1. It is easily checked by differentiation that W(u) is monotone decreasing for
1 € (—o0, —1], so the smallest positive value attained by ¥ is

1 2—0 . _
T(-1) :2(/0 ‘;575) "o 212)

E Proof of Proposition

In terms of , b, ¢, D, the components P, ) of the characteristic polynomial det(u— Sy) = P(u) —
AQ(p) can be written as

P(p) = (p— 1) det(u — D), (213)
T
Q)= —aet (3,2 = dertu = DT (- D) e -, @14
(see Theorem 1 in [29]). Accordingly,
(p—1QK) _ 7 -1
Zm) =b'(u—D) 'c—a. (215)

If D = diag(dy, . .., dy), then

(b —1DQ(n) 3 bmem (216)
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On the other hand, our definition of ™) implies that

—(2-0)(m—1/2)h
217)

M
(n—1)A e
P (M) (M) o (9 B Q)h/,é z—:l w—1+ e—(m—=1/2)h

M e—(2—9)(m—1/2)h(1 _ e—(m—1/2)h,) M

=(0—-2)h + e—(2=0)(m=1/2)h] (n|g
( ) {mz:l 4 — 14 e-(m—1/2)h mX::l } (218)
M _(9_ _ —(m— —(2—
— ooy SO ) Lo e OO eom
— w— 1+ e—(m—=1/2)h 1 —e—(2-0)h :
219)

By comparing this expansion with Eq. (216), we see that the values of a, b, c, D given in Egs.

(BT)-(34) ensure that P/Q = ¥M),

F Experiments

The experiments in this sectiorﬂ are performed with Corner SGD approximated as in Proposition
with memory size M = 5 and spacing parameter [ = 5. Experiments have been performed with
GPU NVIDIA GeForce RTX 4070, CPU Intel Core i5-12400F, and 32 GB RAM; the training of all
the models on GPU has taken less than half an hour.

A synthetic indicator problem. Suppose that we are fitting the indicator function y(z) =
1(1/4,3/4(7) on the segment [0, 1] using the shallow ReLU neural network in which only the out-
put layer weights w,, are trained:

_ 1o
Yz, w) = i an(:p - %)+ (7)4 =max(z,0). (220)

n=1

This is an exactly linear model that in the limit N — oo acquires the form

1
y(r) = / w(y)(z —y)4dy =x"w, (221)
0

where x, w are understood as vectors in L?([0, 1]), and x = (z — ). We consider the loss L(w) =
Eynv(0,1)3 (X w — y(2))?, where U(0, 1) is the uniform distribution on [0, 1].

This limiting integral problem obeys asymptotic spectral power laws (T1)),(T2) with precisely com-
putable v, ¢ (see Appendix [H):

c=1 v=d (222)
The problem thus falls into the sub-phase I “full acceleration” of the signal dominated phase, and
we expect that it can be accelerated with corner algorithms up to 0, = 2.

In the experiment we set N = 105 and apply corner SGD with # = 1.8, see Figure [3| The experi-
mental exponent of plain SGD is close to the theoretical value { = 0.25. The accelerated exponent of
approximate Corner SGD is slightly lower, but close to the theoretical value ¢ = 1.8-0.25 = 0.45.

MNIST. We consider MNIST [15] digit classification performed by a single-hidden-layer ReLU
neural network:

1 H 28x28
0 = —=>w@( () ~0,...9 223
r(X, W an wnmxm 5 T geead
I (x, w) \/ﬁ; mgl . (223)

Here, the input vector x = (J:,,,L)ifle% represents a MNIST image, and the outputs y, represent

the 10 classes. We use the one-hot encoding for the targets y(x) and the quadratic pointwise loss
((x,w) = 3|¥(x, w)—y(x)| for training. The trainable weights include both first- and second-layer

weights w%ln)@, wﬁ) .

%A jupyter notebook with all experiments is provided in SM
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Figure 5: Training loss of neural network (223)) on MNIST classification with H = 1000, with batch
size | B| = 1000 (left) or 100 (right). The full color curves show the smoothed losses.

Note that the model (223) is nonlinear, but for large width H and standard independent weight
initialization it belongs to the approximately linear NTK regime [14]]. In [26] MNIST was found to
have an approximate power-law spectrum with

(~025 v~13, (224)

putting this problem in the sub-phase III “limited by Us-finiteness” of the signal-dominated phase
(see Figure[T). Theoretically, by Theorem[d] the largest feasible acceleration in this case is fax = V.
Note, however, that this theoretical prediction relied on the infinite-dimensionality of the problem
and the divergence of the series Zfi 1 t9/¥=2_ The actual MNIST problem is finite-dimensional, so
its Uy, is always finite (though possibly large) and can be made < 1 if | B| is large enough. This
suggests that corner SGD might practically be used with § > v and possibly display acceleration
beyond thg: theoretical bound 6,,,x = v. Note also that with exponents (224)) the signal/noise balance

bound i~ 2, i.e. it is not an obstacle for increasing the parameter ¢ towards 2.

In Figure[5|we test corner SGD with § = 1.3 or 1.8 on batch sizes | B| = 1000 and 100. The § = 1.3
version shows a stable performance accelerating the plain SGD exponent ( by a factor ~ 1.5. The
f = 1.8 version shows lower losses, but does not significantly improve acceleration factor 1.5 at
| B| = 1000 and is unstable at | B| = 100.

In Figure [§| we show both train and test trajectories of the loss and error rate (fraction of incorrectly
classified images). The test performance is computed on the standard set of 10000 images, while
the training performance is computed by averaging the training loss trajectory. We observe that,
similarly to the training set performance, the test performance also improves faster with Corner
SGD than with plain SGD. The instability of Corner SGD with § = 1.8 and batch size 100 observed
previously on the training set is also visible on the test set.

G Additional notes and discussion

Extension to SE approximation with 7 # 0. The key assumption in our derivation and analysis
of the contour representation and corner algorithms was the Spectrally Expressible approximation
with 7o = 0 for the SGD moment evolution (see Eq. (6)). While the SE approximation in general
was justified from several points of view in [25| [29], a natural question is how important is the
condition 72 = 0. This condition substantially simplifies the representation of propagators U, V; in
Egs. (8), but does not seem to correspond to any specific natural data distribution p. (In contrast,
the cases 3 = 79 = land ; = 1,72 = —1 exactly describe translation-invariant and Gaussian
distributions; see [25]].)

In fact, our analysis of the corner propagators Uy, V; can be extended from 7o = 0 to general 7, by
a perturbation theory around 7 = 0. In Appendix ] we sketch an argument suggesting that, at least
for sufficiently large batch sizes | B|, Theorem [3|remains valid for general 75, even with the same
coefficients Cy, Cy (i.e., the contribution from 75 # 0 produces only subleading terms in Uy, V}).
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Figure 6: MNIST trajectories of loss (top row) and error rate (bottom row) on train set (lighter
colors) and test set (darker colors). Left column: batch size 1000. Right column: batch size 100.

This implies, in particular, that the acceleration phase diagram in Theorem ] and Figure|[T] (right) is
not only 73 -, but also T2-independent.

Computational complexity. The main overhead of finitely-approximated corner algorithms com-
pared to plain SGD lies in the memory requirements: if the model has W weights (i.e., dim w, = W
in Eq. (1)), then a memory-M algorithm needs to additionally store MW scalars in the auxiliary
vectors u;. On the other hand, the number of elementary operations (arithmetic operations and
evaluations of standard elementary functions) in a single iteration of a finitely-approximated corner
algorithm need not be much larger than for plain SGD.

Indeed, an iteration (I)) of a memory-M algorithm consists in computing the gradient V L(w;) and
performing a linear transformation. In SGD with batch size | B|, the estimated gradient VL g, (w;)
is computed by backpropagation using o< | B|WW operations. If Corner SGD is finitely-approximated
using a diagonal matrix D as in Proposition [2] then the number of operations in the linear trans-
formation is O(MW). Accordingly, if | B| > M (which should typically be the case in practice),
then the computational cost of the linear transformation is negligible compared to the batch gradient
estimation, and so the computational overhead of Corner SGD is negligible compared to plain SGD.

Practical and theoretical acceleration. Our MNIST experiment in Section [F] shows that finitely-
approximated Corner SGD developed in Section [5] can practically accelerate learning even on real-
istic problems that are not exactly linear. We note, however, that, in contrast to the ideal infinite-
memory Corner SGD of Section [ this finitely-approximated Corner SGD does not theoretically
accelerate the convergence exponent ¢ as ¢ — oo. (As shown in [29], this is generally impossible
for stationary algorithms with finite linear memory.) Nevertheless, we expect that such an acceler-
ation can be achieved with a suitable non-stationary approximation. In [29]], an acceleration with
a factor 6 up to 2 — 1/v was heuristically derived for a suitable non-stationary memory-1 SGD
algorithm.
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We remark also that if the model includes nonlinearities, then even the plain SGD in the signal-
dominated regime may show a complex picture of convergence rates depending on the strength of
the feature learning effects. In particular, [6] consider a particular model where the “rich training”

regime is argued to accelerate the “lazy training” exponent ¢ by the factor 5 + Tic This is different

from our factor Oyax = min (2, v, ﬁ) due to a different acceleration mechanism.

H The synthetic 1D example

Recall that in Section [F] we consider the synthetic 1D example in which we fit the target function
y(x) = Lpy43/4)(x) on the segment [0, 1] with a model that in the infinite-size limit has the integral
form

1
§lz) = / w)(@ — y)pdy = xTw, (225)
0

where x, w are understood as vectors in L?([0, 1]), and x = (x — -) 1. We consider the loss L(w) =
T

E1(x"w — y(z))?, where p is the uniform distribution on [0, 1].

The asymptotic power-law structure of this problem can be derived either from general theory of
singular operators and target functions, or from the specific eigendecomposition available in this
simple 1D setting.

The eigenvalues. First observe that the operator H = E,[xx”] in our case is the integral oper-
ator
1
/ K(z,y)f(y)dy, K(x,y) :/ (x—2)1(y — 2)4dz. (226)
0
The operator has eigenvalues (see, e.g., Section A.6 of [28]) Ay = 5;4, where
«fk:%—l—wk—i—O(e_”k), k=0,1,... (227)

Numerically, £y ~ 1.875 so the leading eigenvalue Ay ~ 0.0809.
In particular, the capacity condition (TT)) holds with v = 4.

In fact, such a power-law asymptotics is a general property of integral operators with diagonal sin-
gularities of a particular order [5]. It is easily checked that the diagonal singularity of operator
is of order o = 3. In dimension d the exponent v has the general form v = 1 + &, which evaluates
to 4 in our case d = 1.

The eigencoefficients. To establish the source condition (I2), we can invoke the general theory
that says that for targets that are indicator function of smooth domains we have { = =3 L 26].
Alternatively, we can directly find { thanks to the simple structure of the problem.

d+a

A short (though not quite rigorous) argument is to observe that the exact minimizer w, making the
loss L(w) = 0 formally has the distributional form

w,(z) =0 (x — 1/4) — §'(z — 3/4) (228)

with Dirac delta §(z). This vector w, has an infinite L?([0, 1]) norm, in agreement with our expec-
tation that ¢ = i < 1. The eigenfunctions of the problem can be explicitly found (Section A.6 of
[28]):

ei(z) = cosh(&gx) + cos(§px) — (;?EEEZ; ISET((Z:; (sinh(&kx) + sin(&xx)). (229)
Then, formally,
_ dey(x) dey(z)
efw*  dr le=3/a  dx z=1/4 o< & (230

It follows that at small A, denoting k. (A) = min{k : A\ < A},
Do dlefwa)oc Y goc Y (1/2+ k)P ok (A) o ATV, (231)

E:dp<A k<k.(X\) k<k.(\)

31



873

874
875
876

877

878

879
880

881

882

883
884

885
886
887
888
889
890

891

892

893

implying again ¢ = 1.

A rigorous proof, avoiding Dirac deltas, can be given along the following lines. First note that in the
setting of loss function L(w) = 2E,.,(x?w —y(x))? the vector q appearing in quadratic form ()
acquires the form q = Ex~,, [y(xﬁx], which in our example gives

3/4
q(z) = / (y — 2)1dy. (232)
1/4

We get from the condition Hw, = q that

T

elw, = k9, (233)
Ak
The eigenfunctions can be written as
er(r) = cos(§a) — sin(&r) + e~ 4 (—1)Fe 07 4 O(e74), (234)

where the last O(e~¢*) is uniform in z € [0, 1]. Performing integration by parts twice with vanishing
boundary terms, we find that

3/4

1
/ (cos(ﬁkx) — sin(&px) 4+ e 4 (—l)ke_f"‘(l_m)) / (y — x) ydydz + O(e™)
0 1/4

T
€rq

3/4

1
gt [ (sin(n) + cos(r) — 7 4 ()0 [ dydo + O(e )
0 1/4

3/4
=¢&? / (— cos(&r) + sin(&ex))da + O(e /) (235)
1/4

=& % (—sin(n(3 + k)z) — cos(n(3 + k)z)) v

et O(e=8 /%) (236)

x &7, (237)

leading to e} w, o &% /A, = &, in agreement with Eq. 230).

I Extending the proof of Theorem 3[to 7, # 0

In this section we sketch (without much rigor) an argument suggesting that Theorem |[3|remains valid
under assumption of SE approximation with 75 # 0 at least if the batch size | B| is large enough.

Recall that the assumption 72 = 0 was used to write the propagators Uy, V; in the simple form
(8). These representations led to the representations (T9), 1) of U;, V; in terms of the contour
map ¥ that were instrumental in proving Theorem [3] While we are not aware of a similar contour
representation at 7o # 0, we can expand the general 7o ## 0 propagators in terms of the spectral
components of the 7o = 0 propagators, and in this way reduce the study of the general case to the
already analyzed special case.

Specifically, let us introduce the notation
Go(t,\) = U?(t,\) = |(107)SE (). (238)

Then formula (8)) for the propagator U; can be written as
T oo
U = \TSI > AZGo(t Ae). (239)
k=1

In the proof of Theorem 3]it was shown that (see Eqs. (€3), (83))

Go(t,\) = U2(t,\) = N/O2E2(tAY/9), (240)
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Upon substituting tA'/? = 1 and applying the capacity condition (TT), this gave the leading term in
Ut:

S ? Z AOFZ (A7) (241)
1Bl i
- {% (tA,ﬁ/e)"‘Fg(t/\,ﬁ/e)}f? (242)
1Bl =
0
{1 r2F2(r)dAY" (t/r )"/V}t— (243)
|B| Joo
0
- [%Al/”/ rng(r)dr*G/”]te/"*? (244)

Now, if the SE approximation holds with 7o # 0, then the propagator formulas (8} are no longer
valid. Instead (see [29]), the propagators can be written with the help of the linear transition opera-
tors Ay acting on (M + 1) x (M + 1) matrices Z:

ANZ = S\ZS — N CEN6)TZ(6) ()" (245)
In particular, Eqs. (238), (239) get replaced by

U, = |B|Z)\2 (t, An), (246)

G(t,A) = Te(§)(5)" A () ()TN (247)

c

Note that Eq. (238) is a special case of Eq. (247) resulting at 72 = 0 thanks to the simple factorized
structure of the transformation A, with vanishing second term.

Let us now write the binomial expansion of G(¢, A) by choosing one of the two terms on the r.h.s.
of Eq. (243)) in each of the ¢ — 1 iterates of Ay in Eq. (247). The key observation here is that each
term in this binomial expansion can be written as a product of the 75 = 0 factors G with a suitable
coefficient:

t—1
Gt ) = Golt, ) + Z( Ef) (248)
=1

X Z Go(t—tm,)\)Go(tm—tm,1,>\)'-~Go(t2 —tl,)\)Go(tl,)\). (249)
0<ty <<ty <t
Here, 0 < ¢; < ... < t,, < t are the iterations at which the second term in Eq. (243)) was chosen.

We can now apply again approximation (240) for Gy in terms of Fy;, and approximate summation
by integration:

_7-2/\1/9 m

G(t,A)zAQ/e—Q{Fg(tA1/9)+Z( B ) (F5)*<m+1>(txl/9)}, (250)
m=1

where (FZ)*(m+1) is the (m + 1)-fold self-convolution of F:
(F2)*m D (r / / FG(r=rm)FG (rm —Tm—1) - F (r1)dry -+ dry. (251)
0<ri <...rim <1

The factor \'/? in (Z50) results from the respective factor A? in Eq. (248), the factor A/~2 in Eq.
([240), and the integration element scaling factor A\~'/¢ due to the substitution r,, = ¢, \'/%.

The leading term in expansion (250) corresponds to the case 2 = 0. Consider the next term, m = 1.
The respective contribution to Uy is

1 T1T2 — 3/6 * 1/0
vt = —@ZA/ (F2)=2(tn). (252)
k=1
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This expression can be analyzed similarly to the leading term in Eq. (241)), giving
Ut(l) [TszAl/V/ (Fg)*z(r)dr_e/”}te/”_?’. (253)
|B| o0
Note the faster decay ¢?/*~3 compared to t?/¥~2 in the leading term. This difference results from
the different exponent 3/6 on ). It also leads to the factor 73 rather than r? in the integral.

The coefficient in brackets in Eq. (253) is finite unless the integral diverges. To see the convergence,

write o
/ ER) 2 (et = 2 / r? =0 (B2 (r)dr (254)
0

o v

and use the inequality r2=%/* < (2(r —r))27%/¥ 4 (2r1)2~9/¥ valid since 2 — 0 /v > 0:
/ 2= (FG)*2 (r)dr (255)
0

= / / [(2(r —r1))> " + (2r1)2 O FE (r — r1) Fg (r)dridr - (256)
<ri<r<oo

= 23_9/”(/00 rz_e/”F[%(r)dr> (/00 Fg(r)dr) < 00, (257)
0 0

6—1

since Fyy(r) oc r=""1asr — oo by Lemma

Next terms in expansion ([250) can be analyzed similarly, but we encounter the difficulty

that, due to the associated factor A™/¢ in Eq. (250), they will contain the integrals

I O p2tm(F2)*(m+1) (;)dr=0/v that diverge for sufficiently large m. For this reason, it is conve-
nient to upper bound

A/ < \m—1)/051/0 (258)
Then the contribution Ut(m) to U; from the term m can be upper bounded by
my(m—1)/6 0
T1|T: )\max v *(m —0/v v—
U s [P [ PRt eso)

Using the inequality 72=%/% < ((m +1)(r —rn))?7 %" + ...+ ((m + 1)r1)?~%/7, the integral can
be bounded as

0 o) ')
0 m
/ PR D (e < (100 / P20 B (ryar ) ( / ()" < oo.
o0 v 0 0
(260)
Summarizing, the contribution of all the terms in U; other than the leading term Ut(o) can be upper
bounded by

U, — U7 < 0t/ =3, (261)
with the constant

o= n&[y\l/u </oo r2*9/”F5(r)dr) i

0

oA D70 s—op( [ 2 mn
|B|m+1 (m+]‘) ( 0 FU(T')dT)

m=1
(262)
If -
|B| > [l A / Fi (r)dr, (263)
0
then series (262)) converges, and so |U; — U9 = o(Ut(O)), as claimed.
The case of the propagators V; can be treated similarly. Starting from 72 = 0, denote
H0<t7 )‘) :VQ(t7)‘) = |(10T )Sﬁ\il((l))‘Q’ (264)
then by Egs. (153), (T53) Ho(t, \) ~ F2(tA\'/?) and
Z)\k (eTw,)2Hy(t, \) Z/\k (efw.)?F2(tA/7). (265)
k=1
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The counterpart of Hy for general 75 is

H(t, ) = Te[(§)(5)" A (5)(8)"]]- (266)
Expansion (248) gets replaced by
! 7'2/\2
H(t, ) = Ho(t,\) + 3 ( B ) 267)
m=1

X > Golt—tm, NGoltm — tm—1,A) -+~ Golta — t1, \)Ho(t1,A) (268)

0<t1<...<tm <t

and expansion (250) gets replaced by

2 1/9 Y 2\*xm 2 1/6
H(t, \) ~ F2(tA +Z(T|) ((F2)*™ % F2)(tAL/9). (269)

m=1

The factor A™/? can again be used to extract an extra negative power of ¢ in the asymptotic bounds.
To avoid divergence of the integrals, we can use a bound

A0 < N0z (270)

with some sufficiently small € > 0. Arguing as before, we then find that for | B| large enough the
contribution of all the terms m > 1is O(t~%~¢), i.e. asymptotically negligible compared to the
leading term oc ¢t~9€.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We believe that the main claims made in the abstract and introduction accu-
rately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations from various perspectives in the paper. We clearly
formulate the theoretical model and the theoretical assumptions in Section 2} We discuss
to which extent the assumptions are necessary or can possibly be relaxed (in particular, the
spectrally-expressible approximation (6) with 7o = 0) in Section[G] In Section [5| we point
out that the ideal theoretical corner algorithms that we propose require infinite memory, but
can be efficiently approximated but finite-memory algorithms. In Appendix [f] with experi-
ments we show to which extent practical applications confirm the theoretical predictions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-

dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we clearly describe the assumptions and provide complete proofs for all
results.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

» All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide a jupyter notebook with all experiments in SM.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide open access to our jupyter notebook with experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The optimizers (plain SGD and our Corner SGD), main parameters of our
method (e.g., the angular parameter 6 and memory size M) as well as training and test
details (e.g., the batch size |B|) are described in Section [F} all the other details can be
found in the provided jupyter notebook.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: Our work is primarily theoretical, with rigorous theorems as main results.
The experiments only serve to confirm the theoretically predicted acceleration effects. We
believe that these effects are quite visible in our experiments even without error bars, and
error bars would only clutter the results. We do not compare methods with very close
performance, which would indeed require error bars for reliability of comparison.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All this information is provided in Section [F] with experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We do not see any violation of the NeurIPS Code of Ethics in our research.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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12.

Justification: Our work is primarily theoretical and mathematical. We expect that the meth-
ods we propose can benefit the theory and practice of optimization and machine learning,
and in this sense have a positive societal impact. We are not aware of any possible negative
societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We only use the standard MNIST dataset directly available in standard ma-
chine learning frameworks. The reference to the original publication is provided.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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1258 Guidelines:

1259 * The answer NA means that the paper does not involve crowdsourcing nor research
1260 with human subjects.

1261 * Depending on the country in which research is conducted, IRB approval (or equiva-
1262 lent) may be required for any human subjects research. If you obtained IRB approval,
1263 you should clearly state this in the paper.

1264 * We recognize that the procedures for this may vary significantly between institutions
1265 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1266 guidelines for their institution.

1267 * For initial submissions, do not include any information that would break anonymity
1268 (if applicable), such as the institution conducting the review.

1269 16. Declaration of LLM usage

1270 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1271 non-standard component of the core methods in this research? Note that if the LLM is used
1272 only for writing, editing, or formatting purposes and does not impact the core methodology,
1273 scientific rigorousness, or originality of the research, declaration is not required.

1274 Answer: [NA|

1275 Justification: The core method development in this research does not involve LLMs as any
1276 important, original, or non-standard components.

1277 Guidelines:

1278 * The answer NA means that the core method development in this research does not
1279 involve LLMs as any important, original, or non-standard components.

1280 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1281 for what should or should not be described.
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