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Abstract

We consider SGD-type optimization on infinite-dimensional quadratic problems1

with power law spectral conditions. It is well-known that on such problems deter-2

ministic GD has loss convergence rates Lt = O(t−ζ), which can be improved to3

Lt = O(t−2ζ) by using Heavy Ball with a non-stationary Jacobi-based schedule4

(and the latter rate is optimal among fixed schedules). However, in the mini-batch5

Stochastic GD setting, the sampling noise causes the Jacobi HB to diverge; ac-6

cordingly no O(t−2ζ) algorithm is known. In this paper we show that rates up to7

O(t−2ζ) can be achieved by a generalized stationary SGD with infinite memory.8

We start by identifying generalized (S)GD algorithms with contours in the com-9

plex plane. We then show that contours that have a corner with external angle θπ10

accelerate the plain GD rate O(t−ζ) to O(t−θζ). For deterministic GD, increasing11

θ allows to achieve rates arbitrarily close to O(t−2ζ). However, in Stochastic GD,12

increasing θ also amplifies the sampling noise, so in general θ needs to be opti-13

mized by balancing the acceleration and noise effects. We prove that the optimal14

rate is given by θmax = min(2, ν, 2
ζ+1/ν ), where ν, ζ are the exponents appearing15

in the capacity and source spectral conditions. Furthermore, using fast rational16

approximations of the power functions, we show that ideal corner algorithms can17

be efficiently approximated by practical finite-memory algorithms.18

1 Introduction19

It is well-known that Gradient Descent (GD) on quadratic problems can be accelerated using the20

additional momentum term (the “Heavy Ball” algorithm, [19]). For ill-conditioned problem, Heavy21

Ball with a suitable non-stationary (“Jacobi”) predefined schedule allows to accelerate a power-law22

loss converge rate O(t−ζ) to O(t−2ζ), i.e. double the exponent ζ [8, 16]. This acceleration is the23

best possible for non-adaptive schedules.24

On the other hand, for mini-batch Stochastic Gradient Descent (SGD) typically used in modern25

machine learning, the convergence rate picture is much more complicated, and much less is known26

about possible acceleration. The natural quadratic problem in this case is the fitting of a linear model27

with a sampled quadratic loss. In the power-law spectral setting, it was found in [4] that plain SGD28

has two distinct convergent phases: either the sampling noise is weak and the SGD rate is the same29

O(t−ζ) as for GD, or the convergence is slower due to the prevalence of the sampling noise. We30

refer to these two scenarios as signal- and noise-dominated, respectively.31

This picture was refined in several other works [18, 23, 24, 25, 29]. In particular, [29] examined32

generalized SGDs with finite linear memory of any size (generalizing the momentum and similar33

terms) and proved that with stationary schedules they all have the same phase diagram as plain SGD34

(Figure 2 left); in particular, they do not accelerate the plain GD/SGD rate O(t−ζ).35

On the other hand, the non-stationary Jacobi Heavy Ball accelerating deterministic GD from O(t−ζ)36

to O(t−2ζ) fails for mini-batch Stochastic GD: it eventually starts to diverge due to the accumulating37
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sampling noise. [23] have proposed a non-stationary modification of SGD that achieves a quadratic38

acceleration, but only on finite-dimensional problems. [29] have proposed a non-stationary modifi-39

cation of the Heavy Ball/momentum algorithm that is heuristically expected (but not yet proved) to40

achieve rates O(t−θζ) with some 1 < θ < 2 on infinite-dimensional problems.41

To sum up, the topic of SGD acceleration in ill-conditioned quadratic problems is far from settled.42

In the present paper we propose an entirely new approach to acceleration of (S)GD that both provides43

a new general geometric viewpoint and proves that, in a certain rigorous sense, SGD in the signal-44

dominated regime can be accelerated from O(t−ζ) to O(t−θζ) with θ up to 2.45

Our contributions:46

1. A view of generalized (S)GD as contours (Section 3). We show that stationary (S)GD47

algorithms with an arbitrary-sized linear memory can be identified with contours in the48

complex plane. This identification leverages the characteristic polynomials χ and the loss49

expansions of memory-M (S)GD from [29]. We show that all the information needed to50

compute the loss evolution is contained in a response map Ψ : {z ∈ C : |z| ≥ 1} → C51

associated with χ. The map Ψ gives rise to the contour Ψ({z ∈ C : |z| = 1}) and,52

conversely, can be reconstructed, along with the algorithm, from a given contour.53

2. Corner algorithms (Section 4). A crucial role is played by contours that have a corner54

with external angle θπ, 1 < θ < 2. We prove that the respective algorithms accelerate55

the plain GD rate O(t−ζ) to O(t−θζ). However, in Stochastic GD such algorithms have56

the negative effect of amplifying the sampling noise. By balancing these two effects, we57

establish the precise phase diagram of feasible accelerations of SGD under power-law spec-58

tral assumptions (Figure 1 right). In particular, we identify three natural sub-phases in the59

signal-dominated phase; in one of them acceleration up to O(t−2ζ) is theoretically feasible.60

3. Implementation of Corner (S)GD (Section 5). Ideal corner algorithms require an infinite61

memory, but can be fast approximated by finite-memory algorithms using fast rational ap-62

proximations of the power function zθ. Experiments with a synthetic problem and MNIST63

confirm the practical acceleration.64

2 Background65

This section is largely based on the paper [29] to which we refer for details.66

Gradient descent with memory. Suppose that we wish to minimize a loss function L(w) on a67

linear space H. We consider gradient descent with size-M memory that can be written as68 (
wt+1 −wt

ut+1

)
=

(
−α bT

c D

)(
∇L(wt)

ut

)
, t = 0, 1, 2, . . . (1)

The vector wt is the current step-t approximation to an optimal vector w∗, and ut is an auxiliary69

vector representing the “memory” of the optimizer. These auxiliary vectors have the form u =70

(u(1), . . .u(M))T with u(m) ∈ H and can be viewed as size-M columns with each component71

belonging to H. We refer to M as the memory size. The parameter α (learning rate) is scalar,72

the parameters b, c are M -dimensional column vectors, and D is a M × M scalar matrix. The73

algorithm can be viewed as a sequence of transformations of size-(M + 1) column vectors (wt
ut

)74

with H-valued components. Throughout the paper, we only consider stationary algorithms, in the75

sense that the parameters α,b, c, D do not depend on t. The simplest nontrivial special case of GD76

with memory is Heavy Ball [19], in which M = 1 and ut is the momentum.77

Our theoretical results will rely on the assumption that L is quadratic:78

L(w) =
1

2
wTHw −wTq, (2)

with a strictly positive definite H. Throughout the paper, we will mostly be interested in infinite-79

dimensional Hilbert spaces H, and we slightly abuse notation by interpreting wT as the co-vector80

(linear functional ⟨w, ·⟩) associated with vector w. We will assume that H has a discrete spectrum81

with ordered strictly positive eigenvalues λk ↘ 0.82

2



Let w∗ be the optimal value of L such that ∇L(w∗) = Hw∗−q = 0, and denote ∆wt = wt−w∗.83

Then, if ∆wt and ut are eigenvectors of H with eigenvalue λ, then84 (
∆wt+1

ut+1

)
= Sλ

(
∆wt

ut

)
, Sλ =

(
1 bT

0 D

)
+ λ

(
−α
c

)
(1,0T ), (3)

and the new vectors ∆wt+1,ut+1 are again eigenvectors of H with eigenvalue λ. As a result,85

performing the spectral decomposition of ∆wt,ut reduces the original dynamics (1) acting in H⊗86

RM+1 to a λ-indexed collection of independent dynamics each acting in RM+1.87

For quadratic L, evolution (1) admits an equivalent representation88

wt+M+1 =

M∑
m=0

pmwt+m +

M∑
m=0

qm∇L(wt+m), t = 0, 1, . . . , (4)

with constants (pm)Mm=0, (qm)Mm=0 such that
∑M

m=0 pm = 1. These constants are found from the89

characteristic polynomial90

χ(µ, λ) = det(µ−Sλ) = P (µ)−λQ(µ), P (µ) = µM+1−
M∑

m=0

pmµm, Q(µ) =

M∑
m=0

qmµm. (5)

Batch SGD with memory. In batch Stochastic Gradient Descent (SGD), it is assumed that the91

loss has the form L(w) = Ex∼ρℓ(x,w), where ρ is some probability distribution of data points x92

and ℓ(x,w) is the loss at the point x. In the algorithm (1), we replace ∇L by ∇LBt
, where Bt is a93

random batch of |B| points sampled from distribution ρ, and ∇LB is the empirical approximation94

to L, i.e. LB(w) = 1
|B|

∑
x∈B ℓ(x,w). The samples Bt at different steps t are independent.95

We assume ℓ to have the quadratic form ℓ(x,w) = 1
2 (x

Tw− y(x))2 for some scalar target function96

y(x). Here, the inner product xTw can be viewed as a linear model acting on the feature vector x.97

By projecting to the subspace of linear functions, we can assume w.l.o.g. that the target function98

y(x) is itself linear in x, i.e. f(x) = xTw∗ with some optimal parameter vector w∗. (Later we99

will slightly weaken this assumption to also cover unfeasible solutions w∗.) Then the full loss is100

quadratic as in Eq. (2): L(w) = Ex∼ρ
1
2 (x

T∆w)2 = 1
2∆wTH∆w, where ∆w = w−w∗ and the101

Hessian H = Ex∼ρ[xx
T ].102

Mean loss evolution, SE approximation, and the propagator expansion. Since the trajectory103

wt in SGD is random, it is convenient to study the deterministic trajectory of batch-averaged losses104

Lt = EB1,...,Bt−1
L(wt). The sequence Lt can be described exactly in terms of the second moments105

of wt,ut that admit exact evolution equations. An important aspect of this evolution is that it106

involves 4’th order moments of the data distribution ρ and so cannot in general be solved using only107

the second-order information available in the Hessian H = Ex∼ρ[xx
T ].108

A convenient approach to handle this difficulty is the Spectrally-Expressible (SE) approximation109

proposed in [25]. It consists in assuming that there exist constants τ1, τ2 such that for all positive110

definite operators C in H111

Ex∼ρ[xx
TCxxT ] ≈ τ1 Tr[HC]H− (τ2 − 1)HCH. (6)

In fact, this approximation holds exactly for some natural types of distribution ρ (translation-112

invariant, gaussian). Otherwise, if the r.h.s. is only an upper or lower bound for the l.h.s., this113

implies a respective relation between the actual losses and the losses computed under the SE approx-114

imation. Theoretical predictions obtained under assumption (6) show good quantitative agreement115

with experiment on real data. We refer to [25, 29] for further discussion of the SE approximation.116

The main benefit of the SE approximation is that it allows to write a convenient loss expansion117

Lt =
1

2

(
Vt+1 +

t∑
m=1

∑
0<t1<...<tm<t+1

Ut+1−tmUtm−tm−1Utm−1−tm−2 · · ·Ut2−t1Vt1

)
(7)

with scalar noise propagators Ut and signal propagators Vt. The signal propagators describe the118

error reduction during optimization in the absence of sampling noise, while the noise propagators119

describe the perturbing effect of sampling noise injected at times t1, . . . , tm.120
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For our main results in Sections 3, 4, we will assume that τ2 = 0, implying particularly simple121

formulas for Ut, Vt:122

Ut =
τ1
|B|

∞∑
k=1

λ2
k|( 1 0T )St−1

λ (−α
c )|2, Vt =

∞∑
k=1

λk(e
T
kw∗)

2|( 1 0T )St−1
λ ( 1

0 )|2, (8)

where ek is a normalized eigenvector for λk, and it is also assumed that optimization starts from123

w0 = 0 so that ∆w0 = w0 −w∗ = −w∗.124

Importantly, the batch size |B| affects Lt only through the denominator in the coefficient in Ut. The125

deterministic GD corresponds to the limit |B| → ∞: in this limit Ut ≡ 0 and Lt =
1
2Vt+1.126

Convergence/divergence regimes. Given expansion (7), we can deduce various convergence127

properties of the loss from the properties of the propagators Vt, Ut.128

Theorem 1 ([29]). Let numbers Lt be given by expansion (7) with some Ut ≥ 0, Vt ≥ 0. Let129

UΣ =
∑∞

t=1 Ut and VΣ =
∑∞

t=1 Vt.130

1. [Convergence] Suppose that UΣ < 1. At t → ∞, if Vt = O(1) (respectively, Vt = o(1)),131

then also Lt = O(1) (respectively, Lt = o(1)).132

2. [Divergence] If UΣ > 1 and Vt > 0 for at least one t, then supt=1,2,... Lt = ∞.133

3. [Signal-dominated regime] Suppose that there exist constants ξV , CV > 0 such that Vt =134

CV t
−ξV (1 + o(1)) as t → ∞. Suppose also that UΣ < 1 and Ut = O(t−ξU ) with some135

ξU > max(ξV , 1). Then136

Lt =
CV

2(1− UΣ)
t−ξV (1 + o(1)). (9)

4. [Noise-dominated regime] Suppose that there exist constants ξV > ξU > 1, CU > 0 such137

that Ut = CU t
−ξU (1 + o(1)) and Vt = O(t−ξV ) as t → ∞. Let also that UΣ < 1. Then138

Lt =
VΣCU

2(1− UΣ)2
t−ξU (1 + o(1)). (10)

Spectral power laws. The detailed convergence results in items 3, 4 of Theorem 1 require us139

to know the asymptotics of the propagators Ut, Vt. To this end we introduce power-law spectral140

assumptions on the eigenvalues and eigencomponents of w∗ in our optimization problem:141

λk = Λk−ν(1 + o(1)), k → ∞, (11)∑
k:λk<λ

λk(e
T
kw∗)

2 = Qλζ(1 + o(1)), λ ↘ 0, (12)

with some constants Λ, Q > 0 and exponents ν > 0, ζ > 0. Such power laws are common in kernel142

methods or overparameterized models, and can be derived theoretically or observed empirically143

[1, 2, 3, 7, 10, 26, 27]. Conditions (11), (12) (or their weaker, inequality forms) are usually referred144

to as the capacity and source conditions, respectively [9]. The exponent ζ is akin to an inverse145

effective condition number: lower ζ means that the target and the solution have a heavier spectral146

tail of eigencomponents with small λ, making the problem harder. The exponent ν is akin to an147

inverse effective dimensionality of the problem: lower ν means a larger number of eigenvectors148

above a given spectral parameter λ. Only the source condition (12) matters for the non-stochastic149

GD rates, but in SGD the capacity condition (11) also becomes important due to the sampling noise.150

If 0 < ζ < 1, then the source condition (12) is inconsistent with w∗ having a finite H-norm, i.e.,151

strictly speaking, w∗ is not an element of H. Such a solution is called unfeasible. In fact, unfeasible152

scenarios are quite common both theoretically and in practice (see Section F). The Corner SGD to153

be proposed in Section 4 will be especially suitable for unfeasible scenarios. Note also that if ν < 1
2 ,154

then U1 = ∞ and so Lt ≡ ∞, i.e. the loss immediately diverges.155

Stability and asymptotics of the propagators. Let us say that a square matrix A is strictly stable156

if all its eigenvalues are less than 1 in absolute value. It is natural to require the matrices Sλ to be157

strictly stable for all λ ∈ spec(H), since otherwise Ut, Vt, and hence Lt, will not generally even158

converge to 0 as t → ∞. At λ = 0 the matrix Sλ=0 has eigenvalue 1 and additionally the eigenvalues159

of the matrix D; accordingly, we will assume that D is strictly stable.160
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Figure 1: Left: The phase diagram of stationary finite-memory SGD from [25, 29]. Right: Maxi-
mum acceleration factor θmax = min(2, ν, 2

ζ+1/ν ) for Corner SGD in the signal-dominated regime
(see Theorem 4).

Theorem 2 ([29]). Suppose that D and Sλ are strictly stable for all λ ∈ spec(H). Recalling the161

characteristic polynomial χ(µ, λ) = det(µ − Sλ) = P (µ) − λQ(µ), define the effective learning162

rate163

αeff = −Q(1)
/

dP
dµ (1), (13)

and assume that αeff > 0. Then, under spectral assumptions (11), (12) with ν > 1
2 , the propagators164

Vt, Ut given by Eq. (8) obey, as t → ∞,165

Vt = (1 + o(1))QΓ(ζ + 1)(2αefft)
−ζ , (14)

Ut = (1 + o(1))
(αeffΛ)

1/ντ1Γ(2− 1/ν)

|B|ν (2t)1/ν−2. (15)

Combined with Theorem 1, this result yields the (ζ, 1/ν)-phase diagram shown in Figure 1 left. In166

particular, the region ν > 1, 0 < ζ < 2 − 1/ν represents the signal-dominated phase in which167

the noise effects are relatively weak and the loss convergence Lt ∝ t−ζ has the same exponent ζ168

as plain deterministic GD. This holds for all stationary finite-M algorithms and so such algorithms169

cannot accelerate the exponent. In the present paper we will focus on the signal-dominated phase170

and propose an “infinite-memory” generalization of SGD that does accelerate the exponent.171

3 The contour view of generalized (S)GD172

We consider the propagator expansion (7) as a basis for our arguments. Observe that we can write173

the expression ( 1 0T )St
λ(

−α
c ) appearing in the definition of propagator Ut in Eq. (8) as174

( 1 0T )St
λ(

−α
c ) =

1

2πi

∮
|µ|=r

µt( 1 0T )(µ− Sλ)
−1(−α

c )dµ, (16)

where |µ| = r is a contour in the complex plane encircling all the eigenvalues of Sλ. Next, simple175

calculation (see Section A) shows that176

( 1 0T )(µ− Sλ)
−1(−α

c ) =
Q(µ)

P (µ)− λQ(µ)
=

1
P (µ)
Q(µ) − λ

=
1

Ψ(µ)− λ
, (17)

where P (µ)− λQ(µ) is the characteristic polynomial of Sλ introduced in Eq. (5), and177

Ψ(µ) =
P (µ)

Q(µ)
. (18)

We see, in particular, that the propagators Ut depend on the algorithm parameters only through the178

function Ψ:179

Ut =
τ1
|B|

∞∑
k=1

λ2
k

∣∣∣ 1

2πi

∮
|µ|=r

µt−1dµ

Ψ(µ)− λ

∣∣∣2. (19)
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|µ| ≥ 1

Ψ(µ)

1 0 λ1λ2

γ

Dγ

0

γ
θπ

Figure 2: Left: The map Ψ = P
Q for Heavy Ball with P (µ) = (µ − 1)(µ − 0.4) and Q(µ) = −µ.

The contour γ = Ψ({µ : |µ| = 1}) encircles spec(H). The map Ψ bijectively maps {|µ| > 1} to the
exterior open domain Dγ with boundary γ. See Sec. B for more examples and a general discussion
of memory-1 contours. Right: Contour γ corresponding to a corner map Ψ with angle θπ.

A similar observation can also be made regarding the propagators Vt. Indeed, Vt’s are different180

from Ut’s in that they involve the expression ( 1 0T )St
λ(

1
0 ) instead of ( 1 0T )St

λ(
−α
c ). The contour181

representation for ( 1 0T )St
λ(

1
0 ) is similar to Eq. (16), and then a simple calculation gives182

( 1 0T )(µ− Sλ)
−1( 1

0 ) =
Ψ(µ)

(Ψ(µ)− λ)(µ− 1)
. (20)

As a result,183

Vt =

∞∑
k=1

λk(e
T
kw∗)

2
∣∣∣ 1

2πi

∮
|µ|=r

µt−1Ψ(µ)dµ

(Ψ(µ)− λ)(µ− 1)

∣∣∣2. (21)

Recall from Eqs. (4),(5) that P can be any monic polynomial (i.e., with leading coefficient 1) of184

degree M + 1 such that P (1) = 0, while Q can be any polynomials of degree not greater than185

M . Since by Eq. (7) the loss trajectory Lt is completely determined by the propagators Ut, Vt, we186

see that designing a stationary SGD with memory is essentially equivalent to designing a rational187

function Ψ subject to these simple conditions. By (4), the function Ψ = P
Q can be interpreted as188

describing the (frequency) response of the gradient sequence (∇L(wt)) to the sequence (wt).189

Let us consider the map Ψ from the stability perspective. Recall that we expect Sλk
to be strictly190

stable for all the eigenvalues λk ∈ spec(H). In terms of Ψ = P
Q this means that Ψ(µ) ̸= λk for all191

µ ∈ C such that |µ| ≥ 1. This shows, in particular, that we can set the radius r = 1 in Eqs. (19),192

(21). Additionally, if D is strictly stable, then S0 has only one simple eigenvalue of unit absolute193

value, µ = 1, and so Ψ(µ) ̸= 0 for |µ| = 1, µ ̸= 1. Let us introduce the curve γ as the image of the194

unit circle under the map Ψ. Then the last condition means that the curve γ goes through the point195

0 only once, at µ = 1.196

In general, the curve γ can have a complicated shape with self-intersections, and the map Ψ may not197

be injective on the domain |µ| ≥ 1. In particular, the singularity of Ψ at µ = ∞ is ∝ µM+1−deg(Q),198

so in a vicinity of µ = ∞ the function Ψ is injective if and only if deg(Q) = M (and in general199

Ψ may also have other singularities at |µ| > 1). However, we may expect natural, non-degenerate200

algorithms to correspond to simple non-intersecting curves γ and injective maps Ψ on |µ| ≥ 1.201

For example, this is the case for plain (S)GD and Heavy Ball, where γ is a circle and an ellipse,202

respectively (Fig. 2 left). See Section B for a general discussion of memory-1 algorithms.203

Given a non-intersecting (Jordan) contour γ, denote by Dγ the respective exterior open domain.204

Then, by Riemann mapping theorem, there exists a bijective holomorphic map Ψγ : {µ ∈ C :205

|µ| > 1} → Dγ . Additionally, by Carathéodory’s theorem1 (see e.g. [11], p. 13) this map extends206

continuously to the boundary, Ψγ : {µ ∈ C : |µ| = 1} → γ. Such maps Ψγ are non-unique, forming207

a three-parameter family Ψγ ◦ f, where f is a conformal automorphism of {µ ∈ C : |µ| > 1}.208

However, recall that our maps Ψ = P
Q had the properties Ψ(∞) = ∞ and Ψ(1) = 0. These two209

requirements for Ψγ uniquely fix the conformal isomorphism and hence Ψγ .210

1Carathéodory’s theorem considers bounded domains, but our domains {µ ∈ C : |µ| > 1} and Dγ are
conformally isomorphic to bounded ones by simple transformations z = 1/(µ− µ0).
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This suggests the following reformulation of the design problem for stationary SGD with memory.211

Rather than starting with the algorithm in the matrix or sequential forms (1), (4), we start with a212

contour γ or the associated Riemann map Ψγ , and ensure a fast decay of the respective propagators213

Ut, Vt given by (19), (21) (and hence, by Theorem 1, of the loss Lt). Of course, the resulting map214

Ψγ will not be rational in general, but we can subsequently approximate it with a rational function215
P
Q and in this way approximately reconstruct the algorithm.216

4 Corner algorithms217

To motivate the algorithms introduced in this section, observe from Eqs. (9), (14) that in the signal-218

dominated regime of stationary memory-M SGD, we can decrease the coefficient CL in the asymp-219

totic formula Lt = (1 + o(1))CLt
−ζ by increasing αeff while keeping the total noise coefficient220

UΣ < 1. Since Ψ(1) = 0, αeff can be reformulated in terms of Ψ as221

αeff = − Q(1)
dP
dµ (1)

= −
(dΨ
dµ

(1)
)−1

. (22)

Thus, increasing αeff means making −dΨ
dµ (1) a possibly smaller positive number. Regarding UΣ =222 ∑∞

t=1 Ut, note first that, by (19), it can be written as223

UΣ =
τ1

(2π)2|B|
∞∑
k=1

λ2
k

∞∑
t=1

∣∣∣ ∮
|µ|=1

µt−1dµ

Ψ(µ)− λ

∣∣∣2 =
τ1

(2π)2|B|
∞∑
k=1

λ2
k

∫ π

−π

dϕ

|Ψ(eiϕ)− λk|2
. (23)

Indeed, since the function (Ψ(µ)− λ)−1 is holomorphic in {|µ| > 1} and vanishes as µ → ∞, the224

integrals
∮

here vanish for all nonpositive integers t = 0,−1,−2, . . . so that
∑

t collapses to the225

squared L2 norm by Parseval’s identity. If the resulting series (23) converges, we can always ensure226

UΣ < 1 by making the batch size |B| large enough.227

It is then natural to try Ψ = Ψγ with a contour γ having a corner at 0 with a particular angle.228

Denote the angle by θπ when measured in the external domain Dγ (Figure 2 right). Such contours229

correspond to maps Ψ : {|µ| > 1} → Dγ such that230

Ψ(µ) = −cΨ(µ− 1)θ(1 + o(1)), µ → 1, (24)

with the standard branch of (µ− 1)θ and some constant cΨ > 0. We will refer to such Ψ as corner231

maps and to the respective generalized SGD as corner algorithms. Formally,232

−dΨ

dµ
(µ = 1) ∼ cθ(µ− 1)θ−1|µ=1+ =

{
+∞, θ < 1

+0, θ > 1
(25)

so we are interested in θ > 1. At the same time, we cannot take θ > 2, since this would violate the233

stability condition Ψ{|µ| > 1} ∩ spec(H) = ∅. Thus, the relevant range of values for θ is [1, 2].234

Within this range, increasing θ should have a positive αeff -related effect but a negative UΣ-related235

effect, since the contour γ = Ψ(|µ| = 1) is getting closer to the spectral segment [0, λmax], thus236

amplifying the singularity |Ψ(eiϕ)− λk|−2 in Eq. (23). Our main technical result is237

Theorem 3 (C). Let Ψ be a holomorphic function in {µ ∈ C : |µ| > 1} commuting with complex238

conjugation and obeying power law condition (24) with some 1 < θ < 2. Assume that Ψ extends239

continuously to a C1 function on the closed domain |µ| ≥ 1, Ψ(µ) → ∞ as µ → ∞, and d
dµΨ(µ) =240

O(|µ − 1|θ−1) as µ → 1. Assume also that Ψ({µ ∈ C : |µ| ≥ 1, µ ̸= 1}) ∩ [0, λmax] = ∅, where241

λmax = λ1 is the largest eigenvalue of H. Let power-law spectral assumptions (11),(12) hold with242

some ν > 1, 0 < ζ < 2. Then propagators (19), (21) obey the following t → ∞ asymptotics.243

1. (Noise propagators) Ut = CU t
θ/ν−2(1 + o(1)), with the coefficient244

CU =
τ1
|B|Λ

1/ν

∫ 0

∞
r2F 2

U (r)dr
−θ/ν < ∞, FU (r) =

1

2πi

∫
iR

erzdz

cΨzθ + 1
.

2. (Signal propagators) Vt = CV t
−θζ(1 + o(1)), with the coefficient245

CV = Q

∫ ∞

0

F 2
V (r)dr

θζ < ∞, FV (r) =
1

2πi

∫
iR

cΨz
θ−1erzdz

cΨzθ + 1
.
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We see that the leading t → ∞ asymptotics of the propagators are completely determined by the246

λ ↘ 0 spectral asymptotics of the problem and the µ → 1 singularity of the map Ψ. The functions247

FU , FV can be written in terms of the Mittag-Leffler functions Eθ,θ, Eθ (see Section C).248

Availability of the coefficients CU , CV ensures that the leading asymptotics of Ut, Vt are strict power249

laws with specific exponents 2−θ/ν and θζ, respectively. Increasing θ indeed improves convergence250

of the signal propagators, but degrades convergence of the noise propagators.251

The largest acceleration of the loss exponent ζ possibly achievable with corner algorithms is by a252

factor θ arbitrarily close to 2, but in general it will be lower since, by Theorem 1, the exponent of253

Lt is the lower of the exponents of Ut and Vt; accordingly, the optimal θ is obtained by balancing254

the two exponents, i.e. setting θζ = 2− θ/ν. Also, we need the noise exponent 2− θ/ν to be > 1,255

since otherwise the total noise coefficient UΣ = ∞ and Lt diverges for any batch size |B| < ∞.256

Combining these considerations, we get the phase diagram of feasible accelerations (Figure 1 right).257

Theorem 4. Consider a problem with power-law spectral conditions (11),(12) in the signal-258

dominated phase, i.e. ν > 1, 0 < ζ < 2 − 1/ν. Let θmax denote the supremum of those θ for259

which there exists a corner algorithm and batch size B such that Lt = O(t−θζ). Then260

θmax = min
(
2, ν,

2

ζ + 1/ν

)
. (26)

The phase diagram thus has three regions:261

I. Fully accelerated: θmax = 2, achieved for ν > 2, 0 < ζ < 1− 1/ν.262

II. Signal/noise balanced: θmax = 2
ζ+1/ν < 2, max(1/ν, 1 − 1/ν) < ζ < 2 − 1/ν. The263

condition 1/ν < ζ ensures that UΣ is finite and less than 1 for |B| large enough.264

III. Limited by UΣ-finiteness: θmax = ν < 2, 1 < ν < 2, 0 < ζ < 1/ν. The signal exponent265

θmaxζ is less than the noise exponent 2− θmax/ν, but increasing θ makes UΣ diverge.266

5 Finite-memory approximations of corner algorithms267

Though corner maps Ψ are irrational, they can be efficiently approximated by rational functions. It268

was originally famously discovered by [17] that the function |x| can by approximated by order-M269

rational functions with error O(e−c
√
M ). This result was later refined in various ways. In particular,270

[12] establish a rational approximation with a similar error bound for general power functions z 7→271

zθ on complex domains. For θ ∈ (0, 1), this is done by writing272

zθ =
sin(θπ)

θπ

∫ ∞

0

zdt

t1/θ + z
=

sin(θπ)

θπ

∫ ∞

−∞

zeθπi/2+sds

eπi/2+s/θ + z
(27)

and then approximating the last integral by the trapezoidal rule with uniform spacing h = π
√
2θ/M .273

In our setting, we start by explicitly defining a θ-corner map. This can be done in many ways; we274

find it convenient to set275

Ψ(µ) = −A
(∫ 1

0

dδ2−θ

µ− 1 + δ

)−1µ− 1

µ
= A

(
(θ − 2)

∫ ∞

0

e−(2−θ)sds

µ− 1 + e−s

)−1µ− 1

µ
(28)

with a scaling parameter A > 0.276

Proposition 1 (D). For any 1 < θ < 2, Eq. (28) defines a holomorphic map Ψ : C \ [0, 1] → C277

such that278

Ψ(µ) =

{
−Aµ(1 + o(1)), µ → ∞,

− A(2−θ)π
sin((2−θ)π) (µ− 1)θ(1 + o(1)), µ → 1,

(29)

where zθ denotes the standard branch in C \ (−∞, 0]. Also, Ψ({|µ| ≥ 1}) ∩ (0, 2A] = ∅.279

Following [12], we approximate the last integral in Eq. (28) as280 ∫ ∞

0

ϕ(s)ds ≈ h

M∑
m=1

ϕ((m− 1
2 )h), h =

l√
M

, (30)
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Figure 3: Training loss and final predictions of the kernel model (220) trained to fit the target y(x) =
1[1/4,3/4](x) using either plain or corner SGD with batch size |B| = 100. The loss trajectories
oscillate strongly, so their smoothed versions are also shown and used to estimate the exponents ζ in
power laws Lt ∝ t−ζ . Corner SGD has θ = 1.8 and is approximated using finite memory M = 5 as
in Proposition 2. We see that Corner SGD indeed accelerates the power-law convergence exponent
of plain SGD. See Section F for details.

with some fixed constant l. Note that in contrast to (27), our integral and discretization are “one-281

sided” (s > 0), reflecting the fact that the corner map Ψ(µ) is power law only at µ → 1, which is282

related to the s → +∞ behavior of the integrand.283

Let Ψ(M) denote the map Ψ discretized with M nodes by scheme (30). Observe that Ψ(M) is a284

rational function, Ψ(M) = P
Q , where degP = M + 1 and degQ ≤ M (in particular, P (µ) =285

(µ− 1)
∏M

m=1(µ− 1 + e−(m−1/2)h)). We can then associate to Ψ(M) a memory-M algorithm (1)286

with particular α,b, c, D, for example as follows.287

Proposition 2 (E). Let h = l/
√
M and288

D = diag(1− e−
1
2h, . . . , 1− e−(M− 1

2 )h), (31)

b = (1, . . . , 1)T , (32)

c = (c1, . . . , cM )T , cm = A−1(2− θ)he−(2−θ)(m−1/2)h(e−(m−1/2)h − 1), (33)

α = A−1(2− θ)h
1− e−(2−θ)Mh

1− e−(2−θ)h
e−(2−θ)h/2. (34)

Then the respective characteristic polynomial χ(µ) = P (µ)− λQ(µ) with P
Q = Ψ(M).289

Of course, as any stationary finite-memory algorithm, for very large t the M -discretized corner290

algorithm can only provide a O(t−ζ) convergence of the loss. But, thanks to the O(e−c
√
M ) rational291

approximation bound, we expect that even with moderate M , for practically relevant finite ranges292

of t the convergence should be close to O(t−θζ) of the ideal corner algorithm.293

Experiments with a synthetic problem and MNIST confirm that corner algorithms accelerate the294

exponents of plain SGD (see Appendix F and Figure 3). We also provide additional discussion295

of corner algorithms in Appendix G. In particular, we note that, while corner algorithms require296

significantly more memory than plain SGD, the amount of computation they perform is typically297

not much larger than for SGD. Our theoretical results significantly depended on the SE assumption298

(6) with τ2 = 0, but it appears that the theory can be extended to a more general setting (at the cost299

of more complicated expansions).300
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0 0 0

Figure 4: Contours γ = Ψ({µ : |µ| = 1}) corresponding to different memory-1 maps Ψ (see
Section B). Left: plain Gradient Descent (a circle). Center: Heavy Ball (an ellipse; β = 0.5).
Right: general memory-1 algorithms (a Zhukovsky airfoil; β = 0.65, q0 = 0.125, q1 = −1).

A Derivations of Section 3382

We have383

P (µ) = det(µ− S0) (35)
= det(µ− Sλ + λ(−α

c )( 1 0T )) (36)

= det(µ− Sλ) det
(
1 + λ(−α

c )( 1 0T )(µ− Sλ)
−1

)
(37)

= (P (µ)− λQ(µ))
(
1 + λ( 1 0T )(µ− Sλ)

−1(−α
c )

)
. (38)

It follows that384

( 1 0T )(µ− Sλ)
−1(−α

c ) =
1

λ

( P (µ)

P (µ)− λQ(µ)
− 1

)
(39)

=
Q(µ)

P (µ)− λQ(µ)
. (40)

Next, by Sherman-Morrison formula and the above identity,385

(µ− Sλ)
−1 = (µ− S0 − λ(−α

c )( 1 0T ))−1 (41)

= (µ− S0)
−1 + λ

(µ− S0)
−1(−α

c )( 1 0T )(µ− S0)
−1

1− λ( 1 0T )(µ− S0)−1(−α
c )

(42)

= (µ− S0)
−1 + λ

(µ− S0)
−1(−α

c )( 1 0T )(µ− S0)
−1

1− λQ(µ)
P (µ)

(43)

Using ( 1 0T )(µ− S0)
−1( 1

0 ) =
1

µ−1 , it follows that386

( 1 0T )(µ− Sλ)
−1( 1

0 ) =
1

µ− 1
+ λ

Q(µ)
P (µ)

1
µ−1

1− λQ(µ)
P (µ)

(44)

=

P (µ)
Q(µ)

(µ− 1)(P (µ)
Q(µ) − λ)

. (45)

B Memory-1 contours387

In figure 4 we show different contours γ = Ψ({|µ| = 1}) corresponding to memory-1 algorithms388

(see Section 3 for the introduction of contours). Below we discuss memory-1 algorithms and their389

contours in the order of increasing generality.390

Plain (S)GD. In (S)GD with learning rate α > 0 we have P (µ) = µ− 1 and Q(µ) = −α, so391

Ψ(µ) = −µ− 1

α
. (46)

Thus, γ is the circle |z − 1
α | = 1

α .392
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Heavy Ball. Heavy Ball with learning rate α and momentum parameter β has standard stability393

conditions α > 0, β ∈ (−1, 1) and λmax < 2+2β
α [20, 22]. We have P (µ) = (µ − 1)(µ − β) and394

Q(µ) = −αµ, so395

Ψ(µ) = − (µ− 1)(µ− β)

αµ
. (47)

If |µ| = 1, then µµ = 1 and hence396

Ψ(µ) = − 1

α
(µ+ βµ− 1− β). (48)

Writing µ = x+ iy, we get397

Ψ(µ) = − 1

α
((1 + β)x+ i(1− β)y − 1− β). (49)

It follows that γ is an ellipse with the semi-axis 1+β
α along x and the semi-axis 1−β

α along y. The398

learning rate α determines the size of the ellipse while the momentum parameter β determines its399

shape. If β > 0, then the ellipse is elongated in the x direction, and otherwise in the y direction.400

Assuming β > 0, the eccentricity of the ellipse equals e =
√

1− (1− β)2/(1 + β)2 = 2
√
β

1+β . Plain401

GD is the special case of Heavy Ball with β = 0.402

General memory-1 (S)GD. In a general memory-1 algorithm we have P (µ) = (µ − 1)(µ − β)403

and Q(µ) = q0 + q1µ, so404

Ψ(µ) =
(µ− 1)(µ− β)

q0 + q1µ
. (50)

Heavy Ball is the special case of general memory-1 algorithms with q0 = 0.405

In [29] it was shown that on the spectral interval (0, λmax] the strict stability of the generalized406

memory-1 SGD is equivalent to the conditions407

−1 < β < 1, q0 > −1− β

λmax
, q0 −

2 + 2β

λmax
< q1 < −q0 (51)

(note that the Heavy Ball stability conditions result by setting q0 = 0, q1 = −α).408

Zhukovsky airfoil representation. The map Ψ can be written as a composition of linear transfor-409

mations and the Zhukovsky function410

J(µ) = µ+
1

µ
. (52)

Indeed, let411

µ1 ≡ f1(µ) ≡ q0 + q1µ, (53)

then412

Ψ(µ) =
(µ1−q0

q1
− 1)(µ1−q0

q1
− β)

µ1
(54)

=
µ1

q21
+

r

µ1
−

2 q0
q1

+ 1 + β

q1
(55)

=

√
r

q1
J
( µ1

q1
√
r

)
−

2 q0
q1

+ 1 + β

q1
, (56)

where413

r =
(q0
q1

+ 1
)(q0

q1
+ β

)
(57)

and
√
r is imaginary if r < 0.414

Thus, the contour γ = Ψ({|µ| = 1}) is a rescaled image of a circle under the Zhukovsky transform,415

i.e. a “Zhukovsky airfoil”.416
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Conditions of injectivity. As discussed in Section 3, the case of maps Ψ injective on the domain417

|µ| > 1 seems especially natural and attractive. Let us examine when the map Ψ given by Eq. (50) is418

injective. We can assume without loss that q1 ̸= 0 since otherwise the map Ψ is not locally injective419

at ∞.420

The Zhukovsky transform can be written as a composition of two linear fractional transformations421

and the function w = z2:422

J(µ) = 2
1 + w

1− w
, w = z2, z =

µ− 1

µ+ 1
. (58)

The image of a generalized disc on the extended complex plane under a linear fractional map is423

again a generalized disc, and the map w = z2 is injective on a generalized open disc if and only if424

the disc does not contain 0 and ∞. Hence, a necessary and sufficient condition for J to be injective425

on a generalized open disc is that this disc not contain the points ±1. It follows that Ψ is injective426

on the generalized disc |µ| > 1 iff427 ∣∣∣− q0
q1

±√
r
∣∣∣ ≤ 1. (59)

Let us henceforth assume the stability condition −1 < β < 1 as given in Eq. (51). Consider428

separately the cases of negative and positive r.429

1. r ≤ 0 corresponds to −1 ≤ q0
q1

≤ −β. In this case condition (59) is equivalent to −1 ≤ q0
q1

,430

i.e. it holds.431

However, the special case q0
q1

= −1 is the degenerate scenario in which the denominator of432

Ψ vanishes at µ = 1 and the stability condition q1 < −q0 in Eq. (51) is violated, so we433

will discard this special case.434

2. r > 0 corresponds to q0
q1

< −1 or q0
q1

> −β. The option q0
q1

< −1 is inconsistent with435

condition (59), leaving only the option q0
q1

> −β.436

(a) If q0
q1

≤ 0, then condition (59) is equivalent to437

√
r ≤ 1 +

q0
q1

, (60)

which holds true thanks to the assumption β < 1.438

(b) If q0
q1

≥ 0, then condition (59) is equivalent to439

√
r ≤ 1− q0

q1
, (61)

which holds iff440
q0
q1

≤ 1− β

3 + β
. (62)

Summarizing, assuming the stability condition −1 < β < 1 and excluding the degenerate case441

q0 = −q1, the condition of injectivity of the map Ψ on the domain |µ| > 1 reads442

−1 <
q0
q1

≤ 1− β

3 + β
. (63)

We remark that this condition can also be reached in a different way. There are two obvious nec-443

essary conditions of injectivity of Ψ on the set |µ| > 1: the absence of poles of Ψ and zeros of the444

derivative Ψ′ from this domain (the latter ensures the local injectivity). The absence of poles means445

that −1 ≤ q0
q1

≤ 1. The zeros of the derivative are given by the equation446

µ2 + 2
q0
q1

µ− (β + 1)
q0
q1

− β = 0. (64)

Both roots of a quadratic equation µ2+aµ+b = 0 lie inside the closed unit circle iff |a| ≤ 1+b ≤ 2.447

Applying this condition (and discarding the case q0/q1 = −1), we reach the same inequalities (63).448

In particular, the conditions of absence of poles and the roots of the derivative turn out to be not only449

necessary, but also sufficient.450
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Algebraic equation of the contour. The circle |µ| = 1 is a real algebraic curve defined by the451

polynomial equation x2+ y2 = 1, where µ = x+ iy. Images of real algebraic curves under rational452

complex maps are again algebraic curves, and the corresponding equations can be found using, e.g.,453

Macaulay resultants [21]. In the particular case of unit circle the computation can be performed in454

terms of standard resultants as follows.455

Recall that Ψ(µ) = P (µ)
Q(µ) , where P is a polynomial of degree M + 1, and Q is a polynomial of456

degree ≤ M ; we assume P and Q to have real coefficients. Denote w = Ψ(µ), then457

wQ(µ) = P (µ). (65)

Since µ belongs to the unit circle, µµ = 1. Applying complex conjugation and the identity µ = 1/µ458

to the above equation, we get the second equation459

wQ(1/µ) = P (1/µ). (66)

Note that Q̃(µ) = µM+1Q(1/µ) and P̃ (µ) = µM+1P (1/µ) are polynomials in µ of degree M + 1460

or less. It follows that µ satisfies two polynomial conditions:461

T1(µ) = 0, T2(µ) = 0, (67)

where462

T1(µ) = P (µ)− wQ(µ), T2(µ) = P̃ (µ)− wQ̃(µ), (68)

i.e. µ is a common root of two polynomials, T1(µ) and T2(µ). Two polynomials have a common463

root iff their resultant vanishes. The polynomials T1(µ), T2(µ) have degree M + 1 or less and464

include w and w linearly in their coefficients. It follows that the set Ψ({|µ| = 1}) can be described465

by the equation466

res(T1(µ), T2(µ)) = 0, (69)

which is a polynomial equation in w and w of degree at most 2(M + 1).467

We implement now this general program for M = 1. Given quadratic polynomials468

T1(µ) = Aµ2 +Bµ+ C, (70)

T2(µ) = Dµ2 + Eµ+ F, (71)

their resultant can be written as469

res(T1, T2) = (AF − CD)2 − (AE −BD)(BF − CE). (72)

In our case470

A = 1, B = −(β + 1 + wq1), C = β − wq0, (73)
D = β − wq0, E = −(β + 1 + wq1), F = 1. (74)

Considering real β, q0, q1 and w = x+ iy, we get471

res(T1, T2) = (1− (β − q0x)
2 − q20y

2)2 (75)

− (β2 − 1 + [(q1 − q0)β − q1 − q0]x− q0q1(x
2 + y2))2 (76)

− (β + 1)2(q0 + q1)
2y2. (77)

It follows that the contour Ψ({|µ| = 1}) can be described by the quartic (in general) equation472

(1− (β − q0x)
2 − q20y

2)2 = (β2 − 1 + [(q1 − q0)β − q1 − q0]x− q0q1(x
2 + y2))2 (78)

+ (β + 1)2(q0 + q1)
2y2. (79)

As expected, in the Heavy Ball case q0 = 0 this equation degenerates into the quadratic equation473

(1− β2)2 = (β2 − 1 + (β − 1)q1x)
2 + (β + 1)2q21y

2. (80)
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C Proof of Theorem 3474

C.1 The noise propagators475

The function FU . Let us introduce the values476

U(t, λ) =
1

2πi

∮
|µ|=1

µt−1dµ

Ψ(µ)− λ
=

1

2π

∫ π

−π

eitϕdϕ

Ψ(eiϕ)− λ
(81)

so that, by Eq. (19), the propagator Ut can be written as477

Ut =
τ1
|B|

∞∑
k=1

λ2
k|U(t, λ)|2. (82)

With the change of variables ϕ = sλ1/θ,478

U(t, λ) =
−λ1/θ−1

2π

∫ π/λ1/θ

−π/λ1/θ

eitλ
1/θsds

−Ψ(eisλ1/θ )/λ+ 1
= −λ1/θ−1FU (tλ

1/θ, λ), (83)

where we have denoted479

FU (r, λ) =
1

2π

∫ π/λ1/θ

−π/λ1/θ

eirsds

−Ψ(eisλ1/θ )/λ+ 1
. (84)

Recall that we assume Ψ(µ) = −cΨ(µ − 1)θ(1 + o(1)) as µ → 1. By formally taking the limit480

λ ↘ 0 in the integral, we then expect FU (r, λ) to converge to481

FU (r, 0)
def
= FU (r)

def
=

1

2π

∫ ∞

−∞

eirsds

cΨei(sign s)θπ/2|s|θ + 1
(85)

for any fixed r. This integral can be equivalently written as482

FU (r) =
1

2πi

∫
iR

erzdz

cΨzθ + 1
, (86)

assuming the standard branch of zθ holomorphic in C \ (−∞, 0].483

The function FU can be viewed (up to a coefficient) as the inverse Fourier transform of the function484

s 7→ (cΨe
i(sign s)θπ/2|s|θ + 1)−1. Note that, thanks to the condition θ > 1, the latter function is485

Lebesgue-integrable, so FU (r) is well-defined and continuous for all r ∈ R. The function FU can486

also be written in terms of the special Mittag-Leffler function Eθ,θ (see its integral representation487

(6.8) in [13]):488

FU (r) =
rθ−1

cΨ
Eθ,θ

(
− rθ

cΨ

)
, Ea,b(z) =

1

2πi

∫
γ

ta−betdt

ta − z
, (87)

where the integration path γ encircles the cut (−∞, 0] and the singularities of the denominator.489

The following asymptotic properties of FU (r) can be derived from the general asymptotic expan-490

sions of Mittag-Leffler functions (sections 1 and 6 in [13]), but we provide proofs for completeness.491

492

Lemma 1.493

1. FU (r) = 0 for r ≤ 0.494

2. FU (r) = (1 + o(1)) 1
cΨΓ(θ)r

θ−1 as r ↘ 0.495

3. FU (r) = (1 + o(1)) −cΨ
Γ(−θ)r

−θ−1 as r → +∞.496

Proof. 1. Consider the function f(z) integrated in Eq. (86). For any r ∈ R and θ ∈ (1, 2),497

the function f is holomorphic in any strip Ta = {0 < ℜz < a}, a > 0, and is bounded in Ta498

as |f(z)| = O(|z|−θ). It follows that the integration line iR can be deformed to iR + a without499

changing the integral. If r < 0, then by letting a → +∞ we can make the integral arbitrarily small.500
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2. By the change of variables rz = z′,501

FU (r) = u(r)rθ−1, (88)

where502

u(r) =
1

2πicΨ

∫
iR

ez
′
dz′

z′θ + c−1
Ψ rθ

. (89)

We can find limr↘0 u(r) as follows. Observe that the integration line iR can be deformed to the503

line γa, a > 0, encircling the negative semi-axis:504

γa = γa,1 ∪ γa,2 ∪ γa,3, (90)
γa,1 = {z ∈ C : ℑz = −a,ℜz ≤ 0}, (91)
γa,2 = {z ∈ C : |z| = a,−π

2 < arg z < π
2 )}, (92)

γa,3 = {z ∈ C : ℑz = a,ℜz ≤ 0}. (93)

Indeed, if r is sufficiently small, then this deformation occurs within the holomorphy domain of the505

integrated function. The integral is preserved since θ > 0 and since we deform in the half-plane506

where the argument of ez
′

has ℜz′ < 0.507

Thus, for any fixed a > 0 we have508

lim
r↘0

u(r) = lim
r↘0

1

2πicΨ

∫
γa

ez
′
dz′

z′θ + c−1
Ψ rθ

=
1

2πicΨ

∫
γa

ez
′
dz′

z′θ
=

1

2πicΨ(θ − 1)

∫
γa

ez
′
dz′

z′θ−1
, (94)

where in the last step we integrated by parts. In the last integral, thanks to the weakness of the509

singularity z′1−θ at z′ = 0 (note that 1− θ > −1), we can let a → 0:510 ∫
γa

ez
′
dz′

z′θ−1
=

∫ +∞

0

e−ss1−θ(e−πi(1−θ) − eπi(1−θ))ds (95)

= 2i sin(π(θ − 1))Γ(2− θ) (96)

=
2πi

Γ(θ − 1)
, (97)

where in the last step we used the identity Γ(z)Γ(1 − z) = π
sin(πz) . This is essentially Hankel’s511

representation of the Gamma function, valid for all θ ∈ C by analytic continuation. Summarizing,512

lim
r↘0

u(r) =
1

cΨ(θ − 1)Γ(θ − 1)
=

1

cΨΓ(θ)
. (98)

3. We start by performing integration by parts in FU :513

FU (r) =
−1

2πir

∫
iR

erzd
1

cΨzθ + 1
=

cΨθ

2πir

∫
iR

erzzθ−1dz

(cΨzθ + 1)2
. (99)

Performing again the change of variables rz = z′, we have514

FU (r) = v(r)r−θ−1, (100)

where515

v(r) =
cΨθ

2πi

∫
iR

ez
′
z′θ−1dz′

(cΨ(z′/r)θ + 1)2
. (101)

To compute limr→∞ v(r), we again transform the integration line. Let γ′ be a line that lies in the516

domain C \ (−∞, 0) and can be represented as the graph of a function ℜz = f(ℑz) such that517

f(y) ≥ c1|y| − c0 (102)

with some constant c1 > 0 and c0.518

Note that the integrated function has two singular points z′ ∈ C \ (−∞, 0] where the denominator519

cΨ(z
′/r)θ + 1 = 0. These two points depend linearly on r. Require additionally that γ′ lie to the520

right of these points for all r > 0, so that iR can be deformed to γ′ without meeting the singularities.521
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This requirement is feasible with a small enough c1 > 0 since, by the condition θ < 2, the imaginary522

parts of the singular points are negative.523

With these assumptions, integration in Eq. (101) can be changed to integration over γ′. Thanks to524

condition (102), the integrand converges exponentially fast at z′ → ∞, and we can take the limit525

r → +∞ :526

lim
r→+∞

v(r) =
cΨθ

2πi

∫
γ′
ez

′
z′θ−1dz′. (103)

The contour γ′ can now be transformed to a contour encircling the negative semi-axis, and applying527

Eq. (97) we get528

lim
r→+∞

v(r) =
cΨθ

Γ(1− θ)
=

−cΨ
Γ(−θ)

. (104)

529

The formal leading term in Ut. We have530

Ut =
τ1
|B|

∞∑
k=1

λ2
k|U(t, λk)|2 =

τ1
|B|

∑
k

λ
2/θ
k F 2

U (tλ
1/θ
k , λk). (105)

To extract the leading term in this expression, we set the second argument in FU (tλ
1/θ
k , λk) to 0:531

U
(1)
t

def
=

τ1
|B|

∑
k

λ
2/θ
k F 2

U (tλ
1/θ
k ) =

τ1
|B|att

θ/ν−2, (106)

where532

at = t2−θ/ν
∑
k

λ
2/θ
k F 2

U (tλ
1/θ
k ) = t−θ/ν

∑
k

(tλ
1/θ
k )2F 2

U (tλ
1/θ
k ). (107)

533

Lemma 2.

lim
t→∞

at = Λ1/ν

∫ 0

∞
r2F 2

U (r)dr
−θ/ν = Λ1/ν θ

ν

∫ ∞

0

r1−θ/νF 2
U (r)dr < ∞. (108)

Proof. Note first that the integral on the right is convergent. Indeed, by statement 2 of Lemma 1,534

r1−θ/νF 2(r) ∝ r1−θ/ν+2(θ−1) = rθ(2−1/ν)−1 near r = 0. Since we assume ν > 1 and θ > 1, the535

function r1−θ/νF 2(r) is bounded near r = 0. Also, by statement 3 of Lemma 1, r1−θ/νF 2(r) ∝536

r1−θ/ν−2(θ+1) = O(r−3) as r → +∞.537

For any interval I in R+, denote by SI,t the part of the expansion (107) of at corresponding to the538

terms with tλ
1/θ
k ∈ I :539

SI,t = t−θ/ν
∑

k:tλ
1/θ
k ∈I

(tλ
1/θ
k )2F 2

U (tλ
1/θ
k ). (109)

Recall that the eigenvalues λ are ordered and λk = Λk−ν(1 + o(1)) by capacity condition (11). It540

follows that for a given fixed number r > 0, the condition tλ
1/θ
k > r holds whenever k < kr, where541

kr = (1 + o(1))Λ1/ν(t/r)θ/ν , t → ∞. (110)

Then, for I = [u, v] with 0 < u < v < ∞ we have542

lim inf
t→∞

SI,t ≥ Λ1/ν inf
r∈I

[r2F 2
U (r)](u

−θ/ν − v−θ/ν), (111)

lim sup
t→∞

SI,t ≤ Λ1/ν sup
r∈I

[r2F 2
U (r)](u

−θ/ν − v−θ/ν). (112)

Moreover, for any interval I = [u, v] with 0 < u < v < ∞ we can approximate
∫
I
r2F 2

U (r)dr
−θ/ν543

by integral sums corresponding to sub-divisions I = I1 ∪ I2 ∪ . . .∪ In, apply the above inequalities544

to each Is, and conclude that545

lim
t→∞

SI,t = Λ1/ν

∫
I

r2F 2
U (r)dr

−θ/ν . (113)
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It remains to handle the two parts of at corresponding to the remaining intervals I = [0, u] and546

I = [v,∞). It suffices to show that the associated contributions SI,t can be made arbitrarily small547

uniformly in t by making u small and v large enough.548

Consider first the interval I = [v,∞). Note that by Lemma 1 for all r > 1 we can write549

r2F 2
U (r) ≤ Cr−2θ (114)

with some constant C, and we also have for all k550

Λ−k
−ν ≤ λk ≤ Λ+k

−ν (115)

for suitable constants Λ−,Λ+. It follows that551

SI,t ≤ t−θ/ν
∑

k:t(Λ+k−ν)1/θ>v

C(t(Λ−k
−ν)1/θ)−2θ (116)

= t−θ/ν−2θCΛ−2
−

Λ
1/ν
+ (t/v)θ/ν∑

k=1

k2ν (117)

= O(1)t−θ/ν−2θ(t/v)(θ/ν)(2ν+1) (118)

= O(1)v−(θ/ν)(2ν+1), (119)

with O(1) denoting an expression bounded by a t, v-independent constant. This is the desired con-552

vergence property of SI,t.553

Similarly, for the other interval I = [0, u] we use the inequality554

r2F 2
U (r) ≤ Cr2θ, r < 1, (120)

also following by Lemma 1. Then555

SI,t ≤ t−θ/ν
∑

k:t(Λ−k−ν)1/θ<u

C(t(Λ+k
−ν)1/θ)2θ (121)

= t−θ/ν+2θCΛ2
+

∞∑
k=Λ

1/ν
− (t/u)θ/ν

k−2ν (122)

= O(1)t−θ/ν+2θ(t/u)(θ/ν)(1−2ν) (123)

= O(1)u(θ/ν)(2ν−1), (124)

which is the desired convergence property of SI,t since ν > 1.556

Completion of proof. We have shown that if we replace FU (tλ
1/θ
k , λk) by FU (tλ

1/θ
k ) in Eq. (105),557

we get desired asymptotics of Ut in the limit t → +∞. We will show now that this replacement558

introduces a lower-order correction o(tθ/ν−2); this will complete the proof.559

We start with a technical lemma (to be applied with f = Ψ) giving a lower bound for deviations of560

asymptotic power law functions with θ < 2 from real values.561

Lemma 3. Suppose that f : {µ ∈ C : |µ| = 1} → C is continuous, f(µ) = −c(µ−1)θ(1+o(1)) as562

µ → 1 with some θ ∈ [0, 2) and c > 0. Suppose also that f({µ ∈ C : |µ| = 1, µ ̸= 1})∩[0, λmax] =563

∅ for some λmax > 0. Then there exist a constant C > 0 such that564

|f(eis)− λ| ≥ C(|s|θ + λ), s ∈ [−π, π], λ ∈ [0, λmax]. (125)

Proof. If we fix any small ϵ > 0, then, by the condition f({µ ∈ C : |µ| = 1, µ ̸= 1}) ∩ [0, λmax] =565

∅ and a compactness argument, there exist C ′, C > 0 such that566

|f(eis)− λ| > C ′ > C(|s|θ + λ), s ∈ [−π,−ϵ] ∩ [ϵ, π], λ ∈ [0, λmax]. (126)
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It remains to establish inequality (125) for |s| < ϵ. Since f(µ) = c(µ−1)θ(1+o(1)) and θ ∈ [0, 2),567

|f(eis)− λ| = |ei sign(s)θπ/2c|s|θ(1 + o(1)) + λ| (127)

= |ei sign(s)θπ/4c|s|θ(1 + o(1)) + λe−i sign(s)θπ/4| (128)

≥ ℜ[ei sign(s)θπ/4c|s|θ(1 + o(1)) + λe−i sign(s)θπ/4] (129)

= cos(θπ/4)(c|s|θ(1 + o(1)) + λ) (130)

≥ 1
2 min(c, 1) cos(θπ/4)(|s|θ + λ) (131)

for |s| small enough.568

Lemma 4.569

1. |FU (r, λ)− FU (r)| = o(1) as λ → 0, uniformly in all r ∈ R.570

2. FU (r, λ) = O( 1r ) for all r of the form r = tλ1/θ, t = 1, 2, . . ., uniformly in all λ ∈571

(0, λmax].572

Proof. 1. It suffices to show that, as λ ↘ 0, the functions573

fλ(s) = −(2π)−1(−Ψ(eisλ
1/θ

)/λ+ 1)−11[−π/λ1/θ,π/λ1/θ](s) (132)

converge in L1(R) to574

f0(s) = −(2π)−1(cΨe
i(sign s)θπ/2|s|θ + 1)−1. (133)

Let us divide the interval [−π/λ1/θ, π/λ1/θ] into two subsets:575

I1(λ) = [−λ−h, λ−h], (134)

I2(λ) = [−π/λ1/θ, π/λ1/θ] \ I1(λ), (135)

where h is some fixed number such that 1
θ2 < h < 1

θ .576

By Lemma 3, |Ψ(eisλ
1/θ

)/λ − 1| ≥ c|s|θ uniformly for all s ∈ [−π/λ1/θ, π/λ1/θ] and λ ∈577

(0, λmax]. It follows that578

inf
s∈I2(λ)

|Ψ(eisλ
1/θ

)/λ− 1| ≥ cλ−hθ, λ ∈ (0, λmax], (136)

for some constant c > 0. Using the condition 1
θ2 < h, it follows that579 ∫

I2(λ)

|fλ(s)|ds = O(λ−1/θλhθ) = o(1), λ ↘ 0. (137)

Thus, we can assume without loss that the functions fλ vanish outside the intervals I1(λ). On these580

intervals, thanks to the condition h < 1
θ , we have581

fλ(s) = −(2π)−1(cΨe
i(sign s)θπ/2|s|θ(1 + o(1)) + 1)−1 (138)

uniformly in s ∈ I1(λ). We can then apply the dominated convergence theorem to the functions582

|fλ − f0|, with a dominating function C(1 + |s|θ)−1, and conclude that fλ → f0 in L1(R), as583

desired.584

2. We start by performing integration by parts in U(t, λ):585

U(t, λ) =
1

2πit

∮
|µ|=1

dµt

Ψ(µ)− λ
=

1

2πit

∮
|µ|=1

Ψ′(µ)µtdµ

(Ψ(µ)− λ)2
(139)

implying586

|U(t, λ)| ≤ 1

2πt

∫ π

−π

|Ψ′(eis)|ds
|Ψ(eis)− λ|2 . (140)

We will show that this integral is O( 1λ ).587
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Note first that we can replace the integration on [−π, π] by integration on [−a, a] for any 0 <588

a < π. Indeed, by our assumptions Ψ is C1 on the unit circle, and Ψ(µ) = 1 there only if µ = 1.589

Accordingly, the remaining part of the integral is non-singular as λ ↘ 0 and so is uniformly bounded590

for all λ ∈ (0, λmax].591

Recall that by our assumption Ψ′(µ) = O(|µ− 1|θ−1) as µ → 1. Applying again Lemma 3,592

|U(t, λ)| ≤ C

t

∫ ∞

0

sθ−1ds

(sθ + λ)2
=

C ′

tλ
(141)

with some constant C ′ independent of t, λ. It follows that593

|FU (tλ
1/θ, λ)| = |λ1−1/θU(t, λ)| ≤ C ′

tλ1/θ
, (142)

as claimed.594

We return now to proving that replacing FU (tλ
1/θ
k , λk) by FU (tλ

1/θ
k ) in Eq. (105) amounts to a595

lower-order correction o(tθ/ν−2). It suffices to prove that ∆at → 0, where596

∆at = t2−θ/ν
∑
k

λ
2/θ
k (F 2

U (tλ
1/θ
k , λk)− F 2

U (tλ
1/θ
k )) (143)

= t−θ/ν
∑
k

(tλ
1/θ
k )2(F 2

U (tλ
1/θ
k , λk)− F 2

U (tλ
1/θ
k )). (144)

For any interval I ⊂ R, denote by ∆SI,t the part of ∆at corresponding to the terms in (144) such597

that tλ1/θ
k ∈ I . By statement 1 of Lemma 4, for any u > 0 we have, as t → ∞,598

|∆S(0,u),t| = o(1)t2−θ/ν
∑

k:tλ
1/θ
k <u

λ
2/θ
k (145)

= o(1)t2−θ/νO((t/u)(θ/ν)(1−2ν/θ)) (146)
= o(1), (147)

where we have used the fact that 2ν/θ > ν > 1.599

Now consider the remaining interval I = [u,+∞). It suffices to prove that |∆S[u,+∞),t| can be600

made arbitrarily small uniformly in t by choosing u large enough. By statement 2 of Lemma 4, we601

can write602

|∆S[u,+∞),t| ≤ Ct2−θ/ν
∑

k:tλ
1/θ
k >u

λ
2/θ
k (tλ

1/θ
k )−2 (148)

≤ Ct−θ/ν

Λ
1/ν
+ (t/u)θ/ν∑

k=1

1 (149)

≤ C ′u−θ/ν (150)

with some t, u-independent constant C ′. This completes the proof of statement 1 of Theorem 3.603

C.2 The signal propagators604

The proof for the signal propagators follows the same ideas as for the noise propagators, with ap-605

propriate adjustments.606

The function FV . We introduce the values607

V (t, λ) =
1

2πi

∮
|µ|=1

Ψ(µ)µt−1dµ

(Ψ(µ)− λ)(µ− 1)
=

1

2π

∫ π

−π

Ψ(eiϕ)eitϕdϕ

(Ψ(eiϕ)− λ)(eiϕ − 1)
(151)

so that, by Eq. (21), the propagators Vt can be written as608

Vt =

∞∑
k=1

λk(e
T
kw∗)

2|V (t, λk)|2. (152)
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With the change of variables ϕ = sλ1/θ,609

V (t, λ) =
λ1/θ

2π

∫ π/λ1/θ

−π/λ1/θ

(−Ψ(eisλ
1/θ

)/λ)eitλ
1/θsds

(−Ψ(eisλ1/θ )/λ+ 1)(eisλ1/θ − 1)
= FV (tλ

1/θ, λ), (153)

where610

FV (r, λ) =
λ1/θ

2π

∫ π/λ1/θ

−π/λ1/θ

(−Ψ(eisλ
1/θ

)/λ)eirsds

(−Ψ(eisλ1/θ )/λ+ 1)(eisλ1/θ − 1)
. (154)

We again recall that Ψ(µ) = −cΨ(µ−1)θ(1+o(1)) as µ → 1 and formally take the pointwise limit611

λ ↘ 0 in the integrand to obtain the expression612

FV (r, 0)
def
= FV (r)

def
=

1

2πi

∫ ∞

−∞

cΨe
i(sign s)θπ/2|s|θeirsds

(cΨei(sign s)θπ/2|s|θ + 1)s
(155)

=
1

2π

∫ ∞

−∞

cΨe
i(sign s)(θ−1)π/2|s|θ−1eirsds

(cΨei(sign s)θπ/2|s|θ + 1)
(156)

for any fixed r. This integral can be equivalently written as613

FV (r) =
1

2πi

∫
iR

cΨz
θ−1erzdz

cΨzθ + 1
, (157)

assuming again the standard branch of zθ holomorphic in C \ (−∞, 0]. The function FV can be614

written in terms of the Mittag-Leffler function Eθ ≡ Eθ,1 (the special case of Ea,b given by Eq.615

(87)):616

FV (r) = Eθ

(
− rθ

cΨ

)
. (158)

Note that, in contrast to FU , the integrals (156), (157) are not absolutely summable, due to the617

z−1 fall off of the integrand at z → ∞. However, the integrand is square-summable and so FV ,618

as a Fourier transform of such function, is well-defined almost everywhere as a square-integrable619

function.620

In fact, FV can be defined for each particular r ̸= 0 by restricting the integration in (156) to segments621

[u, v] and letting u → −∞ and v → ∞. Indeed, the resulting Fourier transforms F (u,v)
V converge622

to FV in L2(R). However, these transforms are continuous functions of r, and as u → ∞, v → ∞623

they converge pointwise, and even uniformly on the sets {r : |r| > ϵ}, for any fixed ϵ > 0.624

To see this last property of uniform pointwise convergence, note that the integrand in (156) has the625

form (s−1 +O(s−1−θ))eirs as s → ∞. The component O(s−1−θ)) is in L1, so the respective part626

of F (u,v)
V converges as u → −∞, v → ∞ uniformly for all r ∈ R. Regarding the s−1 component,627

integrating by parts gives628 ∫ v

1

eirsds

s
=

eirs

irs

∣∣∣v
s=1

+
1

ir

∫ v

1

eirsds

s2
. (159)

This expression converges as v → ∞ uniformly for {r : |r| > ϵ} with any fixed ϵ > 0, as claimed.629

The same argument applies to
∫ −1

u
.630

The above argument shows, in particular, that FV is naturally defined as a function continuous on631

the intervals (0,+∞) and (−∞, 0).632

We collect further properties of FV (r) in the following lemma that parallels Lemma 1 for FU . The633

proofs are also similar to the proofs in Lemma 1.634

Lemma 5.635

1. FV (r) = 0 for r < 0.636

2. FV (r) → 1 as r ↘ 0.637

3. FV (r) = (1 + o(1)) cΨ
Γ(1−θ)r

−θ as r → +∞.638
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Proof. 1. Like in Lemma 1, this follows by deforming the integration line in Eq. (157) towards639

+∞.640

2. By the change of variables rz = z′,641

FV (r) =
1

2πi

∫
iR

z′θ−1ez
′
dz′

z′θ + c−1
Ψ rθ

. (160)

As in Lemma 1, the integration line iR can be deformed to the line γa, a > 0, encircling the negative642

semi-axis:643

γa = γa,1 ∪ γa,2 ∪ γa,3, (161)
γa,1 = {z ∈ C : ℑz = −a,ℜz ≤ 0}, (162)
γ2,2 = {z ∈ C : |z| = a,−π

2 < arg z < π
2 )}, (163)

γa,1 = {z ∈ C : ℑz = a,ℜz ≤ 0}. (164)

Taking the limit r ↘ 0, we get644

lim
r↘0

FV (r) = lim
r↘0

1

2πi

∫
γa

z′θ−1ez
′
dz′

z′θ + c−1
Ψ rθ

=
1

2πi

∫
γa

ez
′
dz′

z′
= 1, (165)

since the last integral simply amounts to the residue of ez
′
/z′ at z′ = 0.645

3. Using the same contour γ′ as in Lemma 1,646

FV (r) = v(r)r−θ, v(r) =
1

2πi

∫
γ′

cΨz
′θ−1ez

′
dz′

cΨ(z′/r)θ + 1
. (166)

Taking the limit r → +∞ and deforming the contour to the negative semi-axis as in Lemma 1,647

lim
r→+∞

v(r) =
cΨ
2πi

∫
γ′
z′θ−1ez

′
dz′ =

cΨ
Γ(1− θ)

. (167)

648

The formal leading term in Vt. We have649

Vt =

∞∑
k=1

λk(e
T
kw∗)

2|V (t, λk)|2 =
∑
k

λk(e
T
kw∗)

2F 2
V (tλ

1/θ
k , λk). (168)

To extract the leading term in this expression, we set the second argument in FV (tλ
1/θ
k , λk) to 0:650

V
(1)
t

def
=

∑
k

λk(e
T
kw∗)

2F 2
V (tλ

1/θ
k ) = btt

−θζ , (169)

where651

bt = tθζ
∑
k

λk(e
T
kw∗)

2F 2
V (tλ

1/θ
k ). (170)

The analog of Lemma 2 is652

Lemma 6.
lim
t→∞

bt = Q

∫ ∞

0

F 2
V (r)dr

θζ = Qθζ

∫ ∞

0

rθζ−1F 2
V (r)dr < ∞. (171)

Proof. First, observe that, by the source condition (12) and Lemma 5, the integral converges near653

r = 0 since θζ > 0, and near r = ∞ since ζ < 2.654

We can establish convergence of the sequence bt using the same steps as in Lemma 2. We first655

introduce the sums SI,t comprising the terms of expansion (170) such that tλ1/θ
k ∈ I . For intervals656

I = [u, v] with 0 < u < v < ∞ we show, using the source condition (12) and approximation by657

integral sums, that658

lim
t→∞

SI,t = tθζ
∫
I

F 2
V (r)dQ((r/t)θ)ζ = Q

∫
I

F 2
V (r)dr

θζ . (172)
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After that we show that the contribution of the remaining intervals (v,+∞) and (0, u) can be made659

arbitrarily small uniformly in t by adjusting u, v.660

In particular, consider the interval I = (v,+∞). Let R(λ) =
∑

k:λk≤λ λk(e
T
kw∗)

2 denote the661

cumulative distribution function of the spectral measure. Since the spectral measure is compactly662

supported, assumption (12) implies that R(λ) ≤ Q′λζ for all λ > 0 with some Q′ > 0. Using663

statement 3 of Lemma 5 and integration by parts, we can bound664

S(v,+∞),t ≤ tθζ
∑

k:tλ
1/θ
k >v

λk(e
T
kw∗)

2C(tλ
1/θ
k )−2θ (173)

= Ctθ(ζ−2)

∫ ∞

(v/t)θ

dR(λ)

λ2
(174)

= Ctθ(ζ−2)
(R(λ)

λ2

∣∣∣∞
(v/t)θ

+ 2

∫ ∞

(v/t)θ

R(λ)dλ

λ3

)
(175)

≤ 2CQ′tθ(ζ−2)

∫ ∞

(v/t)θ
λζ−3dλ (176)

≤ C ′v(ζ−2)θ (177)

with some constant C ′ independent of v, t.665

For the intervals I = (0, u) we have666

S(0,u),t ≤ tθζ
∑

k:tλ
1/θ
k <u

λk(e
T
kw∗)

2C (178)

≤ CtθζQ((u/t)θ)ζ (179)

= C ′uθζ . (180)

667

Completion of proof. It remains to show that the correction in Vt due to the replacement of668

FV (tλ
1/θ
k , λk) by FV (tλ

1/θ
k ) in Eq. (168) is o(t−θζ). We first establish an analog of Lemma 4:669

670

Lemma 7. Assuming that r = tλ1/θ with t = 1, 2, . . .:671

1. |FV (r, λ)− FV (r)| = o(1) as λ → 0, uniformly for r > ϵ, for any ϵ > 0.672

2. |FV (r, λ)| ≤ Cmin( 1r , 1) for all t = 1, 2, . . . and λ ∈ (0, λmax], with some r, λ-673

independent constant C.674

Proof. 1. The proof of this property is more complicated than the earlier proof for FU because675

the integrals defining FV are not absolutely convergent. Recall the integration by parts argument676

(159) used to define FV (r) as the pointwise limit of the functions F
(u,v)
V (r). We extend this ap-677

proach to the functions FV (r, λ) with λ > 0. Specifically, let F (u)
V (r, λ) be defined as FV (r, λ) in678

Eq. (154), but with integration restricted to the segment [−u, u]. By analogy with our convention679

FV (r) ≡ FV (r, λ = 0), denote also F
(u)
V (r) ≡ F

(u)
V (r, λ = 0). We will establish the following two680

properties:681

(a) |F (u)
V (r, λ)− FV (r, λ)| ≤ C

ru for all 0 < λ < λmax with a r, u, λ-independent constant C.682

(b) For any u, |F (u)
V (r, λ)− F

(u)
V (r)| → 0 as λ ↘ 0 uniformly for r ∈ R.683

Observe first that these two properties imply the claimed uniform convergence |FV (r, λ)−FV (r)| =684

o(1) as λ → 0. Indeed, given any δ > 0, first set u = 3C
ϵ so that by (a) we have685

|F (u)
V (r, λ)− FV (r, λ)| ≤ δ/3 (181)
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for all r > ϵ and 0 < λ < λmax. This inequality also holds in the limit λ ↘ 0, i.e.686

|F (u)
V (r)− FV (r)| ≤ δ/3. (182)

Now (b) implies that for sufficiently small λ we have687

|F (u)
V (r, λ)− F

(u)
V (r)| ≤ δ/3 (183)

uniformly in r ∈ R. Combining all three above inequalities, we see that for sufficiently small λ688

|FV (r, λ)− FV (r)| ≤ δ (184)

uniformly for r > ϵ, as desired.689

It remains to prove the statements (a) and (b). Statement (b) immediately follows from the uniform690

λ ↘ 0 convergence of the integrand in expression (154) on the interval s ∈ [−u, u].691

To prove statement (a), we perform integration by parts, using the 2π
λ1/θ -periodicity of the integrand:692

|F (u)
V (r, λ)− FV (r, λ)| (185)

=
λ1/θ

2π

∣∣∣∣ ∫
[− π

λ1/θ
, π

λ1/θ
]\[−u,u]

(Ψ(eisλ
1/θ

)/λ)eirsds

(Ψ(eisλ1/θ )/λ− 1)(eisλ1/θ − 1)

∣∣∣∣ (186)

=
λ1/θ

2πr

∣∣∣∣ (Ψ(eisλ
1/θ

)/λ)eirs

(Ψ(eisλ1/θ )/λ− 1)(eisλ1/θ − 1)

∣∣∣−u

s=u
−

∫
[− π

λ1/θ
, π

λ1/θ
]\[−u,u]

(187)

iλ1/θ[(−Ψ′(eisλ
1/θ

)/λ)(eisλ
1/θ − 1)− (Ψ(eisλ

1/θ

)/λ)(Ψ(eisλ
1/θ

)/λ− 1)eisλ
1/θ

]eirsds

(Ψ(eisλ1/θ )/λ− 1)2(eisλ1/θ − 1)2

∣∣∣∣.
By our assumptions on Ψ, Lemma 3 and standard inequalities, there exist λ, s-independent constants693

C, c > 0 such that for all λ ∈ (0, λmax] and s ∈ [− π
λ1/θ ,

π
λ1/θ ]694

|Ψ(eisλ
1/θ

)| ≤ C|s|θλ, (188)

|Ψ′(eisλ
1/θ

)| ≤ Cθ|s|θ−1λ(θ−1)/θ, (189)

|Ψ(eisλ
1/θ

)/λ− 1| ≥ c(1 + |s|θ), (190)

|eisλ1/θ − 1| ≥ c|s|λ1/θ. (191)

Applying these inequalities to Eq. (187), we find that695

|F (u)
V (r, λ)− FV (r, λ)| ≤

C ′

r

( uθ

(1 + uθ)u
+

∫
[− π

λ1/θ
, π

λ1/θ
]\[−u,u]

|s|θds
(1 + |s|θ)s2

)
(192)

≤ C ′′

ru
, (193)

as desired.696

2. Note that697

|FV (r, λ)| ≤ C
r , C < ∞, (194)

simply by setting u = 0 in the bound (192), since the first term on the r.h.s. of (192) vanishes and698

the second converges thanks to θ > 1.699

It remains to prove that FV (r, λ) is bounded uniformly in r, λ. It suffices to prove this for r < ϵ with700

some fixed ϵ > 0, since for larger r this follows from bound (194). Since r = tλ1/θ, this means it is701

sufficient to consider702

λ ≤ (ϵ/t)θ. (195)

To this end consider the original definition (151) of V (t, λ) in terms of integration over the contour703

{|µ| = 1}. We will deform this contour within the analiticity domain {µ ∈ C : |µ| ≥ 1} to another704

contour γ, to be specified below, that fully encircles the point µ = 1:705

V (t, λ) =
1

2πi

∮
γ

Ψ(µ)µt−1dµ

(Ψ(µ)− λ)(µ− 1)
. (196)
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It is convenient to subtract the residue of µt−1/(µ− 1) equal to 1:706

V (t, λ)− 1 =
1

2πi

∮
γ

Ψ(µ)µt−1dµ

(Ψ(µ)− λ)(µ− 1)
− 1

2πi

∮
γ

µt−1dµ

µ− 1
=

λ

2πi

∮
γ

µt−1dµ

(Ψ(µ)− λ)(µ− 1)
.

(197)
We define now γ as the original contour perturbed to include an arc of radius 1/t centered at 1:707

γ = γ1 ∪ γ2, (198)

γ1 = {eiϕ}ϕ1≤ϕ≤2π−ϕ1 , (199)

γ2 = {1 + eiϕ

t }−ϕ2≤ϕ≤ϕ2 , (200)

where ϕ1 ∈ (0, π
2 ), ϕ2 ∈ (π2 , π) are such that γ is connected. Note that ϕ1 ∝ 1

t as t → ∞.708

Now we bound separately the contribution to the integral from γ1 and γ2. For γ1 and −π ≤ ϕ ≤ π709

we use the inequalities710

|Ψ(eiϕ)− λ| ≥ c|ϕ|θ, (201)

|eiϕ − 1| ≥ c|ϕ| (202)

with a ϕ, λ-independent constant c > 0. This gives, using Eq. (195),711

λ
∣∣∣ ∫

γ1

µt−1dµ

(Ψ(µ)− λ)(µ− 1)

∣∣∣ ≤ λC
∣∣∣ ∫ −ϕ1

−π

+

∫ π

ϕ1

dϕ

|ϕ|θ+1

∣∣∣ ≤ C ′ λ

ϕθ
1

≤ C ′′λtθ ≤ C ′′ϵθ. (203)

For the γ2 component we use the inequalities712

|1 + eiϕ

t |t−1 ≤ e, (204)

|Ψ(1 + eiϕ

t )− λ| ≥ ct−θ, −ϕ2 ≤ ϕ ≤ ϕ2. (205)

(Inequality (205) relies on the assumption θ < 2 and can be proved similarly to Lemma 3.) This713

gives714

λ
∣∣∣ ∫

γ2

µt−1dµ

(Ψ(µ)− λ)(µ− 1)

∣∣∣ ≤ λC
∣∣∣ ∫ π

−π

t−1dϕ

t−θ · t−1

∣∣∣ ≤ C ′λtθ ≤ C ′′ϵθ. (206)

Fixing some ϵ > 0, we see from Eqs. (203), (206) that under assumption (195) the expressions715

|V (t, λ)− 1|, and hence |V (t, λ)|, are uniformly bounded, as desired.716

This completes the proof of the lemma.717

This lemma can now be used to show that replacing FV (tλ
1/θ
k , λk) by FV (tλ

1/θ
k ) in Eq. (168)718

amounts to a lower-order correction o(t−θζ) in the propagator Vt. The argument is similar to the719

respective argument for FU in the end of Section C.1. Statement 1 of Lemma 7 is used to show720

this for the contribution of the terms k with u < tλ
1/θ
k < v, for any 0 < u < v < +∞. Then,721

for terms with tλ
1/θ
k < u we use the uniform boundedness of FV (r, λ), i.e. the part FV (r, λ) ≤ C722

of statement 2, and show that their contribution can be made arbitrarily small by decreasing u.723

Finally, for terms with tλ
1/θ
k > v we use the part FV (r, λ) ≤ C

r of statement 2, and show that their724

contribution can be made arbitrarily small by increasing v.725

This completes the proof of Theorem 3.726

D Proof of Proposition 1727

To simplify notation, set A = 1; results for general A’s are easily obtained by rescaling.728

Note first that for any µ ∈ C \ [0, 1] the integral in Eq. (28) converges and is nonzero. To see that729

it is nonzero, note that if µ has a nonzero imaginary part, then the integral has a nonzero imaginary730

part of the opposite sign, hence is nonzero. On the other hand, if µ > 1 or µ < 0, then the integral731

is strictly positive or negative, so also nonzero. It follows that the expression in parentheses is732

invertible and so Ψ(µ) is well-defined for all µ ∈ C \ [0, 1].733
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The asymptotics Ψ(µ) = −µ(1 + o(1)) at µ → ∞ is obvious.734

To find the asymptotics at µ → 1, make the substitution z = δ/(µ− 1) in the integral:735 ∫ 1

0

dδ2−θ

µ− 1 + δ
= (µ− 1)θ−1

∫ 1/(µ−1)

0

dz2−θ

1 + z
. (207)

As µ → 1 the last integral converges to a standard integral:736 ∫ 1/(µ−1)

0

dz2−θ

1 + z
→

∫ ∞

0

dz2−θ

1 + z
=

(2− θ)π

sin((2− θ)π)
. (208)

The integration line in the last integral is any line connecting 0 to ∞ in C \ (−∞, 0); the integral737

does not depend on the line thanks to the condition θ > 1.738

We prove now that Ψ({|µ| ≥ 1}) ∩ (0, 2] = ∅. Let us first show that if |µ| ≥ 1 and ℑµ ̸= 0, then739

Ψ(µ) /∈ (0,+∞). To this end write740

Ψ(µ) = ab, (209)

a = −
(∫ 1

0

(µ− 1)dδ2−θ

µ− 1 + δ

)−1

= −
(∫ 1

0

dδ2−θ

1 + δ
µ−1

)−1

, (210)

b =
(µ− 1)2

µ
= J(µ)− 2, (211)

where J(µ) = µ+ 1
µ is Zhukovsky’s function.741

Suppose, for definiteness, that ℑµ > 0. Regarding a, note that if ℑµ > 0, then the imaginary part742

of the integrand in Eq. (210) is also positive, and so ℑa > 0.743

Regarding b, recall that if ℑµ > 0 and |µ| > 1, then ℑJ(µ) > 0. On the other hand, if |µ| = 1,744

then J(µ) ∈ [−2, 2]. Combining these observations, we see that if ℑµ > 0 and |µ| ≥ 1, then either745

ℑb > 0, or b ≤ 0. Since ℑa > 0, it follows that ab /∈ (0,+∞).746

We see that Ψ(µ) can be real and positive only if µ ∈ R. Clearly, Ψ(µ) > 0 if µ ≤ −1, and747

Ψ(µ) ≤ 0 if µ ≥ 1. It is easily checked by differentiation that Ψ(µ) is monotone decreasing for748

µ ∈ (−∞,−1], so the smallest positive value attained by Ψ is749

Ψ(−1) = 2
(∫ 1

0

dδ2−θ

2− δ

)−1

> 2. (212)

E Proof of Proposition 2750

In terms of α,b, c, D, the components P,Q of the characteristic polynomial det(µ−Sλ) = P (µ)−751

λQ(µ) can be written as752

P (µ) = (µ− 1) det(µ−D), (213)

Q(µ) = − det

(
α bT

c µ−D

)
= det(µ−D)(bT (µ−D)−1c− α). (214)

(see Theorem 1 in [29]). Accordingly,753

(µ− 1)Q(µ)

P (µ)
= bT (µ−D)−1c− α. (215)

If D = diag(d1, . . . , dM ), then754

(µ− 1)Q(µ)

P (µ)
=

M∑
m=1

bmcm
µ− dm

− α. (216)
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On the other hand, our definition of Ψ(M) implies that755

(µ− 1)A

Ψ(M)(µ)
= (θ − 2)hµ

M∑
m=1

e−(2−θ)(m−1/2)h

µ− 1 + e−(m−1/2)h
(217)

= (θ − 2)h
[ M∑
m=1

e−(2−θ)(m−1/2)h(1− e−(m−1/2)h)

µ− 1 + e−(m−1/2)h
+

M∑
m=1

e−(2−θ)(m−1/2)h
]

(218)

= (2− θ)h
[ M∑
m=1

e−(2−θ)(m−1/2)h(e−(m−1/2)h − 1)

µ− 1 + e−(m−1/2)h
− 1− e−(2−θ)Mh

1− e−(2−θ)h
e−(2−θ)h/2

]
.

(219)

By comparing this expansion with Eq. (216), we see that the values of α,b, c, D given in Eqs.756

(31)-(34) ensure that P/Q = Ψ(M).757

F Experiments758

The experiments in this section2 are performed with Corner SGD approximated as in Proposition 2759

with memory size M = 5 and spacing parameter l = 5. Experiments have been performed with760

GPU NVIDIA GeForce RTX 4070, CPU Intel Core i5-12400F, and 32 GB RAM; the training of all761

the models on GPU has taken less than half an hour.762

A synthetic indicator problem. Suppose that we are fitting the indicator function y(x) =763

1[1/4,3/4](x) on the segment [0, 1] using the shallow ReLU neural network in which only the out-764

put layer weights wn are trained:765

ŷ(x,w) =
1

N

N∑
n=1

wn(x− n
N )+, (x)+ ≡ max(x, 0). (220)

This is an exactly linear model that in the limit N → ∞ acquires the form766

ŷ(x) =

∫ 1

0

w(y)(x− y)+dy = xTw, (221)

where x,w are understood as vectors in L2([0, 1]), and x ≡ (x−·)+. We consider the loss L(w) =767

Ex∼U(0,1)
1
2 (x

Tw − y(x))2, where U(0, 1) is the uniform distribution on [0, 1].768

This limiting integral problem obeys asymptotic spectral power laws (11),(12) with precisely com-769

putable ν, ζ (see Appendix H):770

ζ = 1
4 , ν = 4. (222)

The problem thus falls into the sub-phase I “full acceleration” of the signal dominated phase, and771

we expect that it can be accelerated with corner algorithms up to θmax = 2.772

In the experiment we set N = 105 and apply corner SGD with θ = 1.8, see Figure 3. The experi-773

mental exponent of plain SGD is close to the theoretical value ζ = 0.25. The accelerated exponent of774

approximate Corner SGD is slightly lower, but close to the theoretical value θζ = 1.8 · 0.25 = 0.45.775

MNIST. We consider MNIST [15] digit classification performed by a single-hidden-layer ReLU776

neural network:777

ŷr(x,w) =
1√
H

H∑
n=1

w(2)
rn

( 28×28∑
m=1

w(1)
nmxm

)
+
, r = 0, . . . 9. (223)

Here, the input vector x = (xm)28×28
m=1 represents a MNIST image, and the outputs yr represent778

the 10 classes. We use the one-hot encoding for the targets y(x) and the quadratic pointwise loss779

ℓ(x,w) = 1
2 |ŷ(x,w)−y(x)| for training. The trainable weights include both first- and second-layer780

weights w(1)
nm, w

(2)
rn .781

2A jupyter notebook with all experiments is provided in SM
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Corner SGD = 1.3, Lt t 0.409

Corner SGD = 1.8, Lt t 0.414
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Iteration
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Loss during training, |B| = 100

Plain SGD, Lt t 0.271

Corner SGD = 1.3, Lt t 0.411

Corner SGD = 1.8, Lt t 0.281

Figure 5: Training loss of neural network (223) on MNIST classification with H = 1000, with batch
size |B| = 1000 (left) or 100 (right). The full color curves show the smoothed losses.

Note that the model (223) is nonlinear, but for large width H and standard independent weight782

initialization it belongs to the approximately linear NTK regime [14]. In [26] MNIST was found to783

have an approximate power-law spectrum with784

ζ ≈ 0.25, ν ≈ 1.3, (224)

putting this problem in the sub-phase III “limited by UΣ-finiteness” of the signal-dominated phase785

(see Figure 1). Theoretically, by Theorem 4, the largest feasible acceleration in this case is θmax = ν.786

Note, however, that this theoretical prediction relied on the infinite-dimensionality of the problem787

and the divergence of the series
∑∞

t=1 t
θ/ν−2. The actual MNIST problem is finite-dimensional, so788

its UΣ is always finite (though possibly large) and can be made < 1 if |B| is large enough. This789

suggests that corner SGD might practically be used with θ > ν and possibly display acceleration790

beyond the theoretical bound θmax = ν. Note also that with exponents (224) the signal/noise balance791

bound 2
ζ+1/ν ≈ 2, i.e. it is not an obstacle for increasing the parameter θ towards 2.792

In Figure 5 we test corner SGD with θ = 1.3 or 1.8 on batch sizes |B| = 1000 and 100. The θ = 1.3793

version shows a stable performance accelerating the plain SGD exponent ζ by a factor ∼ 1.5. The794

θ = 1.8 version shows lower losses, but does not significantly improve acceleration factor 1.5 at795

|B| = 1000 and is unstable at |B| = 100.796

In Figure 6 we show both train and test trajectories of the loss and error rate (fraction of incorrectly797

classified images). The test performance is computed on the standard set of 10000 images, while798

the training performance is computed by averaging the training loss trajectory. We observe that,799

similarly to the training set performance, the test performance also improves faster with Corner800

SGD than with plain SGD. The instability of Corner SGD with θ = 1.8 and batch size 100 observed801

previously on the training set is also visible on the test set.802

G Additional notes and discussion803

Extension to SE approximation with τ2 ̸= 0. The key assumption in our derivation and analysis804

of the contour representation and corner algorithms was the Spectrally Expressible approximation805

with τ2 = 0 for the SGD moment evolution (see Eq. (6)). While the SE approximation in general806

was justified from several points of view in [25, 29], a natural question is how important is the807

condition τ2 = 0. This condition substantially simplifies the representation of propagators Ut, Vt in808

Eqs. (8), but does not seem to correspond to any specific natural data distribution ρ. (In contrast,809

the cases τ1 = τ2 = 1 and τ1 = 1, τ2 = −1 exactly describe translation-invariant and Gaussian810

distributions; see [25].)811

In fact, our analysis of the corner propagators Ut, Vt can be extended from τ2 = 0 to general τ2 by812

a perturbation theory around τ2 = 0. In Appendix I we sketch an argument suggesting that, at least813

for sufficiently large batch sizes |B|, Theorem 3 remains valid for general τ2, even with the same814

coefficients CU , CV (i.e., the contribution from τ2 ̸= 0 produces only subleading terms in Ut, Vt).815
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Figure 6: MNIST trajectories of loss (top row) and error rate (bottom row) on train set (lighter
colors) and test set (darker colors). Left column: batch size 1000. Right column: batch size 100.

This implies, in particular, that the acceleration phase diagram in Theorem 4 and Figure 1 (right) is816

not only τ1-, but also τ2-independent.817

Computational complexity. The main overhead of finitely-approximated corner algorithms com-818

pared to plain SGD lies in the memory requirements: if the model has W weights (i.e., dimwt = W819

in Eq. (1)), then a memory-M algorithm needs to additionally store MW scalars in the auxiliary820

vectors ut. On the other hand, the number of elementary operations (arithmetic operations and821

evaluations of standard elementary functions) in a single iteration of a finitely-approximated corner822

algorithm need not be much larger than for plain SGD.823

Indeed, an iteration (1) of a memory-M algorithm consists in computing the gradient ∇L(wt) and824

performing a linear transformation. In SGD with batch size |B|, the estimated gradient ∇LBt
(wt)825

is computed by backpropagation using ∝ |B|W operations. If Corner SGD is finitely-approximated826

using a diagonal matrix D as in Proposition 2, then the number of operations in the linear trans-827

formation is O(MW ). Accordingly, if |B| ≫ M (which should typically be the case in practice),828

then the computational cost of the linear transformation is negligible compared to the batch gradient829

estimation, and so the computational overhead of Corner SGD is negligible compared to plain SGD.830

Practical and theoretical acceleration. Our MNIST experiment in Section F shows that finitely-831

approximated Corner SGD developed in Section 5 can practically accelerate learning even on real-832

istic problems that are not exactly linear. We note, however, that, in contrast to the ideal infinite-833

memory Corner SGD of Section 4, this finitely-approximated Corner SGD does not theoretically834

accelerate the convergence exponent ζ as t → ∞. (As shown in [29], this is generally impossible835

for stationary algorithms with finite linear memory.) Nevertheless, we expect that such an acceler-836

ation can be achieved with a suitable non-stationary approximation. In [29], an acceleration with837

a factor θ up to 2 − 1/ν was heuristically derived for a suitable non-stationary memory-1 SGD838

algorithm.839
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We remark also that if the model includes nonlinearities, then even the plain SGD in the signal-840

dominated regime may show a complex picture of convergence rates depending on the strength of841

the feature learning effects. In particular, [6] consider a particular model where the “rich training”842

regime is argued to accelerate the “lazy training” exponent ζ by the factor 2
1+ζ . This is different843

from our factor θmax = min
(
2, ν, 2

ζ+1/ν

)
due to a different acceleration mechanism.844

H The synthetic 1D example845

Recall that in Section F we consider the synthetic 1D example in which we fit the target function846

y(x) = 1[1/4,3/4](x) on the segment [0, 1] with a model that in the infinite-size limit has the integral847

form848

ŷ(x) =

∫ 1

0

w(y)(x− y)+dy = xTw, (225)

where x,w are understood as vectors in L2([0, 1]), and x ≡ (x−·)+. We consider the loss L(w) =849

E 1
2 (x

Tw − y(x))2, where ρ is the uniform distribution on [0, 1].850

The asymptotic power-law structure of this problem can be derived either from general theory of851

singular operators and target functions, or from the specific eigendecomposition available in this852

simple 1D setting.853

The eigenvalues. First observe that the operator H = Ex∼ρ[xx
T ] in our case is the integral oper-854

ator855

Hf(x) =

∫ 1

0

K(x, y)f(y)dy, K(x, y) =

∫ 1

0

(x− z)+(y − z)+dz. (226)

The operator has eigenvalues (see, e.g., Section A.6 of [28]) λk = ξ−4
k , where856

ξk =
π

2
+ πk +O(e−πk), k = 0, 1, . . . (227)

Numerically, ξ0 ≈ 1.875 so the leading eigenvalue λ0 ≈ 0.0809.857

In particular, the capacity condition (11) holds with ν = 4.858

In fact, such a power-law asymptotics is a general property of integral operators with diagonal sin-859

gularities of a particular order [5]. It is easily checked that the diagonal singularity of operator (226)860

is of order α = 3. In dimension d the exponent ν has the general form ν = 1 + α
d , which evaluates861

to 4 in our case d = 1.862

The eigencoefficients. To establish the source condition (12), we can invoke the general theory863

that says that for targets that are indicator function of smooth domains we have ζ = 1
d+α = 1

4 [26].864

Alternatively, we can directly find ζ thanks to the simple structure of the problem.865

A short (though not quite rigorous) argument is to observe that the exact minimizer w∗ making the866

loss L(w) = 0 formally has the distributional form867

w∗(x) = δ′(x− 1/4)− δ′(x− 3/4) (228)

with Dirac delta δ(x). This vector w∗ has an infinite L2([0, 1]) norm, in agreement with our expec-868

tation that ζ = 1
4 < 1. The eigenfunctions of the problem can be explicitly found (Section A.6 of869

[28]):870

ek(x) = cosh(ξkx) + cos(ξkx)−
cosh(ξk) + cos(ξk)

sinh(ξk) + sin(ξk)
(sinh(ξkx) + sin(ξkx)). (229)

Then, formally,871

eTkw∗ =
dek(x)

dx

∣∣∣
x=3/4

− dek(x)

dx

∣∣∣
x=1/4

∝ ξk. (230)

It follows that at small λ, denoting k∗(λ) = min{k : λk < λ},872 ∑
k:λk<λ

λk(e
T
kw∗)

2 ∝
∑

k≤k∗(λ)

ξ−2
k ∝

∑
k≤k∗(λ)

(1/2 + k)−2 ∝ k−1
∗ (λ) ∝ λ−1/4, (231)
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implying again ζ = 1
4 .873

A rigorous proof, avoiding Dirac deltas, can be given along the following lines. First note that in the874

setting of loss function L(w) = 1
2Ex∼ρ(x

Tw−y(x))2 the vector q appearing in quadratic form (2)875

acquires the form q = Ex∼ρ[y(x)x], which in our example gives876

q(x) =

∫ 3/4

1/4

(y − x)+dy. (232)

We get from the condition Hw∗ = q that877

eTkw∗ = −eTk q

λk
. (233)

The eigenfunctions can be written as878

ek(x) = cos(ξkx)− sin(ξkx) + e−ξkx + (−1)ke−ξk(1−x) +O(e−ξk), (234)

where the last O(e−ξk) is uniform in x ∈ [0, 1]. Performing integration by parts twice with vanishing879

boundary terms, we find that880

eTk q =

∫ 1

0

(
cos(ξkx)− sin(ξkx) + e−ξkx + (−1)ke−ξk(1−x)

)∫ 3/4

1/4

(y − x)+dydx+O(e−ξk)

= − ξ−1
k

∫ 1

0

(
sin(ξkx) + cos(ξkx)− e−ξkx + (−1)ke−ξk(1−x)

)∫ 3/4

1/4

1y>xdydx+O(e−ξk)

= ξ−2
k

∫ 3/4

1/4

(− cos(ξkx) + sin(ξkx))dx+O(e−ξk/4) (235)

= ξ−3
k (− sin(π( 12 + k)x)− cos(π( 12 + k)x))

∣∣∣3/4
1/4

+O(e−ξk/4) (236)

∝ ξ−3
k , (237)

leading to eTkw∗ ∝ ξ−3
k /λk = ξk, in agreement with Eq. (230).881

I Extending the proof of Theorem 3 to τ2 ̸= 0882

In this section we sketch (without much rigor) an argument suggesting that Theorem 3 remains valid883

under assumption of SE approximation with τ2 ̸= 0 at least if the batch size |B| is large enough.884

Recall that the assumption τ2 = 0 was used to write the propagators Ut, Vt in the simple form885

(8). These representations led to the representations (19), (21) of Ut, Vt in terms of the contour886

map Ψ that were instrumental in proving Theorem 3. While we are not aware of a similar contour887

representation at τ2 ̸= 0, we can expand the general τ2 ̸= 0 propagators in terms of the spectral888

components of the τ2 = 0 propagators, and in this way reduce the study of the general case to the889

already analyzed special case.890

Specifically, let us introduce the notation891

G0(t, λ) ≡ U2(t, λ) = |( 1 0T )St−1
λ (−α

c )|2. (238)

Then formula (8) for the propagator Ut can be written as892

Ut =
τ1
|B|

∞∑
k=1

λ2
kG0(t, λk). (239)

In the proof of Theorem 3 it was shown that (see Eqs. (83), (85))893

G0(t, λ) = U2(t, λ) ≈ λ2/θ−2F 2
U (tλ

1/θ). (240)
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Upon substituting tλ1/θ = r and applying the capacity condition (11), this gave the leading term in894

Ut:895

Ut ≈
τ1
|B|

∞∑
k=1

λ
2/θ
k F 2

U (tλ
1/θ
k ) (241)

=
[ τ1
|B|

∞∑
k=1

(tλ
1/θ
k )2F 2

U (tλ
1/θ
k )

]
t−2 (242)

≈
[ τ1
|B|

∫ 0

∞
r2F 2

U (r)dΛ
1/ν(t/r)θ/ν

]
t−2 (243)

=
[ τ1
|B|Λ

1/ν

∫ 0

∞
r2F 2

U (r)dr
−θ/ν

]
tθ/ν−2. (244)

Now, if the SE approximation holds with τ2 ̸= 0, then the propagator formulas (8) are no longer896

valid. Instead (see [29]), the propagators can be written with the help of the linear transition opera-897

tors Aλ acting on (M + 1)× (M + 1) matrices Z:898

AλZ = SλZST
λ − τ2

|B|λ
2(−α

c )( 1
0 )

TZ( 1
0 )(

−α
c )T . (245)

In particular, Eqs. (238), (239) get replaced by899

Ut =
τ1
|B|

∞∑
k=1

λ2
kG(t, λk), (246)

G(t, λ) = Tr[( 1
0 )(

1
0 )

TAt−1
λ [(−α

c )(−α
c )T ]]. (247)

Note that Eq. (238) is a special case of Eq. (247) resulting at τ2 = 0 thanks to the simple factorized900

structure of the transformation Aλ with vanishing second term.901

Let us now write the binomial expansion of G(t, λ) by choosing one of the two terms on the r.h.s.902

of Eq. (245) in each of the t − 1 iterates of Aλ in Eq. (247). The key observation here is that each903

term in this binomial expansion can be written as a product of the τ2 = 0 factors G0 with a suitable904

coefficient:905

G(t, λ) = G0(t, λ) +

t−1∑
m=1

(−τ2λ
2

|B|
)m

× (248)

×
∑

0<t1<...<tm<t

G0(t− tm, λ)G0(tm − tm−1, λ) · · ·G0(t2 − t1, λ)G0(t1, λ). (249)

Here, 0 < t1 < . . . < tm < t are the iterations at which the second term in Eq. (245) was chosen.906

We can now apply again approximation (240) for G0 in terms of FU , and approximate summation907

by integration:908

G(t, λ) ≈ λ2/θ−2
[
F 2
U (tλ

1/θ) +

∞∑
m=1

(−τ2λ
1/θ

|B|
)m

(F 2
U )

∗(m+1)(tλ1/θ)
]
, (250)

where (F 2
U )

∗(m+1) is the (m+ 1)-fold self-convolution of F 2
U :909

(F 2
U )

∗(m+1)(r) =

∫
· · ·

∫
0<r1<...rm<r

F 2
U (r−rm)F 2

U (rm−rm−1) · · ·F 2
U (r1)dr1 · · · drm. (251)

The factor λ1/θ in (250) results from the respective factor λ2 in Eq. (248), the factor λ2/θ−2 in Eq.910

(240), and the integration element scaling factor λ−1/θ due to the substitution rn = tnλ
1/θ.911

The leading term in expansion (250) corresponds to the case τ2 = 0. Consider the next term, m = 1.912

The respective contribution to Ut is913

U
(1)
t ≡ − τ1τ2

|B|2
∞∑
k=1

λ
3/θ
k (F 2

U )
∗2(tλ

1/θ
k ). (252)
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This expression can be analyzed similarly to the leading term in Eq. (241), giving914

U
(1)
t ≈ −

[ τ1τ2
|B|2Λ

1/ν

∫ 0

∞
r3(F 2

U )
∗2(r)dr−θ/ν

]
tθ/ν−3. (253)

Note the faster decay tθ/ν−3 compared to tθ/ν−2 in the leading term. This difference results from915

the different exponent 3/θ on λk. It also leads to the factor r3 rather than r2 in the integral.916

The coefficient in brackets in Eq. (253) is finite unless the integral diverges. To see the convergence,917

write918 ∫ 0

∞
r3(F 2

U )
∗2(r)dr−θ/ν =

θ

ν

∫ ∞

0

r2−θ/ν(F 2
U )

∗2(r)dr (254)

and use the inequality r2−θ/ν ≤ (2(r − r1))
2−θ/ν + (2r1)

2−θ/ν valid since 2− θ/ν > 0:919 ∫ ∞

0

r2−θ/ν(F 2
U )

∗2(r)dr (255)

≤
∫ ∫

0<r1<r<∞
[(2(r − r1))

2−θ/ν + (2r1)
2−θ/ν ]F 2

U (r − r1)F
2
U (r1)dr1dr (256)

= 23−θ/ν
(∫ ∞

0

r2−θ/νF 2
U (r)dr

)(∫ ∞

0

F 2
U (r)dr

)
< ∞, (257)

since FU (r) ∝ r−θ−1 as r → ∞ by Lemma 1.920

Next terms in expansion (250) can be analyzed similarly, but we encounter the difficulty921

that, due to the associated factor λm/θ in Eq. (250), they will contain the integrals922 ∫ 0

∞ r2+m(F 2
U )

∗(m+1)(r)dr−θ/ν that diverge for sufficiently large m. For this reason, it is conve-923

nient to upper bound924

λm/θ ≤ λ(m−1)/θ
max λ1/θ. (258)

Then the contribution U
(m)
t to Ut from the term m can be upper bounded by925

|U (m)
t | ≲

[τ1|τ2|mλ
(m−1)/θ
max

|B|m+1
Λ1/ν

∫ 0

∞
r3(F 2

U )
∗(m+1)(r)dr−θ/ν

]
tθ/ν−3. (259)

Using the inequality r2−θ/ν ≤ ((m+1)(r− rm))2−θ/ν + . . .+((m+1)r1)
2−θ/ν , the integral can926

be bounded as927 ∫ 0

∞
r3(F 2

U )
∗(m+1)(r)dr−θ/ν ≤ θ

ν
(m+ 1)3−θ/ν

(∫ ∞

0

r2−θ/νF 2
U (r)dr

)(∫ ∞

0

F 2
U (r)dr

)m

< ∞.

(260)
Summarizing, the contribution of all the terms in Ut other than the leading term U

(0)
t can be upper928

bounded by929

|Ut − U
(0)
t | ≲ Ctθ/ν−3, (261)

with the constant930

C =
τ1θΛ

1/ν

ν

(∫ ∞

0

r2−θ/νF 2
U (r)dr

) ∞∑
m=1

|τ2|mλ
(m−1)/θ
max

|B|m+1
(m+ 1)3−θ/ν

(∫ ∞

0

F 2
U (r)dr

)m

.

(262)
If931

|B| > |τ2|λ1/θ
max

∫ ∞

0

F 2
U (r)dr, (263)

then series (262) converges, and so |Ut − U
(0)
t | = o(U

(0)
t ), as claimed.932

The case of the propagators Vt can be treated similarly. Starting from τ2 = 0, denote933

H0(t, λ) = V 2(t, λ) = |( 1 0T )St−1
λ ( 1

0 )|2, (264)

then by Eqs. (153), (155) H0(t, λ) ≈ F 2
V (tλ

1/θ) and934

Vt =

∞∑
k=1

λk(e
T
kw∗)

2H0(t, λ) ≈
∑
k

λk(e
T
kw∗)

2F 2
V (tλ

1/θ
k ). (265)
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The counterpart of H0 for general τ2 is935

H(t, λ) = Tr[( 1
0 )(

1
0 )

TAt−1
λ [( 1

0 )(
1
0 )

T ]]. (266)

Expansion (248) gets replaced by936

H(t, λ) = H0(t, λ) +

t−1∑
m=1

(−τ2λ
2

|B|
)m

× (267)

×
∑

0<t1<...<tm<t

G0(t− tm, λ)G0(tm − tm−1, λ) · · ·G0(t2 − t1, λ)H0(t1, λ) (268)

and expansion (250) gets replaced by937

H(t, λ) ≈ F 2
V (tλ

1/θ) +

∞∑
m=1

(−τ2λ
1/θ

|B|
)m

((F 2
U )

∗m ∗ F 2
V )(tλ

1/θ). (269)

The factor λm/θ can again be used to extract an extra negative power of t in the asymptotic bounds.938

To avoid divergence of the integrals, we can use a bound939

λm/θ ≤ λ(m−ϵ)/θ
max λϵ/θ (270)

with some sufficiently small ϵ > 0. Arguing as before, we then find that for |B| large enough the940

contribution of all the terms m ≥ 1 is O(t−θζ−ϵ), i.e. asymptotically negligible compared to the941

leading term ∝ t−θζ .942
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