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Figure 1: Introducing VEditBench, a holistic framework for the evaluation of Text-Guided Video
Editing (TGVE) models. VEditBench features a diverse dataset of 420 real-world videos across
six categories, along with six editing tasks driven by text prompts. We define nine distinct evaluation
metrics to access the model’s semantic fidelity and visual quality. Our evaluation of ten TGVE
models using VEditBench provides a comprehensive analysis of their performance.

ABSTRACT

Video editing usually requires substantial human expertise and effort. However,
recent advances in generative models have democratized this process, enabling
video edits to be made using simple textual instructions. Despite this progress,
the absence of a standardized and comprehensive benchmark has made it difficult
to compare different methods within a common framework. To address this gap,
we introduce VEditBench, a comprehensive benchmark for text-guided video
editing (TGVE). VEditBench offers several key features: (1) 420 real-world
videos spanning diverse categories and durations, including 300 short videos (2-4
seconds) and 120 longer videos (10-20 seconds); (2) 6 editing tasks that capture
a broad range of practical editing challenges: object insertion, object removal,
object swap, scene replacement, motion change, and style translation; (3) 9 eval-
uation dimensions to assess the semantic fidelity and visual quality of edits. We
evaluate ten state-of-the-art video editing models using VEditBench, offering
an in-depth analysis of their performance across metrics, tasks, and models. We
hope VEditBench will provide valuable insights to the community and serve as
the standard benchmark for TGVE models following its open-sourcing.

1 INTRODUCTION

The recent explosion of generative AI models has revolutionized content creation, with video editing
emerging as a critical application in this rapidly evolving landscape. Millions of videos are produced

1
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Table 1: Existing benchmarks for text-guided video editing. Many studies rely on private and
non-standardized benchmarks, while existing open-source TGVE benchmarks are inadequate in
terms of data scale and diversity.

Paper #Videos Video Duration Video Source #Edit Prompts Open-source

Tune-A-Video (Wu et al., 2023c) 42 1-4s DAVIS 140 8
Dreamix (Molad et al., 2023) 29 - YouTube-8M 127 8
Gen-1 (Esser et al., 2023) - - DAVIS 35 8
Rerender A Video (Yang et al., 2023) 8 - Pexels, Pixabay - 8
TokenFlow (Geyer et al., 2023) 61 40-200 frames DAVIS, Internet 61 8
FlowVid (Liang et al., 2023) 25 1-4s DAVIS 115 8
STDF (Yatim et al., 2023) 21 - - 54 8
Fairy (Wu et al., 2023a) 50 - ShutterStock 1000 8
RAVE (Wu et al., 2023a) 186 8 / 36 / 90 frames Pexel, Pixaba, DAVIS, Internet 186 8
TGVE-2023 (Wu et al., 2023d) 76 32 / 128 frames DAVIS, YouTube, Videvo 304 3
BalanceCC (Feng et al., 2024) 100 2-20s - 400 3
V2VBench (Sun et al., 2024b) 50 2-200s Internet 150 3
VEditBench (Ours) 420 2-4s / 10-40s YouTube, Videvo 2520 3

daily, and AI-driven tools are increasingly sought after to streamline and enhance the editing pro-
cess. However, evaluating and comparing these text-guided video editing (TGVE) models presents
a significant challenge due to the lack of a standardized and comprehensive benchmark.

Existing efforts to evaluate TGVE models suffer from several limitations. Many studies rely on
small, private datasets that lack diversity and fail to reflect real-world editing scenarios (Wu et al.,
2023c; Molad et al., 2023; Esser et al., 2023). This reliance on non-standardized and inaccessible
data hinders fair and open comparisons between different approaches. While recent works like
LOVEU-TGVE-2023 (Wu et al., 2023d), BalanceCC (Feng et al., 2024), and V2VBench (Sun et al.,
2024b) have introduced open-source benchmarks, they remain limited in terms of data scale, prompt
diversity, and the range of editing tasks they cover. These limitations underscore the urgent need for
a more robust and comprehensive benchmark that can effectively assess the capabilities of TGVE
models.

To address this gap, we introduce VEditBench, a comprehensive benchmark specifically designed
for evaluating text-guided video editing. VEditBench provides a unified framework for assessing
the performance of diverse video editing models across a wide range of real-world scenarios.

VEditBench distinguishes itself through three key advancements:

• Diverse and Extensive Video Collection: We curated a diverse collection of videos from
YouTube and Videvo, spanning six categories: Animals, Food, Scenery, Sports Activity, Tech-
nology, and Vehicles. Recognizing the need for both short-form and long-form video editing,
we include videos ranging from 2-4 seconds to more challenging 10-40 second clips, addressing
a gap in existing benchmarks that primarily focus on short videos.

• Expanded Scope of Editing Tasks: VEditBench expands the scope of editing tasks beyond
the limitations of previous benchmarks. Instead of focusing solely on foreground, background,
and style modifications, we incorporate six diverse editing tasks reflective of real-world appli-
cations: object insertion, object removal, object swap, scene replacement, motion change, and
style translation. This expanded task set allows for a more comprehensive evaluation of model
capabilities across various editing scenarios.

• Multi-Dimensional Evaluation Framework: VEditBench addresses the challenge of eval-
uating video edits by employing a multi-dimensional evaluation framework. This framework
encompasses both Semantic Fidelity (i.e., how accurately the edited video adheres to the user’s
command) and Visual Quality (i.e., the overall visual appeal of the edited video, independent
of the edit itself ). Within each perspective, we define specific sub-dimensions to enable a more
fine-grained and insightful analysis of model performance.

To demonstrate the utility of VEditBench, we evaluate ten state-of-the-art video editing models,
offering an in-depth analysis of their performance across different dimensions, tasks, and model
architectures. This analysis provides valuable insights into the current state of TGVE and highlights
areas for future research and development. VEditBench will be made fully open-source to foster
further advancements in the field.

2
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2 RELATED WORK

2.1 TEXT-GUIDED VIDEO EDITING (TGVE) MODELS.

TGVE aims to modify the visual content of a video based on textual prompts while preserving
its inherent characteristics. Pioneer Tune-A-Video (Wu et al., 2023c) inflates the image diffusion
models by incorporating cross-frame attention and fine-tuning on source videos to implicitly learn
and transfer motion. While demonstrating versatility across various editing tasks, Tune-A-Video
suffers from limitations in temporal consistency.

Subsequent works focus on extracting various correspondences from the source video to enhance
temporal consistency. Methods like FateZero (Qi et al., 2023), Video-P2P (Liu et al., 2023a), and
VidToMe (Li et al., 2024) extract cross- and self-attention features from the source video to guide
spatial layout and maintain coherence across frames. Others, such as Rerender A Video (Yang
et al., 2023), TokenFlow (Geyer et al., 2023), and Flatten (Cong et al., 2023b), focus on extracting
and aligning optical flows to improve the consistency of editing results. Meanwhile, Text2Video-
Zero (Khachatryan et al., 2023) and RAVE (Kara et al., 2024) utilize spatial conditioning tech-
niques from ControlNet (Zhang & Agrawala, 2023) to guide the editing process. Instruct Video-
to-Video (Cheng et al., 2023) explores instruction-guided video editing and investigates sampling
techniques for consistent long video generation.

More recently, with the emergence of advanced text-to-video (T2V) foundation models, researchers
have begun leveraging these models for improved temporal consistency in TGVE. MotionDirector
fine-tune T2V diffusion models with disentangled spatial and temporal LoRA modules for motion
customization. Diffusion Motion Transfer (DMT) (Yatim et al., 2024) employs a space-time feature
loss derived directly from the model to preserve overall motion during editing.

Despite these advancements, the field of TGVE still lacks a standardized benchmark for evaluating
and comparing different models. To address this critical gap, we introduce VEditBench, an open
and comprehensive benchmark designed to facilitate the standardized evaluation of TGVE models

2.2 BENCHMARKS FOR VIDEO GENERATIVE MODELS.

Early efforts rely on datasets like UCF-101 (Soomro et al., 2012), MSR-VTT (Xu et al., 2016),
and Kinetics (Carreira & Zisserman, 2017b; Carreira et al., 2018), which offer limited diversity.
Make-A-Video (Singer et al., 2023) evaluates on 300 text prompts across five common categories,
while FETV (Liu et al., 2023c) introduces fine-grained category labels and temporal dimensions
for a more in-depth assessment. EvalCrafter (Liu et al., 2023b) expands the scope with 700 real-
world prompts, and VBench (Huang et al., 2024) designs a compact yet representative prompt suite
across various evaluation dimensions and content categories. T2V-CompBench (Sun et al., 2024a)
focuses specifically on compositional text-to-video generation with 700 prompts spanning seven
compositional categories.

While these works advance the evaluation of text-to-video generation, video editing benchmarks
remain limited. LOVEU-TGVE-2023 (Wu et al., 2023d) introduces the first benchmark for text-
guided video editing, featuring 76 videos and 304 edit prompts across four edit types. Similarly,
BalanceCC (Feng et al., 2024) includes 100 videos, each paired with four edit prompts. However,
both benchmarks lack sufficient video variety and task diversity.

To address these limitations, we propose VEditBench, a comprehensive benchmark compris-
ing 420 diverse real-world videos, each annotated with six fine-grained edit tasks. Importantly,
VEditBench includes 120 long videos (10-40 seconds), addressing the under-explored challenge
of long video editing.

2.3 EVALUATION METRICS FOR VIDEO GENERATIVE MODELS.

Image-level metrics assess the quality of individual frames in generated videos. Common metrics
include Inception Score (IS) (Barratt & Sharma, 2018) for image quality and diversity, Fréchet In-
ception Distance (FID) (Parmar et al., 2022) for similarity to real images, and CLIP Score (Radford
et al., 2021) for alignment between images and text descriptions.

3
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VEditBench 
Data
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Prompt Generation
source prompt: “An orange cat getting up 
from floor and walking on its hind legs.”

edit instruction: “Change the cat to a rabbit.”

target prompt: “A rabbit getting up from the 
floor and walking on its hind legs.”

Figure 2: VEditBench data curation pipeline
that involves both machine and human.

a) source prompt b) edit instruction
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Prompt 
Generation
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Quality 
Diversity 

Accuracy
Diversity

Figure 3: Visualization of word distribu-
tion in source and edit prompt.

Video metrics prioritize temporal aspects. Fréchet Video Distance (FVD) (Unterthiner et al., 2019)
uses features from I3D (Carreira & Zisserman, 2017a) to compute the distance between generated
and real video distributions, but can be biased towards frame quality over motion realism. To address
this, Content-Debiased FVD (Ge et al., 2024) utilizes features from large-scale unsupervised models.
Frame Consistency CLIP Score (Radford et al., 2021) measures the consistency of edited videos by
comparing CLIP embeddings across frames.

Recent work has introduced dedicated metrics for T2V evaluation, such as T2VScore (Wu et al.,
2024), VBench (Huang et al., 2024) and EvalCrafter (Liu et al., 2023b). Building upon prior re-
search, we incorporate established metrics and introduce new ones tailored for video editing tasks,
including scores for motion and sturctural similarity between source and edited video.

3 BENCHMARK CURATION

3.1 COLLECTION OF VIDEOS.

We aim to curate a diverse benchmark for real-world video editing applications. We consider six
categories from everyday life: Animal, Food, Scenery, Sports Activity, Technology, and Vehicle. We
search two large-scale video databases: YouTube1 and Videvo2. YouTube serves as one of the largest
video repositories, featuring diverse user-generated content, while Videvo offers high-quality stock
videos shot by professionals.

To diversify the video content, we first ask GPT-4o to provide distinct keywords for each category
and use these keywords to search within the Panda-70M dataset (Chen et al., 2024) and YouTube.
To ensure data quality, we manually check each video and filter out those of low quality (e.g., blurry,
shaking, ghosting). We obtain the video captions using GPT-4o. Since the captions generated by
large multimodal models may exhibit issues such as missing objects or hallucinations of non-existent
objects (Bai et al., 2024), we also dedicate manual effort to reviewing and revising the captions,
ensuring that the key pixels are accurately described.

Mainstream TGVE models typically focus on short video editing, handling clips of 2 to 4 seconds
(24-30fps) in length (usually under 100 frames). To support this, we collect 300 short videos within
this range. Additionally, we explore a more challenging task: editing longer videos of 10 to 40
seconds (24-30fps). This task presents greater difficulty, as it requires the model to maintain long-
range consistency in video content (e.g., subject and style) across transitions. Solving this challenge
will make TGVE models more practical and applicable to real-world scenarios, such as the film
production.

Finally, we curate a collection of 420 videos, comprising 300 short videos and 120 long videos, all
at a resolution of 720⇥1280. These videos are balanced across and diversified within six categories.

1https://www.youtube.com/
2https://www.videvo.net/
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Object Addition

Add a string toy 
near the cat. Remove the cat. Change the cat 

to a rabbit.

Object Removal Object Swap

Place it in a 
grassy field.

Scene Replacement

Tilt the camera 
downwards.

Motion Change Style Translation

Make it in Van 
Gogh style.

Figure 4: Illustration of six video editing tasks in VEditBench.

3.2 DESIGN OF VIDEO EDITING TASKS.

The existing literature on video editing primarily addresses changes to the subject, background, and
style. In this work, we explore broader applications of video editing and define six distinct video
editing tasks as follows:

• Object Addition: add new objects to the video (e.g., “add a string toy near the cat”)
• Object Removal: remove existing objects from the video (e.g., “remove the cat”)
• Object Swap: replace the object while maintaining its motion (e.g., “change the cat to a rabbit”)
• Scene Replacement: change the location (e.g., “place the cat in a grassy field”)
• Motion Change: modify the object’s or camera’s motion (e.g., “tilt the camera downwards”)
• Style Translation: apply a specific style (e.g., “make it in Van Gogh style”)

Each of these tasks serves a distinct purpose in examining the capability of TGVE models. We
illustrate each editing task in Figure 13.

We task GPT-4o with the above descriptions to generate diverse edit prompts. Specifically, we feed
sampled video frames in a grid along with the video caption to GPT-4o, which then returns the corre-
sponding edit instructions and target prompts for each task (see Figure 2). Still, we manually review
all the machine-generated prompts with necessary modifications to ensure accuracy. In Figure 3, we
visualize the word distribution in our source and edit prompt set. More details about edit prompt
generation can be found in the supplementary material.

4 EVALUATION METRICS

We assess the performance of TGVE models from two primary perspectives: 1) Semantic Fidelity
– Does the edited video adhere to the user’s command?, which evaluates whether the output video
accurately follows the guidance from input video and edit prompt. 2) Video Quality – Regarding
of the editing instructions, is the generated video visually appealing?, which focuses on the overall
visual quality of the resulting video, independent of the applied edits. For each of these perspectives,
we further define several sub-dimensions to enable a more fine-grained evaluation.

4.1 SEMANTIC FIDELITY

A successfully edited video should accurately follow: 1) the explicit instructions provided by users
(i.e., user prompt); 2) the implicit consistency with the source video (e.g., motion, structure, that are
not intended for editing). To this end, we break down Semantic Fidelity into two distinct aspects,
Text Alignment and Video Alignment, where the former focuses on the faithfulness with the target
prompt, and the latter considers the coherence with the source video.

[Text] Spatial Alignment. The CLIP model (Radford et al., 2021) trained on massive text-image
pairs is capable of encoding meaningful embeddings for both modalities in a shared latent space.

5
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It is widely used to measure the similarity between visual and textual data. We compute the CLIP
feature similarity between the generated frames and their corresponding target prompts.

[Text] Spatio-Temporal Alignment. In addition to spatial content, videos display temporal dy-
namics such as object movement and camera motions. Huang et al. (2024) demonstrate the effec-
tiveness of using a video CLIP model, i.e., ViCLIP (Wang et al., 2023b), to evaluate text-video
alignment for text-to-video generation. We measure the Spatio-Temporal Text Alignment by calcu-
lating the feature similarity between the ViCLIP embeddings of edited video and target prompt.

[Video] Structural Similarity. In video editing, it is essential to preserve the integrity of the
original content. We compute the Structural Similarity Index Measure (SSIM) (Wang et al., 2004)
between source and corresponding target frames. SSIM compares the structural features of the
source and target videos, and helps identify any significant alterations that may compromise the
original message.

[Video] Motion Similarity. The goal is to quantify how much the motion dynamics change
between a source video and a target video. We first estimate a set of point trajectories T =
{(pi, vi)}Ni=1, using the off-the-shelf CoTracker (Karaev et al., 2023). Here pi and vi represents
the position and motion vector at i-th trajectory, with N being the total number of trajectories ex-
tracted in video. We denote the trajectory sets for source video and target video as TA and TB .

To compare these trajectory sets, we define a combined cost matrix for the i-th trajectory from
video A and the j-th trajectory from video B. The matrix considers both positional and directional
differences between the trajectories:

C(i, j) = ↵ ·
kpA

i � pB
j k2

Dmax| {z }
Positional Cost

+(1� ↵) ·
 
1�

vA
i · vB

j

kvAi k2kvBj k2 + ✏

!

| {z }
Directional Cost

,

where Dmax is the maximum observed distance used for normalization, ↵ 2 [0, 1] is a weighting
parameter balancing positional and directional terms, and ✏ is a small constant to avoid zero division.

We employ the Hungarian algorithm (Kuhn, 1955) to find the optimal assignment of trajectories
between the two videos, minimizing the total cost: min�

P
i Ci�(i), where �(i) maps trajectory i in

video A to a corresponding trajectory in video B. Finally, we compute the motion similarity score
between the two videos as: SMotionSim = 1� 1

N

P
i Ci�(i).

This score indicates how closely the motion patterns align between the videos. A higher score
reflects greater similarity. Empirically, we set equal weights for the positional and directional terms,
i.e., ↵ = 0.5, to balance their contributions.

4.2 VISUAL QUALITY

Video can be seen as a sequence of images with consistent temporal dynamics. We evaluate the
visual quality of a video from three perspectives: 1) Spatial Quality, which analyzes the video as
individual frames, independent of temporal dynamics, by calculating the average image score across
the frames; 2) Temporal Quality, which focuses solely on the temporal dimension, assessing the
consistency of the video over time; 3) Spatio-Temporal Quality, which considers the video as a
whole, integrating both spatial and temporal elements.

[Spatial] Image Quality. Image quality focuses on the impact of distortions and other visual im-
perfections in images on human perception. Recently, Wu et al. (2023b) introduce Q-Align, an
advanced approach that trains large multimodal models to perform visual scoring. Q-Align demon-
strates a significant leap in image quality assessment, image aesthetic assessment and video quality
assessment – not only achieving state-of-the-art performance but also enhancing out-of-distribution
generalization capabilities. We adopt Q-Align as the method for image quality scoring.

[Spatial] Image Aesthetic. Image aesthetic measures the visual appeal and beauty of an image.
We evaluate it using the Q-Align’s image aesthetic scorer trained on AVA dataset (Gu et al., 2018).

6
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[Temporal] Motion Smoothness. Motion smoothness refers to the continuity of movement in
visual content, often measured by the absence of noticeable jitter, stuttering, or abrupt transitions
between frames. We follow VBench (Huang et al., 2024) to use the motion priors from the video
frame interpolation model (Li et al., 2023) to assess the smoothness of motion in edited videos.

[Temporal] Temporal Quality. Fréchet Video Distance (FVD) is a widely used metric for assess-
ing the temporal quality of generated videos. It measures the similarity between the distributions
of real and generated videos by comparing the feature representations extracted from a pre-trained
neural network. However, Ge et al. (2024) found that FVD tends to prioritize per-frame quality
over temporal consistency. They attribute this bias to the features derived from a supervised video
classifier trained on a content-biased dataset. To address this issue, they suggest using features from
large-scale unsupervised models, which can help mitigate the bias. We employ their implementa-
tion of Content-Debbiased FVD3, calculated using VideoMAE-v2 (Wang et al., 2023a) features, to
evaluate temporal quality.

[Spatio-Temporal] Video Quality. This dimension takes into account both spatial and temporal
factors, offering a comprehensive understanding of a video’s performance. Q-Align (Wu et al.,
2023b) utilizes a language decoder to assemble videos as sequences of frames, so as to unify video
quality assessment with image quality/aesthetic assessment under one structure. It also marks state-
of-the-art in video quality assessment; therefore, we utilize it as video quality scorer.

5 EXPERIMENTS

Evaluated Models. We evaluate ten TGVE models on VEditBench, including Tune-A-
Video (Wu et al., 2023c), MotionDirector (Zhao et al., 2023), VidToMe (Li et al., 2024),
Pix2Video (Ceylan et al., 2023), TokenFlow (Geyer et al., 2023), Flatten (Cong et al., 2023a),
Diffusion Motion Transfer (DMT) (Yatim et al., 2024), RAVE (Kara et al., 2024), Text2Video-
Zero (Khachatryan et al., 2023), and Instruct Video-to-Video (InsV2V) (Cheng et al., 2023). Among
them, Text2Video-Zero and InsV2V accept editing instructions as input, whereas the others rely on
a target prompt.

Settings. To account for the varying capabilities of TGVE models in handling different
video lengths, we partition VEditBench into two subsets: VEditBench-Short and
VEditBench-Long, designed for evaluating short and long video editing, respectively.
VEditBench-Short includes all ten models outlined above, enabling a comprehensive com-
parison of their performance on short videos. However, since some models are not optimized for
long video editing, VEditBench-Long focuses on evaluating four models specifically designed
or adapted: Pix2Video, Text2Video-Zero, VidToMe, and InsV2V.

Results. To comprehensively assess the performance of different TGVE models on
VEditBench, we conduct both quantitative and qualitative analyses. Our quantitative evalua-
tion leverages a diverse set of metrics designed to measure various aspects of video quality and
fidelity to the editing instructions (Table 3, Figure 5). Complementing these quantitative measures,
we also perform a qualitative analysis to provide a more nuanced understanding of the strengths and
weaknesses of each model (Figure 6). This involves visual inspection of the edited videos and a
comparative analysis of their performance across different editing tasks and video categories.

6 INSIGHTS AND DISCUSSIONS

No Single Model Dominates Across All Dimensions. As shown in Table 3, no single TGVE
method consistently excels across all evaluation dimensions. Each model demonstrates strengths in
specific areas while exhibiting weaknesses in others, highlighting the diverse approaches and trade-
offs within the field. For instance, while RAVE achieves strong performance in Spatial and Spatio-
Temporal Alignment, it lags in terms of visual quality, as evidenced by its lower scores in Image
Quality, Image Aesthetics, and Video Quality. The irregular shapes of the radar charts (Figure 5)
also indicate that there are often trade-offs between different evaluation metrics. A model might

3https://github.com/songweige/content-debiased-fvd
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Table 2: Results per dimension on VEditBench-Short. This table compares the perfor-
mance of ten TGVE models across nine dimensions. The best and second-best are bold-faced
and underlined. Efficiency measures TGVE models’ runtime (seconds per frame, SPF) and GPU
memory usage (Mem) on an NVIDIA A100 GPU. †T2I-based method, ‡T2V-based method.

Spatial SpatioTemp Motion Structural Image Image Video Motion Temporal Efficiency
Alignment Alignment Sim. Sim. Quality Aesthetic Quality Smooth. Quality (SPF / Mem)

Tune-A-Video† 26.550 0.239 0.887 0.447 0.399 0.233 0.467 0.942 401.023 30.1s / 16GB
Pix2Video† 26.543 0.248 0.889 0.604 0.592 0.375 0.665 0.971 367.610 11.8s / 27GB
MotionDirector‡ 26.393 0.252 0.889 0.489 0.636 0.372 0.682 0.961 262.489 12.5s / 20GB
TokenFlow† 25.806 0.240 0.925 0.681 0.743 0.435 0.778 0.967 181.586 6.4s / 7GB
VidToMe† 26.033 0.244 0.920 0.688 0.736 0.452 0.779 0.968 153.368 5.3s / 6GB
Flatten† 24.448 0.217 0.909 0.683 0.530 0.356 0.614 0.968 235.446 7.5s / 13GB
DMT‡ 25.849 0.243 0.791 0.418 0.716 0.411 0.761 0.973 302.740 20.3s / 40GB
RAVE† 26.801 0.246 0.829 0.652 0.631 0.395 0.676 0.964 230.579 3.2s / 26GB
Text2Video-Zero† 21.631 0.162 0.798 0.490 0.660 0.520 0.714 0.927 725.644 3.1s / 23GB
InsV2V‡ 24.586 0.226 0.925 0.743 0.615 0.363 0.680 0.984 94.294 2.6s / 14GB

Table 3: Results per dimension on VEditBench-Long. This table compares the performance of
ten TGVE models across nine dimensions.

Spatial SpatioTemp Motion Structural Image Image Video Motion Temporal
Alignment Alignment Sim. Sim. Quality Aesthetic Quality Smooth. Quality

Pix2Video 26.741 0.243 0.841 0.597 0.609 0.365 0.684 0.972 505.415
VidToMe 26.371 0.239 0.876 0.675 0.723 0.430 0.791 0.971 269.596
Text2Video-Zero 22.767 0.174 0.771 0.477 0.502 0.753 0.714 0.932 869.299
InsV2V 25.551 0.226 0.906 0.740 0.689 0.383 0.742 0.987 140.232

score high on image quality but lower on motion smoothness, suggesting that optimizing for one
metric can sometimes come at the expense of another.

Notably, TokenFlow and VidToMe emerge as more well-rounded models, achieving high perfor-
mance in visual quality while maintaining strong semantic fidelity scores. These findings underscore
the importance of a comprehensive benchmark like VEditBench to provide a nuanced under-
standing of model performance and guide future research towards more robust and versatile TGVE
methods.

Model Performance Varies Across Tasks. The charts in Figure 5 clearly show that a model’s
performance can vary significantly depending on the specific editing task. For instance, some models
excel at object swap but struggle with motion change. This highlights the importance of evaluating
models across a diverse range of tasks to understand their strengths and weaknesses.

Semantic Fidelity vs. Visual Quality Our analysis reveals an interesting tension between seman-
tic fidelity and visual quality in TGVE models. While some models excel at accurately adhering to
the editing instructions (high semantic fidelity), they may sometimes produce outputs with notice-
able visual artifacts or inconsistencies (lower visual quality). Conversely, other models prioritize
generating visually appealing results but may struggle to precisely fulfill the user’s intent. This
trade-off highlights a key challenge in TGVE: achieving a balance between accurately interpreting
and executing editing instructions while maintaining high visual quality in the output. Future re-
search could explore novel approaches to optimize both aspects simultaneously, potentially through
improved training strategies or more sophisticated evaluation metrics that explicitly consider the
interplay between semantic fidelity and visual quality.

Challenges in Long Video Editing. Evaluating models on VEditBench-Long reveals unique
challenges associated with editing longer videos. Maintaining temporal consistency and coherence
over extended durations proves to be a significant hurdle for most models. Edited outputs exhibit
increased occurrences of flickering, temporal artifacts, and deviations from the original video’s nar-
rative flow. These challenges stem from the increased complexity of modeling long-range depen-
dencies and the potential for errors to accumulate over time. Furthermore, computational constraints
become more prominent when processing longer videos, which can limit the effectiveness of certain
techniques. These findings highlight the need for further research focused on developing specialized
architectures and training strategies tailored to the specific challenges of long video editing.
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Figure 5: Results per model on VEditBench-Short. We visualize each model’s performance
across six editing tasks and nine evaluation dimensions. The radar charts reveal that model perfor-
mance varies significantly across tasks, highlighting the importance of comprehensive evaluation
across diverse editing scenarios.

7 CONCLUSION

In this paper, we introduced VEditBench, a comprehensive benchmark designed to standard-
ize and advance the evaluation of text-guided video editing models. VEditBench addresses key
limitations of existing benchmarks by providing a diverse collection of real-world videos, a wider
range of editing tasks, and a multi-dimensional evaluation framework encompassing both semantic
fidelity and visual quality. By evaluating ten state-of-the-art TGVE models on VEditBench, we
offer insights into their capabilities and highlight areas for future improvement. We believe that the
open-source release of VEditBench will serve as a valuable resource for the research community,
fostering further progress in this rapidly evolving field.

Limitation and Future Work. The benchmark currently focuses on single-shot edits based on
a single textual instruction. Future work could explore more complex editing scenarios involving
multi-step edits or the composition of multiple instructions. We also plan to benchmark more TGVE
models using our VEditBench in the future.
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Figure 6: Example of “changing the cat to a rabbit” in VEditBench.
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