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Abstract

In a nonlinear system, when both function values 𝑓𝑖(𝑥1, 𝑥2, …𝑥𝑖,…,𝑥𝑛)  and corresponding Jacobian 
determinants approach zeros, their ratios may remain finite. Under this circumstance, iterations of the 
traditional Newton-Raphson method (NRM) tend to wander around local extrema, resulting in non-
convergence (not necessarily divergence). Herein, we propose to parametrically modify the given 
nonlinear system primarily based on the concept of matrix diagonal dominance. In addition to 
faithfully following the linearization formula of first-order Taylor Series Expansion adopted by NRM, 
we manage to guide iterations to travel along diminishing-parameter paths that are established by 
roots of these modified systems. When the parametrized system eventually reverts to the original one, 
iterated solutions have already passed extrema and approached the desired root. Using four examples 
governed by scientific and engineering laws, we illustrate the strategy of the proposed algorithm and, 
in passing, introduce the benefit of finding complex roots. Hopefully, the proposed study will serve 
as a reference for the community that are interested in using NRM to solve scientific and engineering 
nonlinear systems.

Keyword: Parametric anchor (PA); Pseudo root (PR); Diagonal dominance; Complex root (CR); Newton-
Raphson method (NRM); Local extrema;

1. Introduction

Other than the Newton-Raphson method (NRM), in which the linearization is performed 
according to first-order Taylor Series Expansion, numerous innovative techniques have also 
been developed over the past few decades. For example, domain decomposition enhances 
computational efficiency [1]; deep learning combines with orthogonal decomposition for 
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complicated PDEs [2]; radial basis networks provide advanced solutions for nonlinear PDEs 
[3]; dimensionality reduction facilitates probability density functions [4]; iterative methods 
bypass complex derivative calculations [5]; and intelligent algorithms excel in root 
identification [6]. Innovatively, these methods solve nonlinear systems without relying on 
the traditional Taylor series expansion.

Simultaneously, the NRM has been applied to analyses of numerical properties, such as 
accuracy, stability, robustness, and convergence. These studies include overcoming 
challenges in finding analytical solutions, applications in eigenvalue problems [7], rapid 
derivative-based convergence [8], dependence on the initial guess [9], broader convergence 
theory [10], and sensitivity to computational errors [11].

Progressively, various NRM-improved versions have been developed and applied to 
solving engineering problems. Convergence to exact solutions has been improved by Pho 
Kim-Hung using modified decomposition methods [12]. Tajima and Yamada tailored 
topology optimization to manufacturing constraints [13]. Machine learning for optimal 
quadrature in computational analysis has been harnessed by Teijeiro et al. [14]. Optimization 
algorithms for photovoltaic models are enhanced by Mohammed et al., boosting the 
LSHADE algorithm [15]. Kumar et al. have combined optimization algorithms with NRM 
for better parameter estimation in solar models [16]. Efficient methods for large deformations 
are implemented by Mohammed et al., enhancing finite element simulations [17]. Near-zero 
error rates under varying statistical conditions are achieved by Wang et al. with a modified 
NRM [18]. Finally, Salvador and Marsden's research indicates that, for polynomial problems, 
different iterative methods converge with varying rates of error, highlighting the progress in 
iterations related to NRM [19].

Herein, while focusing our efforts on solving scientific and engineering problems 
governed by both nonlinear algebraic equations and nonlinear partial differential equations, 
we propose an algorithm in which each nonlinear algebraic equation is inserted with a 
parametric anchor (PA). This anchoring effect tends to smooth curvatures of nonlinear 
equations and to allow iterated Jacobian matrix determinants to travel along an iterative route 
(different from the NRM iterative route), significantly reducing sign changes of 𝑓 𝑓′ values 
near extrema.

2. Examples

Totally, we have selected four examples to demonstrate merits of the proposed algorithm. 
When fabricating the first, second, and third examples, we ensure that at least one real-
number root exists for the nonlinear system. 

2.1. Governing equations of examples

In the first example, a seventh-degree one-variable polynomial equation, 
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             𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4 + 𝑐5𝑥5 + 𝑐6𝑥6 + 𝑐7𝑥7 = 0,                (1)

satisfies the condition, under which a root (𝑥 = ―2) is flanked by two local extrema (see 
values of coefficients in Appendix A). 

The second example is involved with chemical physics, and the Arrhenius equation related 
to the Boltzmann Distribution law is given as 𝑘 = 𝐴𝑒(―𝐸/𝑅𝑇). Here, 𝑘 denotes the chemical-
reaction rate; 𝐴 the pre-exponential factor; 𝐸 the activation energy; 𝑅 the universal gas 
constant; and 𝑇 the absolute temperature. A nonlinear system may be represented as 

            f1(𝑥,𝑦) = 𝑧𝑡 + 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥5𝑦6 + 𝑐3𝑥3 + 𝑐4𝑒𝑐5𝑡 = 0,                                                  (2a)
and
             f2(𝑥,𝑦) = ― 𝑧𝑡 + 𝑑0 + 𝑑1𝑦 + 𝑑2𝑥7𝑦4 + 𝑑3𝑦3 + 𝑑4𝑒𝑑5𝑧 = 0.                                        (2b)

For pre-conditioning, additional equations are introduced to ensure numerical stability by 
normalizing certain terms, specifically f3(𝑥,𝑦) = 𝑥𝑧 ―1 = 0 and f4(𝑥,𝑦) = 𝑦𝑡 ―1 = 0, 
where 𝑧 and 𝑡 serve as reciprocal terms of 𝑥 and 𝑦, respectively.  The known root is 𝑥 = 10, 
𝑦 = 10 and 𝑥 = 10, 𝑦 = ― 10. For details regarding the linearized counterpart of Equations 
(2a & 2b), readers are encouraged to refer to Appendix B, where the corresponding 
coefficient matrices and elements are provided. Instead of using the negative value in the 
exponential term, which must lie in the range of [𝑒𝑥𝑝 ( ― ∞), 𝑒𝑥𝑝 ( ― 0)] or [0, 1], we are 
willing to face the challenge of a much wider range of [1,∞] or [𝑒𝑥𝑝( +0),  
𝑒𝑥𝑝(𝑙𝑎𝑟𝑔𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟)]. 

In the third example, Generative Adversarial Networks (GANs) consist of two adversarial 
neural networks, namely Generator 𝐺 and a Discriminator, that compete against each other 
through a sophisticated nonlinear loss function. Also, being inherently nonlinear, the training 
process of GANs involves intricate interactions among parameters of 𝐺, 𝐷, latent variables, 
and iterative steps in the training process. Here, the dynamic interactions during GAN 
training can be represented by

              𝑓1(𝑥, 𝑦, 𝑧, 𝑡) =  22/𝑥 +  7/𝑦 +  𝑦 +  3.5/𝑧 +  11/𝑡 +  7 =  0,                                    (3a)

            𝑓2(𝑥, 𝑦, 𝑧, 𝑡) =  0.1𝑥4 + 0.1𝑒𝑥 𝑡 ―  0.1𝑒𝑦 𝑧 ―1.6𝑡4 =  0,                                             (3b)
 
              𝑓3(𝑥, 𝑦, 𝑧, 𝑡) =  𝑥𝑦 ―  4𝑧𝑡 +  𝑦5 + 32𝑧5 =  0,                                                                             (3c)

              𝑓4(𝑥,𝑦,𝑧,𝑡) = 𝑥𝑧 + 𝑦𝑡 + 𝑦𝑦 +2𝑦𝑥/𝑡 +  𝑒―0.1𝑦𝑡 ―  2131.3 = 0,                               (3d)

where 𝑥 denotes the parameter vector of the Generator, which includes weights and biases 
used to transform latent noise into synthetic data; 𝑦 the parameter vector of the Discriminator, 
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which is optimized to distinguish between real and generated data; 𝑧 the latent noise vector 
sampled from a prior distribution (e.g., Gaussian or uniform), which serves as input to the 
Generator; and 𝑡 the iteration step in the training process, indicating the progression of 
parameter updates. The exponential decay term  𝑒―0.1𝑦𝑡 indicates the diminishing influence 
of the Discriminator over time, whereas nonlinear interaction terms, which represent the 
evolving feedback between 𝐺 𝑎𝑛𝑑 𝐷 as training continues, gradually stabilize the system. 
The fabricated root is 𝑥 = ―22, 𝑦 = ― 7, 𝑧 = 3.5, and 𝑡 = 11. See Appendix C for linearized 
coefficient-matrix elements, real roots, complex roots (CRs). 

In the fourth example, the energy conservation of one-dimensional transient heat 
conduction is governed by 

          ∂𝑇
∂𝑡 = ∂

∂𝑥(𝛼(𝑇) ∂𝑇
∂𝑥

).                                                                                                      (4)                                                                                   

Because the thermal diffusivity depends on the temperature, discretized equations become a 
nonlinear system. Subject to Dirichlet boundary conditions at 𝑥 = 0 and Neumann boundary 
conditions at 𝑥 = 𝐿, both corresponding discretized nonlinear equations (∆𝑥 = 0.1𝐿,  𝑥 ∈ 𝐿) 
and the coefficient matrix of linearized equations are given in Appendix D.  

2.2. Purposes of choosing these examples

The first example (one-variable polynomial) is chosen to graphically describe the strategy 
and the procedure of PA algorithm, which constitutes the crux of this study. Next, in the 
second example (4-equation set), we examine occurrences of different pairs of positive and 
negative values of PAs (Table 1). Then, the third example (10-equation set) is selected to 
demonstrate the capability of PA when multi-variable high-nonlinearity problems are 
encountered. Due to the complexity of the problem, all four cases of convergence difficulties 
(shown in Fig. 1, to be further qualitatively explained in the next section) are encountered by 
NRM. Incidentally, this example is also related to the benefit of finding CRs. Finally, the 4th 
example (also 10 algebraic-equation set) is introduced to demonstrate that PA is also capable 
of handling discretized nonlinear partial differential equations.   

3. Proposed parametric anchor (PA) algorithm 

Generally, NRM iterations may encounter non-convergence difficulties when they 
approach local extrema. To face this challenge, we must first learn how to precisely classify 
and identify these difficulties. For clear illustrations, let us graphically examine simple cases 
of finding roots in a high-degree one-variable polynomial, namely 𝑦 = 𝑓(𝑥) and 𝑦 = 0 (i.e.
 𝑥  axis). In Fig. 1. (a), although a minimum is located closely to the 𝑥 axis, the curve and the 
axis do not intersect. Herein, let us tentatively name this nonexistent root as pseudo root (PR). 
By contrast, in Fig. 1. (b), the curve and the axis are separated by a finite distance. In Fig. 1. 
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(c), they intersect at only one single point, suggesting that both the function and its derivative 
equal zero at this point. Finally, in Fig. 1. (d), the curve and the axis are almost parallel to 
each other locally. 

Fig. 1. Four scenarios that seem to trouble NRM. Our imagination should be able to extend to multi-variable 
(multi-dimension) systems. 

3.1. Troubles caused by the existence of pseudo roots (PRs)

Based on our simulation experiences, among these four cases mentioned above, the most 
troublesome one belongs to Fig. 1. (a), which consequently has drawn most research attention 
to ours. It is well known that NRM iteration is based on the formula, namely 𝑥 = 𝑥 ― 𝑓 𝑓′. 
Near a PR, both the numerator and the denominator approach zero, thus allowing the ratio, 
namely a small-valued numerator divided by a small-valued denominator (briefly written as 
𝜖 𝜖 ), to remain as a finite value. Near PR, if the initial guess is located rightward to PR, 𝑓′ 
is positive and the new iterated value of 𝑥 may decrease to reach leftward of PR. At this new 
location, 𝑓′ clearly becomes negative, forcing the ratio to become negative and thus 
prompting the 𝑥 value to increase. Consequently, the iterated value will fluctuate around PR, 
as if it is trapped by a barrier. 

Differently, in the case of Fig. 1. (b), when the iterated solution approaches the local 
minimum, the ratio will become finite/small, i.e. a large finite number, and the iterated 
solution will escape from the trap, suggesting that NRM may be no longer seriously troubled 
in this case. In Fig. 1. (c), although the ratio appears 𝜖 𝜖  again, often a portion of the 
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numerator will cancel with that of the denominator (e.g. 𝑥3 3𝑥2 = 𝑥 3 ≠ ∞. ). Finally, in the 
case of Fig. 1. (d), the number of unknowns will exceed that of equations, leading to an ill-
conditioned problem. Such a scenario may remind us of a simple similar system consisting 
of two equations (e.g. 𝑥 + 2𝑦 = 3;2000𝑥 + 4001𝑦 = 6001 ). Under this circumstance, prior 
to seeking the solution, we should first pre-condition the system, and this treatment is 
unrelated to NRM or other nonlinear solvers. 

3.2. Strategies of the proposed algorithm 

Overall, we authors abide by the philosophy of DNS, a.k.a. Direct Numerical Simulation, 
in which Navier-Stokes equations of fluid mechanics are solved within the whole range of 
spatial and temporal domains without having to rely on turbulence modeling. By analogy, 
NRM serves as the most fundamental tool to handle nonlinear systems, whereas Navier-
Stokes equations serve as the most fundamental tool to simulate computational fluid 
mechanics. In both realms, the prowess of computer-computing speeds belongs to preferable 
concern. In other words, we continue to faithfully follow the term-by-term linearization of 
NRM, i.e. Taylor-Series expansion in the first order, e.g. 𝑥2 ≈ ― 𝑥2 +2𝑥𝑥, and do not modify 
NRM. 

Instead, our strategy focuses on parametrically modifying the nonlinear system itself. 
When these parameters, which are imbedded in nonlinear equations, gradually diminish to 
zero, the parameterized system is recovered to the originally-given one. The purpose of this 
modification lies in that those existent lumps or parallelisms, shown in Fig. 1a-d, are 
eliminated during the beginning phase of iterations. Only when the iterated solution enters 
the vicinity of a root, do they reappear. By then, this reappearance does not matter any longer 
because our iterated solution has nearly reached its destination. 

Realizing that procedures of modifying the given nonlinear system may abound (for 
example, a parameter 𝜉 can be inserted in front of a likely trouble-making term 𝑒8𝑥, and then 
is allowed to diminish from unity to zero), we have aimed at choosing one that is capable of 
avoiding the scenario in which the Jacobian determinant approaches zero. In particular, the 
concept of matrix diagonal dominance constitutes the essential idea. Into each equation, we 
insert a PA, 𝑀𝑥, where 𝑀 is a large-valued parameter, which will be properly estimated and 
gradually reduced to zero. For example, let us examine an extreme case, in which 𝑓(𝑥) = 0 
represents a complicatedly wiggling curve. If we transform this equation into 𝑀𝑥 + 𝑓(𝑥)
= 0, or 𝑥 + 𝜖𝑓(𝑥) = 0, the second term can almost be neglected. Hence, at the beginning of 
the iteration procedure, the originally-given equation is indeed smoothed. As the iteration 
proceeds, 𝑀 gradually decreases, and the so-called linearized line is also gradually recovered 
to a wiggling curve. 

3.3. NRM applied to example 1 for the purpose of comparison 

In Fig. 2, we present a 7th-degree one-variable polynomial equation to demonstrate how 
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NRM tends to wander around the PR and fail to converge. In total, seven roots, 1 real root (
𝑥 = ―2) and 3 pairs of CRs (𝑥 = ―4.0073 ± 0.1151𝑖, 𝑥 = 5.2807 ± 0.7576𝑖, and 
1.1476 ± 0.1458𝑖) exist. At this moment, let us pay attention to only the real root, which is 
flanked by two PRs at 𝑥 = ―4 and 𝑥 = 1.1451 (also local extrema). Regarding CRs and their 
relevance with this study will be briefly mentioned in Section 4.   

Two initial guesses (𝑥 = ―5, 1.2) are taken. It is well known that NRM iteration is based 
on the formula, namely 𝑥 = 𝑥 ― 𝑓 𝑓′. Near a PR, both the numerator and the denominator 
approach zero, thus allowing the ratio 𝜖 𝜖  to remain as a finite value. Near 𝑥 = 1.1451 (right 
PR), if the initial guess is located rightward relatively to the local minima, 𝑓′ is positive and 
the new iterated value of 𝑥 may decrease and reach leftward of the minima. At this new 
location, 𝑓′ clearly becomes negative, forcing the ratio to become negative and thus 
prompting the 𝑥 value to increase. In Fig. 2, root (𝑥 = ―2) is not shown because it has failed 
to be reached by NRM iterations. Naturally, if we take an initial guess in the vicinity of the 
root, NRM iteration will converge. 

Fig. 2. Progressing route of NRM iterations for Eq. (1). Subscripts of function f denote i𝑡ℎ iterations; dash lines 
denote iteration routes; corresponding Jacobian determinants are quantified on the right JD axis. Note that the 
graph of Eq. (1), which clearly depicts the real root being flanked by two PRs, is shown in the central area.
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3.4. PA algorithm applied to example 1

For fairness, the same initial guesses are taken when the PA algorithm is adopted. In Fig. 
3. (a), in reality, a family of 24 parameterized (in 𝑀) curves should have been drawn. For 
clarity, however, only six of them are chosen and presented. Among these six, however, three 
of them almost coincide, in the vicinity of zero 𝑀, with one another.  

At the beginning of the iteration procedure (subscripted with 0), 𝑥0 value is guessed and 
𝑀0 value is estimated. When the iterated solution has converged, this converged solution will 
become the initial guess for the 𝑀1 parameter curve. Notably, values of Jacobian 
Determinants (JD) have remained positive from approximately 1000 to 3 without changing 
signs, demonstrating a quite different behavior from that of NRM. Also, at the eighth 
parametric iteration (i.e. 𝑀8 = 5.05), the iterated solution (i.e. 𝑥8 = ―1.53) has already 
safely passed the PR at 𝑥 = ―4. 

In Fig. 3. (b), the initial guess, 𝑥0, is taken at 1.2. We observe that values of JDs also remain 
positive throughout the entire iteration procedure, suggesting that the PA algorithm has 
managed to avoid the undesirable existence of PR by “linearizing” the nonlinear system.   
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Fig. 3. (a) Relationship among four types of quantities, namely 𝑥,  𝑓(𝑥),  𝑀,  𝐽𝐷,  denoting variable, function, 
PA parameter, and Jacobian determinants. Due to the fact that magnitudes of these quantities differ among 
them, a few broken signs are drawn. The initial modified curve (𝑀0) is severely “linearized” to almost look like 
a straight line.  
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Fig. 3. (b) Relationship among four types of quantities, namely 𝑥,  𝑓(𝑥),  𝑀,  𝐽𝐷,  denoting variable, function, 
PA parameter, and Jacobian parameters respectively, appear. Due to the fact that the magnitudes of these 
quantities differ among them, a few broken signs are used.  

3.5. PA algorithm applied to example 2

When the number of unknowns increases to 2, the convergence of the proposed PA 
algorithm is no longer unconditionally achieved if the value of PA is kept positive all the 
time. Incidentally, due to the need for pre-conditioning, the number of unknowns is actually 
4. However, because those two additional equations appear merely for the purpose of 
computational convenience, they are not imbedded with PAs. Based on our simulation 
experiences and logical intuition, we decided to change the signs of PAs when iterations have 
failed to converge. Our logical intuition lies in that, in an NRM-linearized system of 𝑎11𝑥 +
𝑎12𝑦 = 𝑏1 and 𝑎21𝑥 + 𝑎22𝑦 = 𝑏2, clearly signs of 𝑎11 and 𝑎22 , in which PAs are imbedded, 
greatly influence structures and slopes of two linearized curves. Consequently, we adopt the 
sequence of [𝑀( + ), 𝑁( + )], [𝑀( + ), 𝑁( ― )], [𝑀( ― ), 𝑁( + )],and [𝑀( ― ), 𝑁( ― )], 
where 𝑀 denotes the PA for 𝑥 and 𝑁 denotes the PA for 𝑦. Table 1 lists the simulation results. 
In comparison, NRM has failed to converge with same initial guesses in all four cases. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5074292

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Table 1 Convergent results of example #2 & 3 with different combinations of PA signs. P and Q denote PAs 
for Eq. (3a) and Eq. (3b), respectively.

Trial Initial Guess of 
Examples #2 & 3

PA (𝑀, N, P, Q) Signs 

Example #2
#1 ( ― 0.5, ― 0.3) ( ―, ― )
#2 (0.45, 0.25) ( ―, + )
#3 ( ―0.1, ― 0.05) ( +, ― )
----------------------------------------------------------------------------------------------
Example #3
#4 (1, ― 16, ― 42, 2) ( ―, ― , + , ― ) 
#5 ( ―2, 100, ― 4, 29) ( +, ― , ― , + )
#6 (80, ― 6, 23, ― 72) ( ―, + , + , ― )
#7 (13, 22, ― 10, 30) ( +, ― , + , ― )

With the aid of the PA algorithm, the convergence is achieved for all initial guesses as 
long as signs of 𝑀𝑖 and 𝑁𝑖 are allowed to paired and changed (see trials #1, #2, and #3 in 
Table 1). Here, 𝑀𝑖 denotes the PA for Eq. (2a);  𝑁𝑖 for Eq. (2b); and the subscript denotes the 
iteration-sequence number. Expectedly, NRM encounters difficulties of convergence for 
most of the initial guesses, and results are omitted. 

3.6. PA algorithm applied to example 3

Because of three reasons, the nonlinear system of Eq. (3) that contains 4 unknowns (or 10 
unknowns if intermediate variables are also included) is presented. First, the convergence 
robustness of the proposed algorithm is demonstrated for a highly nonlinear system. Second, 
during our simulation research, we are pleasantly surprised to become aware that the finding 
of CRs often helps researchers discover the existence of real roots or PRs as well. For 
example, as aforementioned in example 1, two pairs of CRs do exist near those two PRs. In 
addition, Fig. 4 shows that numerous satellites of CRs develop a cluster that surrounds a real 
root. Third, for highly nonlinear systems, it is noted that finding CRs appears easier than 
finding real roots, partly because CRs must exist in pairs if they do exist.  
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Fig. 4. A real root and CRs in the multi-dimensional solution space, highlighting the real root position at 𝑥 =
―22, 𝑦 = ― 7, 𝑧 = 3.5, and 𝑡 = 11 and the distribution of CRs.

In Equations 3a-d that contain 4 variables, the multiplied product of all diagonal terms in 
the Jacobian matrix, Ω, can be written as 

        𝛺 = (∂𝑓1
∂𝑥)(∂𝑓2

∂𝑦) (∂𝑓3
∂𝑧)(∂𝑓4

∂𝑡) = 𝑎11𝑎22𝑎33𝑎44,                                            (5)

where 𝑎11 denotes the coefficient of 𝑥 after the linearization among others and so do others 
similarly. When anchoring terms, namely 𝑀𝑖𝑥𝑖, are inserted into all 4 equations, Ω becomes 

     𝛺 = (𝑀1 + 𝑎11)(𝑀2 + 𝑎22)(𝑀3 + 𝑎33)(𝑀4 + 𝑎44).                                                                         (6)

Due to the existence of PAs, Ω dominates all other products in the Jacobian determinant 
during most iterations. When PAs gradually diminish to zero, the given nonlinear system is 
recovered. At this time, because all iterated variables have already approached the root and 
are located far away from PAs, the Jacobian-matrix diagonal dominance is no longer 
required. 
   In Table 1, 4 sets of initial guesses (trials #4 - #7) and their successful corresponding sign 
groups of PAs, namely 𝑀, 𝑁, 𝑃, 𝑄, are listed. With the aid of the PA algorithm, 16 real roots 
and approximately 1,000 CRs (~ 500 pairs) are found. In Appendix C2, only 50 pairs are 
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presented, with other 450 pairs available upon request. 

3.7. PA algorithm applied to example 4

In example #4, we investigate a discretized partial differential equation that is governed 
by heat-conduction energy conservation with a temperature-dependent diffusivity. A heat 
source is intentionally embedded in the middle finite-difference element of a vertical slab so 
that the left-side heat conduction (the first derivative of the temperature) entering the element 
does not equal the right-side counterpart that exits from the element. In other words, this 
nonlinear system does not belong to 𝐶1 space. Due to the aid of the PA algorithm, the solution 
converges and the global energy balance is safely checked at every time step (Appendix D). 

4. Discussion

In this section, a few relevant issues are discussed below. 

4.1. Potential benefit of finding complex roots (CRs) 

It is well known that, in quantum mechanics, complex numbers are used in Schrodinger 
equation, which solves the uncertain position of a particle at a given time, and that, in Fourier 
transforms, complex numbers are used in understanding oscillation occurrence both in 
alternating currents and in signals modulated by electromagnetic waves. Furthermore, in 
finding the golden ratio, 𝜑 = (1 ± 5) 2, another golden ratio is found to equal ―0.618. 
Although it is not a complex number nor a physically meaningful quantity, it may become 
magically useful in the future.

During the search for real roots for Eq. (3a-d), we have also obtained approximately 1000 
CRs (~ 500 pairs). By using an extremely simple example, an offer of the reason why real 
roots may behave as centers of complex-root clusters is attempted below. Consider roots of 𝑎
𝑥2 +𝑏𝑥 + 𝑐 = 0, given in the textbook of middle schools as ( ―𝑏 ± 𝑏2 ― 4𝑎𝑐)/2. If the 
quantity inside the square root is positive, two real roots exist; if it equals zero, one single 
real root exists; if it equals a small negative number, a pair of two CRs, named as a PA in the 
proposed study, exist; if it equals a finite or large negative number, a pair of regular CRs 
exist. Due to this relationship, a numerical scheme employing the proposed PA algorithm 
with the aid of finding CRs may secure high convergence robustness. Hopefully, this research 
task can be conducted in the future.   

Finally, let us mention that, via the experience of solving the third example related to 
GANs, we have learned that, generally, the possibility of obtaining CRs exceeds that of 
obtaining real roots. Two reasons are briefly mentioned below. (1) Upon convergence, if the 
initial guess is complex numbers, then the converged solution can be either a real root or a 
CR. However, if the initial guess is real numbers, then the converged solution can only remain 
as a real root. (2) CRs, if existent, must exist in conjugate pairs because (𝑎 + 𝑏𝑖)(𝑎 ― 𝑏𝑖) =
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𝑎2 + 𝑏2 appears as the only way to allow a portion of complex numbers to be transformed 
into real numbers. Hence, unless the original nonlinear system contains a complex number 
coefficient, otherwise it is nearly impossible for a single non-paired CR to exist. 

4.2. Preconditioning

In examples that are involved with exponential terms or high-degreed polynomials, it is 
recommended that we adopt the preconditioning procedure before marching into iterations. 
Usually, in this preconditioning procedure, a new intermediate variable, 𝑇,  is introduced to 
set equal to a ratio, such as 𝑓 𝑔,   so that 𝑇𝑔 = 𝑓 and the denominator is eliminated. In 
addition, the magnitudes of all equations should be wisely and nearly unified. 

4.3. Slightly nonlinear systems

Naturally, partial differential equations, which are subject to smooth boundary conditions 
and do not contain source or sink terms, lead to relatively smooth nonlinear algebraic 
equations that can be readily tackled by the traditional NRM. 

4.4. Temperature distribution that does not belong to 𝐶1 space 

In example #4, we investigate a discretized partial differential equation that is governed 
by heat-conduction energy conservation with a temperature-dependent diffusivity. A heat 
source is intentionally embedded in the middle finite-difference element of a vertical slab so 
that the left-side heat conduction (proportional to the first derivative of the temperature) 
entering the element does not equal the right-side counterpart that exits from the element. 
Due to the aid of the PA algorithm, the solution converges and the global energy balance is 
safely checked at every time step. 

5. Conclusion

Regarding remedying the shortcomings of NRM when PRs exist in nonlinear systems, 
relevant strategies have rarely been reported in the literature. Herein we insert PAs in all 
equations so that Jacobian-determinant values of parametrized systems mostly stay 
sufficiently distantly away from the neighborhood of PRs. Finally, we also report an 
additional potential of using PAs to find CRs, thus helping find real roots as well as possibly 
offering scientific intrigues in the future. 
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Data availability

We have included our data on the appendix pages, which can be freely accessed.
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Appendix A. Coefficient of Equation 1.

Table A.1
Coefficient of equation 1.

Coefficient Value 
𝑐0 2.0000
𝑐1 ―2.1750
𝑐2 ―0.7060
𝑐3 0.9211
𝑐4 0.1326
𝑐5 ―0.0696
𝑐6 ―0.0046
𝑐7 0.0016

Appendix B. Coefficient and Coefficient Matrices of Equation 2a & 2b after 
linearization.

Table B.1
Coefficient of equation 2a & 2b.

Coefficient Value
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𝑐0 ―3.0000 × 1011

𝑐1 2.0000
𝑐2 3.0000
𝑐3 4.0000
𝑐4 8.0000
𝑐5 13.0000
𝑑0 ―7.0000 × 1011

𝑑1 6.0000
𝑑2 7.0000
𝑑3 8.0000
𝑑4 9.0000
𝑑5 12.0000

linearized coefficient-matrix elements, variable vector, and known-valued vector
𝑧 = 1/𝑥; 𝑡 = 1/𝑦;  (intermediate quantities for convenience and preconditioning)
𝑎(1,1) = 𝑐1 + 5𝑐2𝑥4y6 + 3𝑐3𝑥2,   𝑎(1,2) = 6𝑐2𝑥5y5,
𝑎(1,3) = 𝑡, 𝑎(1,4) = 𝑐5𝑐6𝑒𝑐6t +𝑧  
𝑎(2,1) = 7𝑑2𝑥6y4,𝑎(2,2) = 𝑑1 + 4𝑑2𝑥7y3 + 3𝑑3y

2,
𝑎(2,3) = 𝑑5𝑑6𝑒𝑑6𝑧 ― 𝑡,𝑎(2,4) = ―𝑧
𝑎(3,1) = 𝑧,𝑎(3,3) = 𝑥,𝑎(4,2) = 𝑡,
𝑎(4,4) = 𝑦   (Other unwritten elements all equal zero.)
𝑏(1) = ―𝑐0 +10𝑐2𝑥5y6 +2𝑐3𝑥3 + 𝑐5𝑐6𝑡𝑒𝑐6t ― 𝑐5𝑒𝑐6t +𝑧𝑡,   
𝑏(2) = ― 𝑑0 + 10𝑑2𝑥7y4 + 2𝑑3y

3 + 𝑑5𝑑6𝑧𝑒𝑑6𝑧 ― 𝑑5𝑒𝑑6𝑧 ― 𝑧𝑡,
𝑏(3) = 𝑥𝑧 + 1, 
𝑏(4) = y𝑡 +1.

Appendix C. Coefficient Matrices, CRs, and Real Roots of the Nonlinear Dynamics 
System in GANs after Linearization.

linearized coefficient-matrix elements, variable vector, and known-valued vector
𝐴 = 𝑥/𝑡; 𝐵 = 𝑦/𝑧; 𝐻 = 𝑒―0.1𝑦𝑡 (intermediate quantities for convenience and preconditioning)
𝑎(1,2) = 1,𝑎(1,5) = 22,𝑎(1,6) = 7,𝑎(1,7) = 3.5, 𝑎(1,8) = 11,
𝑎(2,1) = 0.4𝑥3,𝑎(2,4) = ―6.4𝑡3,𝑎(2,9) = 0.1𝑒𝐴,𝑎(2,10) = ―0.1𝑒𝐵

𝑎(3,1) = 𝑦,𝑎(3,2) = 𝑥 + 5𝑦4,𝑎(3,3) = 160𝑧4 ― 4𝑡,𝑎(3,4) = ―4𝑧
𝑎(4,1) = 𝑧,𝑎(4,2) = 2𝑦 + 𝑡 + 2𝐴 ― 0.1𝐻𝑡,
a(4,3) = 𝑥,𝑎(4,4) = 𝑦 ― 0.1𝐻𝑦,𝑎(4,9) = 2𝑦
𝑎(5,1) = 𝑋,𝑎(5,5) = 𝑥
𝑎(6,2) = 𝑌,𝑎(6,6) = 𝑦
𝑎(7,3) = 𝑍,𝑎(7,7) = 𝑧
𝑎(8,4) = 𝑇,𝑎(8,8) = 𝑡
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𝑎(9,1) = 1,𝑎(9,4) = ―𝐴,𝑎(9,9) = ―𝑡
𝑎(10,2) = 1,𝑎(10,3) = ―𝐵,
𝑎(10,10) = ― 𝑍     (Other unwritten elements all equal zero.)
𝑏(1) = ―7,  𝑏(2) = 0.3𝑥4 ― 4.8𝑡4 ― 0.1𝑒𝐴(1 ― 𝐴) + 0.1𝑒𝐵(1 ― 𝐵)
𝑏(3) = 4𝑦5 + 128𝑧5 + 𝑥𝑦 ― 4𝑧𝑡,
𝑏(4) = 𝑥𝑧 + 𝑦𝑡 + 𝑦2 + 2𝐴𝑦 + 2131.3 ― 𝐻(1 + 0.2𝑦𝑡)
𝑏(5) = 𝑥𝑋 +1,  𝑏(6) = 𝑦𝑌 +1,  𝑏(7) = 𝑧𝑍 +1,  𝑏(8) = 𝑡𝑇 +1,
𝑏(9) = ― 𝑡𝐴,  𝑏(10) = ― 𝑍𝐵.

Table C.1
Real roots of the nonlinear dynamics system in GANs. 

Real 
Root

𝑥 𝑦 𝑧 𝑡

1 -22.0000 -7.0000 3.5000 11.0000
2 -1643.8858 -7.4634 2.4509 -821.9429
3 -0.5933 -42.5977 21.2989 0.1513
4 0.3234 -45.0327 22.5163 -0.3668
5 0.8899 -47.2686 23.6343 0.7075
6 15.5354 -9.8317 4.9191 7.7679
7 293.4783 -7.0000 3.5000 -146.7391
8 -89.6691 -6.5315 3 .1994 -44.8346
9 -89.6691 -6.5315 3 .1994 -44.8346
10 -10.7129 -7.0000 3.5000 5.3565
11 4.6010 -16.5441 8.2722 8.2722
12 -16.1965 -7.0000 3.5000 8.0982
13 0.4761 -14.0599 7.0300 -0.2810
14 -2.0073 14.0696 -7.0347 -1.0881
15 -183.2368 -0.8548 1.7126 91.6184
16 176.9846 -0.8513 1.9177 88.4923

Table C.2
Summary version of complex roots in the nonlinear dynamic system for GANs.

Complex 
Root

𝑥r 𝑥𝑖 𝑦r 𝑦𝑖 𝑧r 𝑧𝑖 𝑡r 𝑡𝑖

1 -3827.0056 251.0418 -6.7040 -0.4930 3.5914 -1.9729 -125.5209 -1913.5028

2 -3759.9033 -630.6798 -5.4294 0.9647 -1.7093 4.0156 -315.3399 1879.9517

3 -3220.8331 221.2571 -6.7585 -0.5263 3.3703 -1.8638 -110.6285 -1610.4165

4 -3041.1003 -938.4795 -5.5371 1.6565 -0.5712 2.5264 469.2397 -1520.5502

5 -1788.3528 -596.5841 -5.3560 1.7036 -0.7870 2.3464 298.2920 -894.1764

…                                     …                                                         …                                                         …                                                          …

100 -133.5313 779.4946 -1.2230 0.3623 -1.0623 -2.4679 66.7656 -389.7473

101 -133.0367 495.6223 -4.0944 0.7863 -2.4437 0.9133 66.5184 -247.8112
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102 -131.0331 257.8225 -4.8984 1.8826 -1.1082 1.8168 65.5165 -128.9112

103 -130.5951 468.4095 -4.0640 0.8027 -2.4056 0.8944 65.2976 -234.2047

104 -129.0543 19.0924 -6.8699 0.2041 33.3968 -0.0581 9.5462 64.5272

…                                     …                                                         …                                                         …                                                         …

200 -22.4820 -199.0779 -7.0000 0.0000 3.5000 0.0000 11.2410 99.5390

201 -22.2753 -144.8445 -7.0000 0.0000 3.5000 0.0000 11.1377 72.4222

202 -22.2155 -126.7546 -7.0000 0.0000 3.5000 0.0000 11.1077 63.3773

203 -22.1615 108.6590 -7.0000 0.0000 3.5000 0.0000 11.0807 54.3295

204 -22.1141 90.5582 -7.0000 0.0000 3.5000 0.0000 11.0570 -45.2791

…                                     …                                                         …                                                         …                                                          …

300 15.5554 -35.9223 -7.4479 -1.0359 3.7240 0.4995 7.7777 -17.9612

301 15.5645 -17.9786 -8.2113 -1.4006 4.1074 0.6922 7.7822 -8.9893

302 16.4398 1.8560 -9.2069 1.0721 1.9300 4.2149 8.2201 0.9279

303 17.9113 -66.6654 -2.3564 -1.6802 -1.2152 0.1454 8.9556 -33.3327

304 18.4919 -17.4781 -7.7102 0.9617 1.6475 3.5191 8.7391 9.2459

…                                     …                                                         …                                                         …                                                          …

400 169.7652 9.2402 -6.5965 1.2495 1.5961 2.9415 -4.6201 84.8826

401 173.2456 -987.4161 -6.3657 0.9584 1.6987 3.2913 86.6228 -493.7081

402 177.9505 17.7470 -7.1210 -0.1228 3.6115 0.0162 8.8735 -88.9753

403 184.1343 -896.9345 -5.1181 1.1746 -1.8411 2.7696 -92.0671 448.4672

404 186.4457 139.1357 -3.4434 1.7269 -1.4085 0.6355 69.5678 -93.2229

…                                     …                                                         …                                                        …                                                          …

500 2131.3413 1247.5884 -6.4447 1.2305 1.3423 2.7921 -623.7942 1065.6706

501 2410.0826 -15.9027 -6.8494 -0.1219 4.0120 -0.4399 -7.9513 -1205.1413

502 2462.7787 -446.1380 -6.4238 -1.2150 1.3324 -2.8588 -223.0690 -1231.3893

503 2805.6744 -514.2570 -6.4166 -1.2219 1.3078 -2.8588 -257.1285 -1402.8372

504 2954.4204 -29.4986 -6.8207 -0.1322 4.1066 -0.5130 -14.7493 -1477.2102

Table C.3
First 50 rows of the full version of complex roots in the nonlinear dynamic system for GANs.
𝑥r 𝑥𝑖 𝑦𝑟 𝑦𝑖 𝑧𝑟 𝑧𝑖 𝑡𝑟 𝑡𝑖

-3827.0056 251.0418 -6.7040 -0.4930 3.5914 -1.9729 -125.5209 -1913.5028

-3759.9033 -630.6798 -5.4294 0.9647 -1.7093 4.0156 -315.3399 1879.9517

-3220.8331 221.2571 -6.7585 -0.5263 3.3703 -1.8638 -110.6285 -1610.4165

-3041.1003 -938.4795 -5.5371 1.6565 -0.5712 2.5264 469.2397 -1520.5502

-1788.3528 -596.5841 -5.3560 1.7036 -0.7870 2.3464 298.2920 -894.1764

-1222.2883 163.3070 -6.7648 -1.0517 1.9802 -2.1896 -81.6535 -611.1442

-1213.5499 423.9038 -5.2266 -1.7086 -0.9270 -2.2380 211.9519 606.7750

-1035.9653 -350.6375 -5.1287 -1.9548 -0.8424 -1.9489 -175.3187 517.9827

-1029.5864 -2251.0746 -3.3494 -1.6128 -1.5494 -0.6206 -514.7932 -1125.5373

-940.1189 -10.7766 -2.4968 0.6096 -2.3045 0.1175 -30.6057 -10.8758
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-939.7647 -73.2125 -3.0470 0.8199 -2.4161 0.0177 -21.9396 15.1886

-936.6847 34.0505 -2.7237 -0.6507 -2.3327 -0.0682 -33.8813 -2.8246

-797.2886 -4879.0064 -6.0549 -0.9473 1.0225 -4.2978 398.6443 2439.5032

-729.6153 -1724.9502 -6.3485 -2.5818 0.2099 -1.5649 364.8077 862.4751

-728.4713 -1514.9654 -3.2695 -1.6873 -1.4976 -0.5841 -364.2356 -757.4827

-717.4717 -4258.1220 -6.0656 -0.9744 1.0014 -4.1692 358.7358 2129.0610

-676.8906 -1393.0507 -3.2492 -1.7029 -1.4867 -0.5746 -338.4453 -696.5253

-653.6214 -264.7268 -3.9694 -0.7971 -2.3838 -0.8724 -132.3634 326.8107

-635.7368 221.2442 -2.8398 -1.4102 -1.5791 -0.3348 -317.8684 110.6221

-626.1629 352.8926 -1.4396 0.4284 -1.8685 -1.6721 -313.0814 176.4463

-600.1267 -80.1943 -6.5751 1.1610 1.7217 2.5158 -40.0971 300.0633

-597.8452 -3369.6202 -6.0877 -1.0214 0.9779 -3.9562 298.9226 1684.8101

-586.3370 -3287.0709 -6.0904 -1.0264 0.9764 -3.9342 293.1685 1643.5354

-585.9240 630.6092 -4.8837 -0.8198 -1.4921 -2.2795 -0.0606 23.3847

-540.4614 -108.7284 -3.6582 0.4693 -2.3635 0.4548 54.3642 -270.2307

-537.4068 116.8856 -5.1155 -1.4099 -1.4355 -2.6134 -58.4428 -268.7034

-536.8317 643.2465 -4.7819 -0.9612 -1.4854 -2.3065 -7.5542 27.3168

-531.4087 1059.1810 -3.1756 1.7519 -1.4524 0.5394 -265.7043 529.5905

-516.1709 198.8251 -4.9858 -1.6424 -1.1772 -2.0733 99.4125 258.0854

-515.4116 825.0197 -1.4018 0.6426 -1.2705 -1.7873 -20.4796 1.2485

-508.4903 -650.5166 -4.7244 1.0290 -1.4826 2.3188 -13.0946 -27.0394

-477.8444 661.4810 -4.6639 -1.0935 -1.4802 -2.3323 -18.3957 24.2273

-472.2952 -1067.6615 -5.7771 -2.3970 -0.1694 -1.7621 236.1476 533.8307

-466.5200 -2462.8934 -6.1268 -1.0828 0.9760 -3.6878 233.2600 1231.4467

-454.6220 99.8647 -6.4018 -1.0607 1.5456 -2.8959 49.9324 227.3110

-447.5814 677.5564 -4.6021 -1.1549 -1.4763 -2.3476 -21.8609 19.5002

-417.7535 -51.0111 -6.5090 1.1892 1.6639 2.6099 -25.5056 208.8768

-397.2948 -719.3361 -4.4763 1.2711 -1.4596 2.3788 -22.3586 -10.1608

-378.7044 80.1942 -5.0442 -1.4786 -1.4277 -2.4793 -40.0971 -189.3522

-377.3294 -727.3724 -3.0596 -1.8104 -1.4106 -0.4827 -188.6647 -363.6862

-367.1840 -1565.8932 -5.6935 -2.1583 -0.3054 -2.2392 -5.0432 -53.7176

-356.3739 249.9108 -4.7544 -1.3677 -1.6386 -2.1111 -178.1870 124.9554

-355.9206 -74.6593 -5.0318 1.4907 -1.4262 2.4592 -37.3297 177.9603

-355.1423 1765.7345 -6.1832 1.1386 1.0191 3.4328 177.5711 -882.8672

-344.0403 38.8429 -6.4785 -1.2043 1.6448 -2.6458 -19.4214 -172.0201

-343.7958 18.4709 -6.9702 0.1008 3.3817 0.0623 9.2354 171.8979

-341.0326 -80.3848 -6.3866 1.0476 1.5243 2.8868 40.1924 -170.5163

-340.0836 341.3255 -0.8791 -1.3331 -0.6825 0.4358 -170.6628 -170.0418

-339.3235 -544.2263 -1.3240 -0.3952 -1.5637 2.1503 -272.1131 169.6618
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Appendix D. Coefficient, Discretized Nonlinear Equations and Coefficient Matrices of 
Ten-variable Heat Conduction Slab Problem after Linearization.

Table D.1
Coefficient of ten-variable heat conduction slab problem.

Coefficient Value
𝜌 8960
𝑐𝑉 385
𝐴 1

𝑑𝑥 0.0001
𝑑𝑡 0.0001
𝑐1 0.1467
𝑘𝑖 404.6675 ― ((𝑇𝑖 ―0.5 +  𝑇𝑖 +0.5) / 2) ∗  𝑐1;

Discretized Nonlinear Equations

 𝛽 =
𝛼dt
Δ𝑥2 ; 𝜃 =

ℎdt
𝜌𝑐𝑉𝑑𝑥 ; (intermediate quantities for convenience and preconditioning) 

𝑇1 = 25                                                                                                                                                                        (D.1)

𝑇𝑖 ― 𝑇𝑝𝑖 = 𝛽𝑖+0.5(𝑇𝑖 +1 ― 𝑇𝑖) ― 𝛽𝑖―0.5(𝑇𝑖 ― 𝑇𝑖 ―1), for 𝑖 ∈ {2, 3, 4, 5} ∪ {7, 8, 9, 10}                                  (D.2)

𝑇6 ― 𝑇𝑝6 = 2.1452 × 10―3 + 𝛽6.5(𝑇7 ― 𝑇6) ― 𝛽5.5(𝑇6 ― 𝑇5)                                                               (D.3)

𝑇11 ― 𝑇𝑝11 = 2𝛽10.5(𝑇11 ― 𝑇10) ―2𝜃(𝑇11 ―25)                                                                                 (D.4)

linearized coefficient-matrix elements, variable vector, and known-valued vector

𝑚 = 𝜌 ⋅ 𝑐𝑣 ⋅ 𝑑𝑥2

𝑑𝑡
; 𝑛 = ℎ ⋅ 𝑑𝑥; (intermediate quantities for convenience and preconditioning)

𝑎(1,1) = 1,
𝑎(2,1) = ― 𝑘1.5, 𝑎(2,2) = m + 𝑘1.5 + 𝑘2.5, 𝑎(2,3) = ― 𝑘2.5,
𝑎(3,2) = ― 𝑘2.5,𝑎(3,3) = m + 𝑘2.5 + 𝑘3.5,𝑎(3,4) = ― 𝑘3.5,
𝑎(4,3) = ― 𝑘3.5,𝑎(4,4) = m + 𝑘3.5 + 𝑘4.5,𝑎(4,5) = ― 𝑘4.5,
𝑎(5,4) = ― 𝑘4.5,𝑎(5,5) = m + 𝑘4.5 + 𝑘5.5,𝑎(5,6) = ― 𝑘5.5,
𝑎(6,5) = ― 𝑘5.5,𝑎(6,6) = m + 𝑘5.5 + 𝑘6.5,𝑎(6,7) = ― 𝑘6.5,
𝑎(7,6) = ― 𝑘6.5,𝑎(7,7) = m + 𝑘6.5 + 𝑘7.5,𝑎(7,8) = ― 𝑘7.5,
𝑎(8,7) = ― 𝑘7.5,𝑎(8,8) = m + 𝑘7.5 + 𝑘8.5,𝑎(8,9) = ― 𝑘8.5,
𝑎(9,8) = ― 𝑘8.5,𝑎(9,9) = m + 𝑘8.5 + 𝑘9.5,𝑎(9,10) = ― 𝑘9.5,
𝑎(10,9) = ― 𝑘9.5,𝑎(10,10) = m + 𝑘9.5 + 𝑘10.5,𝑎(10,11) = ― 𝑘10.5,
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𝑎(11,10) = ― 2𝑘10.5,𝑎(11,11) = m +2𝑘10.5 + 2𝑛. (Other unwritten elements all equal zero.)
𝑏(1) = 25,  𝑏(2) = 𝑚𝑇𝑝(2),   𝑏(3) = 𝑚𝑇𝑝(3), 
𝑏(4) = 𝑚𝑇𝑝(4),  𝑏(5) = 𝑚𝑇𝑝(5) + 38400,   𝑏(6) = 𝑚𝑇𝑝(6),
𝑏(7) = 𝑚𝑇𝑝(7),  𝑏(8) = 𝑚𝑇𝑝(8),   𝑏(9) = 𝑚𝑇𝑝(9),
𝑏(10) = 𝑚𝑇𝑝(10),  𝑏(11) = 𝑚𝑇𝑝(11) + 50𝑛.
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