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Progressive distillation improves feature learning via implicit curriculum

Anonymous Authors1

Abstract
Knowledge distillation, where a student model
learns from a teacher model, is a widely-adopted
approach to improve the training of small mod-
els. A known challenge in distillation is that a
large teacher-student performance gap can hurt
the effectiveness of distillation, which prior works
have aimed to mitigate by providing intermedi-
ate supervision. In this work, we study a popular
approach called progressive distillation, where
several intermediate checkpoints of the teacher
are used successively to supervise the student as it
learns. Using sparse parity as a testbed, we show
empirically and theoretically that these intermedi-
ate checkpoints constitute an implicit curriculum
that accelerates student learning. This curriculum
provides explicit supervision to learn underlying
features used in the task, and, importantly, a fully
trained teacher does not provide this supervision.

1. Introduction
Knowledge distillation enables compression of a large, capa-
ble teacher model into a small student model. A plethora of
works across different tasks and domains have demonstrated
that distillation is an effective learning algorithm, but there
is little understanding of when and how distillation is better
than learning from ground-truth labels. Prior work has sug-
gested that teachers provide richer information (Lopez-Paz
et al., 2016; Tang et al., 2020; Menon et al., 2021; Dao et al.,
2021) or better regularization (Yuan et al., 2020; Mobahi
et al., 2020; Nagarajan et al., 2024). However, there is also
evidence that a large gap in capabilities between the teacher
and the student can negatively impact the success of distilla-
tion (Cho & Hariharan, 2019; Mirzadeh et al., 2019). One
commonly suggested fix is to use additional supervision to
bring the student and teacher behaviors closer to one an-
other (Mirzadeh et al., 2019; Jin et al., 2019; Jafari et al.,
2021; Harutyunyan et al., 2022).
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This work focuses on a particular instantiation of this idea,
which we call progressive distillation, where the student
receives supervision from intermediate checkpoints of the
teacher.1 Progressive distillation has grown increasingly
popular in practice (Anil et al., 2018; Jin et al., 2019; Haru-
tyunyan et al., 2022), and is thought to improve the gen-
eralization of the student by modulating task difficulty to
follow the student’s capability during training (Harutyunyan
et al., 2022; Jafari et al., 2021). However, in this work, we
demonstrate instead that the benefits of progressive distilla-
tion can be better characterized through how it improves the
optimization of the student model.

We use the classical sparse parity task (O’Donnell, 2014;
Edelman et al., 2023; Abbe et al., 2024) as our testbed,
where the input is a vector of ±1 values and the label is
given by the parity of some unknown subset of the coor-
dinates (i.e., the support). It is well known that for sparse
parity on n bits with a size-k support, the amount of com-
putation required by SQ learning is Ω(nk) (Kearns, 1998).
In this setting, we demonstrate that progressive distillation
enables the student to learn with less data and fewer opti-
mization steps than what is required when learning from
the data alone, circumventing the SQ lower bound (Sec-
tion 3). Specifically, in Section 4, we show that progressive
distillation provides an implicit curriculum, as intermediate
checkpoints of the teacher reveals information about the sup-
port of the sparse parity. In addition to empirical evidence,
we show formally that such implicit curriculum reduces
the number of online SGD steps required by the student
compared to either learning from ground-truth labels or dis-
tilling only from a fully trained teacher (Theorem 4.1). Our
findings shed light on when and how distillation provides a
benefit over learning directly from the data.

Related works. One persistent surprise in knowledge
distillation is that increasing the strength of the teacher does
not necessarily lead to improved student performance. Prior
works have speculated that an overly large “teacher-student
gap” may make it difficult for the student to follow the
teacher and thus proposed to bridge this gap by introducing
supervision of intermediate difficulty (Mirzadeh et al., 2019;
Cho & Hariharan, 2019; Harutyunyan et al., 2022; Jafari

1Several works also refer to progressive distillation as online
distillation (Anil et al., 2018; Harutyunyan et al., 2022).
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et al., 2021). Mirzadeh et al. (2019) adopted a multi-step dis-
tillation strategy using models of intermediate sizes, and Shi
et al. (2021) proposed a technique to directly inject teacher
supervision into the student’s trajectory using an approx-
imation of mirror descent. Theory on what types of labels
provide the strongest learning signal motivated using a
moving average of the teacher to supervise the student (Ren
et al., 2022). Most similar to our work, Harutyunyan et al.
(2022) analyzed distillation for extremely wide networks
and found it helpful to learn from the intermediate check-
points of the teacher. They speculated that this is because
neural networks learn progressively complex functions
during training (Kalimeris et al., 2019). In contrast to their
work characterizing the generalization ability of the student,
we study the optimization dynamics of distillation.

2. Setup
We study the sparse parity task, which is commonly used as
a testbed in understanding optimization (Barak et al., 2022;
Bhattamishra et al., 2022; Morwani et al., 2023; Edelman
et al., 2023; Abbe et al., 2024). The input x is a boolean
vector picked uniformly at random from the n-dimensional
hypercube {±1}n. The label y ∈ {±1} is determined by
some size-d subset S of the n coordinates. In particular,
y =

∏
i∈S xi. It is well-known that the sparse parity prob-

lem is difficult to learn and requires Ω(nd) samples when
using online SGD (Barak et al., 2022; Edelman et al., 2023).

Extension to hierarchical parity: We also consider a
hierarchical extension of the sparse parity task. In this
setting, labels are assigned using a binary tree, where the
edge taken from each node is determined by the parity of
the coordinates within that node. The hierarchical nature
of the task requires the model to learn many features, each
of which can require different sample complexity, so it
provides further insight into how progressive distillation
may behave on more complex problems. We defer an exten-
sive discussion of this setting to Appendix C but mention
relevant results alongside the standard parity setting.

2.1. Distillation strategies

Let fT , fS denote the teacher and the student models,
respectively, each of which outputs real-valued logits over C
classes. The logits are turned into a probability distribution
using softmax(fS/τ) for some temperature hyperparameter
τ . We always use τ = 1 for the student (Zheng & Yang,
2024), and default to τ = 1 in the teacher unless otherwise
specified. Given a teacher model fT , the distillation loss
for the student fS on a sample x with label y is defined as

Lα(x, y; fS , fT ) = αLCE(softmax(fS(x)), y)
+(1− α)LKL(softmax(fS(x)), softmax(fT (x)/τ)),

(1)

where LCE is the cross entropy loss, LKL(fS , fT ) :=
−
∑

i∈[C] fT log fS is the KL loss for distillation, and
α ∈ [0, 1] is a hyperparameter for weighting ground-truth
supervision against teacher supervision. Our experiments
set α = 0 to isolate the effect of teacher supervision.

We consider two strategies for choosing the teacher. The
first is one-shot distillation, where fT is fixed throughout
training to the last-iterate checkpoint. The second strategy
is progressive distillation, where the student learns from
(multiple) intermediate checkpoints of a teacher’s training
run, denoted by {f (1)

T , · · · , f (N)
T } for some N . There are

many ways to choose these {f (i)
T }. A generically applicable

strategy is to choose {f (i)
T } at some fixed intervals in the

teacher’s training run (Anil et al., 2018; Harutyunyan et al.,
2022). There is often a trade off in choosing the interval:
too frequent checkpointing makes optimization easier, but
requires more storage for the checkpoints. Interestingly,
we find that a few (or even one) checkpoints suffice to
drastically speed up the training of the student (Section 3).

3. Progressive Distillation Accelerates Training
This section empirically highlights the benefit of progressive
distillation. We compare the following training strategies:

1. Cross-entropy (CE) training (i.e. Eq. 1 with α = 1),
2. One-shot distillation from the teacher’s final checkpoint

(α = 0).
3. Progressive distillation from teacher’s checkpoints in reg-

ular intervals (α = 0).

Experiment Details. The teacher and student models are 1-
hidden-layer MLPs with ReLU activation. The teacher has a
hidden width of 5× 104, and the students are of widths 102

or 103. All models are trained using SGD with batch size 1
for 20M steps on sparse parity data with n = 100 and d = 6
(Section 2). The learning rate is searched over {10−2, 5×
10−3, 10−3}. Evaluation is based on a held-out set consist-
ing of 4096 examples, and we report the average across 3
different training seeds. For strategy (2) we use the teacher
checkpoint at the end of training (20M checkpoint), and for
strategy (3) we take checkpoints that are 0.5M steps apart.

Small models require longer training to learn sparse
parities. We observe that when using CE training, wider
models learn the sparse parity much faster (Figure 1a),
consistent with findings in prior work (Edelman et al., 2023).
Among distillation strategies, with the default temperature
1, the student barely benefits from distilling the final teacher
checkpoint (Figure 1b). In contrast, progressive distillation
allows the student to learn at the same speed as a much
wider teacher and reach a perfect accuracy.2

2More results are shown in Figure 4.
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Figure 1. (a) Wider models learn faster from ground truth labels.
We show accuracy curves for models of different widths trained
on sparse parity data with n = 100 and S = 6 (Section 2). (b)
Progressive distillation at regular intervals accelerates learning
in a student with width 1000. Similar observations hold for width-
100 students (Figure 4) and hierarchical data (Figures 3 and 5).

How many checkpoints do we need? From a practical
standpoint, it is desirable to use fewer checkpoints in pro-
gressive distillation as checkpoints can be expensive to store
and load. As such, we also test another strategy that we call
p-shot Distillation, which is progressive distillation with
p−1 intermediate checkpoints and the final checkpoint. For
sparse parity, using as few as 1 intermediate checkpoint (i.e.
p = 2) suffices to significantly accelerate training, as shown
in (Figure 2, right). We find it most useful to use a check-
point taken during the “phase transition” of the accuracy
(Figure 2, left), a choice we will justify in the next section.

4. Mechanistic Understanding: Progressive
Distillation Provides Implicit Curriculum

In this section, we demonstrate that the intermediate check-
points constitute an implicit curriculum that accelerates stu-
dent learning when performing progressive distillation.

4.1. Monomial Curriculum

Learning sparse parity with noisy gradients is a type of
learning with statistical queries (SQ), for which the O(nd)
SQ lower bound applies. When learning with neural net-
works, Edelman et al. (2023) showed that the neurons can
be viewed as parallel queries. Therefore, treating the prod-
uct of network width and the number of training steps as
proportional to the number of queries, the SQ lower bound
implies a fundamental trade-off between the width and the
steps, where narrower networks require more steps to learn.

However, as this section will show, distillation can help
circumvent such lower bound by providing an implicit cur-
riculum. To see why, note that learning sparse parity with
neural networks generally requires two steps: searching for
the support S, for which a large width is required, and sub-
sequently computing the product of variables in the support,
i.e.

∏
i∈S xi. Distillation is helpful because a wide teacher

can first learns the support S, and provide the student with
outputs highly correlated3 with degree-1 monomials in the
support, i.e. xi,∀i ∈ S. Learning from this monomial re-
duces the sample complexity required for the student model
to learn the support. We note that this is a specific instan-
tiation of the curriculum that neural networks are broadly
known to undertake when learning sparse parity (Barak et al.,
2022; Edelman et al., 2023). Below, we demonstrate that
the teacher empirically obeys this curriculum (Section 4.2),
followed by a theoretical justification (Section 4.3).

4.2. Empirical Evidence for the Monomial Curriculum

We demonstrate that at certain intermediate checkpoints, the
teacher’s logits correlate strongly with the aforementioned
support monomials (Figure 2b). This correlation diminishes
as training proceeds, and the final teacher checkpoint pro-
vides little signal as to what the support is. Notably, the
correlation spikes at the time step where the teacher’s ac-
curacy dramatically increases. Furthermore, we observe
that for 2-shot distillation, only the teacher’s checkpoint
during phase transition helps train a student to 100% ac-
curacy (Figure 2). For hierarchical data, the correlations
with variables in different features can emerge at different
time steps (Figure 8). As such, we observe that 2-shot dis-
tillation fails to train a model to 100% accuracy, and 3-shot
distillation with checkpoints selected based on emergence
of different features can instead help train a student model to
100% accuracy (Figure 7). Our findings suggest that more
complex tasks likely require more intermediate checkpoints.

The succes of progressive distillation does not come from
soft label regularization. One potential hypothesis for
the benefit of intermediate checkpoints is that earlier check-
points provide “softer” (as opposed to one-hot) labels, which
prior works suggest have a regularization benefit (Yuan et al.,
2020). Intuitively, softer labels allow the student to have
smaller weight norms, hence acting as weight regularization.
However, we show that this hypothesis does not explain
progressive distillation: We repeat the experiments in Fig-
ure 2 using hard labels from the teacher (by setting the
temperature τ = 10−4), thereby removing any potential
regularization effects induced by soft labels. Our findings
are largely unchanged, suggesting that it is the monomial
curriculum, not regularization, that is the key mechanism to
the success of progressive distillation (Figure 2d).

4.3. Theoretical justification

We now formalize the benefits of progressive distillation
for the d-sparse parity problem. The student fS and the
teacher fT models are 1-hidden layer MLPs with ReLU
activations, whose sizes are determined by the hidden layer

3Correlation to a polynomial g is measured by Exg(x)fT (x)
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Figure 2. (a) Teacher exhibits a sharp phase transition in accuracy between 6M and 7M steps during training. 3 candidate choices of
intermediate checkpoints for 2-shot Distillation are marked by triangles ({6M, 6.5M, 7M} checkpoints). (b) During the phase transition,
the teacher’s output fT shows higher correlation to monomials of variables in the support, compared to monomials not in the support. (c)
Teacher’s checkpoint during phase transition (6.5M ) helps 2-shot Distillation performance to converge to 100% accuracy, while other
checkpoints don’t. (d) Even with extremely low temperature, the benefit of the phase transition checkpoint persists, suggesting that the
monomial curriculum, not soft label regularization, is the key to the success of progressive distillation. For the 2-shot Distillation in (c, d),
the student is trained with an intermediate checkpoint for 1M steps, followed by distillation from the final teacher checkpoint until the
end of training. Student is of width 1000. Results for a student of width 100 are in Appendix Figure 6.

width. Following previous works (Barak et al., 2022; Edel-
man et al., 2023), we analyze a simplified two-stage training
procedure and modify the loss function to use the hinge
loss: Lα(x, y; fS , fT ) = αmax(0, 1 − fS(x)y) + (1 −
α)max(0, 1 − fS(x)fT (x)). This modification allows us
to verify the existence of the monomial curriculum by com-
puting the correlation of the student’s output to either the
true label or the teacher’s output.

When training from true labels, there is a gap in the teacher’s
weights between coordinates in and out of the support S. We
show that the magnitude of the correlations between fT and
the monomials xi,∀i ∈ S, is at least Ω(1/d) at this stage
(Theorem B.5). As training progresses, the correlations to
the monomials diminish (Theorem B.7).

Recall that learning S requires Ω(nd) samples under su-
pervision of true labels (Edelman et al., 2023). In contrast,
under supervision of the form

∑
i∈S xi + g where g is a

higher order polynomial over S, the model can learn the
support S with Θ(n) samples. However, as the correlation
to the support monomials decreases, the necessary sample
complexity moves toward learning from true labels only.

This comparison can be formalized by the sample complex-
ity gaps between one-shot distillation from a O(n−c)-error
teacher model fT (for c ≥ 3) and progressive distillation.
For progressive distillation, we assume that we have access
to the teacher checkpoint that has correlations of magnitude
Ω(1/d) to the monomials xi,∀i ∈ S. We train the student
model on that checkpoint for a few steps, and then switch
to distilling from the O(n−c)-error checkpoint, similar to
what is done in the experiments. Formally, we show:

Theorem 4.1 (Informal version of Theorem B.8). Consider
learning d-sparse parity with a student model of size m̃ ≥
Ω̃(2d). Suppose, we are learning from a teacher with loss

O(n−c) error for some c ≥ 3. Then, the total sample
complexity needed for the student to reach O(ϵ)-loss for
progressive distillation is Θ̃(2dn2ϵ−2 + d2). However, one-
shot distillation requires at least Ω(nmin(2c,d)) samples.

Remark 4.2. One difference in the analysis compared to
the experiments is that the former uses SGD with large
batch sizes. A potential direction to bridge this gap is to use
analyses similar to those in Abbe et al. (2023), which studies
online SGD with Gaussian data. Moreover, our experiments
use SGD with fresh samples and batch size 1, as the sample
complexity lower bounds also imply lower bounds on the
number of optimization steps. Understanding lower bounds
on sample complexity and optimization steps for settings
like minibatch SGD and multi-epoch training (Dandi et al.,
2024) is another interesting future direction.

5. Conclusion
This work studies how knowledge distillation affects the
optimization of the student, with a focus on feature learn-
ing in classification. Motivated by the teacher-student gap,
we study progressive distillation methods where the stu-
dent learns from intermediate checkpoints of the teacher,
as opposed to the standard one-shot distillation where the
student can only access supervision from one (typically
fully-trained) teacher. We find that progressive distillation
benefits the learning of the student by providing an implicit
curriculum, complementing prior literature that identified
the benefits of distillation in terms of generalization and reg-
ularization. Specifically, using sparse parity and its variants
as testbeds, we show theoretically and empirically that the
intermediate teacher checkpoints provide supervision that
can accelerate student learning. We leave it to future work
to extend our experiments and analysis to different tasks.
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Progressive distillation improves feature learning via implicit curriculum

A. Additional background
Leap complexity The leap complexity is a notion provided by Abbe et al. (2023) that quantifies the difficulty of learning
hierarchical structure. As noted in Section 4, for boolean functions, 4 the leap complexity roughly corresponds to the
size of the growth in support. We now provide the formal definition in Abbe et al. (2023). Given a boolean function
h : {±1}n → {±1}, write h in the Fourier basis as

h(z) =
∑

S∈{0,1}n

ĥ(S)χS(z), (2)

where ĥ(S) := ⟨h, χS⟩ denote the Fourier coefficients, and χS(z) :=
∏

i∈S zSi
i .

Given this decomposition, the leap complexity is defined to be the maximum growth in support (i.e. S) at each step, with the
optimal ordering of the polynomials in the decomposition. Formally:

Definition A.1 (Leap complexity (Abbe et al., 2023)). Given a boolean function h, let S(h) := {S1, · · · , Sl} denote the set
of non-zero basis elements of h, for some l ∈ Z+, an Sj ∈ {0, 1}n. The leap complexity of h is defined as

Leap(h) := min
π∈

∏
l

max
i∈[l]
∥Sπ(i) \ ∪i−1

j=0Sπ(j)∥1, (3)

where ∥Sπ(i) \ ∪i−1
j=0Sπ(j)∥1 :=

∑
k∈[n] Sπ(i)(k)I{Sπ(j)(k) = 0,∀j ∈ [i− 1]}, with Sπ(0) = 0n.

B. Formalization of Section 4.3
The teacher model is defined as

fT (x) =

m∑
i=1

aiσ (⟨wi,x⟩+ bi) .

The student model is similarly defined as

fS(x) =

m̃∑
i=1

ãiσ
(
⟨w̃i,x⟩+ b̃i

)
.

Following Abbe et al. (2023) and Barak et al. (2022), we adopt a two-stage batch gradient descent training, where we first
train the first-layer weights {w1, · · · ,wm}, keeping the output weights {ai}mi=1 fixed . In the second stage of training, we fit
the output weights {ai}mi=1 while keeping others fixed. We keep the biases {bi}mi=1 fixed throughout training. Similar strategy
for training the student model as well. The teacher is trained with hinge loss, given by L(x, y) = max(0, 1− fT (x)y). The
student is trained with Lα(x, y; fS , fT ) = αmax(0, 1− fS(x)y) + (1− α)max(0, 1− fS(x)fT (x)).

Data: We assume the data points are sampled at random from U({±1}n). W.l.o.g., let the target d-sparse parity function be
y = x1x2 · · ·xd.

Notations

• S denotes the support of the sparse parity.

• At any training step t, f (t)
T will refer to the teacher’s output at that step. Its parameters are referred to as θ(t) =

{a(t)i ,w
(t)
i , b

(t)
i }mi=1. The loss for f (t)

T is denoted by Lθ(t) . Notations for the student fS are defined similarly.
• Maj : {±1}n → ±1 represents the majority function on n-dimensional boolean data. On any x, Maj returns the sign

of
∑n

i=1 xi. ζi for i ≥ 1 represents its kth ourier coefficient, i.e. ζi = Ex,yMaj(x)χS(x) for any S ∈ {0, 1}n with
|S| = i. ζi = 0 when i is even, and ζi = Θ(i−1/3/

(
n
i

)
) when i is odd (O’Donnell, 2014).

• τg denotes the error tolerance in the gradient estimate due to mini-batch gradient estimation: let g be the population
gradient and ĝ be the estimated gradient with a few examples, τg is defined such that ∥ĝ − g∥∞ ≤ τg. A τg-error
gradient estimate can be obtained using a batch size of Õ(1/τ2g ).

4The leap complexity can be defined for any function in L2. For the purpose of this paper, we provide a definition for the special case
of boolean functions only.
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Progressive distillation improves feature learning via implicit curriculum

Symmetric Initialization: Following Barak et al. (2022), we use the following symmetric initialization: for each
1 ≤ i ≤ m/2,

wi ∼ U({±1}n), bi ∼ U({−1 + d−1, · · · , 1− d−1}), ai ∼ U({±1/m}),
wi+m/2 = wi, bi+m/2 = bi, ai+m/2 = −ai.

Algorithm 1 2-stage training

Require: Stage lengths: T1, T2, learning rates η1, η2, batch size B1, B2, weight decay λ1, λ2.
for t ∈ [0, T1] and all i ∈ [m] do

Sample B1-samples {(x(j), y(j))}B1
j=1.

Update the weights wi as w(t)
i ← w

(t−1)
i − η1E(x,y)∈{(x(j),y(j))}B1

j=1
∇wi

(
Lθ(t)(x, y) + λ1 ∥wi∥2

)
.

end for
for t ∈ [0, T2] and all i ∈ [m] do

Sample B2-samples {(x(j), y(j))}B2
j=1.

Update the outer layer weights ai as a(t+T1)
i ← a

(t+T1−1)
i − η2E(x,y)∈{(x(i),y(i))}B2

j=1
∇ai

(
Lθ(t+T1−1)(x, y) + λ2a

2
i

)
.

end for

B.1. Lower bound on sample complexity

We first show that the necessary computation (i.e. the product of network width, number of steps, and number of samples) to
learn d-parity for a finite size model is Ω(nd). We take the following result from (Edelman et al., 2023):
Theorem B.1 (Width-optimization trade-off, cf. Proposition 3 in Edelman et al. (2023)). For δ > 0, gradient noise τg > 0,

and model width m > 0, if T ≤ 1
2

(
n
d

) δτ2
g

m , then there exists a (n, d)-sparse parity such that w.p. at least 1 − δ over the

randomness of initialization and samples, the loss is lower bounded as L(f (t)
T ) ≥ 1− τg for all t ∈ {1 · · ·T}.

Hence, for a fixed batch size (and hence a fixed τg), we either use a bigger width, or more number of gradient steps (which
translates to sample complexity since we are using fresh samples each batch).

B.2. First stage analysis for the teacher

First, we show that with an appropriate learning rate, the magnitude of the weights wij on coordinates i ∈ S increases to 1
2d ,

while the coordinates i ̸∈ S stay O
(

1
dn

)
small.

Theorem B.2 (Single step gradient descent, Adapted from Claims 1, 2 in Barak et al. (2022)). Fix τg, δ > 0. Set T1 as 1.
Suppose the batch size B1 ≥ Ω(τ−2

g log(mn/δ)). For learning rate η1 = m
d|ζd−1| and λ1 = 1, the following conditions hold

true for all neurons i ∈ [m] at the end of first stage of training w.p. at least 1− δ.

1.
∣∣∣∣w(1)

ij −
sign(a

(0)
i ζd−1) sign(χ[d]\{j}(w

(0)
i ))

2d

∣∣∣∣ ≤ τg
|ζd−1| , for all j ∈ [d].

2.
∣∣∣∣w(1)

ij −
ζd+1

|ζd−1|
sign(a

(0)
i ) sign(χ[d]∪{j}(w

(0)
i ))

2d

∣∣∣∣ ≤ τg
|dζd−1| , for all j > d.

Proof. The proof is given in Barak et al. (2022), which we outline here for completeness. The proof has two major
components: First, the magnitude of the population gradient at initialization reveals the support of the sparse parity. Second,
the batch gradient and the population gradient can be made sufficiently close given a sufficiently large batch size. We will
explain each step below.

Claim B.3. At initialization, the population gradient of the weight vector in neuron i is given by

Ex,y∇wij
f
(0)
T (x, y) = −1

2
a
(0)
i ζd−1χ[d]\{j}(w

(0)), for all j ∈ S

Ex,y∇wij
f
(0)
T (x, y) = −1

2
a
(0)
i ζd+1χ[d]∪{j}(w

(0)), for all j ̸∈ S

8
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Progressive distillation improves feature learning via implicit curriculum

Thus, the gradient of the weight coordinates wij for any neuron i and j ∈ S has magnitude |ζd−1|, while the gradients of the
weight coordinates wij for any neuron i and j /∈ S has magnitude |ζd+1|. The gap between the gradient in support and out
of support is given by |ζd−1| − |ζd+1| ≥ 0.03((n− 1)−(d−1)/2) (Lemma 2 in (Barak et al., 2022)).

The second component involves applying a hoeffding’s inequality to show the gap between sample and population gradient.

Claim B.4. Fix δ, τg > 0. For all i, j, for a randomly sampled batch of size B1, {(xk, yk)}B1

k=1, with probability at least
1− δ, ∣∣∣Ex,y∼U({±}n)∇wij

f
(0)
T (x, y)− E{(xk,yk)}

B1
k=1

∇wij
f
(0)
T (x, y)

∣∣∣ ≤ τg,

provided B1 ≥ Ω(τ−2
g log(mn/δ)).

Because we want the noise τg to be smaller than the magnitude of the true gradients for the coordinates in the support S, we
want τg to be smaller than |ζd−1|. We set this to get favorable condition for second phase of training (see Theorem B.6).

On the other hand, we show that after the first phase, the output of the network has positive correlations to the individual
variables in the support of the label function, and thus the checkpoint after the first phase can be used to speed up training of
future models.
Lemma B.5. Under the event that the conditions in Theorem B.2 are satisfied by each neuron, which occurs with probability
at least 1− δ w.r.t. the randomness of initialization and sampling, the output of the model after the first phase satisfies the
following correlations:

1. Ex,yf
(1)
T (x)xi ≥ 1

8d +O(τgn |ζd−1|−1
) +O(m−1/2) for all i ∈ S.

2. Ex,yf
(1)
T (x)xi ≤ O((dn)−1) for all i /∈ S.

Proof. Consider a neuron i ∈ [m/2] and its symmetric counterpart i + m/2. W.L.O.G., we assume sign(w
(0)
ij ) =

sign(a
(0)
i ζd−1) for all j ∈ [d], and sign(a

(0)
i ) = 1. Recall that d is assumed to be even, hence χd(w

(0)
i ) = 1. Then, the

condition in Theorem B.2 can be simplified as

w
(1)
ij =

1

2d
+ vij , wi+m/2,j = −

1

2d
− vij , for all j ∈ [d],

w
(1)
ij =

1

2d

ζd+1

|ζd−1|
sign(w

(0)
ij ) + vij , wi+m/2,j = −vij , for all j ≥ d,

where vij satisfies the following conditions.

|vij | ≤
τg
|ζd−1|

, for all j ∈ [d],

|vij | ≤
τg
|ζd−1|

, for all j ≥ d.

Then, the sum of the output of the neurons i and i+m/2 on an input x (ignoring the magnitude of ai) is given by

(f
(1)
T )i(x, y) = σ(

1

2d

d∑
j=1

xj + ⟨vi,x⟩+ bi)− σ(− 1

2d

d∑
j=1

xj + ⟨vi,x⟩+ bi).

In support correlations: We are interested in the correlation of this function to a variable xu for u ∈ S. We argue for
u = 1, as the similar argument applies for others. Thus, we are interested in

Ex,y(f
(1)
T )i(x, y)x1 = Ex,yσ

 1

2d

d∑
j=1

xj +
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi

x1

− σ

− 1

2d

d∑
j=1

xj −
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi

x1. (4)
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Progressive distillation improves feature learning via implicit curriculum

We focus on the first term; argument for the second term is similar. First of all, we can ignore ⟨vi,x⟩ incurring an error of
O(τgn |ζd−1|−1

).

Ex,yσ

 1

2d

d∑
j=1

xj +
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + bi

x1

= Ex,y:x1=+1σ

 1

2d
+

1

2d

d∑
j=2

xj +
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + bi


− Ex,y:x1=−1σ

− 1

2d
+

1

2d

d∑
j=2

xj +
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + bi


≥ 1

2d
Ex,yI

 1

2d

d∑
j=2

xj +
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + bi ≥ 0

 .

The final step follows from the observation that the argument of σ in the first term is 1
d higher than the argument of σ in the

second term. This implies that when the first term is non-zero, it’s at least 1
2d higher than the second term. Hence, we lower

bound by considering one scenario where the first term is non-zero.

Continuing, we can further split the indicator function into cases when each term in the argument of the indicator function is
positive.

Ex,yσ

 1

2d

d∑
j=1

xj +
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + bi

x1

≥ 1

2d
Ex,yI

 1

2d

d∑
j=2

xj +
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + bi ≥ 0


≥ 1

2d
Ex,yI

 d∑
j=2

xj ≥ 0

 I

 n∑
j=d+1

xj ≥ 0

 I (bi ≥ 0)

≥ 1

8d
I (bi ≥ 0) .

From Equation (4), we then have

Ex,y(f
(1)
T )i(x, y)x1 ≥

1

4d
I (bi ≥ 0) +O(τgn |ζd−1|−1

).

As bi has been kept at random initialization and thus is a random variable selected from the set {−1 + 1
d , · · · , 1−

1
d}, with

probability 1
2 , I (bi ≥ 0). This implies, w.p. atleast 1/2 w.r.t. a neuron’s bias initialization, Ex,y(f

(1)
T )i(x, y)x1 ≥ 1

4d +

O(τgn |ζd−1|−1
). The final bound comes from the fact that fT (x, y) = 1

m

∑m
i=1(f

(1)
T )i(x, y) ≥ 1

8d +O(τgn |ζd−1|−1
) +

O(m−1/2), where we apply a hoeffding’s inequality to bound the error term.

Out of support correlations: Similar to the Equation (4), we have for u /∈ S,

Ex,y(f
(1)
T )i(x, y)xu = Ex,yσ

 1

2d

d∑
j=1

xj +
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi

xu

− σ

− 1

2d

d∑
j=1

xj −
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi

xu. (5)
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However, we observe that the influence of xu in each of the terms is bounded by 1
d

ζd+1

|ζd−1| . Consider the first term; the

argument for the second term is similar. We can again ignore ⟨vi,x⟩ incurring an error of O(τgn |ζd−1|−1
).

Ex,yσ

 1

2d

d∑
j=1

xj +
1

2d

ζd+1

|ζd−1|

n∑
j=d+1

sign(w
(0)
ij )xj + bi

xu

= Ex,y:xu=+1σ

 1

2d

ζd+1

|ζd−1|
sign(w

(0)
iu ) +

1

2d

d∑
j=1

xj +
1

2d

ζd+1

|ζd−1|
∑

j=d+1→n;j ̸=u

sign(w
(0)
ij )xj + bi


− Ex,y:xu=−1σ

− 1

2d

ζd+1

|ζd−1|
sign(w

(0)
iu ) +

1

2d

d∑
j=1

xj +
1

2d

ζd+1

|ζd−1|
∑

j=d+1→n;j ̸=u

sign(w
(0)
ij )xj + bi


= Ex,y

C(x)

d

ζd+1

|ζd−1|
sign(w

(0)
iu )I

 1

2d

d∑
j=1

xj +
1

2d

ζd+1

|ζd−1|
∑

j=d+1→n;j ̸=u

sign(w
(0)
ij )xj + bi ≥ 0

 ,

where C(x) ∈ {1, 2} denotes a function that depends on x. The final step follows from a first order taylor expansion of σ.
The magnitude can hence be bounded by 1

d
|ζd+1|
|ζd−1| . This can be bounded by 1

dn (section 5.3, (O’Donnell, 2014)).

B.3. Second stage analysis for the teacher

Lemma B.6 (Second stage Training, cf. Theorem 4 in Barak et al. (2022)). Fix ϵ, δ > 0. Suppose m ≥ Ω(2dd log(d/δ)),
n ≥ Ω

(
d4 log(dn/ϵ)

)
. Furthermore, suppose B1 ≥ Ω(|ζd−1|2 d2 log(dn/ϵ)) s.t. the weights satisfy the conditions in

Theorem B.2 with τg = O(|ζd−1| d−1n−1/2) after the first phase. Then after T2 = Ω(mn2d3/ϵ2) steps of training with
batch size B2 = 1, learning rate η2 = 4d1.5/(n

√
m(T2 − 1)) and decay λ2 = 0, we have with expectation over the

randomness of the initialization and the sampling of the batches:

min
t∈[T2]

E [Lθ(t)(x, y)] ≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ is given by

T1 ×B1 + T2 ×B2 = Θ(|ζd−1|2 d2 log(dn/ϵ)) + Θ(mn2d3/ϵ2)

= Θ(nd−1d2 log(nd/ϵ) + 2dn2d4ϵ−2 log(d/δ)).

Corollary B.7. Under the conditions outlined in Theorem B.6, after T2 steps of training in the second phase, if t† denote
the time step at which the model achieves the minimum loss, i.e. t† := argmint∈[T2] E [Lθ(t)(x, y)], then

E
[
f
(t†)
T (x, y)xi

]
≤ ϵ, for all i ∈ [n].

The proof follows from the fact that if the correlation along y =
∏

i∈S xi is large (≥ 1− ϵ as hinge loss is below ϵ), the
correlations along other fourier basis functions will be small. Hence, depending on how saturated the model is, the signal
along the support elements are small.

B.4. Sample complexity benefits with progressive distillation for the student:

Combining the results in Theorem B.7 and Theorem B.2, we have the final result.

Theorem B.8 (Sample complexity benefits with progressive distillation). Suppose we have a teacher model that has been
trained with 2-stage training Algorithm 1 to loss O(n−c) for some constant c ≥ 1, with its hyperparameters satisfying
the conditions in Theorem B.2 and Theorem B.6. Suppose we train a student model fS of size m̃ ≥ Ω̃(2dd) but with two
different strategies.

11
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Progressive distillation improves feature learning via implicit curriculum

(a) 6-sparse parity. (b) 3-level, 5-variable features.

Figure 3. Models with a smaller width require more steps to learn for cross-entropy training (i.e. Equation (1) with α = 1). The x-axis
shows the training steps, and the y-axis shows the change in accuracy. Each line is the mean of 5 runs, with the shadow showing the
standard error.

1. Progressive distillation: Train for the first T1 steps w.r.t. the teacher’s logits at T1 checkpoint. Then, train with the
final teacher checkpoint in the second stage.

2. Distillation: Train with the final teacher checkpoint (by Theorem B.6) throughout training with any α ∈ (0, 1).

Then,

1. Under progressive distillation, the total sample complexity to reach a loss of ϵ with probability 1− δ is

Θ(d2 log(nm̃/ϵ) + 2dn2d4ϵ−2 log(d/δ)).

2. The necessary sample complexity under distillation is at least Ω(nmin(2c,d)).

Proof. Sample complexity for Progressive distillation: Under progressive distillation, the label is given by f
(T1)
T for the

first T1 steps. By Theorem B.5, Ex,yf
(T1)
T (x, y)xi ≥ Ω(d−1) for all i ∈ S, and Ex,yf

(T1)
T (x, y)xi ≤ O((dn)−1) for all

i /∈ S. With symmetric initialization of ai’s, we can show that Ex,yf
(T1)
T (x, y) = 0. Thus,

f
(T1)
T (x, y) =

d∑
j=1

cjxj +

n∑
j=d+1

cjxj + higher-order polynomials ,

with |cj | ≥ Ω(1/d) for j ∈ S and |cj | ≤ O((dn)−1), for j ̸∈ S. Since
∑d

j=1 cjxj are of complexity 1, we can modify
Theorem B.2 (specifically, Theorem B.4) to show that with appropriate learning rate, we only require a batch size of
B1 ≥ Ω(n2 log(nm/δ)) to get the fourier gap between the coordinates in support and out of support. Thus, the change in
the necessary sample complexity for Theorem B.6 comes from the reduced sample complexity in the first phase.

Sample complexity for Distillation: On the other hand, for the teacher checkpoint with loss O(n−c), the correlation to
the monomial terms in the support is bounded by O(n(−c)) (by Theorem B.7). If we want to learn from the correlations
to the support, we need the number of samples to be at least Ω(n2c) as the gradient noise needs to be lower than O(n−c)
(by Theorem B.4). To learn the support from the true label, we need the number of samples to be at least Ω(nd) (by
Theorem B.1). Hence, for the model to learn the support from a combination of the two components, it needs a sample
complexity at least Ω(nmin(2c,d)).

C. Learning hierarchical data
Formal definition: The input x is a boolean vector picked uniformly at random from the n-dimensional hypercube {±1}n,
and the label y ∈ [K] where K := 2D for some fixed D ∈ N. The underlying labeling function for y follows a binary

12
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Progressive distillation improves feature learning via implicit curriculum
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(a) Width-100 student.

0.0 0.5 1.0 1.5 2.0
Steps 1e7

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CE
Progressive
one-shot (20M)

(b) Width-1000 student.

Figure 4. Experiments on 6-sparse parity. Progressive distillation helps student learn faster (Equation (1) with α = 0), compared to
one-shot distillation from a later checkpoint. The x-axis shows the training steps, and the y-axis shows the change in accuracy for learning
6-sparse parity. Each line is the mean of 3 runs, with the shadow showing the standard error. The green curve is for progressive distillation
at 500k-step intervals; the yellow and red curves are for one-shot distillation from checkpoints at 10M and 20M steps, respectively. The
teacher’s temperature is 1.
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(a) Width-100 student.
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(b) Width-1000 student.

Figure 5. 8-way classification using a hierarchical decision tree of depth 3, with each node represented by 5-sparse parity. Progressive
distillation helps student learn faster (Equation (1) with α = 0), compared to one-shot distillation from a later checkpoint. The x-axis
shows the training steps, and the y-axis shows the change in accuracy for learning 6-sparse parity. Each line is the mean of 3 runs, with
the shadow showing the standard error. The green curve is for progressive distillation at 500k-step intervals; the yellow and red curves are
for one-shot distillation from checkpoints at 10M and 20M steps, respectively. The teacher’s temperature is 1.
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(b) Correlations Ex,yfT (x, y)xi

for i ∈ S during training
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(c) Width 100: 2-shot Distillation
(τ = 1)
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(d) Width 100: 2-shot Distillation
(τ = 10−4)

Figure 6. Continued from Figure 2. (a, b) have been repeated for the ease of presentation. (c, d) show 2−shot distillation results for a
student of width 100. (c) Teacher’s checkpoint during phase transition (6.5M ) helps 2-shot Distillation performance to converge to 100%
accuracy, while other checkpoints don’t. (d) Even with extremely low temperature, the benefit of the phase transition checkpoint persists,
suggesting that the monomial curriculum, not regularization, is the key to the success of progressive distillation. For the 2-shot Distillation
in (c, d), the student is trained with an intermediate checkpoint for 1M steps, followed by distillation from the final teacher checkpoint
until the end of training.
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(b) Width 100: 3-shot distillation
(τ = 1.0)
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(c) Width 1000: 3-shot distillation
(τ = 1.0)
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(d) Width 100: 3-shot distillation
(τ = 10−4)
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(e) Width 1000: 3-shot distillation
(τ = 10−4)

Figure 7. Setting: Depth-3 tree with 5-variable features. 3-shot Distillation from 3 checkpoints; 2 intermediate teacher checkpoints are
used each for 2M steps, and then the final checkpoint is used till end of training. Observations: (a) Teacher shows a phase transition in
accuracy during training. 6 candidate checkpoints for 3−shot Distillation have been marked by triangles, out of which 2 are selected in
each setting. The checkpoint at 6M lies outside the phase transition of the teacher. (b, c): We show the behavior of a few representative
settings. Two main observations: (1) Selecting only a single checkpoint during the phase transition of the teacher is sub-optimal, (2) 2
checkpoints during the stage transition suffice to train the student to 100% accuracy, however the performance can heavily depend on
their selection. Figure 8 shows that the teacher learns the low-level features at 4.5M checkpoint, making it crucial for distillation. (d, e):
Even with extremely low temperature, the benefit of the phase transition checkpoint persists, suggesting that the monomial curriculum,
not regularization, is the key to the success of progressive distillation.

decision tree of depth D, whose leaves correspond to class labels. The branching at a node depends on a sparse parity
problem. An example visualization is provided in Figure 9.

More formally, the nodes in the decision tree are represented by a set of sparse parity problems S = {T1, T2, · · · , TK−1},
where Tj is determined by product of a subset of size d variables selected from the dimensions of the input x (e.g. x1x2 · · ·x5

for d = 5). An input x belongs to the class i ∈ [K] iff D∏
j=1

I[T
v
(i)
j
(x) > 0]

 > 0.

Here, v(i)1 , · · · v(i)D denote the features in S that lie on the path joining the root of the decision tree to the leaf representing the
label i.

Experiment Setup: In this section, we focus on 8-way classification, where the data is generated by a tree of depth 3.
Each feature in S is given by a product of 5 variables. We keep the variables distinct in each feature, i.e., T1 = x1x2 · · ·x5,
T2 = x6x7 · · ·x10 and so on.
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Progressive distillation improves feature learning via implicit curriculum

Figure 8. Projection onto the features for intermediate teacher checkpoints. The projections for a depth-3 tree with 5-variable features.
The 3 plots show one feature in each of the 3 levels of the tree.

Figure 9. An illustration of hierarchical data generation, for a 3-level tree with 5 variables per feature. A feature corresponds to a tree
node, each marked by a rectangle. The product of the binary variables in a feature determines which child to take: the left child is chosen
if the product evaluates to 1, and the right child is chosen if the product is −1. The path leading to the label and the values evaluated in
the corresponding nodes are highlighted in green.
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