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ABSTRACT

Graph Neural Networks (GNNs) have been widely used to learn node represen-
tations and with outstanding performance on various tasks such as node classifi-
cation. However, noise, which inevitably exists in real-world graph data, would
considerably degrade the performance of GNNs revealed by recent studies. In
this work, we propose a novel and robust method, Low-Rank Robust Graph Con-
trastive Learning (LR-RGCL). LR-RGCL performs transductive node classifica-
tion in two steps. First, a robst GCL encoder named RGCL is trained by prototyp-
ical contrastive learning with Bayesian nonparametric Prototype Learning (BPL).
Next, using the robust features produced by RGCL, a novel and provable low-
rank transductive classification algorithm is used to classify the unlabeled nodes
in the graph. Our low-rank transductive classification algorithm is inspired by
the low frequency property of the graph data and its labels, and theoretical result
on the generalization of our algorithm is provided. To the best of our knowl-
edge, our theoretical result is among the first to demonstrate the advantage of
low-rank learning in transductive classification. Extensive experiments on public
benchmarks demonstrate the superior performance of LR-RGCL and the robust-
ness of the learned node representations. The code of LR-RGCL is available at
https://anonymous.4open.science/r/LRR-GCL-3B3C/.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become popular tools for node representation learning in
recent years (Kipf & Welling, 2017; Bruna et al., 2014; Hamilton et al., 2017; Xu et al., 2019).
Most prevailing GNNs (Kipf & Welling, 2017; Zhu & Koniusz, 2020) leverage the graph structure
and obtain the representation of nodes in a graph by utilizing the features of their connected nodes.
Benefiting from such propagation mechanism, node representations obtained by GNN encoders have
demonstrated superior performance on various downstream tasks such as semi-supervised node clas-
sification and node clustering.

Although GNNs have achieved great success in node representation learning, many existing GNN
approaches do not consider the noise in the input graph. In fact, noise inherently exists in the graph
data for many real-world applications. Such noise may be present in node attributes or node labels,
which forms two types of noise, attribute noise and label noise. Recent works, such as (Patrini
et al., 2017), have evidenced that noisy inputs hurt the generalization capability of neural networks.
Moreover, noise in a subset of the graph data can easily propagate through the graph topology to
corrupt the remaining nodes in the graph data. Nodes that are corrupted by noise or falsely labeled
would adversely affect the representation learning of themselves and their neighbors.

While manual data cleaning and labeling could be remedies to the consequence of noise, they are
expensive processes and difficult to scale, thus not able to handle almost infinite amount of noisy
data online. Therefore, it is crucial to design a robust GNN encoder that could make use of noisy
training data while circumventing the adverse effect of noise. In this paper, we propose a novel
and robust method termed Low-Rank Robust Graph Contrastive Learning (LR-RGCL) to improve
the robustness of node representations for GNNs. We first design a new and robust GCL encoder
termed RGCL. Our key observation is that there exist a subset of nodes which are confident in their
class/cluster labels. Usually, such confident nodes are far away from the class/cluster boundaries,
so these confident nodes are trustworthy, and noise in these nodes would not degrade the value
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of these nodes in training a GNN encoder. To infer such confident nodes, we propose a novel
algorithm named Bayesian nonparametric Prototype Learning (BPL). The robust prototypes as the
cluster centers of the confident nodes are computed and used to train the RGCL encoder with a
loss function for prototypical contrastive learning. The confident nodes are updated during each
epoch of the training of the RGCL encoder, so the robust prototype representations are also updated
accordingly. The robust features produced by RGCL is then used to train a novel and provable
low-rank transductive node classifier.

1.1 CONTRIBUTIONS

Our contributions are as follows.

First, we present a novel and provable low-rank transductive node classification algorithm. Our
algorithm works on the features produced by our RGCL encoder, and the algorithm is inspired by
the low frequency property illustrated in Figure 1. That is, the low-rank projection of the ground
truth clean labels possesses the majority of the information of the clean labels, and projection of the
label noise is mostly uniform over all the eigenvectors of a kernel matrix used in classification. As a
result, our algorithm only uses the low-rank part of the input features for transductive classification.
We provide a novel generalization bound for the test loss on the unlabeled data, and our bound
is among the first few works which exhibit the advantage of learning with low-rank features for
transductive classification with the presence of noise.

Second, we propose a Robust Graph Contrastive Learning encoder termed RGCL, which is a fully
unsupervised encoder trained on noisy graph data. The fully unsupervised RGCL encoder is trained
only on the input node attributes without ground truth labels or even the ground truth class number in
the training data. RGCL leverages confident nodes, which are estimated by a new algorithm termed
Bayesian nonparametric Prototype Learning (BPL), to harvest noisy graph data without being com-
promised by the noise.

Extensive experimental results on popular graph datasets evidence the advantage of LR-RGCL over
competing GNN methods for node classification on noisy graph data as well as the robustness of the
RGCL encoder.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) have recently become popular tools for node representation learn-
ing. Given the difference in the convolution domain, current GNNs fall into two classes. The first
class features spectral convolution (Bruna et al., 2014; Kipf & Welling, 2017), and the second class
(Hamilton et al., 2017; Veličković et al., 2017; Xu et al., 2019) generates node representations by
sampling and propagating features from their neighborhood. To learn node representation without
node labels, contrastive learning has recently been applied to the training of GNNs (Suresh et al.,
2021; Thakoor et al., 2021; Wang et al., 2022; Lee et al., 2022; Feng et al., 2022a; Zhang et al., 2023;
Lin et al., 2023). Most proposed graph contrastive learning methods (Veličković et al., 2019; Sun
et al., 2019; Hu et al., 2019; Jiao et al., 2020; Peng et al., 2020; You et al., 2021; Jin et al., 2021; Mo
et al., 2022) create multiple views of the unlabeled input graph and maximize agreement between
the node representations of these views. For example, SFA (Zhang et al., 2023) manipulates the
spectrum of the node embeddings to construct augmented views in graph contrastive learning. In
addition to constructing node-wise augmented views, recent works (Xu et al., 2021; Guo et al., 2022;
Li et al., 2021) propose to perform contrastive learning between node representations and semantic
prototype representations (Snell et al., 2017; Arik & Pfister, 2020; Allen et al., 2019; Xu et al., 2020)
to encode the global semantics information.

However, as pointed out by (Dai et al., 2021), the performance of GNNs can be easily degraded by
noisy training data (NT et al., 2019). Moreover, the adverse effects of noise in a subset of nodes can
be exaggerated by being propagated to the remaining nodes through the network structure, exacer-
bating the negative impact of noise. Unlike previous GCL methods, we propose using contrastive
learning to train GNN encoders that are robust to noise existing in the labels and attributes of nodes.
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Figure 1: Eigen-projection (first row) and signal concentration ratio (second row) on Cora, Citeseer,
and Pubmed. To compute the eigen-projection, we first calculate the eigenvectors U of the kernel
gram matrix K ∈ RN×N computed by a feature matrix HÂ ∈ RN×d in Section 4.3, then the

projection value is computed by p = 1
C

∑C
c=1

∥∥∥U⊤Ỹ(c)
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/
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of classes, and Ỹ ∈ {0, 1}N×C is the one-hot clean labels of all the nodes, Ỹ(c) is the c-th column
of Ỹ. With the presence of label noise N ∈ RN×C , the observed label matrix is Y = Ỹ +N. The
eigen-projection pr for r ∈ [N ] reflects the amount of the signal projected onto the r-th eigenvector
of K, and the signal concentration ratio of a rank r reflects the proportion of signal projected onto
the top r eigenvectors of K. The signal concentration ratio for rank r is computed by

∥∥p(1:r)
∥∥
2
,

where p(1:r) contains the first r elements of p. It is observed from the red curves in the first row that
the projection of the ground truth clean labels mostly concentrates on the top eigenvectors of K. On
the other hand, the projection of label noise, computed by 1

C

∑C
c=1

∥∥U⊤N(c)
∥∥2
2
/
∥∥Y(c)

∥∥2
2
∈ RN ,

is relatively uniform over all the eigenvectors, as illustrated by the blue curves in the first row. For
example, by the rank r = 0.2N , the signal concentration ratio of Ỹ for Cora, Citeseer, and Pubmed
are 0.844, 0.809, and 0.784 respectively. We refer to such property as the low frequency property,
which suggests that we can learn a low-rank portion of the observed label Y which covers most
information in the ground truth clean label while only learning a small portion of the label noise.
Figure 3 in the supplementary further illustrates the low frequency property on more datasets.

2.2 EXISTING METHODS HANDING NOISY DATA

Previous works (Zhang et al., 2021) have shown that deep neural networks usually generalize badly
when trained on input with noise. Existing literature on robust learning mostly fall into two cat-
egories. The first category (Patrini et al., 2017; Goldberger & Ben-Reuven, 2016) mitigates the
effects of noisy inputs by correcting the computation of loss function, known as loss corruption.
The second category aims to select clean samples from noisy inputs for the training (Malach &
Shalev-Shwartz, 2017; Jiang et al., 2018; Yu et al., 2019; Li et al., 2020; Han et al., 2018), known
as sample selection. To improve the performance of GNNs on graph data with noise, NRGNN(Dai
et al., 2021) first introduces a graph edge predictor to predict missing links for connecting unlabeled
nodes with labeled nodes. RTGNN (Qian et al., 2022) trains a robust GNN classifier with scarce and
noisy node labels. It first classifies labeled nodes into clean and noisy ones and adopts reinforcement
supervision to correct noisy labels. To improve the robustness of the node classifier on the dynamic
graph, GraphSS (Zhuang & Al Hasan, 2022) proposes to generalize noisy supervision as a kind of
self-supervised learning method, which regards the noisy labels, including both manual-annotated
labels and auto-generated labels, as one kind of self-information for each node. Different from pre-
vious works, we aim to improve the robustness of GNN encoders for node classification by applying
low-rank regularization during the training of the transductive classifier.
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3 PROBLEM SETUP

3.1 NOTATIONS

An attributed graph consisting of N nodes is formally represented by G = (V, E ,X), where V =
{v1, v2, . . . , vN} and E ⊆ V × V denote the set of nodes and edges respectively. X ∈ RN×D are
the node attributes, and the attributes of each node is in RD. Let A ∈ {0, 1}N×N be the adjacency
matrix of graph G, with Aij = 1 if and only if (vi, vj) ∈ E . Ã = A + I denotes the adjacency
matrix for a graph with self-loops added. D̃ denotes the diagonal degree matrix of Ã. [n] denotes
all the natural numbers between 1 and N inclusively. L is a subset of [N ] of size m, and U is a
subset of [N ] \ L and |U| = u. Let VL and VU denote the set of labeled nodes and unlabeled test
nodes respectively, and |VL| = m, |VU | = u. Note that m + u ≤ N , and it is not necessary that
m + u = N because there are usually validation nodes other than the labeled nodes and unlabeled
test nodes. Let u ∈ RN be a vector, we use [u]A to denote a vector formed by elements of u with
indices in L for A ⊆ [N ] If u is a matrix, then [u]A denotes a submatrix formed by rows of u with
row indices in A. ∥·∥F denotes the Frobenius norm of a matrix, and ∥·∥p denotes the p-norm of a
vector.

3.2 GRAPH CONVOLUTION NETWORK (GCN)

To learn the node representation from the attributes X and the graph structure A, one simple yet
effective neural network model is Graph Convolution Network (GCN). GCN is originally proposed
for semi-supervised node classification, which consists of two graph convolution layers. In our
work, we use GCN as the RGCL encoder to obtain node representation H ∈ RN×d, where the
i-th row of H is the node representation of vi. Thus the RGCL encoder is formulated as H =

σ(Âσ(ÂXW̃(0))W̃(1)), where Â = D̃−1/2ÃD̃−1/2. W̃(0) and W̃(1) are the weight matrices,
and σ is the activation function ReLU. The robust node representations produced by the RGCL
encoder are used to perform transductive node classification in this paper. More details about RGCL
encoder and transductive node classification are introduced in this subsection.

3.3 PROBLEM DESCRIPTION

Noise usually exists in the input node attributes or labels of real-world graphs, which degrades the
quality of the node representation obtained by common GCL encoders and affects the performance
of the classifier trained on such representations. We aim to obtain node representations robust to
noise in two cases, where noise is present in either the labels of VL or in the input node attributes X.
That is, we consider either noisy label or noisy input node attributes.

The goal of RGCL is to learn robust node representations by H = g(X,A) such that the node
representations {hi}Ni=1 are robust to noise in the above two cases, where g(·) is the RGCL encoder.
In our work, g is a two-layer GCN specified in the previous subsection. The robust node represen-
tations by RGCL, H = {h1;h2; . . . ;hN} ∈ RN×d are used for transductive node classification.
In transductive node classification, a transductive classifier is trained on VL, and then the classifier
predicts the labels of the unlabeled test nodes in VU .

4 METHODS

4.1 RGCL: ROBUST GRAPH CONTRASTIVE LEARNING WITH BAYESIAN NONPARAMETRIC
PROTOTYPE LEARNING (BPL)

Preliminary of GCL. The general node representation learning aims to train an encoder g(·),
which is a two-layer Graph Convolution Neural Network (GCN) (Kipf & Welling, 2017), to gen-
erate discriminative node representations. In our work, we adopt contrastive learning to train the
RGCL encoder g(·). To perform contrastive learning, two different views, G1 = (X1,A1) and
G2 = (X2,A2), are generated by node dropping, edge perturbation, and attribute masking. The
representation of two generated views are denoted as H1 = g(X1,A1) and H2 = g(X2,A2), with
H1

i and H2
i being the i-th row of H1 and H2, respectively. It is preferred that the mutual informa-

tion between H1 and H2 is maximized. For computational reason, its lower bound is usually used
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Figure 2: Illustration of the LR-RGCL framework.

as the objective for contrastive learning. We use InfoNCE (Li et al., 2021) as our node-wise con-
trastive loss. In addition to the node-wise contrastive learning, we also adopt prototypical contrastive
learning (Li et al., 2021) to capture semantic information in the node representations, which is in-
terpreted as maximizing the mutual information between node representation and a set of estimated
cluster prototypes {c1, ..., cK}. Here K is the number of cluster prototypes. The loss function for
node-wise contrastive learning and prototypical contrastive learning are

Lnode = − 1

N

N∑
i=1

log
s(H1

i ,H
2
i )

s(H1
i ,H

2
i ) +

∑N
j=1 s(H

1
i ,H

2
j )
,Lproto = − 1

N

N∑
i=1

log
exp(Hi · ck/τ)∑K
k=1 exp(Hi · ck/τ)

,

(1)
where s(H1

i ,H
2
i ) is the cosine similarity between two node representations, H1

i and H2
i .

RGCL: Robust Graph Contrastive Learning. RGCL aims to improve the robustness of node
representations by prototypical contrastive learning through learning robust prototypes with confi-
dent nodes. Our key observation is that there exists a subset of nodes that are confident about their
class/cluster labels because they are far away from class/cluster boundaries. We propose an effective
method to infer such confident nodes. Because the RGCL encoder is completely unsupervised, it
does not have access to the ground truth label or ground truth class/cluster number. Therefore, our
algorithm for selection of confident nodes is based on Bayesian non-parameter style inference, and
the algorithm is termed Bayesian nonparametric Prototype Learning (BPL) to be introduced next.

4.2 BPL: BAYESIAN NONPARAMETRIC PROTOTYPE LEARNING

We propose Bayesian nonparametric Prototype Learning which estimates robust nodes by the con-
fidence of nodes in their labels. Intuitively, nodes more confident in their labels are less likely to be
adversely affected by noise. Because RGCL is unsupervised, pseudo labels are used as the labels
for such estimation. BPL, as a Bayesian nonparametric algorithm, infers the cluster prototypes by
the standard Dirichlet Process Mixture Model (DPMM) under the assumption that the distribution
of node representations is a mixture of Gaussians. The BPL algorithm, with details deferred to Sec-
tion 4.2, produces K clusters with cluster centers being the prototypes {ck}Kk=1, where K is the
inferred number of prototypes.

After obtaining the cluster labels as the pseudo labels of nodes by BPL, we estimate the confidence
of the nodes based on their pseudo labels and the graph structure. Let zi denote the one-hot pseudo
label of node vi estimated by the BPL. Label propagation (Zhang & Chen, 2018) is applied based
on the adjacency matrix to get a soft pseudo label for each node. Let Z ∈ RN×K be the matrix
of pseudo labels with zi being the i-th row of Z. Let Z̃ be the soft labels obtained by the label
propagation with z̃i being the i-th row of Z̃. Following (Han et al., 2018), we use the cross-entropy
between zi and z̃i, denoted by ϕ(zi, z̃i), to identify confident nodes. Smaller cross-entropy ϕ(zi, z̃i)
suggests that node vi is more confident about its pseudo label z̃i. We denote the set of confident
nodes assigned to the k-th cluster as Tk = {hi | ϕ(zi, z̃i)<γk}, where γk is a threshold for the k-th
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Algorithm 1 Training algorithm of RGCL encoder with BPL
Input: The input attribute matrix X, adjacency matrix A, and the training epochs tmax.
Output: The parameter of RGCL encoder g.
1: Initialize the parameter of RGCL encoder g
2: for t← 1 to tmax do
3: Calculate node representations by H = g(X,A), generate augmented views G1, G2, and calculate

node representations H1 = g(X1,A1) and H2 = g(X2,A2).
4: Obtain the pseudo labels of all the nodes Z and the number of inferred prototypes K by BPL
5: Update the confidence thresholds {γk}Kk=1 and estimate the sets of confident nodes {Tk}Kk=1 according

to Section 4.2
6: Update confident prototypes by ck = 1

|Tk|
∑

hi∈Tk
hi for all k ∈ [K]

7: Update the parameters of RGCL encoder g by one step of gradient descent on the loss Lrep

8: end for
9: return The RGCL encoder g

class. The threshold γk is dynamically set by γk = 1 −min {γ0, γ0t/tmax}, where t is the current
epoch number and tmax is a preset number of epochs. The selected confident nodes are only used
to obtain the robust prototypes, and RGCL is trained with such robust prototypes to obtain robust
representations for all the nodes of the graph. γ0 is an annealing factor which is decided by cross-
validation for each dataset in practice. After acquiring the confident nodes {Tk}Kk=1, the prototype
representations are updated by ck = 1

|Tk|
∑

hi∈Tk
hi for each k ∈ [K]. With the updated cluster

prototypes {ck}Kk=1 in the prototypical contrastive learning loss Lproto, we train the encoder g(·)
with the overall loss function, Lrep = Lnode +Lproto. We summarize the training algorithm for the
RGCL encoder in Algorithm 1. It is noted that confident nodes and robust prototypes are estimated
at each epoch.

4.3 LOW-RANK TRANSDUCTIVE NODE CLASSIFICATION

In this section, we introduce our novel low-rank transductive node classification algorithm using
robust node representations H ∈ RN×d produced by the RGCL encoder. We present strong theoret-
ical result on the generalization bound for the test loss for our low-rank transductive algorithm with
the presence of label noise.

We first give basic notations for our algorithm. Let yi ∈ RC be the observed one-hot class label
vector for node vi for all i ∈ [N ], and define Y := [y1;y2; . . .yN ] ∈ RN×C be the observed
label matrix which may contain label noise N ∈ RN×C . Let HÂ

:= ÂH be the feature matrix
whose rank is r0 ≤ min {N, d}, and the singular value decomposition of HÂ is HÂ = UΣV⊤

where U ∈ Rn×r0 ,V ∈ Rd×r0 are orthogonal matrices, and Σ is a diagonal matrix with diagonal
elements λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂r0 > 0 being the singular values of HÂ. Let H(r)

Â
with r ≤ r0 be

the best rank r-approximation to HÂ. Let K = HÂH⊤
Â

∈ RN×N be the kernel gram matrix of the

low-rank features H(r)

Â
, and K(r) = H

(r)

Â

(
H

(r)

Â

)⊤
be the gram matrix using the low-rank features

H
(r)

Â
. We use U(r) ∈ RN×r with r ≤ r0 to denote the top-r eigenvectors of K, which are the first

r columns of U.

Motivation of Low-Rank Transductive Classification. Let Ỹ ∈ RN×C be the ground truth clean
label matrix without noise. By the low frequency property illustrated in Figure 1, the projection of
Ỹ on the top r eigenvectors of K with a small rank r, such as r = 0.2N , covers the majority of
the information in Ỹ. On the other hand, the projection of the label noise N are distributed mostly
uniform across all the eigenvectors. This observation motivates a low-rank transductive classification
method where only the low-rank part of the feature matrix HÂ is used in classification. This is
because the low-rank part of the feature matrix, which is H

(r)

Â
, suffices for learning the dominant

information in the ground truth label Ỹ while learning only a small portion of the label noise.
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Let F(W, r) = H
(r)

Â
W with W ∈ Rd×C being the weight matrix for the transductive classifier.

Our transductive classifier uses softmax(F(W, r)) ∈ Rn×C for prediction of the labels of the test
nodes using the low-rank part of the features, H(r)

Â
. We train the transductive classifier by minimiz-

ing the regular cross-entropy on the labeled nodes via

min
W

L(W) =
1

m

∑
vi∈VL

KL
(
yi,

[
softmax

(
H

(r)

Â
W

)]
i

)
, (2)

where KL is the KL divergence between the label yi and the softmax of the classifier output at node
vi. We use a regular gradient descent to optimize (2) with a learning rate η ∈ (0, 1

λ̂1
). We define

a matrix Y⊥ ∈ RN×C as the orthogonal projection of Y onto the top-r eigenvectors of K, that is,
Y⊥ = U(r)

(
U(r)

)⊤
Y. W is initialized by W(0) = 0, and at the t-th iteration of gradient descent

for t ≥ 1, W is updated by W(t) = W(t−1) − η∇WL(W)|W=W(t−1) .

Define F(W, r, t) := H
(r)

Â
W(t) as the output of the classifier after the t-th iteration of gradient

descent for t ≥ 1. We have the following theoretical result on the loss of the unlabeled test nodes
VU measured by the gap between F(W, r, t) and Ȳ(r) when using the low-rank feature H

(r)

Â
with

r ∈ [r0].
Theorem 4.1. Let m ≥ cN for a constant c ∈ (0, 1), and r ∈ [r0]. Assume that a set L with
|L| = m is sampled uniformly without replacement from [N ], and a set U with |U| = u are sampled
uniformly without replacement from [N ]\L and m+u ≤ N . Then for every x > 0, with probability
at least 1− exp(−x), after the t-th iteration of gradient descent for all t ≥ 1, we have

Utest(t) :=
1

u

∥∥[F(W, r, t)− Ȳ(r)
]
U

∥∥2
F
≤ 1 + 1/c

m

(
1− ηλ̂2

r

)2t

∥Y∥2F + c1c3r

(
1

u
+

1

m

)
+

c2x

u
,

(3)

where c1, c2, c3 are positive numbers depending on U,
{
λ̂i

}r

i=1
, and τ0 with τ20 = maxi∈[N ] Kii.

This theorem is proved in Section A of the supplementary. It is noted that
1
u

∥∥[F(W, r, t)− Ȳ(r)
]
U

∥∥2
F

is the test loss of the unlabeled nodes measured by the distance between

the classifier output F(W, r, t) and Ȳ(r). We note that Ȳ(r) = U(r)
(
U(r)

)⊤
Ỹ+U(r)

(
U(r)

)⊤
N

is the sum of the rank-r projection of the clean label Ỹ and the rank-r projection of the label
noise N. As discussed above and in the description of the low frequency property in Figure 1,
the low-rank projection of Ỹ keeps the majority of the information in the clean label while only
admitting a small portion of the label noise. As a result, a small test loss Utest(t) on the LHS of the
bound (9) indicates a better approximation to the clean label of the unlabeled test nodes. On the
other hand, with sufficient training via a large t, we have Utest(t) ≤ c1c3r

(
1
u + 1

m

)
+ c2x

u +ε(t) with

ε(t)
t→∞−→ 0. This indicates that a relatively smaller rank r indicates better approximation to Ȳ(r).

On the other hand, the rank r should not be too small so that Y(r) can contain enough information
from the clean labels. In Table 6 of our experimental results, it is observed that the performance of
our low-rank transductive classifier is consistent with rank 0.1min {N, d} ≤ r ≤ 0.2min {N, d}.
We set r = 0.2min {N, d} for all the experiments throughout this paper. The overall framework of
LR-RGCL is illustrated in Figure 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

In our experiment, we adopt eight widely used graph benchmark datasets, namely Cora, Citeseer,
PubMed (Sen et al., 2008), Coauthor CS, ogbn-arxiv (Hu et al., 2020), Wiki-CS (Mernyei & Cangea,
2020), Amazon-Computers, and Amazon-Photos (Shchur et al., 2018) for the evaluation in node
classification. Details of the datasets are deferred in Section C.1 of the supplementary. Due to the
fact that all public benchmark graph datasets do not come with corrupted labels or attribute noise, we
manually inject noise into public datasets to evaluate our algorithm. We follow the commonly used
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Table 1: Performance comparison for node classification on Cora, Citeseer, PubMed, and Wiki-CS
with asymmetric label noise, symmetric label noise, and attribute noise.

Noise Level
0 40 60 80Dataset Methods
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

Cora

GCN 0.815±0.005 0.547±0.015 0.636±0.007 0.639±0.008 0.405±0.014 0.517±0.010 0.439±0.012 0.265±0.012 0.354±0.014 0.317±0.013
S2GC 0.835±0.002 0.569±0.007 0.664±0.007 0.661±0.007 0.422±0.010 0.535±0.010 0.454±0.011 0.279±0.014 0.366±0.014 0.320±0.013
GCE 0.819±0.004 0.573±0.011 0.652±0.008 0.650±0.014 0.449±0.011 0.509±0.011 0.445±0.015 0.280±0.013 0.353±0.013 0.325±0.015

UnionNET 0.820±0.006 0.569±0.014 0.664±0.007 0.653±0.012 0.452±0.010 0.541±0.010 0.450±0.009 0.283±0.014 0.370±0.011 0.320±0.012
NRGNN 0.822±0.006 0.571±0.019 0.676±0.007 0.645±0.012 0.470±0.014 0.548±0.014 0.451±0.011 0.282±0.022 0.373±0.012 0.326±0.010
RTGNN 0.828±0.003 0.570±0.010 0.682±0.008 0.678±0.011 0.474±0.011 0.555±0.010 0.457±0.009 0.280±0.011 0.386±0.014 0.342±0.016
SUGRL 0.834±0.005 0.564±0.011 0.674±0.012 0.675±0.009 0.468±0.011 0.552±0.011 0.452±0.012 0.280±0.012 0.381±0.012 0.338±0.014
MERIT 0.831±0.005 0.560±0.008 0.670±0.008 0.671±0.009 0.467±0.013 0.547±0.013 0.450±0.014 0.277±0.013 0.385±0.013 0.335±0.009
ARIEL 0.843±0.004 0.573±0.013 0.681±0.010 0.675±0.009 0.471±0.012 0.553±0.012 0.455±0.014 0.284±0.014 0.389±0.013 0.343±0.013

SFA 0.839±0.010 0.564±0.011 0.677±0.013 0.676±0.015 0.473±0.014 0.549±0.014 0.457±0.014 0.282±0.016 0.389±0.013 0.344±0.017
Sel-Cl 0.828±0.002 0.570±0.010 0.685±0.012 0.676±0.009 0.472±0.013 0.554±0.014 0.455±0.011 0.282±0.017 0.389±0.013 0.341±0.015

Jo-SRC 0.825±0.005 0.571±0.006 0.684±0.013 0.679±0.007 0.473±0.011 0.556±0.008 0.458±0.012 0.285±0.013 0.387±0.018 0.345±0.018
GRAND+ 0.858±0.006 0.570±0.009 0.682±0.007 0.678±0.011 0.472±0.010 0.554±0.008 0.456±0.012 0.284±0.015 0.387±0.015 0.345±0.013

RGCL 0.854±0.006 0.584±0.009 0.704±0.007 0.690±0.010 0.484±0.013 0.577±0.013 0.469±0.013 0.295±0.012 0.407±0.012 0.356±0.011
LR-RGCL 0.858±0.006 0.589±0.011 0.713±0.007 0.695±0.011 0.492±0.011 0.587±0.013 0.477±0.012 0.306±0.012 0.419±0.012 0.363±0.011

Citeseer

GCN 0.703±0.005 0.475±0.023 0.501±0.013 0.529±0.009 0.351±0.014 0.341±0.014 0.372±0.011 0.291±0.022 0.281±0.019 0.290±0.014
S2GC 0.736±0.005 0.488±0.013 0.528±0.013 0.553±0.008 0.363±0.012 0.367±0.014 0.390±0.013 0.304±0.024 0.284±0.019 0.288±0.011
GCE 0.705±0.004 0.490±0.016 0.512±0.014 0.540±0.014 0.362±0.015 0.352±0.010 0.381±0.009 0.309±0.012 0.285±0.014 0.285±0.011

UnionNET 0.706±0.006 0.499±0.015 0.547±0.014 0.545±0.013 0.379±0.013 0.399±0.013 0.379±0.012 0.322±0.021 0.302±0.013 0.290±0.012
NRGNN 0.710±0.006 0.498±0.015 0.546±0.015 0.538±0.011 0.382±0.016 0.412±0.016 0.377±0.012 0.336±0.021 0.309±0.018 0.284±0.009
RTGNN 0.746±0.008 0.498±0.007 0.556±0.007 0.550±0.012 0.392±0.010 0.424±0.013 0.390±0.014 0.348±0.017 0.308±0.016 0.302±0.011
SUGRL 0.730±0.005 0.493±0.011 0.541±0.011 0.544±0.010 0.376±0.009 0.421±0.009 0.388±0.009 0.339±0.010 0.305±0.010 0.300±0.009
MERIT 0.740±0.007 0.496±0.012 0.536±0.012 0.542±0.010 0.383±0.011 0.425±0.011 0.387±0.008 0.344±0.014 0.301±0.014 0.295±0.009

SFA 0.740±0.011 0.502±0.014 0.532±0.015 0.547±0.013 0.390±0.014 0.433±0.014 0.389±0.012 0.347±0.016 0.312±0.015 0.299±0.013
ARIEL 0.727±0.007 0.500±0.008 0.550±0.013 0.548±0.008 0.391±0.009 0.427±0.012 0.389±0.014 0.349±0.014 0.307±0.013 0.299±0.013
Sel-Cl 0.725±0.008 0.499±0.012 0.551±0.010 0.549±0.008 0.389±0.011 0.426±0.008 0.391±0.020 0.350±0.018 0.310±0.015 0.300±0.017

Jo-SRC 0.730±0.005 0.500±0.013 0.555±0.011 0.551±0.011 0.394±0.013 0.425±0.013 0.393±0.013 0.351±0.013 0.305±0.018 0.303±0.013
GRAND+ 0.756±0.004 0.497±0.010 0.553±0.010 0.552±0.011 0.390±0.013 0.422±0.013 0.387±0.013 0.348±0.013 0.309±0.014 0.302±0.012

RGCL 0.748±0.009 0.510±0.013 0.574±0.013 0.562±0.007 0.403±0.014 0.445±0.014 0.399±0.012 0.359±0.012 0.327±0.014 0.312±0.010
LR-RGCL 0.757±0.010 0.520±0.013 0.581±0.013 0.570±0.007 0.410±0.014 0.455±0.014 0.406±0.012 0.369±0.012 0.335±0.014 0.318±0.010

PubMed

GCN 0.790±0.007 0.584±0.022 0.574±0.012 0.595±0.012 0.405±0.025 0.386±0.011 0.488±0.013 0.305±0.022 0.295±0.013 0.423±0.013
S2GC 0.802±0.005 0.585±0.023 0.589±0.013 0.610±0.009 0.421±0.030 0.401±0.014 0.497±0.012 0.310±0.039 0.290±0.019 0.431±0.010
GCE 0.792±0.009 0.589±0.018 0.581±0.011 0.590±0.014 0.430±0.012 0.399±0.012 0.491±0.010 0.311±0.021 0.301±0.011 0.424±0.012

UnionNET 0.793±0.008 0.603±0.020 0.620±0.012 0.592±0.012 0.445±0.022 0.424±0.013 0.489±0.015 0.313±0.025 0.327±0.015 0.435±0.009
NRGNN 0.797±0.008 0.602±0.022 0.618±0.013 0.603±0.008 0.443±0.012 0.434±0.012 0.499±0.009 0.330±0.023 0.325±0.013 0.433±0.011
RTGNN 0.797±0.004 0.610±0.008 0.622±0.010 0.614±0.012 0.455±0.010 0.455±0.011 0.501±0.011 0.335±0.013 0.338±0.017 0.452±0.013
SUGRL 0.819±0.005 0.603±0.013 0.615±0.013 0.615±0.010 0.445±0.011 0.441±0.011 0.501±0.007 0.321±0.009 0.321±0.009 0.446±0.010
MERIT 0.801±0.004 0.593±0.011 0.612±0.011 0.613±0.011 0.447±0.012 0.443±0.012 0.497±0.009 0.328±0.011 0.323±0.011 0.445±0.009
ARIEL 0.800±0.003 0.610±0.013 0.622±0.010 0.615±0.011 0.453±0.012 0.453±0.012 0.502±0.014 0.331±0.014 0.336±0.018 0.457±0.013

SFA 0.804±0.010 0.596±0.011 0.615±0.011 0.609±0.011 0.447±0.014 0.446±0.017 0.499±0.014 0.330±0.011 0.327±0.011 0.447±0.014
Sel-Cl 0.799±0.005 0.605±0.014 0.625±0.012 0.614±0.012 0.455±0.014 0.449±0.010 0.502±0.008 0.334±0.021 0.332±0.014 0.456±0.014

Jo-SRC 0.801±0.005 0.613±0.010 0.624±0.013 0.617±0.013 0.453±0.008 0.455±0.013 0.504±0.013 0.330±0.015 0.334±0.018 0.459±0.018
GRAND+ 0.845±0.006 0.610±0.011 0.624±0.013 0.617±0.013 0.453±0.008 0.453±0.011 0.503±0.010 0.331±0.014 0.337±0.013 0.458±0.014

RGCL 0.840±0.007 0.631±0.014 0.640±0.010 0.633±0.011 0.472±0.011 0.477±0.010 0.520±0.011 0.350±0.014 0.355±0.013 0.476±0.011
LR-RGCL 0.845±0.009 0.637±0.014 0.645±0.015 0.637±0.011 0.479±0.011 0.484±0.013 0.526±0.011 0.356±0.011 0.360±0.012 0.482±0.014

Coauthor-CS

GCN 0.918±0.001 0.645±0.009 0.656±0.006 0.702±0.010 0.511±0.013 0.501±0.009 0.531±0.010 0.429±0.022 0.389±0.011 0.415±0.013
S2GC 0.918±0.001 0.657±0.012 0.663±0.006 0.713±0.010 0.516±0.013 0.514±0.009 0.556±0.009 0.437±0.020 0.396±0.010 0.422±0.012
GCE 0.922±0.003 0.662±0.017 0.659±0.007 0.705±0.014 0.515±0.016 0.502±0.007 0.539±0.009 0.443±0.017 0.389±0.012 0.412±0.011

UnionNET 0.918±0.002 0.669±0.023 0.671±0.013 0.706±0.012 0.525±0.011 0.529±0.011 0.540±0.012 0.458±0.015 0.401±0.011 0.420±0.007
NRGNN 0.919±0.002 0.678±0.014 0.689±0.009 0.705±0.012 0.545±0.021 0.556±0.011 0.546±0.011 0.461±0.012 0.410±0.012 0.417±0.007
RTGNN 0.920±0.005 0.678±0.012 0.691±0.009 0.712±0.008 0.559±0.010 0.569±0.011 0.560±0.008 0.455±0.015 0.415±0.015 0.412±0.014
SUGRL 0.922±0.005 0.675±0.010 0.695±0.010 0.714±0.006 0.550±0.011 0.560±0.011 0.561±0.007 0.449±0.011 0.411±0.011 0.429±0.008
MERIT 0.924±0.004 0.679±0.011 0.689±0.008 0.709±0.005 0.552±0.014 0.562±0.014 0.562±0.011 0.452±0.013 0.403±0.013 0.426±0.005
ARIEL 0.925±0.004 0.682±0.011 0.699±0.009 0.712±0.005 0.555±0.011 0.566±0.011 0.556±0.011 0.454±0.014 0.415±0.019 0.427±0.013

SFA 0.925±0.009 0.682±0.011 0.690±0.012 0.715±0.012 0.555±0.015 0.567±0.014 0.565±0.013 0.458±0.013 0.402±0.013 0.429±0.015
Sel-Cl 0.922±0.008 0.684±0.009 0.694±0.012 0.714±0.010 0.557±0.013 0.568±0.013 0.566±0.010 0.457±0.013 0.412±0.017 0.425±0.009

Jo-SRC 0.921±0.005 0.684±0.011 0.695±0.004 0.709±0.007 0.560±0.011 0.566±0.011 0.561±0.009 0.456±0.013 0.410±0.018 0.428±0.010
GRAND+ 0.927±0.004 0.682±0.011 0.693±0.006 0.715±0.008 0.554±0.008 0.568±0.013 0.557±0.011 0.455±0.012 0.416±0.013 0.428±0.011

RGCL 0.929±0.006 0.694±0.013 0.718±0.008 0.733±0.009 0.570±0.014 0.587±0.011 0.585±0.012 0.465±0.012 0.434±0.015 0.444±0.012
LR-RGCL 0.933±0.006 0.699±0.015 0.721±0.011 0.742±0.015 0.575±0.014 0.595±0.018 0.588±0.015 0.469±0.015 0.438±0.015 0.453±0.017

ogbn-arxiv

GCN 0.717±0.003 0.401±0.014 0.421±0.014 0.478±0.010 0.336±0.011 0.346±0.021 0.339±0.012 0.286±0.022 0.256±0.010 0.294±0.013
S2GC 0.712±0.003 0.417±0.017 0.429±0.014 0.492±0.010 0.344±0.016 0.353±0.031 0.343±0.009 0.297±0.023 0.266±0.013 0.284±0.012
GCE 0.720±0.004 0.410±0.018 0.428±0.008 0.480±0.014 0.348±0.019 0.344±0.019 0.342±0.015 0.310±0.014 0.260±0.011 0.275±0.015

UnionNET 0.724±0.006 0.429±0.021 0.449±0.007 0.485±0.012 0.362±0.018 0.367±0.008 0.340±0.009 0.332±0.019 0.269±0.013 0.280±0.012
NRGNN 0.721±0.006 0.449±0.014 0.466±0.009 0.485±0.012 0.371±0.020 0.379±0.008 0.342±0.011 0.330±0.018 0.271±0.018 0.300±0.010
RTGNN 0.718±0.004 0.443±0.012 0.464±0.012 0.484±0.014 0.380±0.011 0.384±0.013 0.340±0.017 0.335±0.011 0.285±0.015 0.301±0.006
SUGRL 0.693±0.002 0.439±0.010 0.467±0.010 0.480±0.012 0.365±0.013 0.385±0.011 0.341±0.009 0.327±0.011 0.275±0.011 0.295±0.011
MERIT 0.717±0.004 0.442±0.009 0.463±0.009 0.483±0.010 0.368±0.011 0.381±0.011 0.341±0.012 0.324±0.012 0.272±0.010 0.304±0.009
ARIEL 0.717±0.004 0.448±0.013 0.471±0.013 0.482±0.011 0.379±0.014 0.384±0.015 0.342±0.015 0.334±0.014 0.280±0.013 0.300±0.010

SFA 0.718±0.009 0.445±0.012 0.463±0.013 0.486±0.012 0.368±0.011 0.378±0.014 0.338±0.015 0.325±0.014 0.273±0.012 0.302±0.013
Sel-Cl 0.719±0.002 0.447±0.007 0.469±0.007 0.486±0.010 0.375±0.008 0.389±0.025 0.344±0.013 0.331±0.008 0.284±0.019 0.304±0.012

Jo-SRC 0.715±0.005 0.445±0.011 0.466±0.009 0.481±0.010 0.377±0.013 0.387±0.013 0.340±0.013 0.333±0.013 0.282±0.018 0.297±0.009
GRAND+ 0.725±0.004 0.445±0.008 0.466±0.011 0.481±0.011 0.378±0.010 0.385±0.012 0.344±0.010 0.332±0.010 0.282±0.016 0.303±0.009

RGCL 0.727±0.005 0.468±0.013 0.487±0.006 0.502±0.010 0.400±0.014 0.407±0.009 0.359±0.011 0.352±0.012 0.303±0.013 0.330±0.012
LR-RGCL 0.728±0.006 0.472±0.013 0.492±0.011 0.508±0.014 0.405±0.014 0.411±0.012 0.405±0.012 0.359±0.015 0.307±0.013 0.335±0.013

label noise generation methods from the existing work (Han et al., 2020; Dai et al., 2022; Qian et al.,
2022) to inject label noise. We generate noisy labels over all classes in two types: (1) Symmetric,
where nodes from each class is flipped to other classes with a uniform random probability; (2)
Asymmetric, where mislabeling only occurs between similar classes. The percentage of nodes with
flipped labels is defined as the label noise level in our experiments. To evaluate the performance of
our method with attribute noise, we randomly shuffle a certain percentage of input attributes for each
node following (Ding et al., 2022). The percentage of shuffled attributes is defined as the attribute
noise level in our experiments.

5.2 NODE CLASSIFICATION

Compared Methods. We compare RGCL against semi-supervised node representation learning
methods, GCN (Kipf & Welling, 2017), GCE (Zhang & Sabuncu, 2018), S2GC (Zhu & Koniusz,
2020), and GRAND+ (Feng et al., 2022b). Furthermore, we include two baseline methods for
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node classification with label noise, which are NRGNN (Dai et al., 2021) and RTGNN (Qian et al.,
2022). We also compare RGCL against state-of-the-art GCL methods, including GraphCL (You
et al., 2020), MERIT (Jin et al., 2021), SUGRL (Mo et al., 2022), Jo-SRC (Yao et al., 2021), Sel-
CL (Li et al., 2022), and SFA (Zhang et al., 2023). Among the compared contrastive learning
methods, Jo-SRC and Sel-CL are specifically designed for robust learning. SFA is a method that
aims to improve the performance of contrastive learning with spectral augmentation. We include
details of compared methods in Section C.2 of the supplementary.

Experimental Results. We first compare LR-RGCL against competing methods for semi-
supervised or transductive node classification on input with two types of label noise. To show the
robustness of LR-RGCL against label noise, we perform the experiments on graphs injected with
different levels of label noise ranging from 40% to 80% with a step of 20%. We follow the widely
used semi-supervised setting (Kipf & Welling, 2017) for node classification. In LR-RGCL, we train
a transductive classifier for node classification. Previous GCL methods, including MERIT, SUGRL,
and SFA, train a linear layer for inductive classification on top of the node representations learned
by contrastive learning without using test data in training. Because LR-RGCL is a transductive clas-
sifier, for fair comparisons, we also train the compared GCL baselines with the same transductive
classifier as that for LR-RGCL and a two-layer GCN transductive classifier. The results with differ-
ent types of classifiers are deferred in Section D.3 of the supplementary. For all the baselines in our
experiments which perform inductive classification when predicting tbe labels, we report their best
results among using their original inductive classifier and two types of transductive classifiers: the
same transductive classifier as that for LR-RGCL and a two-layer GCN transductive classifier.

Results on Cora, Citeseer, PubMed, Coauthor-CS, and ogbn-arxiv are shown in Table 1, where
we report the means of the accuracy of 10 runs and the standard deviation. Results on Wiki-CS,
Amazon-Computers, and Amazon-Photos are deferred in Section D.2 of the supplementary. It is
observed from the results that LR-RGCL outperforms all the baselines. By selecting confident
nodes and computing robust prototypes using BEC, LR-RGCL outperforms all the baselines by an
even larger margin with a larger label noise level. In addition, we compare LR-RGCL with baselines
for noisy input with attribute noise levels ranging from 40% to 80% with a step of 20%. Results on
Cora, Citeseer, and Coauthor CS are shown in Table 4 in the supplementary, where we report the
means of the accuracy of 10 runs and the standard deviation. The results clearly show that LR-RGCL
is more robust to attribute noise compared to all the baselines for different noise levels.

RGCL in all the result tables performs transductive node classification by using the full-rank feature
in LR-RGCL, that is, we set r = r0 in (2). It can be observed that RGCL usually achieves the second
best result across all the noise levels. LR-RGCL always performs better than RGCL, evidencing the
advantage of the proposed low-rank transductive learning algorithm.

Additional Results and Ablation Studies We compare the training time of LR-RGCL with com-
peting baselines in Table 7 of the supplementary. We also perform ablation study on the value of
rank r in the optimization problem (2) for our low-rank transductive classifier. It is observed from
Table 6 of the supplementary that the performance of our low-rank classifier is consistently close
to the best performance among all the choices of the rank when r is between 0.1min {N, d} and
0.2min {N, d}. In order to visualize the robustness of the RGCL encoder, the confidence score
ϕ(zi, z̃i) described in Section 4.2 of all the nodes of the Citeseer data set in the embedding space of
the learned node representations is illustrated in Figure 4 of the supplementary.

6 CONCLUSIONS

In this paper, we propose a novel transductive node classification method for noisy graph data termed
Low-Rank Robust Graph Contrastive Learning (LR-RGCL). LR-RGCL trains a robust GCL encoder
to learn robust node representations. It then uses the low-rank features inspired by sharp general-
ization bound for transductive learning to perform transductive node classification. We evaluate the
performance of LR-RGCL with comparison to competing baselines on semi-supervised or trans-
ductive node classification, where graph data are corrupted with noise in either the labels for the
node attributes. Extensive experimental results demonstrate that LR-RGCL generates more robust
node representations with better performance than the current state-of-the-art node representation
learning methods.
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Hjelm. Deep graph infomax. In ICLR, 2019.

Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. Augmentation-free graph contrastive learning
with performance guarantee. arXiv preprint arXiv:2204.04874, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ICLR, 2019.

Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-level
representation learning with local and global structure. In International Conference on Machine
Learning, pp. 11548–11558. PMLR, 2021.

Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, and Zeynep Akata. Attribute prototype
network for zero-shot learning. Advances in Neural Information Processing Systems, 33:21969–
21980, 2020.

Yingzhen Yang. Sharp generalization of transductive learning: A transductive local rademacher
complexity approach. Technical Report. URL https://yingzhenyang.com/papers/
transductive-local-rademacher.pdf.

Yazhou Yao, Zeren Sun, Chuanyi Zhang, Fumin Shen, Qi Wu, Jian Zhang, and Zhenmin Tang.
Jo-src: A contrastive approach for combating noisy labels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5192–5201, 2021.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812–5823, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption? 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS, pp.
5171–5181, 2018.

Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. Spectral feature augmentation
for graph contrastive learning and beyond. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11289–11297, 2023.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31, 2018.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International Conference on
Learning Representations, 2020.

Jun Zhuang and Mohammad Al Hasan. Defending graph convolutional networks against dynamic
graph perturbations via bayesian self-supervision. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 4405–4413, 2022.

12

https://yingzhenyang.com/papers/transductive-local-rademacher.pdf
https://yingzhenyang.com/papers/transductive-local-rademacher.pdf


Under review as a conference paper at ICLR 2024

A THEORETICAL RESULTS

First, recall that the optimization problem of the low-rank transductive classification is

min
W

1

m

∑
vi∈VL

KL
(
yi,

[
softmax

(
H

(r)

Â
W

)]
i

)
.

We then present the proof of Theorem 4.1.

Proof of Theorem 4.1. It can be verified that at the t-th iteration of gradient descent for t ≥ 1, we
have

W(t) = W(t−1) − η
(
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(r)

Â

)⊤ (
Ĥ
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Â
W(t−1) −Y

)
. (4)

It follows by (4) that
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, and recall that K(r0) = K = HÂH⊤

Â
where r0 is the rank of the

feature matrix HÂ.

With F(W, r, t) = H
(r)

Â
W(t), it follows by (5) and the fact that Y⊥(r) is orthogonal to the to top-r

eigenvectors of K(r) that
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As a result of (7), we have

∥∥F(W, r, t)− Ȳ(r)L
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Using Ȳ(r) as the label, we apply Theorem 3.8 in (Yang) that
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where c1, c2, c3 are positive numbers depending on U,
{
λ̂i

}r

i=1
, and τ0 with τ20 = maxi∈[N ] Kii.

It follows by (7) and (8) that
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which completes the proof.
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B DETAILS ABOUT DPMM

We propose Bayesian nonparametric Prototype Learning (BPL) to infer the pseudo labels, or clus-
ter labels, of nodes. BPL, as a Bayesian nonparametric algorithm, infers the cluster prototypes
by the Dirichlet Process Mixture Model (DPMM) under the assumption that the distribution of
node representations is a mixture of Gaussians. The Gaussians share the same fixed covariance
matrix σI, and each Gaussian is used to model a cluster. The DPMM model is specified by
G ∼ DP(G0, α), ϕi ∼ G,Hi ∼ N (ϕi, σI), i = 1, ..., N, where G is a Gaussian distribution
draw from the Dirichlet process DP(G0, α), and α is the concentration parameter for DP(G0, α). ϕi

is the mean of the Gaussian sampled for generating the node representation Hi. G0 is the prior over
means of the Gaussians. G0 is set to a zero-mean Gaussian N (0, ρI) for ρ > 0. A collapsed Gibbs
sampler (Resnik & Hardisty, 2010) is used to infer the components of the GMM with the DPMM.
The Gibbs sampler iteratively samples pseudo labels for the nodes given the means of the Gaussian
components, and samples the means of the Gaussian components given the pseudo labels of the
nodes. Let K̃ denote the number of inferred prototypes at the current iteration, the pseudo label zi
of node vi is then calculated by zi = argmink {dik}, where dik = ∥Hi − ck∥22 for k = 1, ..., K̃,
and dik = ξ for k = K̃ + 1. ξ is the margin to initialize a new prototype. In practice, we choose the
value of ξ by performing cross-validation on each dataset.

C IMPLEMENTATION DETAILS

C.1 DATASETS

We evaluate BRGCL on eight public benchmarks that are widely used for node representation learn-
ing, namely Cora, Citeseer, PubMed (Sen et al., 2008), Coauthor CS, ogbn-arxiv (Hu et al., 2020),
Wiki-CS (Mernyei & Cangea, 2020), Amazon-Computers, and Amazon-Photos (Shchur et al.,
2018). Cora, Citeseer, and PubMed are the three most widely used citation networks. Coauthor
CS is a co-authorship graph. The ogbn-arxiv is a directed citation graph. Wiki-CS is a hyperlink
networks of computer science articles. Amazon-Computers and Amazon-Photos are co-purchase
networks of products selling on Amazon.com. We summarize the statistics of all the datasets in
Table 2. For all our experiments, we follow the default separation (Shchur et al., 2018; Mernyei &
Cangea, 2020; Hu et al., 2020) of training, validation, and test sets on each benchmark.

Table 2: The statistics of the datasets.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Coauthor CS 18,333 81,894 6,805 15
ogbn-arxiv 169,343 1,166,243 128 40
Wiki-CS 11,701 215,863 300 10
Amazon-Computers 13,752 245,861 767 10
Amazon-Photos 7,650 119,081 745 8

C.2 COMPARED METHODS

To demonstrate the power of LR-RGCL in learning robust node representation, we compare LR-
RGCL with two robust contrastive learning baselines, Jo-SRC and Sel-CL, which select clean sam-
ples for image data. Since their sample selection methods are general and not limited to the image
domain, we adopt these two baselines in our experiments. Next, we introduce the implementation
details of applying Jo-SRC and Sel-CL on graph data.

Jo-SRC (Yao et al., 2021): Jo-SRC is a robust contrastive learning method proposed for image
classification. It selects clean samples for training by adopting the Jensen-Shannon divergence to
measure the likelihood of each sample being clean. Because this method is a general selection
strategy on the representation space, it is adapted to selecting clean samples in the representation
space of nodes in GCL. It also introduces a consistency regularization term to the contrastive loss to
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improve the robustness. To get a competitive robust GCL baseline, we apply the sample selection
strategy and the consistency regularization proposed by Jo-SRC to state-of-the-art GCL methods
MVGRL, MERIT, and SUGRL. We add the regularization term in Jo-SRC to the graph contrastive
loss. The GCL encoders are trained only on the clean samples selected by Jo-SRC. We only report
the best results for comparison, which are achieved by applying Jo-SRC to MERIT.

Sel-CL (Li et al., 2022): Sel-CL is a supervised contrastive learning proposed to learn robust pre-
trained representations for image classification. It proposes to select confident contrastive pairs
in the contrastive learning frameworks. Sel-CL first selects confident examples by measuring the
agreement between learned representations and labels generated by label propagation with cross-
entropy loss. Next, Sel-CL selects contrastive pairs from those with selected confident examples
in them. This method is also a general sample selection strategy on a learned representation space.
So we can adapt Sel-CL to the node representation space to select confident pairs for GCL. In this
process, they only select contrastive pairs whose representation similarity is higher than a dynamic
threshold. In our experiments, we also adopt the confident contrastive pair selection strategy to the
state-of-the-art GCL methods MVGRL, MERIT, and SUGRL. With the same GCL framework, GCL
encoders are trained only on the confident pairs selected by Sel-CL. We only report the best results
for comparison, which are achieved by applying Sel-CL to MERIT.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 TUNING HYPER-PARAMETERS BY CROSS-VALIDATION

In this section, we show the tuning procedures on the hyper-parameters ξ and γ0 in Table 3. We
perform cross-validations on 20% of training data to decide the value of ξ and γ0. The value of
ξ is selected from {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0, 5}. The value of γ0 is selected from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The selected values for ξ and γ0 on each dataset are shown
in Table 3.

Table 3: Selected hyper-parameters for each dataset.

Dataset Cora Citeseer PubMed Coauthor CS ogbn-arxiv Wiki-CS Amazon-Computers Amazon-Photos
ξ 0.20 0.15 0.35 0.40 0.25 0.35 0.25 0.25
γ0 0.3 0.5 0.7 0.4 0.4 0.7 0.5 0.5

D.2 NODE CLASSIFICATION ON WIKI-CS, AMAZON-COMPUTERS, AND AMAZON-PHOTOS

The results for node classification with symmetric label noise, asymmetric label noise, and attribute
noise on Wiki-CS, Amazon-Computers, and Amazon-Photos are shown in Table 4. It is observed
that LR-RGCL also outperforms all the baselines for node classification with both label noise and
attribute noise on these three benchmark datasets.

D.3 NODE CLASSIFICATION RESULTS FOR GCL METHODS WITH DIFFERENT TYPES OF
CLASSIFIERS

Existing GCL methods, such as MERIT, SUGRL, and SFA, first train a graph encoder with graph
contrastive learning objectives such as InfoNCE (Jin et al., 2021). After obtaining the node repre-
sentation learned by contrastive learning, a linear layer for classification is trained in the supervised
setting. In contrast, LR-RGCL adopts a transductive classifier on top of the node representation
obtained by contrastive learning. For fair comparisons with previous GCL methods, we also train
the compared GCL baselines with the same transductive classifier as in LR-RGCL and a two-layer
transductive GCN classifier. The results with different types of classifiers are deferred in Section D.3
of the supplementary.

D.4 TRAINING TIME COMPARISONS AND STUDY ON DIFFERENT RANKS

In this section, we first compare the training time of LR-RGCL against other baseline methods on
all benchmark datasets. For our method, we include the training time of robust graph contrastive
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Table 4: Performance comparison for node classification on Wiki-CS, Amazon-Computers, and
Amazon-Photos with asymmetric label noise, symmetric label noise, and attribute noise.

Noise Level
0 40 60 80Dataset Methods
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

Wiki-CS

GCN 0.918±0.001 0.645±0.009 0.656±0.006 0.702±0.010 0.511±0.013 0.501±0.009 0.531±0.010 0.429±0.022 0.389±0.011 0.415±0.013
S2GC 0.918±0.001 0.657±0.012 0.663±0.006 0.713±0.010 0.516±0.013 0.514±0.009 0.556±0.009 0.437±0.020 0.396±0.010 0.422±0.012
GCE 0.922±0.003 0.662±0.017 0.659±0.007 0.705±0.014 0.515±0.016 0.502±0.007 0.539±0.009 0.443±0.017 0.389±0.012 0.412±0.011

UnionNET 0.918±0.002 0.669±0.023 0.671±0.013 0.706±0.012 0.525±0.011 0.529±0.011 0.540±0.012 0.458±0.015 0.401±0.011 0.420±0.007
NRGNN 0.919±0.002 0.678±0.014 0.689±0.009 0.705±0.012 0.545±0.021 0.556±0.011 0.546±0.011 0.461±0.012 0.410±0.012 0.417±0.007
RTGNN 0.920±0.005 0.678±0.012 0.691±0.009 0.712±0.008 0.559±0.010 0.569±0.011 0.560±0.008 0.455±0.015 0.415±0.015 0.412±0.014
SUGRL 0.922±0.005 0.675±0.010 0.695±0.010 0.714±0.006 0.550±0.011 0.560±0.011 0.561±0.007 0.449±0.011 0.411±0.011 0.429±0.008
MERIT 0.924±0.004 0.679±0.011 0.689±0.008 0.709±0.005 0.552±0.014 0.562±0.014 0.562±0.011 0.452±0.013 0.403±0.013 0.426±0.005
ARIEL 0.925±0.004 0.682±0.011 0.699±0.009 0.712±0.005 0.555±0.011 0.566±0.011 0.556±0.011 0.454±0.014 0.415±0.019 0.427±0.013

SFA 0.925±0.009 0.682±0.011 0.690±0.012 0.715±0.012 0.555±0.015 0.567±0.014 0.565±0.013 0.458±0.013 0.402±0.013 0.429±0.015
Sel-Cl 0.922±0.008 0.684±0.009 0.694±0.012 0.714±0.010 0.557±0.013 0.568±0.013 0.566±0.010 0.457±0.013 0.412±0.017 0.425±0.009

Jo-SRC 0.921±0.005 0.684±0.011 0.695±0.004 0.709±0.007 0.560±0.011 0.566±0.011 0.561±0.009 0.456±0.013 0.410±0.018 0.428±0.010
GRAND+ 0.927±0.004 0.682±0.011 0.693±0.006 0.715±0.008 0.554±0.008 0.568±0.013 0.557±0.011 0.455±0.012 0.416±0.013 0.428±0.011

RGCL 0.929±0.006 0.694±0.013 0.718±0.008 0.733±0.009 0.570±0.014 0.587±0.011 0.585±0.012 0.465±0.012 0.434±0.015 0.444±0.012
LR-RGCL 0.933±0.006 0.699±0.015 0.721±0.011 0.742±0.015 0.575±0.014 0.595±0.018 0.588±0.015 0.469±0.015 0.438±0.015 0.453±0.017

Amazon-Computers

GCN 0.815±0.005 0.547±0.015 0.636±0.007 0.639±0.008 0.405±0.014 0.517±0.010 0.439±0.012 0.265±0.012 0.354±0.014 0.317±0.013
S2GC 0.835±0.002 0.569±0.007 0.664±0.007 0.661±0.007 0.422±0.010 0.535±0.010 0.454±0.011 0.279±0.014 0.366±0.014 0.320±0.013
GCE 0.819±0.004 0.573±0.011 0.652±0.008 0.650±0.014 0.449±0.011 0.509±0.011 0.445±0.015 0.280±0.013 0.353±0.013 0.325±0.015

UnionNET 0.820±0.006 0.569±0.014 0.664±0.007 0.653±0.012 0.452±0.010 0.541±0.010 0.450±0.009 0.283±0.014 0.370±0.011 0.320±0.012
NRGNN 0.822±0.006 0.571±0.019 0.676±0.007 0.645±0.012 0.470±0.014 0.548±0.014 0.451±0.011 0.282±0.022 0.373±0.012 0.326±0.010
RTGNN 0.828±0.003 0.570±0.010 0.682±0.008 0.678±0.011 0.474±0.011 0.555±0.010 0.457±0.009 0.280±0.011 0.386±0.014 0.342±0.016
SUGRL 0.834±0.005 0.564±0.011 0.674±0.012 0.675±0.009 0.468±0.011 0.552±0.011 0.452±0.012 0.280±0.012 0.381±0.012 0.338±0.014
MERIT 0.831±0.005 0.560±0.008 0.670±0.008 0.671±0.009 0.467±0.013 0.547±0.013 0.450±0.014 0.277±0.013 0.385±0.013 0.335±0.009
ARIEL 0.843±0.004 0.573±0.013 0.681±0.010 0.675±0.009 0.471±0.012 0.553±0.012 0.455±0.014 0.284±0.014 0.389±0.013 0.343±0.013

SFA 0.839±0.010 0.564±0.011 0.677±0.013 0.676±0.015 0.473±0.014 0.549±0.014 0.457±0.014 0.282±0.016 0.389±0.013 0.344±0.017
Sel-Cl 0.828±0.002 0.570±0.010 0.685±0.012 0.676±0.009 0.472±0.013 0.554±0.014 0.455±0.011 0.282±0.017 0.389±0.013 0.341±0.015

Jo-SRC 0.825±0.005 0.571±0.006 0.684±0.013 0.679±0.007 0.473±0.011 0.556±0.008 0.458±0.012 0.285±0.013 0.387±0.018 0.345±0.018
GRAND+ 0.858±0.006 0.570±0.009 0.682±0.007 0.678±0.011 0.472±0.010 0.554±0.008 0.456±0.012 0.284±0.015 0.387±0.015 0.345±0.013

RGCL 0.854±0.006 0.584±0.009 0.704±0.007 0.690±0.010 0.484±0.013 0.577±0.013 0.469±0.013 0.295±0.012 0.407±0.012 0.356±0.011
LR-RGCL 0.858±0.006 0.589±0.011 0.713±0.007 0.695±0.011 0.492±0.011 0.587±0.013 0.477±0.012 0.306±0.012 0.419±0.012 0.363±0.011

Amazon-Photos

GCN 0.703±0.005 0.475±0.023 0.501±0.013 0.529±0.009 0.351±0.014 0.341±0.014 0.372±0.011 0.291±0.022 0.281±0.019 0.290±0.014
S2GC 0.736±0.005 0.488±0.013 0.528±0.013 0.553±0.008 0.363±0.012 0.367±0.014 0.390±0.013 0.304±0.024 0.284±0.019 0.288±0.011
GCE 0.705±0.004 0.490±0.016 0.512±0.014 0.540±0.014 0.362±0.015 0.352±0.010 0.381±0.009 0.309±0.012 0.285±0.014 0.285±0.011

UnionNET 0.706±0.006 0.499±0.015 0.547±0.014 0.545±0.013 0.379±0.013 0.399±0.013 0.379±0.012 0.322±0.021 0.302±0.013 0.290±0.012
NRGNN 0.710±0.006 0.498±0.015 0.546±0.015 0.538±0.011 0.382±0.016 0.412±0.016 0.377±0.012 0.336±0.021 0.309±0.018 0.284±0.009
RTGNN 0.746±0.008 0.498±0.007 0.556±0.007 0.550±0.012 0.392±0.010 0.424±0.013 0.390±0.014 0.348±0.017 0.308±0.016 0.302±0.011
SUGRL 0.730±0.005 0.493±0.011 0.541±0.011 0.544±0.010 0.376±0.009 0.421±0.009 0.388±0.009 0.339±0.010 0.305±0.010 0.300±0.009
MERIT 0.740±0.007 0.496±0.012 0.536±0.012 0.542±0.010 0.383±0.011 0.425±0.011 0.387±0.008 0.344±0.014 0.301±0.014 0.295±0.009

SFA 0.740±0.011 0.502±0.014 0.532±0.015 0.547±0.013 0.390±0.014 0.433±0.014 0.389±0.012 0.347±0.016 0.312±0.015 0.299±0.013
ARIEL 0.727±0.007 0.500±0.008 0.550±0.013 0.548±0.008 0.391±0.009 0.427±0.012 0.389±0.014 0.349±0.014 0.307±0.013 0.299±0.013
Sel-Cl 0.725±0.008 0.499±0.012 0.551±0.010 0.549±0.008 0.389±0.011 0.426±0.008 0.391±0.020 0.350±0.018 0.310±0.015 0.300±0.017

Jo-SRC 0.730±0.005 0.500±0.013 0.555±0.011 0.551±0.011 0.394±0.013 0.425±0.013 0.393±0.013 0.351±0.013 0.305±0.018 0.303±0.013
GRAND+ 0.756±0.004 0.497±0.010 0.553±0.010 0.552±0.011 0.390±0.013 0.422±0.013 0.387±0.013 0.348±0.013 0.309±0.014 0.302±0.012

RGCL 0.748±0.009 0.510±0.013 0.574±0.013 0.562±0.007 0.403±0.014 0.445±0.014 0.399±0.012 0.359±0.012 0.327±0.014 0.312±0.010
LR-RGCL 0.757±0.010 0.520±0.013 0.581±0.013 0.570±0.007 0.410±0.014 0.455±0.014 0.406±0.012 0.369±0.012 0.335±0.014 0.318±0.010

Table 5: Performance comparison for node classification by inductive linear classifier, transductive
two-layer GCN classifier, and transductive classifier used in LR-RGCL. The comparisons are per-
formed on Cora with asymmetric label noise, symmetric label noise, and attribute noise.

Noise Level
0 40 60 80Methods
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

SUGRL (original, inductive classifier) 0.834±0.005 0.564±0.011 0.674±0.012 0.675±0.009 0.468±0.011 0.552±0.011 0.452±0.012 0.280±0.012 0.381±0.012 0.338±0.014
SUGRL + transductive GCN 0.833±0.006 0.562±0.013 0.675±0.015 0.673±0.012 0.470±0.011 0.551±0.011 0.454±0.012 0.280±0.012 0.380±0.012 0.340±0.014

SUGRL + linear transductive classifier 0.836±0.007 0.568±0.013 0.677±0.010 0.674±0.011 0.472±0.011 0.555±0.011 0.457±0.012 0.284±0.012 0.383±0.012 0.341±0.014
MERIT (original, inductive classifier) 0.831±0.005 0.560±0.008 0.670±0.008 0.671±0.009 0.467±0.013 0.547±0.013 0.450±0.014 0.277±0.013 0.385±0.013 0.335±0.009

MERIT + transductive GCN 0.831±0.007 0.562±0.011 0.668±0.013 0.672±0.014 0.466±0.013 0.549±0.015 0.451±0.016 0.276±0.012 0.382±0.014 0.337±0.013
MERIT + linear transductive classifier 0.833±0.003 0.562±0.014 0.673±0.012 0.673±0.011 0.466±0.015 0.546±0.016 0.453±0.017 0.280±0.016 0.386±0.011 0.336±0.014

SFA (original, inductive classifier) 0.839±0.010 0.564±0.011 0.677±0.013 0.676±0.015 0.473±0.014 0.549±0.014 0.457±0.014 0.282±0.016 0.389±0.013 0.344±0.017
SFA + transductive GCN 0.837±0.013 0.565±0.011 0.673±0.017 0.673±0.018 0.474±0.016 0.551±0.015 0.453±0.018 0.277±0.016 0.389±0.015 0.343±0.019

SFA + linear transductive classifier 0.841±0.015 0.566±0.013 0.678±0.014 0.679±0.014 0.477±0.015 0.552±0.012 0.456±0.016 0.284±0.017 0.391±0.015 0.348±0.019
LR-RGCL 0.858±0.006 0.589±0.011 0.713±0.007 0.695±0.011 0.492±0.011 0.587±0.013 0.477±0.012 0.306±0.012 0.419±0.012 0.363±0.011

learning, the time of the SVD computation of the kernel, and the training time of the transductive
classifier. For graph contrastive learning methods, we include both the training time of the GCL
encoder and the downstream classifier. We evaluate the training time on one 80 GB A100 GPU. The
results are shown in Table 7. It is observed that the LR-RGCL takes similar training time as baseline
GCL methods such as SFA and MERIT.

We also perform ablation study on the value of rank r in the optimization problem (2) for our
low-rank transductive classifier. It is observed from Table 6 that the performance of our low-rank
classifier is consistently close to the best performance among all the choices of the rank when r is
between 0.1min {N, d} and 0.2min {N, d}.

D.5 EIGEN-PROJECTION AND CONCENTRATION ENTROPY

Figure 3 illustrates the eigen-projection and energy concentration ratio for more datasets.

D.6 VISUALIZATION OF CONFIDENCE SCORE

We visualize the confident nodes selected by BPL in the embedding space of the learned node
representations in Figure 4. The node representations are visualized by the t-SNE figure. Each mark
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Table 6: Ablation study on the value of rank r in the optimization problem (2) on Cora with different
levels of asymmetric and symmetric label noise. The accuracy with the optimal rank is shown in the
last row. The accuracy difference against the optimal rank is shown for other ranks.

Rank
Noise Level

0 40 60 80
- Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric

0.1 min {N, d} -0.002 -0.001 -0.002 -0.002 -0.001 -0.001 -0.000
0.2 min {N, d} -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
0.3 min {N, d} -0.000 -0.000 -0.001 -0.002 -0.001 -0.000 -0.001
0.4 min {N, d} -0.001 -0.003 -0.002 -0.001 -0.002 -0.002 -0.002
0.5 min {N, d} -0.001 -0.002 -0.003 -0.003 -0.003 -0.001 -0.002
0.6 min {N, d} -0.003 -0.002 -0.002 -0.003 -0.002 -0.002 -0.003
0.7 min {N, d} -0.003 -0.004 -0.003 -0.004 -0.004 -0.004 -0.005
0.8 min {N, d} -0.002 -0.005 -0.006 -0.006 -0.006 -0.007 -0.007
0.9 min {N, d} -0.004 -0.004 -0.005 -0.007 -0.008 -0.008 -0.006
min {N, d} -0.004 -0.004 -0.007 -0.007 -0.008 -0.010 -0.008

optimal 0.858 0.589 0.713 0.492 0.587 0.306 0.419

Methods Cora Citeseer PubMed Coauthor-CS Wiki-CS Computer Photo ogbn-arxiv
GCN 11.5 13.7 38.6 43.2 22.3 30.2 19.0 215.1
S2GC 20.7 22.5 47.2 57.2 27.6 38.5 22.2 243.7
GCE 32.6 36.9 67.3 80.8 37.6 50.1 32.2 346.1

UnionNET 67.5 69.7 100.5 124.2 53.2 69.2 45.3 479.3
NRGNN 72.4 80.5 142.7 189.4 74.3 97.2 62.4 650.2
RTGNN 143.3 169.5 299.5 353.5 153.7 201.5 124.2 1322.2
SUGRL 100.3 122.1 207.4 227.1 107.7 142.8 87.7 946.8
MERIT 167.2 179.2 336.7 375.3 172.3 226.5 140.6 1495.1
ARIEL 156.9 164.3 284.3 332.6 145.1 190.4 118.3 1261.4

SFA 237.5 269.4 457.1 492.3 233.5 304.5 187.2 2013.1
Sel-Cl 177.3 189.9 313.5 352.5 161.7 211.1 130.9 1401.1

Jo-SRC 148.2 157.1 281.0 306.1 144.5 188.0 118.5 1256.0
GRAND+ 57.4 68.4 101.7 124.2 54.8 73.8 44.5 479.2
LR-RGCL 159.9 174.5 350.7 380.9 180.3 235.7 145.5 1552.7

Table 7: Training time (seconds) comparisons for node classification.
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(a) Coauthor-CS (b) Amazon Computers (c) Amazon Photos (c) ogbn-arxiv

Figure 3: Eigen-projection (first row) and energy concentration (second row) on Coauthor-CS,
Amazon-Computers, Amazon-Photos, and ogbn-arxiv. By the rank of 0.2n, the concentration
entropy on Coauthor-CS, Amazon-Computers, Amazon-Photos, and ogbn-arxiv are 0.779, 0.809,
0.752, and 0.787.

in t-SNE represents the representation of a node, and the color of the mark denotes the confidence of
that node. The results are shown for different levels of attribute noise. It is observed from Figure 4
that confident nodes, which are redder in Figure 4, are well separated in the embedding space.
With a higher level of attribute noise, the bluer nodes from different clusters blended around the
cluster boundaries. In contrast, the redder nodes are still well separated and far away from cluster
boundaries, which leads to more robustness and better performance in downstream tasks.
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Figure 4: Visualization of confident nodes with different levels of attribute noise for semi-supervised
node classification on Citeseer.
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