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Abstract

We present a scalable pipeline for automatically generating high-quality
training data for web agents. In particular, a major challenge in identifying
high-quality training instances is trajectory evaluation - quantifying how
much progress was made towards task completion. We introduce a novel
constraint-based evaluation framework that provides fine-grained assess-
ment of progress towards task completion. This enables us to leverage
partially successful trajectories, which significantly expands the amount of
usable training data. We evaluate our method on a new benchmark we pro-
pose called BookingArena, which consists of complex booking tasks across
20 popular websites, and demonstrate that our distilled student model
outperforms open-source approaches and matches or exceeds commercial
systems, while being a significantly smaller model. Our work addresses the
challenge of efficiently creating diverse, realistic web interaction datasets
and provides a systematic evaluation methodology for complex structured
web tasks.

1 Introduction

The rise of large language models (LLMs) has spurred significant interest in web
agents—systems capable of navigating and interacting with complex, dynamic websites to
accomplish real-world tasks. These agents face substantial challenges: each web page can
contain hundreds of interactive elements, and successful task completion requires making
sequential decisions across multiple pages.

Advances in agents capable of fluently performing tasks in virtual environments such
as the web rely on two critical, interrelated ingredients: data and automatic evaluation.
Large-scale agent trajectory data is essential for training competent models. Due to the scale
required, synthetic data generation becomes crucial. However, this introduces the challenge
of verifying that the generated samples are meaningful and of high quality. The sequential
decision-making nature of the tasks, combined with the inherent complexity of the web
environment, makes this a particularly difficult problem.

In this work, we aim to address both challenges by proposing an automatic data generation
pipeline, along with novel automatic evaluation metrics capable of assessing agent trajec-
tories with high fidelity. Our approach focuses on scalable trajectory data generation—a
relatively underexplored but crucial area for web agent development. We propose a fully
automatic data generation pipeline that leverages publicly available large language models
to produce large scale synthetic trajectories. Our approach targets complex, real-world web
navigation tasks that involve multiple constraints such as travel booking scenarios.

The complexity of these multi-constraint tasks renders traditional evaluation approaches
insufficient. Existing trajectory evaluation frameworks that rely on vision-language mod-
els (VLMs) or large language models (LLMs) as judges (He et al., 2024; Pan et al., 2024a;
Trabucco et al., 2025; Pahuja et al., 2025) primarily depend on the models’ ability to inter-
pret requirements described in natural language. This reliance limits their effectiveness
when applied to complex tasks with nuanced or multi-faceted constraints. To overcome
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Task Generator

Target website www.vacasa.com 

Seed tasks
1. On southwest.com, find a one way flight ...
2. On yelp.com, find a swimming pool ...

...

Teacher 
Agent

Fine-grained Constraint based Evaluation

Dataset

Filtered 
instances

On vacasa.com, find a vacation rental in 
Aspen, CO for April 08, 2025, to April 12, 
2025, that has ski-in/ski-out access.

   - made_selection: true
   - location: Aspen, CO
   - type: vacation rental
   - start_date: January 08, 2025
   - end_date: January 12, 2025
   - ski-in/ski-out access: true

Task Observation
URL:https://www.vacasa.com/unit/
89834?checkIn=04-08-2025&...

Screenshot

Target constraints

LLM    - made_selection: true | true
   - location: Aspen, CO | true
   - type: Mountain Lodge | true
   - start_date: 04/08/2025 | true
   - end_date: 04/12/2025 | true
   - ski-in/ski-out access: unknown | false

VLM/LLM Judge

Agent’s constraint state | Evaluation

Constraint Satisfaction Rate: 0.83

1) type [35] [Aspen, CO] where [35] is [textbox] [location]
2) click [58] where [58] is [textbox] [Check in] 
3) click [5] where [5] is [generic] [8] 

…

Trajectory

…

Task
On vacasa.com, find a vacation rental in 
Aspen, CO for April 08, 2025, to April 12, 
2025, that has ski-in/ski-out access.

Figure 1: Overview. We introduce a scalable pipeline to automatically generate and evaluate
web agent trajectories for training competent small language models (Section 2.1). Given
trajectories generated by a few-shot prompted teacher agent, our novel constraint-based
fine-grained evaluation framework (Section 2.2) extracts high-quality training instances for
distillation. See text for details.

this limitation, we propose a novel constraint-based evaluation framework that enables
fine-grained assessment of agent trajectories. Specifically, this framework examines each
individual criterion specified in the task description and verifies whether it is satisfied in the
resulting trajectory. Compared to binary success/failure metrics, our evaluation approach
offers a more nuanced and interpretable measure of task progress while remaining robust
to the complexities introduced by multi-constraint tasks.

Leveraging these innovations, we curate a large high quality training dataset. Our 24B pa-
rameter model finetuned on this data outperforms prior open-source as well as commercial
systems, demonstrating the effectiveness of our overall pipeline. We make the following
main contributions in this work:

• We propose a scalable automatic data generation pipeline which leverages few-shot
prompted publicly available language models to synthesize large number of agent trajec-
tories.

• We propose a novel constraint-based evaluation framework which enables fine-grained
assessment and filtering of trajectories, enabling the curation of a high quality training
dataset for agent training.

• We introduce BookingArena, a new benchmark consisting of 120 complex and structured
tasks on real-world booking websites.

• Evaluation on complex booking tasks across 20 popular websites reveals that our distilled
24B parameter model outperforms both open-source alternatives and matches or exceeds
the performance of commercial systems. Notably, our student model achieves better
results than the much larger 405B parameter teacher model used for trajectory generation.
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2 Approach

We present a scalable pipeline for generating high-quality data for training competent web
agents. We first present our trajectory generation and distillation pipeline for generating
large-scale web agent trajectory data from the web with few-shot prompted large language
model agents in Section 2.1. Next, we propose a new fine-grained constraint-based evalu-
ation framework for automatic evaluation and curation of trajectories in Section 2.2. See
Figure 1 for an overview of our pipeline.

2.1 Automatic Trajectory Generation and Distillation

Our data generation pipeline consists of four key components described next: Task Genera-
tion, Trajectory Generation, Trajectory Evaluation and Distillation.

Task Generation. We begin by compiling a list of the 1,000 most popular safe websites,
removing any that are inaccessible (e.g., those returning error codes). We then prompt
GPT-4 with manually curated seed tasks to generate a diverse set of target tasks, following
a few-shot learning paradigm (See Figure 3 of the Appendix for the prompt). The prompt
encourages the model to generate tasks that are diverse, realistic, and span varying difficulty
levels.

Trajectory Generation. Given a set of tasks, we employ a few-shot prompted Large
Language Model (LLM) agent to generate trajectories by interacting with the web. The
agent’s prompt template (shown in Figure 4 of the Appendix) is adapted from Shi et al.
(2024). At each timestep, the agent receives as input the task description, current URL,
page’s accessibility tree, history of previous actions and reasoning, and currently open
browser tabs. The accessibility tree provides a structured representation of the webpage,
where each element is formatted as [id] [tagType] [text content] [properties]. Here,
id is a unique numerical identifier, tagType specifies the HTML element type (e.g., button,
link), text content contains the element’s visible text, and properties lists any additional
attributes. Based on these inputs, the agent predicts the next action at from a set of possible
operations including element clicks, text input, hover events, and page navigation actions.
The agent also produces a (chain-of-thought) reasoning for the predicted action. A trajectory
τ is defined as sequence of action-observation pairs{(at, ot)}T

t=1. For each observation,
we log metadata including the URL, accessibility tree, and page screenshot. This stage
produces a collection of task description di and corresponding agent trajectory τi pairs
D = {(di, τi)}N

i=1.

Trajectory Evaluation. Trajectories generated by the few-shot agent inevitably fail due to
various factors including the limited capabilities of the underlying LLM, impossible tasks,
and bot detection mechanisms. Therefore, a reliable and efficient automatic evaluation
framework is essential for identifying high-quality trajectories suitable for dataset construc-
tion. Evaluating web agents presents significant challenges, particularly for tasks involving
multiple constraints that must be satisfied. Prior approaches to automatic evaluation largely
adopt an LLM-as-judge (Or Vision Language Model (VLM) as judge) paradigm where
an LLM/VLM is asked to directly judge success/failure given screenshots from an agent
trajectory (He et al., 2024). While effective for simple, short-horizon tasks, the scalability
of this approach to more complex, multi-criteria tasks remains unclear. One of our key
contributions is a comprehensive evaluation framework to automatically evaluate agent
trajectories (Section 2.2).

Distillation. Using our automatic evaluation framework, we curate a high-quality training
set Dtrain for distillation. The student model undergoes supervised fine-tuning to mimic
the teacher model’s behavior, learning to predict both the next action and its accompanying
reasoning given the current observation and agent history.

3



Published as a conference paper at COLM 2025

2.2 Constraint Framework

We propose a fine-grained metric to evaluate task completion. Figure 1 illustrates our
constraint-based evaluation process. Given a task, we first identify a set of constraints
that must be satisfied in order to complete the task using an LLM. For instance, consider
the task “Find a hotel in Paris for the dates Aug 2 - 3, 2025”. An agent that successfully
completes this task must fulfill the following constraints: {location: Paris, start_date:
Aug 2, 2025, end_date: Aug 3, 2025}. Our evaluation metric examines how many of these
individual constraints the agent satisfied during task execution, providing a granular
assessment of performance. Traditional binary success/failure metrics treat all failures
equally, offering no distinction between an agent that made no progress toward the task
and one that made substantial progress but failed to fulfill all requirements. In contrast,
constraint-based evaluation provides a more nuanced signal that can differentiate between
these scenarios, offering valuable insights into partial task completion. This approach
also enhances evaluation objectivity by introducing a systematic framework that reduces
subjective judgment in performance assessment.

Automatic Evaluation based on Constraints. Having defined the relevant constraints
for each task, we define an evaluation metric termed Constraint Satisfaction Rate (CSR).
CSR computes a binary success/failure score for each constraint representing whether the
agent satisfied the corresponding constraint in task execution and computes the average
score across all constraints. This metric is applicable to both LLMs and VLMs judges.
For a VLM judge, we use the task description, final web page screenshot as well as the
URL for evaluating constraint satisfaction. For an LLM judge, we use the final web page
accessibility tree instead of the screenshot. Figure 5 shows the prompt used for constraint-
based automatic evaluation.

Given a task d, from which a corresponding set of constraints C = {(ci, vi)}n
i=1 are identified

(e.g., using an LLM), we define the Constraint Satisfaction Rate (CSR) for a given observation
o as follows:

CSRd(o) =
1
n

n

∑
i=1

I [ f (ci|o, d) = vi] (1)

where f represents an LLM/VLM judge that predicts the observed value of the constraint
ci given the observation o and task description d. Given a trajectory τ = {(at, ot)}T

t=1,
the constraint satisfaction rate is defined as the CSR of the final observation: CSRd(τ) =
CSRd(oT). The task success rate is defined as

SRd(τ) = I [CSRd(τ) = 1] (2)

These metrics are extended to a collection of trajectories by macro-averaging.

Dataset Curation with Constraint-based Evaluation. In addition to providing a fine-
grained evaluation metric, constraints can also be helpful in evaluating progress towards
the task. This provides an opportunity to leverage partial trajectories for training. This
is important since teacher agents’ success rates on hard tasks will be low and restricting
to successful trajectories alone will significantly limit the amount of training data. While
task success/failure metrics are only meaningful at the end of task completion, constraint
satisfaction can provide a meaningful evaluation for partial trajectories as well. At any stage
during task execution, CSR can be evaluated to assess the number of constraints fulfilled up
to that point (illustrated in Figure 2).

Given a task description d and trajectory τ = {(at, ot)}T
t=1, we examine the maximum CSR

value achieved at any point during the trajectory (Cmax = maxt CSRd(ot)). If C > 0, we
extract the trajectory prefix τ′ = {(at, ot)}t′

t=1 where t′ is the smallest time-step for which
CSRd(ot′) = Cmax (i.e., t′ = mint{t : CSRd(ot) = Cmax}).

In the trajectory prefix extraction process described above, note that invalid ‘stop’ actions
(i.e., action that marks the end of task execution) could have been included. These are
actions at = stop where CSRd(ot) ̸= 1 – instances where agent prematurely predicted a stop
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Task: On booking.com, find a hotel in Sydney, Australia for one night on November 23, 2024.

Type Sydney into location input Click on Nov 23, 2024 Click on ‘Travelodge Hotel’ Go back

- made_selection: false | false
- location: N/A | false
- start_date: N/A | false
- end_date: N/A | false
- booking_type: Stays | true

CSR = 0.2

- made_selection: false | false
- location: Sydney | true
- start_date: N/A | false
- end_date: N/A | false
- booking_type: Stays | true

CSR = 0.4

- made_selection: false | false
- location: Sydney | true
- start_date: Nov 23, 2024 | true
- end_date: Nov 24, 2024 | true
- booking_type: Stays | true

CSR = 0.8

- made_selection: true | true
- location: Sydney | true
- start_date: N/A | false
- end_date: N/A | false
- booking_type: Stays | true

CSR = 0.6

Action:

…

Figure 2: Prefix Extraction with Constraint Evaluation: For a given trajectory, we compute
the constraint satisfaction rate (CSR) for each time-step and extract the smallest prefix that
reaches maximum CSR. In this example, only the first two actions are retained and the third
action is discarded as it results in a decrease of CSR (Agent should have clicked on the
‘search’ button instead).

action despite not all constraints of the task being met. We retain a stop action at = stop if
and only if CSRd(ot) = 1. For stop actions with CSRd(ot) < 1, we use a hindsight re-labeling
approach to revise these for inclusion in the dataset described next.

Hindsight Re-labeling. For stop actions where the agent made partial progress toward
completing the task, 0 < CSRd(ot) < 1, we rename the task description so that these become
valid stop actions with the following hindsight re-labeling approach. Given that C′ ⊂ C
constraints were satisfied, we revise the original task description d to d′ so that the new
description is consistent with the constraints C′ (i.e., constraints C \ C′ are removed from
the task description). For example, consider the task “On hilton.com, find a hotel in New
Orleans on February 08 for 3 people”. Suppose the status of constraints after task execution
was judged to be { made_selection: False, location: "New Orleans", date: "February 8,
2025", guest_count: <Unobserved> }. After hindsight re-labeling, the task is revised to “On
hilton.com, search for hotels in New Orleans on February 8”. In addition, we also revise the
agent’s reasoning steps for the stop action to be consistent with the new task description.

3 Experiments

Dataset Construction. We use LLAMA 3 70B and LLAMA 3.1 405B Instruct models (Tou-
vron et al., 2023) as teacher agents for trajectory generation, where the bigger model was
necessary for complex tasks (e.g, booking). We collect 150k trajectories, which correspond
to approximately 1M individual actions/steps (note that this includes successful and unsuc-
cessful trajectories). The generated trajectories are evaluated with our constraint evaluation
approach using LLAMA 3.3 70B and Gemma 3 27B (Team et al., 2025) models (Prompt
provided in Figure 6 of Appendix). These evaluation outputs are used by the prefix ex-
traction and hindsight relabeling steps (Section 2.2) for curating a high-quality training
dataset. To counter evaluation noise, we only retain training instances that are common
to both these judge models. From the 150k trajectories collected, ∼16k were judged to be
completely successful (based on our constraint evaluation metric). On the other hand, if we
consider trajectories that are partially correct (i.e., CSR > 0 for at least one step), we find that
∼65k trajectories have usable prefixes, which leads to a dataset of 300k actions/steps. All
experiments are conducted using two machines, each equipped with 16 A100 40GB GPUs.
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Distillation. We train Mistral 3 Small 24B (Team, 2025) student agents. The prompt
used for fine-tuning is shown in Figure 8 of the Appendix. We use LoRA fine-tuning for
distillation, where we fine-tune the query and value projections (q_proj, v_proj). We use a
learning rate of 1e-4 with a cosine scheduler and a batch size of 16.

Evaluation Setup. In contrast to some prior work that use static datasets for evaluation,
which have been shown to poorly correlate with task success rate in the wild (Zheng et al.,
2024), we focus on online tasks, where the agent is expected to execute a task on a website
and success/failure evaluation is performed at the end of trajectory. We consider multiple
evaluation sets for accurate assessment of different agents’ performance on web tasks.

Since existing benchmarks for online evaluation lack representation of complex long-horizon
tasks, we develop a new benchmark termed BookingArena focused on travel booking tasks
(flights, hotels, tickets, etc.). This benchmark comprises 6 tasks from each of 20 popular
websites commonly used for real-world booking activities. We define difficulty levels based
on the number of constraints specified in each task. The 6 tasks per website are distributed
as 2 easy, 2 medium, and 2 hard tasks, with average number of constraints for each category
being 3.95, 5.45, and 7.30 respectively. Each task is identified by a starting url and task
description. Agents are required to interact with actual websites and complete tasks. To
prevent tasks from being outdated with the passing of time, we also provide scripts that
automatically detect past dates and update them with future dates to keep the tasks valid.
We hope this benchmark will be useful to study complex, long-horizon tasks in the future.

In addition, we also evaluate our approach on WebVoyager (He et al., 2024), which is
dominated by search tasks. This benchmark comprises 643 tasks from 15 websites, with
an average of 43 tasks per website. 55 tasks that are no longer possible (e.g., due to their
time-sensitive nature), are excluded from our evaluation. For booking tasks that are fixable
by updating dates (e.g., ‘Find deals for a vacation in Mexico in Dec 2024’), we update these
dates so that they are in the future.

The rest of this section is organized as follows. We begin by presenting the evaluation on our
BookingArena benchmark in Section 3.1. Next, we provide ablation studies on our pipeline’s
design choices (Section 3.2) and present a study on our automatic evaluation approach
(Section 3.3). Finally, we present results on the WebVoyager benchmark in Section 3.4.

3.1 BookingArena Evaluation

Baselines. We consider commercial and open-source state-of-the-Art VLM agents as
baselines: UI-TARS (Qin et al., 2025), Claude-Computer-Use (computer-use-2024-10-22)
(Anthropic, 2024), Operator (computer-use-preview-2025-03-11) (OpenAI, 2025), Browser
Use (Müller & Žunič, 2024). Browser Use is a set-of-marks-based agent where interactable
screen elements are highlighted with colored bounding boxes with numerical ids and the
agent predicts element ids to interact with. UI-TARS, Claude-Computer-Use, and Operator,
on the other hand, are pixel-based approaches, which interact with screen elements based on
pixel coordinates. These agents take one or more screenshots as input and produce actions.

Evaluation Protocol. We use the constraint-based success rates, SR and CSR, as defined in
Equations (1) and (2) for this evaluation. For evaluation of the final models, we use GPT-4o
with visual observation space (final screenshot and URL). The prompt used for evaluation
is given in Figure 5 of the Appendix. Note that this is different from the models (LLAMA,
Gemma) used to curate the dataset, alleviating concerns of dataset curation bias.

Results. Our approach outperforms prior methods based on closed-source models such
as Claude Computer Use, Operator and Browser Use, as well as open-source alternatives
such as UI-TARS on the task SR metric, and is only inferior to Operator. This is particularly
significant, given that our agent is a 24B parameter model. However, we also find that SR
is poor across the board due to the challenging nature of the tasks, with performance on
several websites being zero. Task success rate is a stringent metric that equally penalizes
an agent that got a majority of the constraints in the task correct, as well as an agent that
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Website Browser Use Claude CU UI-TARS Operator Ours

SR CSR SR CSR SR CSR SR CSR SR CSR

Booking.com 20.0 44.0 0.0 6.7 66.7 83.3 0.0 55.6 50.0 89.2
Vrbo 0.0 40.3 33.3 62.0 0.0 26.9 16.7 68.5 66.7 88.4
Trivago 33.3 66.5 0.0 50.5 33.3 66.3 50.0 84.2 50.0 85.9
Travelocity 0.0 50.0 0.0 56.7 50.0 68.9 20.0 77.7 50.0 85.6
Rome2rio 40.0 71.7 33.3 58.3 0.0 25.0 50.0 75.0 50.0 81.9
Orbitz 16.7 53.1 33.3 49.6 16.7 28.9 83.3 98.3 80.0 80.0
Homeaway 16.7 40.5 16.7 59.5 33.3 76.8 50.0 66.7 50.0 73.8
Airbnb 0.0 9.7 0.0 34.1 0.0 56.8 20.0 66.0 33.3 72.9
Kayak 50.0 80.0 0.0 43.0 33.3 57.2 25.0 80.4 16.7 68.0
Vacasa 33.3 43.3 33.3 56.3 0.0 37.9 50.0 69.0 33.3 66.2
Plumguide 50.0 76.4 16.7 38.9 33.3 48.6 20.0 58.3 33.3 63.9
IHG 33.3 40.0 33.3 60.7 33.3 61.9 40.0 67.0 33.3 59.8
Sonder 0.0 10.0 16.7 30.0 0.0 11.7 25.0 56.7 16.7 56.7
Redawning 16.7 47.4 16.7 36.9 33.3 56.2 16.7 49.0 20.0 50.2
Hotels.com 16.7 62.2 16.7 59.2 66.7 80.0 25.0 65.0 16.7 48.3
Momondo 16.7 38.9 16.7 78.9 33.3 80.0 50.0 90.8 0.0 41.1
Hilton 16.7 36.1 50.0 76.7 50.0 84.4 80.0 96.0 0.0 33.3
Google Flights 0.0 27.5 16.7 60.5 33.3 59.2 40.0 88.1 0.0 31.2
Radisson 20.0 36.0 0.0 17.8 16.7 26.7 0.0 47.7 0.0 12.2
Megabus 0.0 34.4 0.0 36.1 0.0 35.0 0.0 23.9 0.0 12.2

Average 18.8 45.3 16.8 48.7 26.7 53.6 33.0 68.7 29.9 60.2

Table 1: Website-level performance comparison of different approaches on our
BookingArena benchmark. We compare our approach against Browser Use (Müller &
Žunič, 2024), Claude Computer Use (Anthropic, 2024), UI-TARS (Qin et al., 2025) and
Operator (OpenAI, 2025). SR represents task success rate and CSR represents constraint
satisfaction rate. Best performance boldfaced and second best underlined.

made no progress on a task. For such difficult tasks, we argue that CSR provides a more
fine-grained signal to compare different models.

We find that Browser Use struggles with dense webpages, where the set-of-marks annotation
can make the screenshot complex and difficult to parse. While Operator is generally capable
with the best CSR among all approaches, we find that it often makes one-off errors with
date selection (e.g., choosing ‘May 14’ when the provided date is ‘May 15’), which explains
the low SR. A key advantage of our proposed constraint-based metric is that it provides
such fine-grained insights about the deficiencies of agents, which is critical for advancing
the frontier on web agents.

We further evaluate how often a specific constraint is successfully satisfied by our agetnt
across tasks. Success rates for the 10 most frequent constraints appearing in the evaluation
tasks are shown in Table 3. Intuitively, location-related constraints have higher success rates,
as they are often filled early in the task. In contrast, constraints related to amenities, such as
pet-friendliness, are handled later in the task and have low success rates as a result, due to
the dependency on prior actions.

3.2 Ablations on Agent Training

We perform ablations to understand the impact of different components of our approach
such as the choice of teacher model, impact of our data filtering strategy, and fine-tuning
design choices. For these ablations, we report SR and CSR on BookingArena in Table 2.

Teacher Performance. We compare different few-shot prompted teacher models with 3
demonstration examples in the first section of Table 2. We find that LLAMA models perform
well, with the 405B model performing best on complex tasks.
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Model Data Source Training/ SR CSR
Inference % %

Qwen 2.5 72B N/A Few-shot 18.0 46.0
Llama 3.3 70B N/A Few-shot 22.5 49.8
Llama 3.1 405B N/A Few-shot 22.5 52.4

Mistral 3 24B Success only LoRA 25.0 55.0
Mistral 3 24B All trajectories LoRA 29.4 57.2
Mistral 3 24B Partial success LoRA 29.9 60.2
Mistral 3 24B Partial success Full finetune 28.4 58.7

Table 2: Performance comparison across model variants and
prompting/training configurations. We evaluate teacher
models using few-shot prompting and student models
trained with different data filtering strategies and training
approaches. Task SR and Constraint SR represent the task
success rate and constraint satisfaction rate respectively.

Constraint Success
Rate (%)

location 79
departure loc. 73
destination loc. 67
return date 64
departure date 56
start date 55
pet-friendly 50
end date 47
rental type 41
num guests 25

Table 3: Success rates of our
fine-tuned agent for the top-
10 most frequent constraints
in the evaluation tasks.

Model Task SR (%) Constraint SR (CSR) (%)

Screenshot +URL +History Screenshot +URL +History

Claude Computer Use 12.6 16.8 21.8 39.1 48.7 53.0
LLAMA 405B few-shot 19.0 22.5 23.3 47.9 52.4 53.3
Mistral 24B fine-tuned 25.0 29.9 30.0 50.3 60.2 58.8

Table 4: Performance comparison across different models and evaluation settings. Task SR
represents task success rate, while Constraint SR represents constraint satisfaction rate. The
+URL and +History columns indicate additional information provided during evaluation.

Dataset curation. We consider the following variations in the choice of data for training:
only successful trajectories, all trajectories (successful + unsuccessful), and partially suc-
cessful trajectories. We find that learning from partially successful trajectories is better than
learning from successful complete trajectories alone, which demonstrates that we benefit
from scale. We also consider a multi-stage training strategy where we train on all trajecto-
ries, followed by successful trajectories only. While this approach leverages unsuccessful
trajectories and benefits from data scale, it is inferior to the simpler single-stage training
strategy with partially successful trajectories alone.

Training Strategy. We find that LoRA training is more effective than full finetuning. This
shows that LoRA is more effective in unlocking the knowledge of the base PLM, while
full finetuning is prone to overfitting, especially in our data regime. Overall, we find the
simple training recipe of training relatively small LLMs with LoRA on partially successful
trajectories to be an efficient and effective training recipe which significantly outperforms a
much larger prompted 405B model.

3.3 Reliability of Automatic Evaluation

We study the reliability of our evaluation strategy by considering the inclusion/exclusion of
information provided to the evaluator. We consider page screenshot as the minimum source
of information about the agent state available to the evaluator and study the impact of
including/excluding information such as the page URL and the history of actions performed
by the agent (Table 4). First, we find that inclusion of URL leads to better evaluation scores
as it can encode useful information such as location, dates, etc. that can be complementary to
webpage contents. Consider the following example url: https://www.momondo.com/security/check?out=

%2Fcars%2FSan-Francisco%2CCA-c13852%2F2025-01-20%2F2025-01-20-13h. In this case, even though the agent
was eventually blocked by a captcha, it clearly made progress towards the task by setting
the correct rental type, location and dates, as is evident from the url.
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Website Wilbur WebVoyager WebVoyager WebVoyager Ours
(Claude) (GPT-4o) (GPT-4V)

(Lutz et al., 2024) (He et al., 2024) (He et al., 2024) (He et al., 2024)

Allrecipes 60.0±0.0 45.9±3.4 56.3±1.3 51.1±2.2 62.5±0.0
Amazon 43.9±0.0 58.6±4.2 53.7±2.5 52.9±1.4 63.2±0.0
Apple 60.5±0.0 58.1±4.0 56.6±1.3 62.8±2.3 63.6±0.0
ArXiv 51.2±0.0 55.0±7.0 60.5±0.0 52.0±1.3 59.5±0.0
GitHub 22.0±0.0 56.9±1.4 57.7±3.7 59.3±3.7 62.5±0.0
Booking 38.6±0.0 19.0±1.3 43.9±3.5 32.6±2.7 55.0±0.0
ESPN 59.1±0.0 46.2±1.3 44.0±2.7 47.0±1.3 47.5±0.0
Coursera 51.1±0.0 68.2±1.3 65.1±2.8 57.9±2.7 70.0±0.0
Cambridge Dict. 86.0±0.0 71.3±3.6 82.2±1.3 71.3±1.3 76.7±0.0
BBC News 81.0±0.0 66.7±4.8 54.8±2.4 60.3±2.8 77.1±0.0
Google Flights 0.0±0.0 15.1±5.5 28.6±0.0 51.6±1.4 66.7±0.0
Google Map 39.0±0.0 55.3±1.4 56.9±2.8 64.3±2.8 60.5±0.0
Google Search 67.4±0.0 72.9±1.3 63.6±1.3 77.5±2.7 75.0±0.0
Huggingface 53.5±0.0 53.5±4.7 42.6±3.6 55.8±2.3 68.6±0.0
Wolfram Alpha 65.2±0.0 51.5±5.4 65.2±2.2 60.9±2.2 58.7±0.0

Overall 52.6±0.0 52.8±1.4 55.5±0.8 57.1±0.2 64.5±0.0

Table 5: Comparison of various models on WebVoyager. For each automatic evaluation, we
run GPT evaluator three times to calculate the performance mean and standard deviation.

On the other hand, we notice that inclusion of action history leads to generous evaluation
due to hallucination of the judge model. For instance, if the action ‘type [3] [New York]’ is
provided in the agent history, the judge often simply assumes that the action of typing ‘New
York’ into the relevant field in the page was successful, regardless of whether the action was
successfully executed in the page. We further confirmed that inclusion of action history leads
to evaluation outputs the correlate less with human evaluation. These ablations indicate
that url and page contents provide the most unbiased signal for evaluation.

3.4 WebVoyager Evaluation

Baselines. We consider Wilbur (Lutz et al., 2024) and the agents reported in WebVoyager
(He et al., 2024) as baselines. For fair comparison, we only compare with baselines that
evaluate performance based on the standard evaluation protocol proposed in WebVoyager 1.
We use GPT-4o for evaluation since the GPT-4V model used in these works is deprecated.

Evaluation Protocol. We follow the standard evaluation protocol proposed in He et al.
(2024). The final 15 screenshots of the agent trajectory, along with any final textual responses
are provided to the VLM-judge which is required to output a success/failure judgement.
Performance average and standard deviation are calculated based on three runs of the GPT-
4o evaluator, similar to He et al. (2024). Note that this evaluation protocol is different from
the evaluation metrics considered in previous sections – we only consider this evaluation
approach for this dataset for consistency with prior reported results.

Results. We compare our approach against prior work in Table 5. We outperform prior
approaches based on large closed-source foundation models such as GPT and Claude with
a 24B parameter small language model. In particular, we achieve significant performance
improvements on hard domains such as Booking and Google Flights, where we achieve
improvements of 11.1% and 15.1% respectively, compared to the best baseline approaches on
those domains. To our knowledge, our work is the first to achieve competitive performance

1Agent-E (Abuelsaad et al., 2024) and Browser Use (Müller & Žunič, 2024) used human evaluation,
and other commercial UI control systems did not reveal their evaluation setting.
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on the WebVoyager benchmark with a fine-tuned small language model. We also note that
the all standard deviations are less than 0.05 due to high self-agreement of GPT-4o.

4 Related Work

Benchmarks. Evaluating web navigation agents presents significant challenges due to
complex observations, multi-step interactions, and incomplete information. To address these
challenges, prior work have proposed static benchmarks such as Mind2Web (Deng et al.,
2023) and WebLINX (Lù et al., 2024), which provide efficient evaluation frameworks with
step-level assessment by comparing predicted actions against reference ground-truth actions.
However, results from these benchmarks may not accurately reflect agent performance on
real-world tasks. Alternatively, benchmarks using live websites, including WebShop (Yao
et al., 2022), WebArena (Zhou et al., 2023), and VisualWebArena (Koh et al., 2024), enable
controlled evaluation on fixed, simulated websites but often fail to capture the complexity,
stochasticity, and dynamic nature inherent in real-world web environments. WebVoyager
(He et al., 2024) addresses this limitation by proposing evaluation tasks and automatic
evaluators for task execution on actual websites, making it one of our chosen evaluation
benchmarks. To further assess web agents on highly complex tasks, we introduce our own
evaluation benchmark, BookingArena, which comprises real-world booking tasks that better
reflect the challenges agents face in practical applications.

Automatic Evaluation for Web Agents. Existing web agent evaluation approaches face
significant limitations in both scalability and reliability. WebCanvas (Pan et al., 2024b) and
VisualWebArena (Koh et al., 2024) rely on human-annotated subgoal states and symbolic
reward functions respectively, which lack scalability for broader applications. Conversely,
WebVoyager (He et al., 2024) and other approaches (Pan et al., 2024a) employ VLM/LLM
judges that evaluate success based on final screenshots and agent responses, but these
methods prove unreliable and imprecise for complex, multi-criteria tasks. To address these
challenges, we propose a constraint-based automatic evaluation framework for structured
tasks defined by specific constraint sets, offering a more systematic approach than existing
VLM/LLM-based methods while maintaining greater scalability than human-specified
reward functions.

Automatic Trajectory Data Generation for Web Agents. Automatic generation of trajec-
tory data for training web agents remains a relatively underexplored area. InSTA (Trabucco
et al., 2025) uses LLMs to generate web tasks and evaluate agent-generated trajectories,
while Explorer (Pahuja et al., 2025) prompts LLMs to propose and refine tasks, performing
screenshot-augmented evaluation of agent trajectories. Although we share the scaling focus
with these works, their evaluation frameworks primarily rely on the heuristic capabilities of
evaluator models to assess trajectories based on natural language requirements, which limits
their effectiveness for complex tasks. In contrast, we introduce a constraint-based frame-
work for fine-grained evaluation, enabling our pipeline to collect high-quality trajectories
for challenging tasks.

5 Conclusion

In conclusion, we presented a scalable, automatic data generation and distillation pipeline
for developing proficient small language model agents. We introduce a novel automatic
evaluation approach for reliably assessing agent trajectories. Using these metrics, we
demonstrate how partial trajectories can be effectively leveraged to scale up high-quality
training data. Our trained small language model agent, with 24B parameters, outperforms
most prior approaches based on much larger closed-source foundation models, both on
a new benchmark we propose and the Webvoyager benchmark. We also contribute a
novel benchmark focused on challenging booking tasks, which we hope will be valuable
in advancing the development of agents for complex web tasks. Directions for further
improvement of our work include extending support to multimodal observations and
broadening the scope to other platforms and environments beyond the web.
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A Appendix

I am trying to generate examples of realistic tasks that our customers might ask their AI assistants to complete
on the internet.

You must create tasks that adhere the specific categories of tasks as expressed by these examples:
{examples}

Each task instruction should fulfill the following criteria:
(1) Precision: It should be sufficiently precise for the AI assistant to complete the task without having to ask
followup questions.
(2) Diversity: The tasks should be diverse. I don't want a dataset of tasks that are all the same. For instance,
DO NOT make every task related to adding an item to a shopping cart (at most, cart-related tasks should be 50%
of the tasks) or searching using a search bar.
(3) Realism: The tasks should be realistic. Think about what our human customer base might actually try to
accomplish using our AI assistant.
(4) Complexity: The task should be very simple for easy difficulty, then scale up for harder difficulties by
adding additional constraints to the task.
(5) Free: The AI assistant should not have to spend money in order to complete the task. For instance, if the
task regards a potential purchase, it should always conclude by adding it to the cart or identifying the booking
rather than actually purchasing it. The AI assistant has no access to payment methods (e.g., credit cards).
(6) Credential-Free: The AI assistant should not need access to our customers' personal data to complete the
task. So, for instance, filling out a form that requires a user's name or address, or logging into a real online
account, is off limits.
(7) Trajectory-Centric: Tasks should not require the AI assistant to report back on results. We have a separate
AI model that extracts the correct information from the webpages that are visited. Thus, the task should only
require the assistant to perform the correct actions on the web necessary to yield the correct webpage (e.g.,
visiting a webpage containing the correct information) or to elicit the right results (e.g., adding it to the
cart) from a website.
(8) High-Level: Tasks should not include low-level details (e.g., "filter to show only refrigerators with water
dispensers") because it is difficult to know what GUI interactions or filters might be available on a particular
website. Instead, tasks should be high-level, expressing a goal that can be accomplished by methods determined
by the AI assistant.
(9) Dated: For any task involving a booking date, the date should be between one to four months after
{current_date}. Tasks should always be expressed using that format (i.e., Month DD, YYYY such as "December 17,
2025")
(10) Relevance: Focus on the core tasks available on each website using your specific knowledge of that site and
the functionalities available on it, such as UI features and filering and search options.

Your job will be to generate {num} task instructions for EACH difficulty level for the website {website}. You
have already generated the following list of task instructions for this website. Please make sure that your new
task instructions are unique (i.e., they should be different from this list).
{prev_task_instructions}

Based on the above criteria, and using the examples as inspiration, please generate {num} task instructions for
each difficulty level for the website {website}. Please separate each task by a single carriage return ONLY.

Figure 3: Task generation prompt template used to generate diverse tasks for each website.
The template includes specific criteria for task generation and ensures consistency across
different difficulty levels while maintaining website-specific rules.
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You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based tasks.
These tasks will be accomplished through the use of specific actions you can issue.

Here's the information you'll have:
The user's objective: This is the task you're trying to complete.
The current web page's accessibility tree: This is a simplified representation of the webpage, providing key
information. It enumerates all the elements in the current web page in the format [id] [tagType] [text content]
[(optional) properties] where tagType is the type of the element (e.g., button, link), text content is the text
content of the element, and properties is an optional field which lists the properties of the element. For
example, [1234] [button] [Add to Cart] means that there is a button with id 1234 and text content 'Add to Cart'
on the current web page.
The current web page's URL: This is the page you're currently navigating.
The open tabs: These are the tabs you have open.
The previous reasonsings: These are the past reasonings for taking corresponding actions.
The previous action: These are the actions you have performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:

Page Operation Actions:
'''click [id]''': This action clicks on an element with a specific id on the webpage.
'''type [id] [content]''': Use this to type the content into the field with id. By default, the "Enter" key is
pressed after typing unless press_enter_after is set to 0, i.e., '''type [id] [content] [0]'''.
'''hover [id]''': Hover over an element with id.

URL Navigation Actions:
'''goto [url]''': Navigate to a specific URL.
'''go_back''': Navigate to the previously viewed page.
'''go_forward''': Navigate to the next page (if a previous 'go_back' action was performed).

Completion Action:
'''stop [answer]''': Issue this action when you believe the task is complete. If the objective is to find a
text-based answer, provide the answer in the bracket.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a "In summary, the next action I will perform is"
phrase, followed by action inside ''''''. For example, "In summary, the next action I will perform is '''click
[1234]'''".
5. Issue stop action when you think you have achieved the objective. Don't generate anything after stop.
6. Note that there is no need to scroll since the entire current page is given.

OBSERVATION:
[1744] [link] [HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)]
[1749] [StaticText] [$279.49]
[1757] [button] [Add to Cart]
[1760] [button] [Add to Wish List]
[1761] [button] [Add to Compare]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS REASONINGS: None
PREVIOUS ACTION: None

Let's think step-by-step. This page list the information of HP Inkjet Fax Machine, which is the product
identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the stop
action with the answer. In summary, the next action I will perform is ```stop [$279.49]'''

...

Figure 4: Prompt used for few-shot agent.
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You are an expert in assessing the performance of a web navigation agent, whose role is to help a human user
navigate a website to complete a task. You will be given the following information:

* The user's intent: This is the task the agent is trying to complete
* Constraints: These are the constraints the agent needs to fulfill in order to complete this task
* The screenshot of the final webpage of the agent's task execution
* The URL of the final webpage of the agent's task execution

Based on this information, your task is to evaluate the agent's trajectory based on the following guidelines.
Please reason step by step before giving the final judgement. Take a close look at the screenshot of the final
webpage and the URL to see whether it meets the user's requirement.
* For each constraint that given, use the process described below to check whether the constraint was met by the
agent; to be considered met, the correct value of constraint must be either explicitly present on the page or
the URL.
* Note that the constraint 'made_selection' corresponds to locating one specific listing. This constraint is
unmet if the agent is on a search results page at the end; for it to be met, the agent MUST be on a page
dedicated to one specific listing.
* If the value of a particular constraint cannot be determined based on the page screenshot, check the URL to
see if the information is present.

Output your evaluation in valid json format as shown in the example below, where, for each constraint:
* "ground_truth" represents the the value of the constraint given to you
* "agent_state" is the observed value of the constraint on the agent's final webpage
* "matching" represents whether the constraint is met (true/false) in the agent's final webpage, based on
whether agent_state matches ground_truth

{
"made_selection": {

"ground_truth": true,
"agent_state": "true",
"matching": "true",

},
"location": {

"ground_truth": "Aspen, CO",
"agent_state": "Aspen",
"matching": "true",

},
"unit_type": {

"ground_truth": "vacation rental",
"agent_state": "retreat house",
"matching": "true",

},
"start_date": {

"ground_truth": "January 08, 2025",
"agent_state": "January 11, 2025",
"matching": "false",

},
"end_date": {

"ground_truth": "January 12, 2025",
"agent_state": "January 12, 2025",
"matching": "true",

}
}

Figure 5: Prompt used for constraint evaluation with screenshot observations and VLM
judge.
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You are an expert in assessing the performance of a web navigation agent, whose role is to help a human user
navigate a website to complete a task. You will be given the following information:

* The user's intent: This is the task the agent is trying to complete
* Constraints: These are the constraints the agent needs to fulfill in order to complete this task
* The accessibility tree of the final webpage of the agent's task execution
* The URL of the final webpage of the agent's task execution

Based on this information, your task is to evaluate the agent's trajectory based on the following guidelines.
Please reason step by step before giving the final judgement. Take a close look at the accessibility tree of the
final webpage and the URL to see whether it meets the user's requirement.
* For each constraint that given, use the process described below to check whether the constraint was met by the
agent; to be considered met, the correct value of constraint must be either explicitly present on the page or
the URL.
* Note that the constraint 'made_selection' corresponds to locating one specific listing. This constraint is
unmet if the agent is on a search results page at the end; for it to be met, the agent MUST be on a page
dedicated to one specific listing.
* If the value of a particular constraint cannot be determined based on the page accessibility tree, check the
URL to see if the information is present.

Output your evaluation in valid json format as shown in the example below, where, for each constraint:
* "ground_truth" represents the the value of the constraint given to you
* "agent_state" is the observed value of the constraint on the agent's final webpage
* "matching" represents whether the constraint is met (true/false) in the agent's final webpage, based on
whether agent_state matches ground_truth

{
"made_selection": {

"ground_truth": true,
"agent_state": "true",
"matching": "true",

},
"location": {

"ground_truth": "Aspen, CO",
"agent_state": "Aspen",
"matching": "true",

},
"unit_type": {

"ground_truth": "vacation rental",
"agent_state": "retreat house",
"matching": "true",

},
"start_date": {

"ground_truth": "January 08, 2025",
"agent_state": "January 11, 2025",
"matching": "false",

},
"end_date": {

"ground_truth": "January 12, 2025",
"agent_state": "January 12, 2025",
"matching": "true",

}
}

Figure 6: Prompt used for constraint evaluation with accessibility tree text observations and
LLM judge.
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You are an expert in assessing the performance of a web navigation agent, whose role is to help a human user
navigate a website to complete a task. You will be given the following information:
* The user's intent: This is the task the agent is trying to complete

* For the given intent, identify the key constraints mentioned in the intent. For example, the intent 'On
vacasa.com, find a vacation rental in Aspen, CO for January 08, 2025, to January 12, 2025, that accommodates 8
guests and has ski-in/ski-out access.' mentions the following constraints: made_selection, location, rental
type, start date, end date, number of guests, ski-in/ski-out access.
* If the intent involves locating one specific listing, and the intent does not use the word search, then create
an addition constraint called 'made_selection'. This constraint is unmet if the agent is on a search results
page at the end; for it to be met, the agent MUST be on a page dedicated to one specific listing. You must
abolutely not forget to include the made_selection constraint in these cases. When in doubt, include it.

Here's an example.

OBJECTIVE: Locate an apartment in Tokyo, Japan, available on January 30, 2025.
CONSTRAINTS:
- made_selection: True
- location: Tokyo, Japan
- date: January 30, 2025
- locate_apartment: true

Figure 7: Prompt used for constraint extraction.

You are an intelligent web agent. Given the following information, your task is to predict the next action.
Task: This is the task the agent is trying to complete.
Previous Actions: The previous actions the agent has performed.
URL: The URL of the current webpage
Page accessibility tree: The accessibility tree representation of the current webpage.

Task: <task>
Previous Actions: <past_actions>
URL: <url>
Page accessibility tree: <page_text>

Figure 8: Prompt used for finetuning.

https://www.trivago.com
https://www.homeaway.com
https://www.google.com/flights
https://www.vrbo.com
https://www.rome2rio.com
https://www.orbitz.com
https://www.hilton.com
https://www.booking.com
https://www.airbnb.com
https://www.travelocity.com
https://www.plumguide.com
https://www.ihg.com
https://www.hotels.com
https://www.vacasa.com
https://www.sonder.com
https://www.redawning.com
https://www.radissonhotels.com
https://www.momondo.com
https://www.megabus.com
https://www.kayak.com

Figure 9: Websites used for evaluation.
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