
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MODELING ASYNCHRONOUS TIME SERIES WITH
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel prompt design for Large Language Models (LLMs) tailored to
Asynchronous Time Series. Unlike regular time series, which assume values at
evenly spaced time points, asynchronous time series consist of events occurring at
irregular intervals, each described in natural language. Our approach effectively
utilizes the rich natural language of event descriptions, allowing LLMs to benefit
from their broad world knowledge for reasoning across different domains and
tasks. This allows us to extend the scope of asynchronous time series analysis
beyond forecasting to include tasks like anomaly detection and data imputation.
We further introduce Stochastic Soft Prompting, a novel prompt-tuning mecha-
nism that significantly improves model performance, outperforming existing fine-
tuning methods such as QLORA. Through extensive experiments on real-world
datasets, we demonstrate that our approach achieves state-of-the-art performance
across different tasks and datasets.

1 INTRODUCTION

An asynchronous time series (also named temporal event sequence or continuous-time event se-
quence) is a temporally ordered set of events that describe the progression of actions or occurrences.
Asynchronous time series are ubiquitous in daily life, such as healthcare (Lorch et al., 2018; Rizoiu
et al., 2018), finance (Bacry et al., 2015; Jin et al., 2020), e-commerce (Hernandez et al., 2017), and
social media (Zhang et al., 2022; Kong et al., 2023). In each of those domains, predicting the next
events plays a crucial role.

Unlike regular time series, which consist of values at evenly spaced time intervals (like weather mea-
surements), asynchronous time series consist of multiple types of discrete events occurring sporadi-
cally over time. For example, in the context of social media platforms like Twitter, user interactions
(likes, comments, shares, and follows) happen sporadically and at irregular intervals.(Zhao et al.,
2015) Each such type of interaction with a user’s profile represents an event type, and together with
their timestamps, form an asynchronous time series. (Xue et al., 2024) Modeling such asynchronous
time series is challenging due to the irregular timing and the diversity of event types, which contrasts
with the uniformity and regularity of traditional time series data.Schirmer et al. (2022) (Horn et al.,
2020) (Zhang et al.)

Traditionally, to model asynchronous time series, events are grouped into a fixed, small number of
categorical types. (Xue et al., 2024) Separate stochastic processes—such as Poisson processes or
Hawkes processes—are then modeled for each event type to predict which event will occur next
and when. (Mei et al., 2022) (Hawkes, 1971) However, this approach presents several significant
drawbacks. Firstly, it inherently limits research to datasets with a small number of event types
because modeling each event type separately becomes increasingly computationally intensive as the
number of event types grows (Zuo et al., 2020). Secondly, events can vary widely and may not
fit neatly into predefined categories. Thirdly, this method leads to the loss of meaningful natural
language descriptions associated with the events. Fourthly, these methods treat each event type
independently, ignoring any interactions between them - for example, likes and shares of a tweet are
not independent events. Lastly, extending these methods to other tasks require significant theoretical
development. (Shchur et al., 2021)

Deep learning models have significantly revolutionized techniques for time series modeling, and
even more so with the introduction of transformers (Vaswani et al., 2017). However, there are
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often limitations due to the scarcity of training data, overfitting in specific domains, and the highly
specialized architectural designs. In response to those challenges, Large Language Models (LLMs)
have emerged as a powerful and promising direction to model time series data. For example, (Gruver
et al., 2023; Zhou et al., 2023; Xue & Salim, 2023; Jin et al., 2024) have illustrated how LLMs can
be used as time series forecasters when the input time series is encoded as a string of numeric digits,
by casting the time series forecasting problem as a next-token prediction in text, hence unlocking
the use of powerful pre-trained models. LLMs have also been explored in other domains like action
forecasting from videos (Zhao et al., 2024; Wang et al., 2024). However, these approaches focus
on regular time series with evenly spaced numerical observations and cannot be directly applied to
asynchronous time series due to their irregular intervals and diverse event types described in natural
language. While LLMs have recently been explored for action recognition and action forecasting
from videos Zhao et al. (2024) Wang et al. (2024), applying LLMs to textual asynchronous time
series over multiple tasks (like anomaly detection and imputation) remains largely unexplored.

(a) Forecasting (b) Anomaly detection (c) Imputation

Figure 1: We show that our LASTS framework can solve following tasks on asynchronous time
series data: (a)Forecasting: The model is given a sequence of events, encoded as text, with the
goal of predicting the next event. (b)Anomaly detection: The model is given a sequence of events
containing an incorrect event (bold) with the goal of finding the incorrect event. (c)Imputation:
The model is given a sequence of events containing a masked event, encoded as text, with the goal
of predicting the masked event.

This paper presents LASTS (Language-modeled-Asynchronous Time Series), a novel prompting
based framework to adapt LLMs to asynchronous time series data while keeping the backbone model
intact. To the best of our knowledge, this is the first work to explore the capabilities of LLMs to
process textual asynchronous time series data and works on multiple tasks as shown in Figure 1.
Our framework overcomes the drawbacks presented by traditional approaches for modeling asyn-
chronous time series- It can handle datasets with large number of event types easily, it does not need
to group events into predefined categorical bundles, it retains the natural language descriptions of
event types and utilizes them, and it is able to leverage the rich interactions between different event
types.

Our contributions can be summarized as follows:

• We introduce LASTS (Language-modeled Asynchronous Time Series) which is a novel
framework that leverages Large Language Models (LLMs) to model asynchronous time
series data, while effectively handling datasets with a large number of event types without
the need for predefined categorical groupings. To the best of our knowledge, this is the first
work to explore the capabilities of LLMs to process textual asynchronous time series data
across multiple tasks such as forecasting, anomaly detection, and data imputation.

• We introduce Stochastic Soft Prompting (StoP) which is an innovative prompt-tuning
mechanism that serves as a parameter-efficient method to adapt LLMs to asynchronous
time series data. StoP learns soft prompts that significantly improve model performance
and enhance adaptability by randomly truncating the prompts during training to learn more
diverse representations.

• We conduct comprehensive evaluations on real-world datasets across multiple tasks to
demonstrate the effectiveness of our proposed method. Our approach achieves state-of-
the-art performance, outperforming existing methods, and highlights the potential of LLM-
based models to effectively process and analyze asynchronous time series data.

2 RELATED WORK

Temporal Point Processes (TPPs). TPPs (Hawkes, 1971; Daley & Vere-Jones) have emerged as
the standard method to model asynchronous time series data. Over the last decade, a large number
of neural temporal point processes have been proposed to capture complex dynamics of stochastic

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

processes in time by using neural networks. Du et al. (2016); Mei & Eisner (2017) proposed to use
models based on Recurrent Neural Networks (RNNs) to model the sequence of events. Then, more
advanced models (Mehrasa et al., 2019; Lüdke et al., 2023) were proposed to better model the un-
certainty when predicting the future. Recently, several neural TPP models incorporate Transformers
in order to improve the performance by using attention to better model long-term dependencies:
Self-attentive Hawkes process (SAHP) (Zhang et al., 2020), Transformer Hawkes process (THP)
(Zuo et al., 2020), and Attentive Neural Hawkes Process (A-NHP) (Mei et al., 2022).

Transformers for Time Series. Transformers (Vaswani et al., 2017) have become popular to
model regularly-sampled time series because of their ability to capture long-range dependencies
and to extract semantic correlations among the elements of a long sequence. Informer (Zhou et al.,
2021) introduced a novel self-attention architecture to reduce the quadratic complexity of the orig-
inal self-attention. Autoformer (Wu et al., 2021) used a novel decomposition architecture with an
auto-correlation mechanism to identify more reliable temporal patterns. Crossformer (Zhang & Yan,
2023) proposed a novel architecture to model both the cross-time and cross-dimension dependencies
multivariate time series forecasting. PatchTST (Nie et al., 2023) tokenizes the time series in patches,
and proposes a channel-independent patch time series Transformer to improve the long-term fore-
casting accuracy.

Due to the space limitations, we only review some popular models and invite the reader to check out
(Wen et al., 2023; Zeng et al., 2023) for a more complete literature reviews of Transformer models
for regularly-sampled time series. Most of the time series Transformer models are designed for
specific tasks, and cannot be easily extended to asynchronous time series data or other tasks like
anomaly detection or imputation.

Foundation Models (FMs) for Time Series. FMs (Bommasani et al., 2021) are a family of deep
models that are pretrained on vast amounts of data, and have caused a paradigm shift due to their
unprecedented capabilities for zero-shot and few-shot generalization. FMs have revolutionized nat-
ural language processing (Brown et al., 2020; BigScience Workshop et al., 2023; Wu et al., 2024;
Dubey et al., 2024) and computer vision (Radford et al., 2021; Kirillov et al., 2023). The availabil-
ity of large-scale time series datasets has opened the door to pretrain a large model on time series
data. ForecastPFN (Dooley et al., 2024) proposed the first zero-shot forecasting method trained
purely on synthetic data. Lag-Llama (Rasul et al., 2023) introduced a univariate probabilistic fore-
casting model that was pretrained on a large corpus of diverse time series data. TimeFM (Das et al.,
2024) pretrained a decoder style attention model with input patching, using a large time series corpus
comprising both real-world and synthetic datasets. Chronos (Ansari et al., 2024) introduced a frame-
work for pretraining on tokenized time series data, achieving state-of-the-art zero-shot forecasting
performance and simplifying forecasting workflows. MOIRAI (Woo et al., 2024) is an enhanced
Transformer architecture pretrained in the Large-scale Open Time Series Archive, that achieves
competitive performance as a zero-shot forecaster.

LLMs for Time Series LLMs pretrained on large amounts of text data have emerged as a promis-
ing direction to model time series data. GPT4TS (Zhou et al., 2023), LLM4TS (Chang et al., 2023),
and TEMPO (Cao et al., 2023) fine-tuned a pretrained GPT2 (Radford et al., 2019) on some time
series downstream tasks to capture intrinsic dynamic properties. TimeLLM (Jin et al., 2024) pro-
posed a reprogramming framework to repurpose LLMs for general time series forecasting with the
backbone language models kept intact. PromptCast (Xue & Salim, 2023) introduced a new prompt-
based forecasting paradigm, where the numerical input and output are transformed into prompts
and the forecasting task is framed in a sentence-to-sentence manner. LLMTime (Gruver et al., 2023)
showed that LLMs can zero-shot extrapolate time series if the numerical values of the time series are
well represented. LLM Processes (Requeima et al., 2024) explores various prompt configurations
for using LLMs for time series forecasting condiitoned on a textual context. We refer the reader to
(Zhang et al., 2024) for a more detailed survey on the topic.

Vision Models for Time Series. Several works started to explore the use of FMs pretrained on
images because of the better intrinsic similarities between images and time series such as trend,
stationarity, seasonality/periodicity, and sudden change. (Zhou et al., 2023) tried to fine-tune a BEiT
(Bao et al., 2022) trained on images for time series forecasting, but it falls short of the leading text-
based and time series-based FMs. Recently, VisionTS (Chen et al., 2024) proposes to use a vision
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Transformer pretrained on ImageNet to reduce the cross-domain gap or in-domain heterogeneity
between time series and text.

Parameter Efficient Fine Tuning (PEFT). PEFT (Mangrulkar et al., 2022) is a paradigm to adapt
pretrained LLMs to various domains without fine-tuning all of a model’s parameters, which can
be costly and require large amount of training data. LoRA (Hu et al., 2021) methods freeze the
pretrained model weights and injects trainable rank decomposition matrices into each layer of the
Transformer architecture, greatly reducing the number of trainable parameters for downstream tasks.
QLoRA (Dettmers et al.) advances finetuning by significantly reduces memory usage while preserv-
ing task performance.

Soft Prompt Tuning. Soft prompts have emerged as a compute efficient method for adapting a
pretrained LLMs to new domains without altering their core architectures. Brown et al. (2020) was
among the first to demonstrate the power of prompting for task adaption of pretrained language
models, but automatically finding suitable sets of text prompts remains an open challenge. Li &
Liang (2021); Qin & Eisner (2021) proposed the prefix tuning technique that preprends a few task
specific soft tokens to the input and hidden states of each Transformer layer. During the training,
the parameters of soft prompts are updated by gradient descent while the model parameters keep
frozen. Liu et al. (2021) showed the prefix tuning technique could be effectively applied to natural
language understanding with different scales of models. Lester et al. (2021) simplified the prefix
tuning technique that only adds soft prompts to the input layer and is now considered as the standard
soft prompt-tuning.

3 BACKGROUND

Notations. We observe n events over a fixed time interval [0, T ), with each event being denoted
as (e, t), where e ∈ E is the event type (or attributes) and E represents the space of event types.
An asynchronous time series is a sequence of events x1:n = ((e1, t1), (e2, t2), . . . , (en, tn)) where
ti is an increasing sequence in [0, T ) that does not necessarily observe any periodicity. A common
alternative to the event time ti is the inter-arrival time τj := tj−tj−1, they are considered isomorphic
and often used interchangeably. In our work there is very little constraint on E and in principle, our
model still works even if E is infinite. We only need to be able to compute a vectorial representation
of the event type/attributes, which is achieved through the LLM’s learned input embeddings in our
work.

Language modeling. Language modeling is a widely used task to train LLMs where the goal is
predicting the next word or character in a document. Language models are designed to work on a
sequence of m tokens, where each token belongs to a vocabulary. Tokenizer transforms the input text
data into a sequence of tokens. The tokenization process is important and can impact significantly
performances, for it directly influences how patterns form within tokenized sequences and the types
of operations that language models can learn.

Tasks We propose a new approach to model asynchronous time series with LLMs which solves
three different tasks (see Figure 1):

• Forecasting (also known as next event prediction) Given a history of events x1:m from an
asynchronous time series, the model is tasked with predicting the next event xm+1.

• Data imputation. One of the events xj of the series is randomly chosen and masked, the
model is tasked with filling in the gap.

• Anomaly detection. One event xj of the series is randomly chosen and its event type ej
is replaced randomly by another event type e′. The model is tasked with identifying this
out-of-place element.

To find the right recipe for the model to solve these tasks, we innovated in two major directions:
first, we studied various representations of the asynchronous time series as inputs to LLMs (Section
4.1) for zero shot completion of these tasks; and secondly, we study different parameter efficient
techniques to adapt an LLM backbone for working with asynchronous time series, while leveraging
its knowledge of the world and its understanding of natural language (Section 4.2).
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LASTS

System 
Headers

Concise task 
description

User 
Header

Time series 
input

Assistant 
Header Prediction

LLM backbone ❄

🔥

Next Token Prediction Loss

(a)

(b) (c)

P[1:40] LASTS

🔥P[1:50] ❄LASTS

P[1:50] LASTS

P[1:50] LASTS

P[1:50] LASTS

P[1:50] LASTS

P[1:18] LASTS

P[1:32] LASTS

StoP training SP training

batch 1

batch 2

batch 3

Inference

Figure 2: Overview of LASTS and Prompt Tuning with LASTS: (a) Structure of a LASTS prompt
for adapting an asynchronous time series for use as input for an LLM. (b) SP and StoP training
setup - the LLM backbone is frozen and the soft prompt is fine-tuned via gradients computed through
the standard next token prediction loss. (c) Comparison of SP and StoP training. In StoP, a random
prefix of the trainable prompt is used during each training batch.

4 PROPOSED METHOD

4.1 LASTS - PROMPTING LLMS WITH ASYNCHRONOUS TIME SERIES DATA

Unlike ordinary time series, often represented as sequences of numerical values (Gruver et al., 2023),
asynchronous time series are represented as sequences of events xi = (ei, ti), where ei is the event
type, and ti is a representation of the timestamp of this event. Normally, ti is expressed as inter-
arrival time, which is the time elapsed between event xi−1 and xi.

In prior work on modeling asynchronous time series (Du et al., 2016; Mehrasa et al., 2019; Zhang
et al., 2020; Mei et al., 2022), events are typically reduced to categories from a small set of options.
In contrast, we retain the event types ei as natural language descriptions. We introduce LASTS,
which specifies how to input an asynchronous time series as part of a prompt to effectively leverage
LLMs for various tasks on such data.

LASTS Prompt Structure The LASTS prompt consists of three parts that can be mapped to
the system-user-assistant structure when using an instruction fine-tuned LLM (see Figure 2). The
system prompt introduces what an asynchronous time series is, provides a description of the task
to be performed, and includes details about the underlying dataset. The user prompt represents the
input series as a comma-separated sequence of tuples (ei, ti), where ei is the textual description of
the event type and ti is the inter-arrival time. The assistant prompt contains the correct event if
performing LLM adaptation training, or is left to be generated by the LLM during inference.

More details about the exact prompts used in our experiments can be found in Appendix A.2.

4.2 PARAMETER EFFICIENT LLM ADAPTATION WITH LASTS REPRESENTATION

Having established a representation of asynchronous time series for use with LLMs via LASTS, we
further enhance the model’s adaptability to various tasks using three different adaptation techniques:

Low Rank Adaption LoRA is a family of low-rank adaptation techniques that reduce the number
of trainable parameters by learning small, low-rank updates to selective model weights, allowing for
efficient fine-tuning of large models. We adapt the LLM backbone for our tasks by applying low-
rank adaptations using the LASTS representation as inputs to encode both the task and the input
asynchronous time series.
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Soft Prompting (SP) SP involves prepending a continuous prompt to the LASTS representation,
which is trained through gradients from next token prediction loss. This guides the model towards
task-specific behavior without altering the model weights directly. (See Figure 2)

Stochastic Soft Prompting (StoP) We propose Stochastic Soft Prompts - an enhancement of SP
which learns more robust prompts by imposing a coarse-to-fine structure on the prompt tokens. (See
section 5.3). Similar to SP, we prepend a continuous prompt to the LASTS representation which is
trained through gradients from next-token prediction loss. However, in SP, the entire soft prompt
P of length L is used during training, while in StoP, we randomly select a prefix of the prompt P
for each training batch. Specifically, for each batch, we choose a prefix length l from a probability
distribution p(l), where l ≤ L. The soft prompt used for that batch is then represented by:

Pbatch = P [: l] with l ∼ p(l) (1)

In our experiments, we use a uniform distribution as p. Both the forward pass and the backward pass
are conducted using only the selected prefix Pbatch. During inference, we use the entire learned soft
prompt of length L:

Pinference = P [1 : L] (2)

See figure 2 for more details. Our approach is inspired by techniques like dropout (Srivastava et al.,
2014) and stochastic depth (Huang et al., 2016), as well as audio models like SoundStream (Zeghi-
dour et al., 2021), where randomly selecting the first k codebooks during training enables better
generalization.

These adaptation techniques enable an LLM backbone to handle a variety of asynchronous time
series tasks, including forecasting, imputation, and anomaly detection, while maintaining parameter
efficiency. Details on the exact prompt representation are provided in Appendix A.4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We perform experiments on two different sets of datasets: three text-based action
datasets and five standard temporal point process datasets. The main difference is that actions are
represented by words in the action datasets, whereas they are represented by indices in temporal
point process datasets. The text-based action datasets are built from the action annotations of ac-
tivity videos. Breakfast (Kuehne et al., 2014) contains 1712 videos with 177 action classes related
to breakfast preparation. Each video has a sequence of events to prepare breakfast, with each event
containing the timestamp and the action. EPIC-KITCHENS-100 (Damen et al., 2022) is a large-
scale dataset in egocentric vision capturing daily activities in the kitchen over multiple days with a
total of 100 hours of recording. It presents more complex activity than Breakfast dataset, with rich
annotations of sequences of actions comprising of 97 verb classes and 300 noun classes, with 20K
unique narrations. MultiTHUMOS (Yeung et al., 2018) contains 400 videos with 65 action classes
related to human activities. Each video has a sequence of human activity events, with each event
containing the timestamp and the activity. For the temporal point process datasets, we use the five
benchmarks introduced in (Xue et al., 2024): Amazon (Ni et al., 2019) where the goal is to predict
the timestamp and category (among 16 categories) of the next reviewed product, Retweet (Zhou
et al., 2013) where the goal is to predict the timestamp and category (among 3 categories) of the
next user to retweet a post, Taxi1 where the goal is to predict the timestamp and category (among
10 categories) of the next pick-up or drop-off of a taxi driver, Taobao (Xue et al., 2022) where the
goal is to predict the timestamp and category (among 20 categories) of the item clicked by a user,
and StackOverflow2 where the goal is to predict the timestamp and category (among 22 categories)
of the next badges for a given user. We follow the same data preprocessing as in (Xue et al., 2024).
For each of these datasets, the semantic meaning of the event type is unknown, and only the index
of the event type is available. We use the index of the event type as input of our model.

1https://chriswhong.com/open-data/foil_nyc_taxi/
2https://snap.stanford.edu/data/
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Figure 3: Visualization of normalized count (y-axis) w.r.t the event type sorted by count (x-axis) for
four of the datasets. We observe these datasets are imbalanced. Using the macro-F1 gives the same
importance to all the classes, whereas the accuracy gives more importance to majority classes.

Metrics. Due to bi-modality nature of the asynchronous time series, we report separate metrics
for the event type and time. We report the Macro-F1 (M-F1) (Yang, 1999) for event type prediction
as Macro-F1 is better suited for multi-class classification tasks with skewed class distributions (see
Figure 3) than accuracy because Macro-F1 gives the same importance to all the classes. We report
the Mean Absolute Error (MAE) or Root Mean Square Error (RMSE) for time prediction, as both
metrics are used based on the dataset.

Implementation details We use Llama-3-8B-Instruct (Dubey et al., 2024) as our LLM backbone.
For zero-shot experiments, we disable sampling during response generation, ensuring deterministic
outputs. For LLM adaptation experiments, we use QLoRA as the low rank adaptation algorithm,
Adam as the optimizer, and a constant learning rate of 2e−4 for QLoRA and 1e−4 for prompt tuning.
Following Xue et al. (2024), we split our datasets into a train/validation/test ratio of 70/10/20. Both
SP and StoP training are conducted for the same number of epochs. We employ early stopping based
on the Macro-F1 on the validation set. We report performance on the test set.

We use a prompt length of 400 for prompt tuning in both SP and StoP experiments. This value was
selected through hyperparameter tuning across all datasets and tasks, striking a balance between
model capacity, performance, and the compute resources available to us. Given that Llama-3-8B-
Instruct has a hidden dimension of 4096, this configuration results in approximately 1.6M trainable
parameters, which corresponds to only 0.02% of the LLM parameters. For QLoRA, we use a rank
of 4, resulting in a comparable number of trainable parameters (1.7M )

5.2 EXPERIMENT RESULTS

Baselines We evaluate our methods using four sets of baselines. See Appendix A.5 for details.

• Random baseline: We establish a random baseline simulating random guesses to evaluate
our methods on the three text-based datasets and tasks. (See Table 1)

• Foundation models for time series: We use a state-of-the-art pretrained foundation model
for time series forecasting, Chronos Ansari et al. (2024), as a baseline for forecasting and
imputation tasks on asynchronous time series. (See Table 1)

• LLM for time series: We adapt two LLM-based time series forecasting methods, LLM-
Time (Gruver et al., 2023) and LLM Processes (Requeima et al., 2024), as baselines for
zero-shot LASTS prompting on asynchronous time series. (See Table 1)

• TPP models: We compare our model with state-of-the-art TPP models for asynchronous
time series (Xue et al., 2024). We report the results for two popular RNN-based models:
Recurrent marked temporal point process (RMTPP) (Du et al., 2016) and neural Hawkes
Process (NHP) (Mei & Eisner, 2017). We also compare with three attention-based models:
self-attentive Hawkes process (SAHP) (Zhang et al., 2020), Transformer Hawkes process
(THP) (Zuo et al., 2020), attentive neural Hawkes process (AttNHP) (Yang et al., 2022).
(See Table 2)

Results Our results on the the three tasks (forecast, imputation, anomaly detection) and the three
text datasets (Breakfast, MultiTHUMOS, EPIC-KITCHENS) are presented in Table 1. Based on our
results, we make 5 main observations. Firstly, LASTS proves to be an effective and robust repre-
sentation for asynchronous time series data across multiple datasets. LASTS Zero Shot consistently
outperforms the Time Series Foundation Model Chronos and LLM-based methods (LLMTime and
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Model Breakfast MultiTHUMOS EPIC-KITCHENS
M-F1 ↑ MAE ↓ ACC ↑ M-F1 ↑ MAE ↓ ACC ↑ M-F1 ↑ MAE ↓ ACC ↑

Forecast

Random 0.0162 40.1513 0.0201 0.0417 1.8803 0.0382 0.0000 3.2001 0.0001
Chronos 0.0011 43.0502 0.0021 0.0265 1.9805 0.0279 0.0000 3.5925 0.0005
LLMTime 0.0240 37.3902 0.0288 0.1280 2.2060 0.1235 0.0040 4.8948 0.0458
LLM Processes 0.0337 44.9856 0.0845 0.1278 2.0471 0.0970 0.0049 4.3843 0.0703
LASTS Zero Shot∗ 0.0604 38.1630 0.0969 0.1361 1.8868 0.1826 0.0105 3.1566 0.0920
LASTS Few Shot∗ 0.1518 35.5605 0.2133 0.1676 1.8114 0.2581 0.0149 3.3092 0.1150
LASTS + QLORA∗ 0.2558 33.9737 0.3763 0.3218 1.7281 0.4337 0.0764 2.8964 0.2160
LASTS + SP∗ 0.2341 32.8417 0.3691 0.3707 1.6630 0.4782 0.0780 2.8830 0.2217
LASTS + StoP∗ 0.2633 32.5464 0.3880 0.3947 1.6503 0.4784 0.0797 3.0318 0.2298

Imputation

Random 0.0168 37.7029 0.0214 0.0435 2.3622 0.0416 0.0000 3.4269 0.0001
Chronos 0.0013 38.4039 0.0044 0.0294 2.3971 0.0312 0.0000 3.6955 0.0000
LLMTime 0.0137 35.9899 0.0381 0.0968 2.6998 0.1330 0.0005 3.6750 0.0314
LLM Processes 0.0156 34.7117 0.0488 0.1123 2.3786 0.1430 0.0008 4.2600 0.0371
LASTS Zero Shot∗ 0.0263 33.0097 0.0594 0.0915 2.6696 0.1210 0.0015 3.6527 0.0446
LASTS Few Shot∗ 0.0520 33.3440 0.1001 0.1013 2.3982 0.1569 0.0023 3.2528 0.0547
LASTS + QLORA∗ 0.1688 28.5638 0.2500 0.2132 2.2179 0.2744 0.0378 3.1194 0.1137
LASTS + SP∗ 0.1581 28.8503 0.2264 0.2044 2.4092 0.2528 0.0423 3.1456 0.1270
LASTS + StoP∗ 0.2064 28.2251 0.2740 0.2213 2.3445 0.2839 0.0610 3.1116 0.1424

Anomaly Detection

Random 0.0349 — 0.0396 0.0381 — 0.0552 0.0238 — 0.0307
LLMTime 0.0240 — 0.0288 0.0415 — 0.0639 0.0048 — 0.0650
LASTS Zero Shot∗ 0.0923 — 0.0763 0.2755 — 0.1949 0.0159 — 0.0777
LASTS Few Shot∗ 0.0837 — 0.0563 0.3535 — 0.2720 0.0337 — 0.1637
LASTS + QLORA∗ 0.7011 — 0.6478 0.6003 — 0.5084 0.6520 — 0.6988
LASTS + SP∗ 0.6520 — 0.5937 0.5231 — 0.4657 0.6159 — 0.6635
LASTS + StoP∗ 0.7198 — 0.6698 0.6045 — 0.5168 0.6603 — 0.7037

Table 1: Performance of our models on three textual datasets for forecasting, imputation, and
anomaly detection tasks. Metrics are macro F1, and accuracy (ACC) for event type prediction
and MAE for event time prediction. The best result in each class is highlighted in bold, and the
second-best result is underlined. Note that for anomaly detection, since the task involves identifying
only the anomalous event, the MAE metric is not applicable and Chronos and LLM Processes are
not adaptable (see A.5). A ∗ indicates our method. We use 5 examples for few shot results (see A.9).

LLM Processes) in most evaluations, highlighting the advantage of using textual event descriptions
enabled by LASTS. Secondly, our results demonstrate that the LASTS representation can be ap-
plied across multiple tasks without any investment needed in designing custom models for each
task. Thirdly, LASTS work effectively with multiple LLM adaptation techniques without algorithm
specific alternations. Fourthly, we observe that StoP as an adaptation technique outperforms other
techniques for most time prediction evaluations, and in all event type prediction evaluations. Fi-
nally, we highlight our results on EPIC-KITCHENS dataset, which features very rich textual event
descriptions (approximately 20,000). While traditional TPP modeling methods struggle to handle
such a large set of classes, our approach effectively models various tasks on this complex dataset.

Model Amazon Retweet Taxi Taobao StackOverflow Breakfast MultiTHUMOS EPIC-KITCHENS

M-F1 ↑ RMSE ↓ M-F1 ↑ RMSE ↓ M-F1 ↑ RMSE ↓ M-F1 ↑ RMSE ↓ M-F1 ↑ RMSE ↓ M-F1 ↑ RMSE ↓ M-F1 ↑ RMSE ↓ M-F1 ↑ RMSE ↓
RMTPP 0.0988 0.4780 0.3110 16.5849 0.2969 0.3761 0.4495 0.1338 0.0277 1.3727 - - - - OOM OOM
NHP 0.1266 0.4489 0.4128 15.6233 0.3667 0.3995 0.4287 0.1822 0.0559 1.3960 0.0167 116.23 0.2861 4.8583 OOM OOM
SAHP 0.0846 0.5491 0.2772 16.6451 0.2780 0.3193 0.1816 0.1347 0.0322 1.3326 0.0023 112.85 0.0 4.5908 OOM OOM
THP 0.1414 0.4911 0.2114 16.6440 0.3451 0.3736 0.2734 0.1340 0.0661 1.4054 - - - - OOM OOM
AttNHP 0.1270 0.7054 0.4210 16.8278 0.2167 0.4072 0.1048 0.1350 0.0475 1.3661 0.0478 108.41 0.0809 5.2113 OOM OOM

LASTS + StoP 0.1520 0.6000 0.4299 16.4981 0.4174 0.3278 0.4633 0.1321 0.0983 1.2596 0.2633 102.02 0.3947 3.6722 0.0797 7.3724

Table 2: Performance of models on next-event’s type and type prediction across five real datasets.
The best result is shown in bold, and the second best result is underlined. OOM indicates an Out Of
Memory error. A missing entry indicates the model diverged. We tried optimizing these baselines
for the three textual datasets—MultiTHUMOS (65 classes), Breakfast (177 classes), and EPIC-
KITCHENS (∼ 20K classes)—but these models either diverged, performed poorly, or ran out of
memory due to the large number of classes.
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Comparison with TPP models. Table 2 shows experimental results that compare our model with
existing TPP models on standard TPPs datasets. TPP models are designed for forecasting so we only
show the results for the forecasting task. We observe that our model is having competitive results
w.r.t. TPP models. Our model is outperforming existing TPP models on 13 of the 18 evaluations,
and is in the top-2 best models on 17 of the 18 evaluations. Our model has the best performance for
all the event type evaluations, which shows that our model is more accurate to predict the next event
type. On 3 of the 8 datasets, our model is less accurate than TPP models to predict the time. We
think that our model is not performing as well as the TPP models, because our model does not have
explicit prior about the time distribution whereas TPP models make strong assumptions about the
time distribution (e.g. Poisson process or Hawkes process). In the case of the Amazon dataset, the
performance gap is more pronounced because this dataset groups a large number of diverse event
types into a single event category, making it harder to model inter-arrival times. These results show
that our model is able to outperform existing TPP models on most of the datasets without explicit
modeling of the time distribution. We think it may be possible to improve the performance of our
model by adding a distribution prior in the prompt, and leave it as future work. It also shows that
our model is performing well even when only the index of the event type is provided instead of its
textual description, making it a more generally applicable method. See Appendix A.5 for further
discussion.
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Figure 4: Analysis of learned token representations of Stochastic Soft Prompt (StoP) and Soft
Prompt (SP): The first two plots show t-SNE projections of the first 100 tokens from 400-length
StoP and SP prompts respectively, trained on the Breakfast dataset for forecasting. StoP tokens are
more dispersed, while SP tokens are closely clustered. The third plot shows cosine similarity be-
tween adjacent tokens for SP (red) and StoP (blue) across multiple prompts and datasets, with lower
similarity for StoP, indicating greater diversity.

5.3 MODEL ANALYSIS

Comparison of SP and StoP learned token representations. The tokens learned by Stochastic
Soft Prompt (StoP) and Soft Prompt (SP) have distinct characteristics due to differences in their
training paradigms. To illustrate this difference, we plot the t-SNE projections of the first 100
tokens from a prompt of length 400 for both StoP and SP in Figure 4. We observe that the tokens
learned through StoP training are more spread out, indicating greater diversity, while those learned
through SP training tend to cluster more closely. StoP uses a coarse-to-fine approach, where the
first embeddings are more diverse to cover a large part of the space than the first embeddings trained
with SP. This difference is further highlighted by the cosine similarity between adjacent tokens in
the last plot of Figure 4: the adjacent tokens in StoP prompts have lower similarity compared to SP.
It allows StoP to work better than SP, even when only the first soft tokens are used (see Figure 5).
Using more soft tokens further improves StoP, as it gains access to more fine-grained information.

All prefixes are valid prompts in StoP The training paradigm of StoP forces all prefixes of StoP
to act as valid standalone prompts, as they are used as prompts during training for some batches (if
trained for long enough). (see Figure 5). This further strengthens our belief that tokens in StoP are
arranged from coarse, independent tokens at the beginning to tokens with tokens containing finer
information towards the end. See Appendix A.10 for further discussion on StoP structure.

Disentangling stochasticity and prefix picking in StoP. To further emphasize that prefix picking
during the training regime of StoP is a key contributing factor to the performance improvement, we
compare StoP with an alternative training paradigm where, instead of selecting a prefix, we ran-
domly select l tokens from the prompt during each batch, with l drawn from a uniform distribution.
This comparison helps to distinguish the effects of introducing stochasticity alone from the struc-
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Figure 5: Prefixes of prompts trained using StoP are valid prompts themselves, unlike SP prompts.
We take two 400-length prompts—one trained using StoP and the other using SP on the Breakfast
dataset for imputation. We evaluate the performance of their prefixes on the test set to assess their
feasibility as standalone prompts. The results show that StoP prefixes act as valid prompts, whereas
SP prefixes do not.
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Figure 6: Comparison of Macro-F1 and MAE for StoP vs. random token selection during training,
evaluated on validation data after 10 epochs. Results show that random token selection fails to learn
effective prompts, while StoP’s structured prefix selection achieves significantly better performance.

tured prefix picking employed by StoP. Figure 6 shows a comparison of the macro F1 and MAE
metrics on the validation data as both prompts are trained for 10 epochs. These plots show that
stochasticity alone is not sufficient for learning good soft prompts, and structured prefix picking is a
key component of the StoP training.

Training speed. Another dimension to compare SP and StoP is the training speed. Due to differ-
ences in training paradigms, StoP trains significantly faster than SP for the same prompt length, as
many training batches use only a subset of the full prompt in StoP. In our experiments with 400 soft
prompts, we observed that StoP trains approximately 25% faster than SP.

Understanding StoP prompts through probing While prior work such as Lester et al. (2021)
attempts to interpret learned prompts by mapping them to the closest input embeddings—often
yielding incoherent results—we instead explore probing the LLM using the learned prompt. By
appending the learned prompt with a simple instruction, such as ”Tell me in as much detail as pos-
sible what task you are supposed to do,” we encourage the LLM to generate an output that reflects
its understanding of the task. This approach allows us to gain some insight into what the model has
summarized from the tasks and datasets it has been trained on. We present multiple model responses
when probed like this in Appendix A.6.

6 CONCLUSION AND FUTURE WORK

We explored a novel approach to building an asynchronous time series model using an LLM, offer-
ing a new perspective distinct from traditional TPP methods. The method we proposed to encode an
asynchronous time series in a prompt suggests that the model can leverage an LLM’s world knowl-
edge to perform various downstream tasks such as forecasting, anomaly detection, and imputation.

Furthermore, Stochastic Soft Prompt (StoP), an interpretable adaptation of soft prompt, seems to be
efficient in adapting a LLM to asynchronous time series data. We believe this approach could be
extended to other data genres like image or natural language texts. We also hope that our findings
will open new avenues for research on asynchronous time series models.
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A APPENDIX

A.1 DATASET PREPARATION

We remove any sequence in the dataset that is very small (< 4 elements). We split the dataset in a
random 70/10/20 train, validation and test split. Each sequence is expanded into multiple sequences
based on the task:

• Forecasting: We convert a sequence into multiple prediction tasks. For each element of the
series, the prediction task is to predict the element given the preceding elements. We impose
a minimum and maximum length requirements on the number of preceding elements used.

• Imputation: For every element in the series, we replace the element by a mask, and the
imputation task is to predict the masked element given the remaining sequence.

• Anomaly Detection: For every element in the sequence, we replace the action by a random
different action. the anomaly detection task is to identify the element of the sequence that
has been tampered with.

For the three test based datasets - Breakfast, MultiTHUMOS and EPIC-KITCHENS, the event types
are already represented as text. The remaining 5 datasets from the temporal point processes domain
lack a textual component, and the event types are represented by integers. For these datasets, we
simply treat each integer event type as a string, allowing the LLM to process it similarly to text-based
data.

A.2 LASTS REPRESENTATION OF ASYNCHRONOUS TIME SERIES FOR ZERO SHOT

Here we present the LASTS prompt structure for use with LLMs for various tasks. The structure of
the LASTS prompts is shown in Figure 2.

System Prompt The system prompt is very similar across tasks, except for the task specific por-
tions of the prompt. The system prompt used for Forecasting is:

You are a helpful assistant. Your task is to complete an asynchronous time series.
dataset description. Each series is given in the format (inter arrival time, action name).
This indicates that the action name started inter arrival times milliseconds after the start of
the previous action or the beginning of time if it’s the first action. The allowable actions are:
valid vocab. Given the first few elements of an asynchronous time series, your task is to
provide the next action with its inter arrival time as (inter arrival time, action name). You
generate all your response as a single python tuple. Be sure to provide only that one python
tuple and nothing else.

The system prompt used for Imputation is:

You are a helpful assistant. Your task is to find a missing value in an asynchronous time
series. dataset description. Each series is given in the format (inter arrival time, ac-
tion name). This indicates that the action name started inter arrival times milliseconds after
the start of the previous action or the beginning of time if it’s the first action. The allowable
actions are: valid vocab. One of the elements in the series would be missing, marked by
the word ’MISSING’. Provide your answer as a single python tuple (inter arrival time, ac-
tion name) which is your estimate of the missing element of the series. Be sure to give me
that one missing python tuple as your response and nothing else.

The system prompt for Anomaly Detection is:
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You are a helpful assistant. Your task is to find an anomolous value in an asynchronous
time series. dataset description. Each series is given in the format (inter arrival time, ac-
tion name). This indicates that the action name started inter arrival times milliseconds after
the start of the previous action or the beginning of time if it’s the first action. The allowable
actions are: valid vocab. One of the elements in the series is an anomaly, and your task is
to identify this element which doesn’t belong in the series. Provide your answer as a single
python tuple (inter arrival time, action name) which is an element from the series you think
is an anomaly. Just give me that one anomolous python tuple from the series as your answer
and nothing else.

Here, dataset description is a short one line description of the underlying dataset, for example:
”The underlying dataset is derived from tagged human actions while cooking/preparing meals”.

Also, valid vocab is a comma separated list of allowable action descriptions, if we choose to provide
this list and if this list is small.

User Prompt The user prompt in all three tasks is a comma separated string of sequence events,
for example

(0,wait),(139000,carry bowl),(26000,hold bowl),

In case of imputation, there would be a missing element marked by the word MISSING, like so:

(0,wait),(139000,carry bowl),MISSING,(41000,reach eggcarton),

Assistant Prompt This is empty for zero-shot, as it is filled by the LLM as its prediction for the
task on the given sequence.

A.3 EVALUATING LLM INTERACTION WITH LASTS COMPONENTS

We considered various variants of framing the LASTS prompt and present a few interesting ones
here, evaluated on Breakfast dataset.

Testing LLMs use of world knowledge We want to test whether LLMs can understand a prompt
like LASTS and provide a meaningful response to the task on the sequence using their world knowl-
edge. To this end, we study a variant where each event description is replaced by a uniquely mapped
gibberish 4-letter string. This unique mapping ensures that while any semantic meaning in the de-
scriptions is removed, the structure of the time series remains intact.Table 3 shows that all tracked
metrics degrade considerably in the scrambled names variant. This confirms that LLMs not only
understand LASTS properly but also leverage their world knowledge to perform the specified tasks.

Forecast
M-F1 ↑ % ∆ Acc ↑ % ∆ MAE ↓ % ∆

Zero Shot 0.0432 0.0866 37.8030
Scrambled Names 0.0140 ↓ -67.63% 0.0397 ↓ -54.13% 38.0742 ↑ 0.72%

Imputation
Zero Shot 0.0248 0.0338 33.7669
Scrambled Names 0.0100 ↓ -59.73% 0.0224 ↓ -33.73% 40.4918 ↑ 19.92%

Anomaly Detection
Zero Shot 0.0760 0.0650 NA
Scrambled Names 0.0619 ↓ -18.55% 0.0469 ↓ -27.88% NA

Table 3: Comparing LASTS Zero Shot with the Scrambled Names variant across Forecast, Imputa-
tion, and Anomaly Detection tasks. Higher values are better for M-F1 and Acc, while lower values
are better for MAE. Red indicates negative impact, while green indicates favorable impact.

Sequence Representation We probe about the right representation for the time series events -
should they be represented as (ei, ti) or (ti, ei). Our results in Table 4 show that its better to have
time first, followed by the event description. This is what we adopt in LASTS.
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Forecast
M-F1 ↑ % ∆ Acc ↑ % ∆ MAE ↓ % ∆

Time First (ti, ei) 0.0432 0.0866 37.8030
Event First (ei, ti) 0.0409 ↓ 5.38% 0.0726 ↓ 16.07% 37.5344 ↓ 0.71%

Imputation
Time First (ti, ei) 0.0248 0.0338 33.7669
Event First (ei, ti) 0.0071 ↓ -71.30% 0.0150 ↓ -55.56% 31.8194 ↓ -5.77%

Anomaly Detection
Time First (ti, ei) 0.0760 0.0650 NA
Event First (ei, ti) 0.0858 ↑ 12.94% 0.0619 ↓ -4.81% NA

Table 4: Comparison of two ways to express events in an asynchronous time series - event first or
time first across Forecast, Imputation, and Anomaly Detection tasks. Higher values are better for
M-F1 and Acc, while lower values are better for MAE. Red indicates negative impact, while green
indicates favorable impact.

Time Representation We investigate if simplifying the series representation would improve LLM
performance. For the Breakfast dataset, we replace inter-arrival times with durations, since we
hypothesize that most actions occur contiguously for this dataset. We hypothesize that durations
may be easier for the LLM to model rather than inter arrival. From the results in Table 5, we observe
that while we have a favourable impact on forecast, both imputation and anomaly detection suffer
from this change. This suggests that while durations help with forecasting, more precise inter-arrival
times are crucial for more involved tasks like imputation and anomaly detection.

Forecast
M-F1 ↑ % ∆ Acc ↑ % ∆ MAE ↓ % ∆

Zero Shot 0.0432 0.0866 37.8030
Durations 0.0600 ↑ 38.84% 0.0953 ↑ 10.12% 33.781 ↓ 10.62%

Imputation
Zero Shot 0.0248 0.0338 33.7669
Durations 0.0140 ↓ -43.56% 0.0288 ↓ -14.81% 29.6881 ↓ -12.09%

Anomaly Detection
Zero Shot 0.0760 0.0650 NA
Durations 0.0767 ↑ 0.96% 0.0532 ↓ -18.20% NA

Table 5: Comparison of LASTS Zero Shot with the variant using durations instead of inter-arrival
times across Forecast, Imputation, and Anomaly Detection tasks. Higher values are better for M-
F1 and Acc, while lower values are better for MAE. Red indicates negative impact, while green
indicates favorable impact.

A.4 LASTS REPRESENTATION USED FOR LLM ADAPTATION

For our experients on LLM adaptation, we keep the LASTS representation very similar to our zero
shot experiments:

• System prompt in this case is a very concise description of just the task. We skip any
dataset description as we expect the model to learn that during the fine tuning process.

• User prompt is represented as a comma separated sequence of tuples of event description
and inter arrival times.

• Assistant prompt contains the expected prediction.

The exact system prompt used for each of the tasks are as follows:

• Forecasting: ”Predict the next element of this asynchronous time series where each ele-
ment is of the form (inter arrival time, action name).”

• Imputation: ”Predict the element marked ’MISSING’ in this asynchronous time series
where each element is of the form (inter arrival time, action name).”
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• Anomaly Detection: ”One of the element in this asynchronous time series is anoma-
lous, find this element. Each element of the series is of the form (inter arrival time, ac-
tion name).”

A.5 BASELINES

Random Baseline To evaluate our methods on the three text-based datasets and the three tasks,
we establish a random baseline simulating random guesses. For forecasting and imputation, given
an input asynchronous time series, the baseline predicts the inter-arrival time as the average of all
inter-arrival times in the sequence and selects a random event type from the valid event descriptions.
For anomaly detection, it randomly labels an event from the series as anomalous (see Table 1).

Foundation Models for Time Series Baseline We adapted Chronos (Ansari et al., 2024), a state-
of-the-art foundation model designed for zero-shot forecasting on time series data, as a baseline for
forecasting and imputation tasks on asynchronous time series datasets. We use the largest model ver-
sion (amazon/chronos-t5-large) available which contains 710M model parameters. Since Chronos
exclusively handles numerical data, we converted our event descriptions into categorical represen-
tations. Each asynchronous time series of length n was transformed into a sequence of 2n integers,
alternating between inter-arrival times and event categories.

For forecasting, the task was framed as predicting the next two elements in this sequence given the
historical context. Adapting Chronos for imputation, however, required additional considerations
since it is inherently designed for forecasting. We reformulated the imputation task as a forecasting
problem: if the prefix leading up to the missing element is longer than the suffix following it, we
treated imputation as forecasting the missing element using the prefix as context. Conversely, if the
suffix is longer, we reversed the suffix and used it as context to forecast the missing element. This
approach ensures the longest possible context is utilized for predicting the missing value.

It is worth noting that adapting Chronos for anomaly detection is not straightforward, as anomaly
detection involves identifying a single anomalous event within the series, which does not align with
Chronos’ forecasting capabilities. Consequently, Chronos is provided as a baseline exclusively for
forecasting and imputation tasks.

LLMs for Time Series Baselines We adapted two LLM-based methods for time series: LLM-
Time (Gruver et al., 2024) and LLMProcesses (Requeima et al., 2024), as baselines. Since both
methods are designed for numerical time series, we converted textual event descriptions into cate-
gorical representations.

LLMTIME In this method, each data point is represented as a pair: (inter-arrival-time, event-
categorical). We modified the default next-token prediction behavior of the model using simple
task-specific prompts:

• Forecasting: Predict the next time and event.

• Imputation: Find the element marked as ’MISSING.’

• Anomaly Detection: Find the anomalous time and event.

LLMPROCESSES This method uses in-context learning with (x, y) examples derived from a se-
quence, treating the sequence as a real-valued function on a 2D space as domain. In this setup, x
represents a point in 2D space (x1, x2), where x1 denotes the sequence position, and x2 indicates
the output type: 0 for inter-arrival time and 1 for event categorical. For a given sequence, we crafted
two distinct prompts: one for predicting the event categorical and another for predicting the inter-
arrival time, based on the corresponding value of x. We followed the recommended settings from
the original paper for prompt construction.

However, anomaly detection does not align with this framework, as it involves identifying a single
anomalous time point where the function output is 0 everywhere except at the anomaly. This makes it
unsuitable for predicting function values at unseen points based on prior observations. Consequently,
we adapted this approach exclusively for forecasting and imputation tasks.
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TPP Models as Baselines We compare our best fine-tuned model configuration, LASTS+StoP ,
against current state-of-the-art methods for forecasting on asynchronous time series. These methods
are adapted from the benchmark study in (Xue et al., 2024). The evaluation spans eight datasets, five
of which—Amazon, Retweet, Taxi, Taobao, and StackOverflow contain event categoricals without
textual descriptions and are regarded as standard benchmarks for asynchronous time series analysis.

We benchmark the TPP models covered in the EasyTPP benchmark (Xue et al., 2024) on the three
textual datasets considered in our work: Breakfast, MultiTHUMOS, and EPIC KITCHEN. Since
these datasets represent events as text and TPP models are not equipped to handle text directly, we
converted the event names into event categoricals to make them compatible with these models.

Observations We summarize our comparison of various baselines with LASTS Zero Shot in Fig-
ure 7. We observe that Chronos performs the weakest among the baselines, yet it remains competi-
tive. This is expected as Chronos, while being a much smaller model compared to LLMs, is highly
specialized for time series forecasting, which enables it to achieve decent performance. LLMTime
and LLMProcesses also perform competitively, especially on the MultiTHUMOS dataset. We at-
tribute this to the noisy nature of the MultiTHUMOS dataset, which includes non-standard event
names (e.g., ”OneHandedCatch,” ”TalkToCamera”, etc) and repetitive, less meaningful patterns
(e.g., ”GolfSwing, Wait, GolfSwing, Wait...”). These characteristics may help event-categorical-
based models like LLMTime and LLMProcesses. However, on the other two datasets—Breakfast
and EPIC KITCHEN—the textual descriptions of events provide a significant advantage, as evident
from the comfortable margin by which LASTS Zero Shot outperforms LLMTime and LLMPro-
cesses across all tasks.

Furthermore, we observed that existing TPP-based models struggled with datasets containing a large
number of unique event types, often performing poorly, failing to converge, or encountering out-
of-memory errors. This highlights the challenges these models face in handling the diversity and
complexity of such datasets.
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Figure 7: Comparison of performance metrics: Macro-F1 (M-F1), Mean Absolute Error (MAE),
and Accuracy (ACC), averaged across all datasets for Forecast and Imputation tasks. Higher values
for M-F1 and ACC indicate better performance, while a lower value of MAE is preferred. It is
evident that LASTS Zero Shot (our method) achieves the highest average M-F1 and average ACC
among all the baselines and also produces the lowest MAE.

A.6 STOP PROMPT INTERPRETATIONS THROUGH MODEL PROBING

Prior work such as Lester et al. (2021) attempts to interpret learned prompts by mapping them to
the closest input embeddings. However, this approach often produces sequences that are difficult to
understand or lack meaningful content. For example, Xu et al. observed that the closest words to the
learned embeddings are mostly meaningless, several tokens are mapped to the same word, and the
cosine similarity between the tokens and their closest word embeddings almost always falls below
0.16. Instead, we explore probing the LLM using the learned prompt. By appending the learned
prompt with a simple instruction, such as ”Tell me in as much detail as possible what task you are
supposed to do,” we encourage the LLM to generate an output that reflects its understanding of the
task. This approach allows us to gain meaningful insights into what the model has summarized from
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the tasks and datasets it has been trained on. Here we present a few interesting interpretations of
StoP prompts obtained by model probing.

StoP of Length 400, Breakfast Dataset, Forecast We obtain a very nice summarization of the
breakfast dataset:

The task appears to be related to preparing a snack or meal by using the facilities provided in
the kitchen. Specifically, I was asked to perform a series of actions to accomplish this goal.
Here’s what I’ve observed:1. **Opening the cabinet**: I need to open the cabinet to access
the necessary utensils, cookware, or ingredients.2. **Grabbing the ingredients**: I will
need to pick up the specified ingredients, such as a bowl, a cutting board, or a can opener, to
prepare the desired dish.3. **Slicing the ingredients**: I will cut the ingredients into the re-
quired proportions, shapes, or sizes depending on the recipe being followed.4. **Preheating
the cooking surface**: If needed, I will turn on the stove, oven, or other cooking device to
the desired temperature to start cooking the ingredients.5. **Cooking the ingredients**: I
will proceed to cook the ingredients according to the required cooking method, such as boil-
ing, saut´eing, frying, or baking.6. **Adding condiments or seasonings**: If necessary, I
will add the required condiments, spices, or seasonings to the cooked ingredients to enhance
their flavor.7. **Combining the ingredients**: Finally, I will combine the cooked ingredi-
ents in the desired manner, whether it’s mixing, blending, or assembling the final dish.Please
let me know if I’m correct in my understanding or if there’s anything else I can do to help!

StoP of Length 5, Breakfast Dataset, Forecast We obtain very cooking adjacent prompt inter-
pretations from even a small prompt of length 5 trained for forecasting on Breakfast. For example:

Here is my main task: ”Reach for a tablespoon and move in the direction of a plate where
I already placed some eggs and a knife. Slowly pour one egg into the plate, take the knife,
and carefully cut the egg in halves. Transfer both halves away from the plate, and then carry
the remaining plate towards a sink. Turn the tap on, wash the plate, and then move away
from the sink, holding the plate still under running water. Remove the plate from the sink,
carry it to a countertop, and put it down. Finally, reach for a knife and move towards a bowl
containing a knife, carry the knife, and move towards a counter where I already placed a
cutting board, where there is a set of utensils lying on it. Take the knife, push towards the
board, and reach for a knife. Move away from the cutting board.

StoP of length 400, MultiTHUMOS Dataset, Imputation The interpretation seems to have
mapped the idea of an asynchronous time series to another domain all together, while still keep-
ing elements like walk, run, stand, etc from the original dataset:

I’m an AI designed to generate text based on the sequence of events occurring in the events
diagram. Specifically, Iḿ trained to analyze the sequence of events and identify the cor-
responding actions or actions sequences in the diagram, and then use that information to
generate a textual description of what is happening in the diagram.The main tasks I was de-
signed to perform are:1. **Identify sequence of events**: I analyze the sequence of events
in the diagram, identifying the time-stamped data points and the transitions between them.2.
**Match events with actions**: I match the identified sequence of events with the corre-
sponding actions or actions sequences. For example, if I see a sequence of time-stamped
data points indicating a person sitting, standing, and then walking, I would match those
events to the action of ”walking”.3. **Generate textual description**: Using the matched
events and actions, I then generate a textual description of what is happening in the diagram.
For example, if I match the sequence ”sitting, standing, walking” to the action ”walking”, I
would generate a text describing that sequence as ”walking”. Additionally, I also make use
of some contextual information, such as the diagramś caption, to disambiguate and refine
my generated textual descriptions. The final textual output is a natural language description
of the content of the diagram.
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StoP of length 400, MultiTHUMOS Dataset, Anomaly Detection The interpretations center
around games, which is expected as MultiTHUMOS is a gaming dataset. Here are two sampled
interpretations:

The task is to simulate a volleyball game. The events include:1. Slices or spikes the ball with
the palm of the hand (VolleyballSpiking). 2. Blocks the ball with the palm of the hand (Vol-
leyballBlock).3. Sets the ball with the palm of the hand (VolleyballSet). 4. Pounds or slams
the ball with the fist (VolleyballSpiking). 5. Jumps or reaches for the ball (VolleyballJump-
ing). 6. Moves sideways or slides on the ground (VolleyballSpikeRun).It’s important to
remember that volleyball spiking, blocking, setting, and jumping involves movement and
body language, which can’t be reflected directly in a sequential diagram

The task you are supposed to do is sports broadcasting, and specifically, you are a golf broad-
caster. As a golfer, you are supposed to perform a live broadcast of the golf match, providing
commentary and analysis as the golfers participate in the match. The situation is simulated,
as there are no external stimuli or real golfers, you have to act as both commentator and
golfer, making mock commentary and mimicking golf swings.The task requires you to stay
in a fixed position, usually behind a microphone, and maintain a semi-serious, professional
tone. Your task is to articulate the events on the course, such as drives, putts, and other
golf shots, as if you are actually seeing them happen. You should also describe the terrain,
distance, and obstacles faced by the golfer, and offer your expert analysis and opinions on
their technique, strategy, and chances of scoring.Your commentary should be smooth, clear,
and engaging, drawing the audience into the game and painting a vivid picture of the action
on the course. Your performance should exude confidence and authority, as if you are an
experienced commentator who has watched many matches before. The audience should feel
like they are right there on the course with you, experiencing the excitement and suspense
of the tournament.

StoP of Length 400, Taobao Dataset, Forecast Note that this dataset is not textual, so all the soft
prompt has seen is the task description and a sequence of pairs of numbers.

Prompt: Describe your task.
Model Response:

Iḿ an AI assistant, my task is to generate a sequence based on a rule that Iv́e learned from
given inputs (or ”train” sequences). The rule is inferred by analyzing the pattern of increas-
ing or decreasing values of the input sequence. Each sequence is either called (”silenced”)
or activated, and if thereś no change in the sequence, the ”silence” is used, unless the in-
put sequence calls the ”silence” by itself. The task involves predicting the next output in a
sequence, given some input sequences that establish a pattern.

A.7 COMPARIOSN OF LASTS + STOP WITH OTHER PEFT TECHNIQUES

In this section, we compare the performance of LASTS + StoP with other PEFT techniques listed
in Table 1. Table 6 highlights the percentage improvements observed in various metrics when using
Stochastic Soft Prompting compared to standard Soft Prompting. We observe a significant advan-
tage of Stochastic Soft Prompting across all datasets and tasks, with an overall average increase
of 12.69% in Macro-F1 across all tasks and datasets. Similarly, Table 7 demonstrates an average
increase of 13.55% in Macro-F1 when using Stochastic Soft Prompting instead of finetuning tech-
niques like QLORA.
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Task Breakfast MultiTHUMOS EPIC KITCHEN
M-F1 MAE ACC M-F1 MAE ACC M-F1 MAE ACC

Forecast 11.09% 0.91% 4.87% 6.08% 0.77% 0.04% 2.13% -4.91% 3.52%
Imputation 23.40% 2.22% 17.37% 7.64% 2.76% 10.95% 30.66% 1.09% 10.81%
Anomaly Detection 10.40% — 12.82% 15.56% — 10.97% 7.21% — 6.06%

Avg Gain (Per Task) 14.96% 1.56% 11.69% 9.76% 1.76% 7.32% 13.33% -1.91% 6.80%

Avg Gain (All Tasks, All Datasets) M-F1: 12.69% MAE: 0.47% ACC: 8.60%

Table 6: Comparison of LASTS+StoP with LASTS+SP. The table shows the percentage improve-
ment in each metric achieved by using Stochastic Soft Prompting compared to standard Soft Prompt-
ing. Significant gains are observed across all datasets and tasks with Stochastic Soft Prompts. On
average, across all datasets and tasks, Macro F1 increases by 12.69%.

Task Breakfast MultiTHUMOS EPIC KITCHEN
M-F1 MAE ACC M-F1 MAE ACC M-F1 MAE ACC

Forecast 2.93% 4.39% 3.11% 22.65% 4.71% 10.31% 4.32% -4.47% 6.39%
Imputation 22.27% 1.20% 9.60% 3.80% -5.40% 3.46% 61.38% 0.25% 25.24%
Anomaly Detection 2.67% — 3.40% 0.70% — 1.65% 1.27% — 0.70%

Avg Gain (Per Task) 9.29% 2.79% 5.37% 9.05% -0.34% 5.14% 22.32% -2.11% 10.78%

Avg Gain (All Tasks, All Datasets) M-F1: 13.55% MAE: 0.11% ACC: 7.10%

Table 7: Comparison of LASTS+StoP with LASTS+QLORA. The table shows the percentage im-
provement in each metric achieved by using Stochastic Soft Prompting compared to finetuning via
QLORA. Significant gains are observed across all datasets and tasks with Stochastic Soft Prompts.
On average, across all datasets and tasks, Macro-F1 increases by 13.55%.

Breakfast MultiThumos EPIC KITCHEN

# Params Macro F1 ↑ MAE ↓ Macro F1 ↑ MAE ↓ Macro F1 ↑ MAE ↓
Forecast 1B 0.2292 33.9309 0.3210 1.8013 0.0574 3.0859

3B 0.2526 33.2541 0.3694 1.7259 0.0708 3.0169
8B 0.2633 32.5464 0.3947 1.6503 0.0797 3.0318

Imputation 1B 0.0256 31.1075 0.0907 2.4256 0.0102 3.2571
3B 0.0966 31.1597 0.1329 2.3963 0.0280 3.1445
8B 0.2064 28.2251 0.2213 2.3445 0.0610 3.1116

Anomaly Detection 1B 0.0688 — 0.0954 — 0.0318 —
3B 0.5726 — 0.4777 — 0.5793 —
8B 0.7198 — 0.6045 — 0.6603 —

Table 8: Comparison of Macro-F1 and MAE across the Breakfast, MultiThumos, and
EPIC KITCHENS datasets for forecasting, imputation, and anomaly detection as the number of
model parameters varies. The results show that Macro-F1 consistently improves with increasing
model size across all datasets and tasks. In most cases, MAE decreases as model size increases,
confirming that larger models generally lead to better performance.

A.8 SCALING TO DIFFERENT LLM BACKBONE SIZES

We trained Stochastic Soft Prompts (StoP) across different backbone sizes of large language models
and observed consistent improvements in performance as the model size increased. Specifically,
we conducted experiments using LLama3.2 models with 1B and 3B parameters, as well as the
LLama3-8B Instruct model. These improvements were clear across the Breakfast, MultiThumos,
and EPIC KITCHENS datasets and applied to all tasks - forecasting, imputation, and anomaly de-
tection.

Notably, Table 8 and Figure 8 show that macro-F1 scores consistently improve with larger model
sizes across all datasets and tasks. Additionally, Mean Absolute Error (MAE) decreased in most
cases as the model size increased, further confirming that larger models help Stochastic Soft Prompts
perform better by utilizing their enhanced representational power. The performance difference be-
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tween model sizes is smaller for forecasting tasks since these align with the next-token prediction
that LLMs are trained on. However, for harder tasks like imputation and anomaly detection, the
improvements are much larger as model size increases.
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Figure 8: Comparison of average Macro F1 and MAE across all datasets and tasks for different
model sizes. The left histogram shows the average Macro F1 scores, while the right histogram
depicts the average MAE values. We see a clear trend of improvement in both metrics as model
sizes increase.

Few-Shot (k) Breakfast MultiTHUMOS EPIC-KITCHENS
M-F1 ↑ MAE ↓ ACC ↑ M-F1 ↑ MAE ↓ ACC ↑ M-F1 ↑ MAE ↓ ACC ↑

Forecast

k = 0 0.0604 38.1630 0.0969 0.1361 1.8868 0.1826 0.0105 3.1566 0.0920
k = 1 0.1312 37.6239 0.1808 0.1393 1.7913 0.2381 0.0144 3.2606 0.1123
k = 2 0.1257 36.4688 0.1870 0.1622 1.7960 0.2505 0.0151 3.2266 0.1180
k = 5 0.1518 35.5605 0.2133 0.1676 1.8114 0.2581 0.0149 3.3092 0.1150
k = 7 0.1491 35.6785 0.2107 0.1991 1.7810 0.2828 0.0138 3.2177 0.1002
k = 10 0.1667 37.6084 0.2442 0.1807 1.7820 0.2397 0.0124 3.0904 0.0901

Imputation

k = 0 0.0263 33.0097 0.0594 0.0915 2.6696 0.1210 0.0015 3.6527 0.0446
k = 1 0.0419 33.1403 0.0738 0.1165 2.5106 0.1490 0.0018 3.6402 0.0569
k = 2 0.0527 31.1138 0.0826 0.1102 2.3576 0.1486 0.0022 3.5375 0.0527
k = 5 0.0520 33.3440 0.1001 0.1013 2.3982 0.1569 0.0023 3.2528 0.0547
k = 7 0.0509 34.0198 0.0994 0.1001 2.4228 0.1462 0.0019 3.3447 0.0475
k = 10 0.0474 31.2001 0.1069 0.1219 2.3771 0.1546 0.0015 3.2552 0.0406

Anomaly Detection

k = 0 0.0923 — 0.0763 0.2755 — 0.1949 0.0159 — 0.0777
k = 1 0.1002 — 0.0681 0.2809 — 0.1961 0.0172 — 0.0854
k = 2 0.0739 — 0.0569 0.3361 — 0.2891 0.0213 — 0.1062
k = 5 0.0837 — 0.0563 0.3535 — 0.2720 0.0337 — 0.1637
k = 7 0.0705 — 0.0469 0.3436 — 0.2516 0.0278 — 0.1369
k = 10 0.1026 — 0.0700 0.2340 — 0.1629 0.0222 — 0.1097

Table 9: Comparison of performance metrics (M-F1, MAE, and ACC) across Breakfast, Multi-
THUMOS and EPIC KITCHEN datasets over forecast, imputation and anomaly detection tasks for
different few-shot values k given as in context examples. k = 0 indicates Zero Shot. Higher M-F1
and ACC values indicate better performance, while lower MAE values are better. MAE computation
is not applicable for anomaly detection. Best metric values are indicated in bold.
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Figure 9: Average values of Macro-F1, MAE, and ACC across all datasets and tasks for different
values of k (number of few-shot examples). Higher values indicate better performance for Macro-F1
and ACC, while lower values indicate better performance for MAE. The results indicate that on an
average, k = 5 works best.

A.9 LASTS FEW SHOT

We study the impact of varying the number of examples (k) in the few-shot setting to determine the
optimal value of k for our method. Specifically, we evaluate the performance of LASTS Few Shot on
all datasets and tasks using different k values, ranging from k = 0 (Zero Shot) to k = 10. As shown
in Figure 9 and detailed in Table 9, the performance metrics—Macro-F1, MAE, and ACC—improve
significantly as k increases from 0 to 5. However, further increases in k beyond 5 do not consistently
yield improvements and, in some cases, result in marginal performance degradation.

On average, k = 5 achieves the best balance across all metrics and datasets. Therefore, we adopt
k = 5 as the default value for LASTS Few Shot and include it as the entry for ”LASTS Few Shot”
in Table 1.

A.10 FURTHER ANALYSIS ON STOCHASTIC SOFT PROMPTS (STOP)

In this section, we comment on the structure learned by StoP prompts and discuss the practical
benefits of Stochastic Soft Prompts.

Evidence for Coarse-to-Fine Structure The prompts learned through Stochastic Soft Prompts
(StoP) suggest the presence of a structured coarse-to-fine hierarchy. In this structure, the first few
tokens appear to encode broader task-level information, while later tokens may refine predictions by
adding more detailed nuances. Below, we provide observations that support this behavior:

1. t-SNE Projections: Visualizations of t-SNE projections (see Figure 10) suggest that the
first few tokens in StoP prompts may encode more diverse or independent representations,
as indicated by their wider spread in the projection space. In contrast, the later tokens tend
to cluster more closely together, potentially reflecting the refinement of previously encoded
information.

2. Cosine Similarity: Adjacent tokens at the beginning of the StoP prompt tend to exhibit
lower cosine similarity compared to tokens later in the prompt (see Figure 10). This pattern
suggests more diverse information being captured at the beginning of the prompt. Standard
soft prompts, however, show uniformly high cosine similarities across all tokens, lacking
this structure.

3. Prefix Validity: Figure 5 indicate that any prefix of a StoP prompt serves as a valid stan-
dalone prompt, with additional tokens refining the predictions. This behavior suggests that
early tokens convey broad task-level information, while later tokens refine and add finer-
grained details.
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Figure 10: Left: t-SNE projections of Stochastic Soft Prompt (StoP) tokens with a prompt length of
50 on the Breakfast dataset for the forecasting task. Adjacent tokens are connected by a line, and
the color darkens as the token index increases. The presence of lighter tokens on the periphery and
darker tokens in the center indicates that the initial tokens learn very diverse information, while this
diversity diminishes as the token index increases. Right: Pairwise cosine similarity of the first 350
tokens of a stochastic soft prompt and a soft prompt learned on the Breakfast dataset for forecasting.
We observe that in StoP, the initial cosine similarities are smaller and increase as the token index
increases, while no such variation by token index is present in a normal soft prompt.

Practical Benefits of StoP We observe that StoP offers many benefits over standard soft prompt-
ing:

1. Improved Generalization: StoP prompts achieve better generalization compared to stan-
dard soft prompts, with an average improvement of 12.69% in Macro-F1 across all
datasets (Breakfast, MultiTHUMOS, and EPIC KITCHENS) and tasks (Forecast, Impu-
tation, Anomaly Detection) (see Table 6)

2. Faster Training: The stochastic nature of StoP reduces training time by approximately
25%, making it more efficient than standard soft prompting.

3. Resource Efficiency: StoP enables flexible deployment in resource-constrained environ-
ments. Longer trained StoP prompts can be truncated to prefixes as needed, allowing for
adaptable inference without compromising performance.
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