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ABSTRACT

For domain generalization, the task of learning a model that generalizes to un-
seen target domains utilizing multiple source domains, many approaches explic-
itly align the distribution of the domains. However, the optimization for domain
alignment has a risk of overfitting since the target domain is not available. To
address the issue, this paper proposes a method for domain generalization by em-
ploying self-distillation. The proposed method aims to train a model robust to
domain shift by allowing meaningful erroneous predictions in multiple domains.
Specifically, our method matches the ensemble of predictive distributions of data
with the same class label but different domains with each predictive distribution.
We also propose a de-stylization method that standardizes feature maps of im-
ages to help produce consistent predictions. Image classification experiments on
two benchmarks demonstrated that the proposed method greatly improves perfor-
mance in both single-source and multi-source settings. We also show that the pro-
posed method works effectively in person-reID experiments. In all experiments,
our method significantly improves the performance.

1 INTRODUCTION

Deep neural networks (DNNs) has brought remarkable advances in a number of research areas
such as visual recognition (Krizhevsky et al., 2012), image synthesis (Goodfellow et al., 2014), and
reinforcement learning (Mnih et al., 2013). Most of successful models assume that training and test
data are sampled under independent and identically distributed (i.i.d.) condition, which often does
not hold in real-world environments unfortunately; a large error occurs when out-of-distribution data
is given due to the distribution shift problem. To alleviate this problem, domain adaptation has been
studied for learning domain-invariant models using fully labeled source data and target data with few
or no labels. In many real applications, however, target domains are latent and data of the domains
are not accessible accordingly. Domain generalization addresses this issue by learning models that
well generalize to unseen domains, and has attracted increasing attention.

The mainstream research of domain generalization follows the flow of domain adaptation, and ex-
plores ways of aligning the distribution between features of multiple domains by adversarial train-
ing (Ghifary et al., 2015; Li et al., 2018a;b), reducing the maximum mean discrepancy (Muandet
et al., 2013; Ghifary et al., 2016), or contrastive learning (Kim et al., 2021a). In domain adaptation,
since the images of the target domain are available, it is obvious to reduce the target error by align-
ing the domain, but this cannot be guaranteed in domain generalization. In addition, it is unclear
whether the target data will be mapped to the aligned features, and there is a high risk of overfitting
the classifier to the source domains. Meanwhile, meta-learning frameworks recently have been pro-
posed to increase the generalization ability through episodic training that separates source domains
and simulates situations where the distribution shift occurs. Unfortunately, it is still difficult to com-
pletely avoid the same issue since these methods can be seen as extensions of distribution alignment
methods.

In this work, we aim to address this overfitting issue and propose a method for learning a relaxed
classifier rather than fitting a classifier to completely classify the class on the given source domains.
Inspired by knowledge distillation, but revisiting it for domain generalization, we propose a regu-
larization method that allows a model meaningfully wrong predictions that may occur in multiple
domains. Specifically, we propose to exploit the ensemble of predictive distributions whose input
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Figure 1: Illustration of cross domain ensemble distillation (XDED). To alleviate overfitting on
source domains, XDED produces the soft target as a class-wise ensemble of predictive distributions
of samples from different domains, which contains meaningful errors from multiple domains.

data have the same class label but belong to different domains as the knowledge and match it with
each predictive distribution. We name our method cross domain ensemble distillation (XDED) and
illustrate its main idea in Fig. 1. We remark that, unlike conventional knowledge distillation, XDED
does not require multiple pretrained models, and employs a self-distillation manner that distills pre-
dictions obtained from a single network to itself. As a result, the proposed method increases the
entropy of model predictions by penalizing the prediction of a sample with the ensemble which
contains meaningful errors accumulated from multiple domains, which encourages the model to
converge to wide local minima (Zhang et al., 2018; Cha et al., 2021b). Moreover, according to
the theorem 1 proven by Cha et al. (2021a), wide minima leads to a small domain generalization
gap, which explains that the proposed method can generalize well to unseen domains. We empir-
ically show that our method contributes converging to a wide minima and improves generalization
capability on unseen domains.

Since XDED is limited to regularization of the model only on source domains, there is still large
room to further reduce the domain gap with the target domain. To this end, we also introduce an de-
stylization technique well-suited for domain generalization, called UniStyle. UniStyle suppresses
domain-specific style bias simply by standardizing intermediate feature maps of the image during
both training time and testing time. Thanks to UniStyle, the model is able to produce style-consistent
predictions in not only the source domains but also the target domain, which in turn greatly reduces
the domain gap and boosts the effect of XDED.

We first demonstrate the effectiveness of our method on PACS (Li et al., 2017), a standard public
benchmark for domain generalization. Our method significantly enhances the generalization ability
of a model in both multi-source and single-source settings. We also validate the universality of
the proposed method in various domain generalization scenarios by showing the improvements of
image classification performance on the large-scale benchmark called DomainBed (Gulrajani &
Lopez-Paz, 2021) and image retrieval performance for person-reID (Zheng et al., 2015; 2017). In
all domain generalization experiments, our method achieves significant performance improvements.

2 RELATED WORK

Domain Generalization. The goal of domain generalization is to learn domain-invariant fea-
tures that are well-generalizable to the unseen target domain. Previous approaches suggested ways
of matching distributions between different domains by adversarial feature alignment (Li et al.,
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2018a;b) or reducing Maximum Mean Discrepancy (Muandet et al., 2013; Ghifary et al., 2016).
Recently, meta-learning frameworks (Balaji et al., 2018; Li et al., 2019; Dou et al., 2019) have been
investigated, and they simulate the domain shift by dividing the meta-train and meta-test domains
from the original source domains. On the other hand, data augmentation methods have been pro-
posed with the purpose of generating more diverse images beyond images of given source domains.
For instance, CrossGrad (Shankar et al., 2018) perturbs images according to adversarial gradients
induced by a domain classifier. L2A-OT (Zhou et al., 2020) learns a generator to map source data to
synthetic domains by maximizing a divergence measure. FACT (Xu et al., 2021) mixes the ampli-
tude spectrums of two images from a Fourier-based perspective.

Knowledge distillation and ensemble. Knowledge distillation, which is mainly devised for model
compression, aims to transfer the knowledge of a deep model to a shallow model. As a seminal
example, Hinton et al. (2015) encourages the student model to imitate class logits of the teacher
model, which contain richer information than one-hot labels. While a myriad of studies have been
investigated for various purposes such as cross-modality learning (Tian et al., 2020) and metric
learning (Park et al., 2019; Kim et al., 2021b) and network regularization (Xu & Liu, 2019; Zhang
et al., 2019; Yun et al., 2020). Unlike the conventional teacher-student framework, these network
regularization methods called self-distillation distill own knowledge from their model itself and
enforce consistency regularization between the original data and other data. Meanwhile, methods
applying knowledge distillation (Meng et al., 2018; Zhou et al., 2021; Feng et al., 2021) have been
proposed for domain adaptation, the task most closely related to domain generalization. Follow-
ing the teacher-student training scheme of conventional knowledge distillation, they train several
teacher models in the source domains and ensemble them to distill to student model. However, these
approaches require large resources and training time since they require multiple pretrained teacher
model. In addition, they are difficult to extend to domain generalization because they utilize target
images along the strategy of domain adaptation. Our method simply yet effectively improves the
generalization capability of the model without the need for target images and several teachers.

Bias towards styles. As recent studies (Geirhos et al., 2019; Brendel & Bethge, 2019) demonstrate
that deep neural networks overly depend on a strong bias towards styles, it is also confirmed that the
visual domain is closely related to its own style in domain generalization community (Zhou et al.,
2021). Therefore, previous approaches have been proposed to define styles as bias and attempt to
remove the dependency through augmentation (Zhou et al., 2021) or adversarial training (Nam et al.,
2021). Distinct from them, in this paper, we propose a simple but effective de-stylization technique
for domain generalization.

3 OUR APPROACH

The goal of domain generalization is to learn domain-invariant representations from multiple source
domains to generalize to unseen target domains. To achieve this goal, approaches to align the distri-
butions of source domains and train discriminative classifier have been mainly explored. However,
no information about the target domain is given in the domain generalization setting, so they have a
high risk of overfitting to source domains.

In this work, we propose a knowledge distillation method for domain generalization that regularizes
the model to mitigate this issue by learning meaningful wrong predictions accumulated from multi-
ple domains. We also introduce an image de-stylization technique that maximizes the effect of our
distillation and helps to produce consistent predictions not only in the source domain but also in the
target domain. Lastly, we provide theoretical interpretation on how each component of our method
leads to a small domain gap with empirical evidences.

3.1 CROSS DOMAIN ENSEMBLE DISTILLATION

Review of knowledge distillation. The goal of knowledge distillation (KD) (Hinton et al., 2015) is
to transfer knowledge from a teacher model t to a student model s, usually a wide and deep model
to a smaller one, for the purposes of model compression or model regularization. Given input data
x and its label y ∈ {1, · · · , C}, we denote the output logit of model as z(x) = [z1(x), · · · , zC(x)].
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The posterior predictive distribution of data x is then formulated as:

P (y|x; θ, τ) =
exp(zy(x)/τ)∑C
i=1 exp(zi(x)/τ)

, (1)

where the model is parameterized by θ and τ is a temperature scaling parameter. Knowledge dis-
tillation enforce to match the predictive distributions of s and t. Specifically, it is achieved by
minimizing the Kullback-Leibler (KL) divergence between their predictive distributions as follows:

LKD(X; θs) =
∑
xi∈X

C∑
c=1

DKL(P (c|xi; θt, τ)||P (c|xi; θs, τ)), (2)

whereX is a batch of input data, θt and θs are the parameters of a teacher and a student, respectively.

Cross domain ensemble distillation. We propose a new knowledge distillation method for domain
generalization called cross domain ensemble distillation (XDED), which aims to transfer comple-
mentary knowledge using ensembles of logits from different domains. Unlike conventional KD,
our method does not require an additional network which increases training complexity (e.g., extra
parameters and training time) but distills the ensemble knowledge constructed by multiple samples
to the model itself in a form of self-knowledge distillation. More specifically, XDED produces the
ensemble by averaging multiple logits whose class labels are the same in a mini-batch. The driving
rationale behind the ensemble is to encode more complementary knowledge since different domains
manifest different inter-class relations (e.g., as shown in Fig. 1, the predictive distribution of Cartoon
has high probability on class Person, but that of Sketch has high probability on class Dog.). As a
result, each sample not only contributes to constructing the complementary knowledge by provid-
ing its own or its domain-specific information but also is supervised with that knowledge to learn
domain-invariant information. Formally, let Xy denote the set of samples that have the same class
label y in a mini-batch. Then, we obtain an ensemble of logits from Xy by simply taking an average
as:

z̄(Xy) =
∑
xi∈Xy

zxi

|Xy|
. (3)

Then, the predictive distribution from Xy can be defined as:

P̄ (c|Xy; θ, τ) =
exp(z̄c(Xy)/τ)∑C
i=1 exp(z̄i(Xy)/τ)

, (4)

Therefore, the loss function of XDED is defined as follows:

LXDED(Xy; θ) =
∑
xi∈Xy

C∑
c=1

DKL(P̄ (c|Xy; θ̂, τ)||P (c|xi; θ, τ)), (5)

where θ̂ is a fixed copy of the parameter θ. Following Miyato et al. (2018), we stop the gradient to
be propagated through θ̂ to prevent the model from falling into some trivial solutions. To sum up,
we set our objective function as

min
θ
Lθ = LCE(X,Y ; θ) + λ

C∑
c=1

LXDED(Xc; θ), (6)

where X is a batch of input images, Y is a batch of corresponding class labels, LCE denotes the
vanilla cross-entropy loss, and λ is a hyperparameter to balance LCE and LXDED. Unless specified
otherwise, λ and τ are 5.0 and 4.0 throughout this paper.

3.2 UNISTYLE: REMOVING AND UNIFYING STYLE BIAS

For regularizing the model to produce style-consistent predictions, we propose a de-stylization tech-
nique which is well-suited for domain generalization. Since domain-specific styles are not expected
to be held at test time, we propose UniStyle to prevent the model from being biased towards the
domain-specific styles, thus, reduce the domain gap with the target domain.
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Figure 2: Analysis of our framework. Left: Train/Test losses versus the weight perturbation with
varying σε. Note that the loss values are log-scaled, Right: The divergence (A-distance) between
the source domains and the target domain.

More specifically, following recent approaches related to style transfer (Huang & Belongie, 2017;
Nam & Kim, 2018; Lee et al., 2019), we first represent a neural style as statistics of intermediate
featuremaps from the feature extractor. Formally, let F ∈ RC×H×W denote an intermediate feature
map of an image. Then, a neural style of the image is represented as the combination of channel-wise
mean µ(F ) ∈ RC and standardization σ(F ) ∈ RC of F as:

µc(F ) =
1

HW

H∑
h=1

W∑
w=1

Fc,h,w, (7)

and

σc(F ) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(Fc,h,w − µc(F ))2, (8)

where µ(F ) = [µ1(F ), · · · , µC(F )] and σ(F ) = [σ1(F ), · · · , σC(F )]. Next, we simply standard-
ize each feature to have constant channel-wise statistics, µW and σW as:

UniStyle(F ) = σW
F − µ(F )

σ(F )
+ µW , (9)

where we select µW = 0 and σW = 1 (i.e., zero-mean standardization). We observed that UniStyle
is effective when being applied at multiple early layers, which is alinged with recent studies (Huang
& Belongie, 2017; Dumoulin et al., 2017) suggesting that the style information is usually captured
at the early layers. Further analysis on UniStyle is supplemented in the supplementary material A.1.

3.3 THEORETICAL INTERPRETATION

In this section, we provide theoretical interpretation on how our framework leads to a smaller domain
generalization gap, starting from the theorem related to domain adaptation (Ben-David et al., 2007;
2010). This theorem shows that the expected risk on the target domain is bounded by the expected
risk on the source domain and the divergence between the target domain and the source domain.

Meanwhile, to find a model parameter θ ∈ Θ for domain generalization, Cha et al. (2021a) recently
introduced a robust empirical loss as:

ε̂γS(θ) := max
||∆||≤γ

ε̂S(θ + ∆) (10)

where ε̂S(θ) is an empirical risk over source domains S and γ is a radius which defines neighbor
parameters of θ. Then, Cha et al. (2021a) theoretically showed that finding wide local minima
reduces the domain gap through the theorem below:

Theorem 1. Consider a set of N covers {Θk}Nk=1 such that the hypothesis space Θ ⊂ ∪Nk Θk where
diam(Θ) := supθ,θ′∈Θ ||θ − θ′||2, N := d(diam(Θ)/γ)de and d is dimension of Θ. Let vk be a
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VC dimension of each Θk. Then, for any θ ∈ Θ, the following bound holds with probability at least
1− δ,

εT (θ) < ε̂γS(θ) +
1

2I

I∑
i=1

Div(Si, T ) + max
k∈[1,N ]

√
vk ln (m/vk) + ln (N/δ)

m
, (11)

where m = nI is the number of training samples and Div(Si, T ) is the divergence between the
source domain Si and the target domain T .

We remark that, in Eq. (11), the test loss εT (θ) is bounded by three terms: the robust empirical
loss ˆεγS(θ) and the divergence Div(Si, T ). In the rest of this section, we show that our framework
lowers both ˆεγS(θ) and Div(Si, T ) with the empirical evidences. Following empirical evidences
are produced from the PACS dataset by training models on three source domains (i.e., “Cartoon”,
“Sketch”, and “Photo”) and evaluating them on a target domain (i.e., “Art Painting”).

XDED lowers the robust empirical loss. To demonstrate that XDED promotes wide local minima,
we quantify how wide each model converges to a local minima by measuring changes of loss value
between θ and its neighborhoods, assuming that promoting wide local minima would have smaller
changes. More specifically, following Zhang et al. (2018); Cha et al. (2021b), we measure the train-
ing losses of the learned models before and after adding Gaussian noise to model parameters while
varying the standard deviation of the noise σε (i.e., LCE(X,Y ; θ+ε) where ε ∼ N(0, σε)). As shown
in Figure. 2 (left), the results show that XDED demonstrates its robustness against the weight pertur-
bation with smaller loss changes. With the benefit from entropy regularization approaches (Pereyra
et al., 2017; Szegedy et al., 2016; Zhang et al., 2018; Cha et al., 2021b) to finding wide local minima,
XDED promotes wide local minima by penalizing mismatches of predictive distributions between
samples from different domains in the context of domain generalization. To sum up, we empirically
show that XDED contributes to smaller domain generalization gap by reducing the robust empirical
loss.

UniStyle lowers the domain discrepancy. To examine the effectiveness of the proposed whitening
in reducing the divergence Div(Si, T ), we adopt A-distance (Kifer et al., 2004; Ben-David et al.,
2010) as a measure. However, since computing the exactA-distance is generally intractable, follow-
ing Long et al. (2015), we calculate an approximated version of A-distance between features from
the target domain and source domains, which is defined as d̂A = 2(1 − 2εsvm) where εsvm is the
generalization error of a SVM-based two-class classifier trained to distinguish the domain member-
ship of input features. As shown in Figure. 2 (right), we observe that our whitening clearly lowers
the distance with negligible computational overheads when compared to the vanilla ResNet-18 and
MixStyle (Zhou et al., 2021).

In conclusion, we empirically show that the proposed methods, XDED and UniSyle, lead to a smaller
domain generalization gap by reducing robust empirical loss and domain discrepancy, respectively.
Their effects are complementary, and the combination of our two simple methods can significantly
improve the domain generalization ability.

4 EXPERIMENTS

4.1 GENERALIZATION IN IMAGE CLASSIFICATION

In this section, to demonstrate the superiority of our framework, we evaluate the proposed framework
on the task of domain generalization in image classification.

4.1.1 CONVENTIONAL SETTING

Experimental setup. Specifically, for fair comparison, we follow the leave-one-domain-out pro-
tocol (Li et al., 2017) where we train a model on three domains and evaluate it on the remaining
domain for multi-source domain generalization. For single-source domain generalization, we train
a model on single domain and evaluate it on the other three domains. We use ResNet-18 (He et al.,
2016) as backbone of our model, and our UniStyle technique is applied to output feature maps of the
first and second residual blocks. For the benchmark dataset, we employ the PACS (Li et al., 2017)
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Table 1: Leave-one-domain-out generalization results on PACS
Methods Art Cartoon Photo Sketch Average
DeepAll 77.0 75.9 96.0 69.2 79.5
MMD-AE (Li et al., 2018a) 75.2 72.7 96.0 64.2 77.0
CCSA (Motiian et al., 2017) 80.5 76.9 93.6 66.8 79.4
JiGen (Carlucci et al., 2019) 79.4 75.3 96.0 71.6 80.5
CrossGrad (Shankar et al., 2018) 79.8 76.8 96.0 70.2 80.7
MASF (Dou et al., 2019) 80.2 77.1 94.9 71.6 81.0
Epi-FCR (Li et al., 2019) 82.1 77.0 93.9 73.0 81.5
MetaReg (Balaji et al., 2018) 83.7 77.2 95.5 70.3 81.7
EISNet (Wang et al., 2020) 81.8 76.4 95.9 74.3 82.1
L2A-OT (Zhou et al., 2020) 83.3 78.2 96.2 73.6 82.8
SagNet (Nam et al., 2021) 83.5 77.6 95.4 76.3 83.2
SelfReg (Kim et al., 2021a) 82.3 78.4 96.2 77.4 83.6
MixStyle (Zhou et al., 2021) 84.1 78.8 96.1 75.9 83.7
L2D (Wang et al., 2021) 81.4 79.5 95.5 80.5 84.2
FACT (Xu et al., 2021) 85.3 78.3 95.1 79.1 84.5
DSON (Seo et al., 2020) 84.6 77.6 95.8 82.2 85.1
RSC (Huang et al., 2020) 83.4 80.3 95.9 80.8 85.1
Ours 85.6 84.2 96.5 79.1 86.4

Table 2: Single-source domain generalization accuracy (%) on PACS with a ResNet-18 backbone.
(A: Art Painting, C: Cartoon, S:Sketch, P:Photo).

Methods A→C A→S A→P C→A C→S C→P S→A S→C S→P P→A P→C P→S Avg
ResNet-18 62.3 49.0 95.2 65.7 60.7 83.6 28.0 54.5 35.6 64.1 23.6 29.1 54.3
JiGen (Carlucci et al., 2019) 57.0 50.0 96.1 65.3 65.9 85.5 26.6 41.1 42.8 62.4 27.2 35.5 54.6
MixStyle (Zhou et al., 2021) 65.5 49.8 96.7 69.9 64.5 85.3 27.1 50.9 32.6 67.7 38.9 39.1 57.4
RSC (Huang et al., 2020) 62.5 53.1 96.2 68.9 70.3 85.8 37.9 56.3 47.4 66.3 26.4 32.0 58.6
SelfReg (Kim et al., 2021a) 65.2 55.9 96.6 72.0 70.0 87.5 37.1 54.0 46.0 67.7 28.9 33.7 59.5
SagNet (Nam et al., 2021) 67.1 56.8 95.7 72.1 69.2 85.7 41.1 62.9 46.2 69.8 35.1 40.7 61.9
Ours 74.6 58.1 96.8 74.4 69.6 87.6 43.3 65.6 50.3 71.4 54.3 51.5 66.5

that is a widely-used benchmark for domain generalization in image classification. PACS consists
of 9,991 images over 4 domains: Art Painting, Cartoon, Photo and Sketch.

Results of multi-source domain generalization. As summarized in Table. 1, our method clearly
outperforms the latest methods which are dedicated to domain generalization. Except for the case
of Sketch domain, our method achieves the best accuracies among other competing methods. Espe-
cially, for Cartoon domain, our method exceeds RSC (Huang et al., 2020), the second best method,
by about 4.0%. The most challenging domain for our method is Sketch. We conjecture this is be-
cause images of Sketch are colorless and our UniStyle removes too much information at inference
time. Nevertheless, we remark that not only Sketch is commonly one of the most difficult domains
for other methods too. In sketch, each method usually shows the lower performance than its average
accuracy. Nevertheless, we remark that bour method shows its superiority over other methods on
overall performance.

Results of single-source domain generalization. Thanks to the simple design of our proposed
method which does not explicitly require domain labels, our framework can be transparently in-
corporated with single-source domain generalization where we only have access to a single source
domain during training. Therefore, to further evaluate the impact of our framework on single-source
domain generalization, our model is trained on each single domain of PACS and evaluated on the
remaining target domains. As shown in Table. 2, our model significantly outperforms other base-
lines by 8.7% in average accuracy. Besides, in all cases except for the case of C → S, our model
shows its superiority in performance. Even though only a single domain is provided during train-
ing, we conjecture this interesting result is attributed to the existence of inherent variation between
intra-domain samples, which is also aligned with the observation of multiple sub-domains in a single
domain (Zhou et al., 2021), and the ability of our framework to exploit that fine-grained relations
between samples.
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Model selection: leave-one-domain-out cross-validation
Algorithm CMNIST RMNIST VLCS PACS OfficeHome TerraIncognita Avg
ERM 36.7 97.7 77.2 83.0 65.7 41.4 66.9
IRM 40.3 97.0 76.3 81.5 64.3 41.2 66.7
GroupDRO 36.8 97.6 77.9 83.5 65.2 44.9 66.7
Mixup 33.4 97.8 77.7 83.2 67.0 48.7 67.9
MLDG 36.7 97.6 77.2 82.9 66.1 46.2 67.7
CORAL 39.7 97.8 78.7 82.6 68.5 46.3 68.9
MMD 36.8 97.8 77.3 83.2 60.2 46.5 66.9
DANN 40.7 97.6 76.9 81.0 64.9 44.4 67.5
CDANN 39.1 97.5 77.5 78.8 64.3 39.9 66.1
MTL 35.0 97.8 76.6 83.7 65.7 44.9 67.2
SagNet 36.5 94.0 77.5 82.3 67.6 47.2 67.5
ARM 36.8 98.1 76.6 81.7 64.4 42.6 66.7
VREx 36.9 93.6 76.7 81.3 64.9 37.3 65.1
RSC 36.5 97.6 77.5 82.6 65.8 40.0 66.6
Ours 46.5 97.7 74.8 83.8 65.0 42.5 68.4

Table 3: Domain generalization accuracy (%) on DomainBed. The results compare fifteen methods
including ours across six domain generalization benchamark datasets. Note that we adopt leave-
one-domain-out cross-validation as a model selection criteria.

4.1.2 DOMAINBED

Experimental setup. We also conduct extensive experiments on the DomainBed (Gulrajani &
Lopez-Paz, 2021) which is a testbed for domain generalization to compare state-of-the-art meth-
ods across several benchmark datasets. The rationale behind the DomainBed is that the domain
generalization performances are too much dependent on the hyperparameter tuning. Therefore, for
a fair comparison, we follow the its rigorous protocols for training and evaluation.

Results. As shown in Table. 3, our method generally shows better or competitive performances
and ranks second out of 15 methods on average. Especially, on CMNIST, our method substantially
outperforms other competing methods. We conjecture this performance boost is attributed to the
de-stylization of UniStyle since CMNIST is designed to simulate the domain shift via background
colors which are highly correlated with visual styles rather than other factors such as shape.

4.2 GENERALIZATION IN PERSON RE-ID

In this section, we further evaluate our framework on the person re-identification (re-ID), which is
the task of matching pedestrians across non-overlapping camera views. Considering each camera as
a source domain, learning invariance of each identity across different domains is the key to success
in person re-ID.

Experimental setup. Here, we address domain generalization for person re-ID, where the test
data is collected from cameras of the unseen dataset rather than from those of the training dataset.
Specifically, the model trained to match people in the source dataset is then evaluated by how
well it matches pedestrian data of the unseen test set, which are disjoint from those of the source
dataset. For datasets, we adopt two widely-used benchmarks: Market1501 (Zheng et al., 2015) and
DukeMTMC-reID (Duke) (Ristani et al., 2016; Zheng et al., 2017). We use 32,668 images of 1,501
identities collected from 6 cameras and 36,411 images of 1,812 identities from 8 cameras for Mar-
ket1501 and Duke, respectively. As performance measures, we adopt mean average precision (mAP)
and Recall@K (R@K). Following the prior work (Zhou et al., 2021), we adopt ResNet-50 (He et al.,
2016) as a backbone architecture. In these experiments, we apply UniStyle to the 1st, 2nd and 3rd
residual blocks of a model.

Comparison to other regularization methods. As shown in Table. 4, our framework substantially
outperforms other methods in mAP and Recall@1. Although RandomErase and Dropblock are
known to be effective for learning discriminative features, they both fail to improve performance
when encountered unseen domain data. Furthermore, by exploiting inter-class relations provided by
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Market1501→Duke Duke→Market1501
Methods mAP R@1 R@5 R@10 mAP R@1 R@5 R@10
ResNet-50 19.3 35.4 50.3 56.4 20.4 45.2 63.6 70.9
RandomErase (Zhong et al., 2020) 14.3 27.8 42.6 49.1 16.1 38.5 56.8 64.5
DropBlock (Ghiasi et al., 2018) 18.2 33.2 49.1 56.3 19.7 45.3 62.1 69.1
MixStyle (Zhou et al., 2021) 23.4 43.3 58.9 64.7 24.7 53.0 70.9 77.8
Ours 27.4 49.3 56.0 59.5 30.1 59.0 67.0 71.5

Table 4: Generalization results on the cross-dataset person re-ID task.
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Figure 3: Test accuracy (%) on target domains with input deformations. All models are trained
under the multi-source domain generalization setting.

method Accuracy (%)
Label smoothing 79.9
MixUp 78.5
Ours 86.4

Table 5: Comparison with other regularization methods exploiting soft targets.

different cameras, our framework shows its superiority over MixStyle which is designed for domain
generalization but utilizes one-hot labels only, resulting in ignoring inter-class relations.

4.3 IN-DEPTH ANALYSIS

Generalization on target domains with input deformations. To further evaluate the generalization
performance of the proposed method on more challenging, we simulate gradually increasing domain
shift by adding deformations on images of the target domain. Specifically, we transformed the image
in target domain by applying multiple augmentations defined in RandAugment (Cubuk et al., 2020),
and gradually increased the number of them. For a fair comparison, we use same augmentation
operations for each setting. As shown in Fig. 3, our method demonstrates its better generalization
ability even in more challenging conditions with large domain shift, which is attributed to both
promoting wide local minima and reducing the domain gap by reducing style bias. This result also
supports

How much does soft target matter by itself? Considering our usage of soft targets, we investigate
whether the perfomance boosts are merely due to the usage of soft targets. Thus, when compared to
Label smoothing and Mixup which both exploit soft targets in their own ways, Table. 5 shows our
method substantially outperforms them. It is because their soft targets are not able to capture the
domain knowledge.

5 CONCLUSION

In this paper, we presented a simple yet effective method for domain generalization. Distinct from
existing techniques which risks of overfitting on source domains, XDED allows meaningful errors of
a model in a form of knowledge distillation, helping the model promote wide local minima. Besides,
the proposed UniStyle suppresses domain-specific style so that it helps the model produce style-
consistent predictions, resulting in a reduced domain gap. Furthermore, we also provide theoretical
interpretation on how each component contributes to improved generalization ability with empirical
evidences. Through the extensive experiments, our framework achieves significant performance
improvements.
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A APPENDIX

This supplementary material presents additional ablation studies on the proposed framework and
its implementation details, all of which are omitted from the main paper due to the space limit.
A.1 presents additional analysis results on the proposed method. A.2 provides the implementation
details of the proposed method in each task.

A.1 ADDITIONAL ABLATION STUDIES

Learning Acceleration. Our framework enables faster convergence of the learning process. In
generalization on PACS, our effectiveness of learning acceleration is demonstrated. As shown in
Fig. 4, our framework reaches higher performance with less iterations compared to both vanilla
method and MixStyle (Zhou et al., 2021). Although the vanilla method requires many iterations
for convergence to cover the domain gaps between source domains, our framework accelerates the
learning process via encouraging the model to consider different inter-class relations among source
domains. Since MixStyle (Zhou et al., 2021), as an augmentation method, aims to synthesize novel
styles via mixing statistics at the feature level, it is inherently limited to require many iterations to
get many augmented styles for its best performance.

Where to apply UniStyle? We remark that all the quantitative results above are produced with the
ResNet (He et al., 2016) as a backbone network and the proposed UniStyle can be applied after
arbitrary intermediate layers of the backbone as a plug-and-play module. Therefore, to investigate
the impact of where UniStyle is applied, we evaluate the generalization performance in image clas-
sification and person re-ID while varying the locations of where the operation is applied. For a
baseline, MixStyle (Zhou et al., 2021) is adopted and compared with our UniStyle since they share
the commonality of being applied to multiple intermediate featuremaps. For brevity, let RES# denote
the indexes of residual blocks where the specified operation is applied (e.g., RES12 means the oper-
ation is applied after both the first and second residual blocks). As shown in Table. 6, we observe
that UniStyle and MixStyle have a similar trend in both tasks. First, since early layers are known
to capture low-level features such as texture or edge information, it is pertinent for both UniStyle
and MixStyle to be applied after early layers to remove style bias and synthesize novel styles, re-
spectively. However, UniStyle achieves the best performances on both tasks, which indicates the
importance of removing and matching style bias rather than augmenting novel styles. Next, on the
contrary, both operations lead critical performance drop when incorporated with the last layer, RES4,
since late layers are known to address semantic information (i.e., their statistics would be highly cor-
related with target labels). In detail, MixStyle perturbs the statistics by interpolating the those of two
different instances that may have different labels, whereas UniStyle normalizes the featuremap of
all samples regardless of their labels, resulting in more critical performance drop. Note that only
UniStyle is applied and the cross domain ensemble distillation is excluded in results of Table. 6.

Universality of our framework. We remark that the proposed framework can be incorporated with
any other methods thanks to its simplicity without requiring any additional modules. Therefore,
to demonstrate its universality, we evaluate generalization accuracy of baseline methods incorpo-
rated with our framework on PACS. As shown in Table. 8, when baselines are incorporated with
our framework, the performances are consistently improved by 3.4%p on average. Note that no hy-
perparameter search was conducted to find the best combination of our framework and the baseline
methods.

Ablation study on the effect of the proposed components. We conduct ablation study to examine
the effect of the proposed components. Therefore, we evaluate the generalization performances
in image classification and person re-ID tasks. As shown in Table. 7, the proposed component
consistently boosts the generalization performances in both tasks.

A.2 IMPLEMENTATION DETAILS

For the task of domain generalization in image classification, we train the models using the sgd
optimizer with the cosine learning decay (Loshchilov & Hutter, 2016) and initial learning rate of
10−3. They are learned for 100 epochs. For batch construction, we use the batch size of 64 and
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Figure 4: The learning curve on the target domain. On PACS, models are trained on the source
domains (Cartoon, Sketch and Photo) and evaluated on the target domain (Art Painting).

Table 6: Ablation study on where to apply UniStyle in the ResNet architecture.
(a) Image classification on PACS

Model Accuracy (%)
ResNet-18 79.5
+ MixStyle (RES1) 80.1
+ UniStyle (RES1) 81.5
+ MixStyle (RES12) 81.6
+ UniStyle (RES12) 82.9
+ MixStyle (RES123) 82.8
+ UniStyle (RES123) 82.4
+ MixStyle (RES1234) 75.6
+ UniStyle (RES1234) 12.8

(b) Person re-ID from Market1501→Duke

Model mAP (%)
ResNet-50 19.3
+ MixStyle (RES1) 22.6
+ UniStyle (RES1) 22.8
+ MixStyle (RES12) 23.8
+ UniStyle (RES12) 22.8
+ MixStyle (RES123) 22.0
+ UniStyle (RES123) 24.0
+ MixStyle (RES1234) 10.2
+ UniStyle (RES1234) 0.2

Table 7: Ablation study on the proposed components.
(a) Image classification on PACS

Model Accuracy (%)
ResNet-18 79.5
+ UniStyle 82.9
+ UniStyle + XDED 86.4

(b) Person re-ID from Market1501→Duke

Model mAP (%)
ResNet-50 19.3
+ UniStyle 24.0
+ UniStyle & XDED 27.4

Methods Art Cartoon Photo Sketch Average
JiGen (Carlucci et al., 2019) 79.4 75.3 96.0 71.6 80.5
Ours + JiGen 85.3 79.2 95.9 79.2 84.9
RSC (Huang et al., 2020) (our imple) 82.8 77.6 95.7 78.6 83.7
Ours+RSC 84.7 81.3 96.2 82.2 86.1

Table 8: Universality of our proposed framework. Generalization accuracy (%) on PACS

sample 16 instances per class for the proposed XDED. For the task of person re-ID, we also train
the models using the sgd optimizer with initial learning rate of 0.05.
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