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ABSTRACT

Neural machine translation (NMT) is very sensitive to domain shifts requiring
a carefully designed fine-tuning strategy to avoid catastrophic forgetting prob-
lems when adapting to a new domain. Fine-tuning usually relies on high quality
in-domain data, but constructing a sufficient amount of parallel data for training
poses challenges even for fine-tuning. In contrast, domain-specific monolingual
resources are more accessible when compared with bilingual data. Therefore, we
challenge the domain adaptation of a general NMT model using only features
obtained from a small amount of monolingual data. We regard the task as an in-
stance of domain shifts, and adopt energy-based models (EBMs) and approximate
these EBMs using Conditional Distributional Policy Gradients (CDPG). Recent
work has applied CDPG with a small number of EBMs for NMT models limiting
the capacity for domain shifts, but we construct a large number of EBMs con-
sidering the entire domain-specific data, i.e., unigram distribution, and perform
fine-tuning according to their constraints. Our results show that fine-tuning using
a large number of EBMs can achieve a robust domain shift without causing catas-
trophic forgetting, demonstrating a robust domain shift using only a small amount
of monolingual resources.

1 INTRODUCTION

Thanks to the development of crawling technology and the construction of corpora (Tiedemann,
2012; Bañón et al., 2020; Morishita et al., 2022), we have access to abundant parallel translation data,
resulting in the development of high-performance pre-trained NMT models. However, it has been
pointed out that NMT models suffer from performance degradation when translating text from the
domains different from the domain of the training corpus due to the mismatch of the domain-specific
terminologies (Koehn & Knowles, 2017b; Shen et al., 2021). While general-purpose parallel trans-
lation data is abundantly available, automatically collecting a sufficient amount of domain-specific
parallel data is challenging, and such translation for special purposes tends to require custom-made
parallel data due to its specialized environment, e.g., terminologies in the medical domain, some-
times demanding a specialist to construct or check the quality of the parallel data. However, when we
shift the focus from parallel data to monolingual data, it is possible to easily obtain such monolingual
data for the target domain, and numerous pre-trained general NMT models have been developed.

In this study, we focus on leveraging pre-trained general NMT models that are easily accessible
and attempt to transfer an NMT model pre-trained on a general domain into a domain-specific NMT
model by using only the features obtained from the monolingual domain data of the translation target
language. However, naively performing fine-tuning to alter the output of the pre-trained NMT model
and forcibly changing the probability distribution can lead to catastrophic forgetting issues, ranging
from the loss of fluency in translated sentences acquired during pre-training (Korbak et al., 2022;
Choshen et al., 2020; Kiegeland & Kreutzer, 2021) to degradation in non-specific domains caused
by overfitting to specific terminologies (Saunders & DeNeefe, 2024; Gu & Feng, 2020; Thompson
et al., 2019), thereby causing a reduction in translation performance. To achieve the domain shift
while reducing catastrophic forgetting by harmlessly modifying the model’s knowledge to avoid
degrading generalization performance or excessive overfitting to a specific domain, we represent
the target domain as conditional energy-based models (EBMs) and approximate the EBMs using
Conditional Distributional Policy Gradients (CDPG) (Korbak et al., 2022), which is a variant of the
Generation under Distributional Control (GDC) framework (Khalifa et al., 2021).
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Korbak et al. (2022) had only verified the effectiveness of CDPG for small shifts, such as translating
numeral nouns (e.g., “two”) as digits (e.g., “2”). We extend the framework by using the token-level
statistics of the target domain as features and constructing a large number of EBMs, and approxi-
mating these to meet their constraints. Specifically, we shift the pre-trained NMT models toward
the token-level unigram distribution of the target domain by CDPG, enabling domain shifts that
better consider the frequency information of the entire target domain. As a result, we are able to
scale CDPG to specific domains in a fine-grained manner and apply domain shift to the general
NMT model without inducing catastrophic forgetting. We confirm its effectiveness in several do-
main adaptation benchmarks (Tian et al., 2014; Koehn & Knowles, 2017a; Aharoni & Goldberg,
2020) and scenarios, thus we achieved unsupervised domain adaptation using only target side do-
main data. Moreover, we proposed the DYNAMIC CDPG, which dynamically changes parameters
using a small amount of bilingual validation data to select the best parameters, as a way to mea-
sure the upper-bound of our unuspervised domain adaptation. Analysis of the results of CDPG and
DYNAMIC CDPG revealed that while selecting parameters sensitively can sometimes yield the best
results, a simple CDPG can sufficiently achieve domain shift while reducing catastrophic forgetting.

2 CONDITIONAL DISTRIBUTIONAL POLICY GRADIENTS

Conditional Distributional Policy Gradients (CDPG) (Korbak et al., 2022) is a method that approx-
imates the generative probabilities of a language model to a target distribution while preventing
catastrophic forgetting. It softly modifies the pre-trained parameters θ by shifting the distribution
slightly by EBMs through fine-tuning.

We define the pre-trained conditional language model a(x|c) where c is a context, i.e., an input
source language sentence, and x is a sentence, i.e., in a target language, sampled from the entire
distribution X given c.

We introduce an energy-based model (EBM) pc(x) as a controlled language model defined as:

pc(x) =
1

Zc
a(x|c)b(x, c). (1)

Here, Zc =
∑

x∈X p(x|c) is a partition function that normalizes the entire EBM pc(x), and b(x, c)
is a control condition function which is 1 when a certain constraint is met. When b(x, c) is reduced
to a binary scorers ϕi(x) ∈ {0, 1} as proposed by Khalifa et al. (2021), the EBM is formulated as:

ppointc (x) =
1

Zc
a(x|c)

∏
i

ϕi(x). (2)

However, with binary constraints, only two values can be handled: either always meeting a specific
condition or not, making it impossible to address needs such as satisfying a constraint with a prob-
ability of 0.5. For example, if we tackle to reduce the bias in the text generation style considering
gender, the desired constraint is 0.5 female character and 0.5 male character. Khalifa et al. (2021)
proposed a distributional constraint method for unconditional EBM p(x) = 1

Z a(x)b(x) to resolve
the problem, and Kruszewski et al. (2023) adapt it to the conditional EBM with exponential family
as follows:

pdistc (x|λ) = 1

Zc
a(x|c) exp(λ · ϕ(x, c)), (3)

where λ is a parameter vector of the distribution features. The parameter λ is determined through
fine-tuning by starting from random initialization and iteratively updated by stochastic gradient de-
scent (SGD) to minimize the loss function considering a distribution over contexts τ(c) as follows:

∇λLcoef (λ) = Ec∼τ(c)Ex∼pdist
c (·;λ)ϕ(x, c)− µ̄, (4)

where µ̄ is the probability for each feature and the moments Ex∼p
cdist

(·;λ) are computed through
self-normalized importance sampling using a(·). In the previous example, if a female character is
expected, the probability becomes 0.5.

However, since the EBM pc(x) in Equation 1 that satisfies these constraints is not an autoregressive
language model, it cannot perform generation. Therefore, training is conducted using the autore-
gressive model πθ(x|c) to approximate p on average across contexts by minimizing the expected
cross-entropy loss CE(·) between πθ(x|c) and multiple pc of the EBM as follows:

L(θ) = Ec∼τ(c) CE
(
pdistc (·), πθ(· | c)

)
. (5)
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The gradient of this objective takes the following form:

∇θL(θ) = Ec∼τ(c)∇θ CE
(
pdistc (·), πθ(· | c)

)
(6)

=− Ec∼τ(c)Ex∼pdist
c (x)∇θ log πθ(x | c) (7)

= −Ec∼τ(c)Ex∼πθ(x|c)
pdistc (x)

πθ(x | c)
∇θ log πθ(x | c). (8)

The loss function is used by important sampling from πθ. By iteratively training these for θ, πθ

can approximate the generative probability of the target EBM, enabling autoregressive generation.
Details defer to Korbak et al. (2022). Note that the CDPG is a method for fine-tuning a model; thus,
it does not introduce any changes to parameter size, model architecture, or inference speed.

3 DOMAIN ADAPTATION BY CDPG

3.1 ADAPTATION BY MONOLINGUAL FEATURES

Machine translation for a specific domain, e.g., medical domain, poses challenges for domain shifts
and usually fine-tuing is required relying on high quality in-domain parallel data. However, creating
such data might not be feasible especially when the rapid progress is happening in the domain, e.g.,
the development of new medicine reported by non-English documents. We leverage monolingual
data in the specific domain in the target language, e.g., English reports in the medical domain, and
propose domain adaptation for NMT with CDPG using only the subword frequency information
as features so that domain specific terminologies and styles are reflected in NMT. When applying
CDPG for NMT, the source sentence corresponds to a context c, and the ideal target sentence is
derived from pdistc (x|λ). For training CDPG under distribution constraints, as shown in Equation
3, it requires a binary scorer ϕi(x, c) and a parameter λi for each feature.

To perform domain adaptation, we use as features whether each subword of the target domain is
included in the output sentence, represented by ϕ(x, c). Moreover, when learning the parameter
vector λ according to Equation 4, we set the probability of each constraint, µ̄, as the basis on the
ratio of the frequency of subwords in the whole text in the target domain as follows:

µ̄i =
Freqtarget(xi)∑

xj∈X Freqtarget(xj)
, (9)

where Freqtarget denotes the frequency of each subword xi in the target text in the vocabulary
X . By performing the above operations, we attempt to address the domain shift by utilizing the
frequency of all subwords of the target domain text. Since this feature selection only uses data from
the target side, the creation of the EBM model only requires the target side domain text.

3.2 DYNAMIC CDPG

EBM is iteratively updated by Equation 4 to approximate the generative language model toward the
expected probability distribution for the target domain. At this time, it generates multiple sentences
x with context c through nucleus sampling (Holtzman et al., 2020). Specifically, the parameter
of nucleus sampling, top-p, controls the diversity of generated outputs, where a lower value of
top-p means the generated sentences are closer to the target distribution. However, the initial dis-
tance between the distribution of the pre-trained model and the target distribution varies, meaning
that CDPG requires different top-p settings for different domains. Meanwhile, under the general
settings of CDPG, the absence of a validation set prevents us from determining the top-p value.
Furthermore, the granularity at which the model approaches the target distribution in CDPG is not
constant. Specifically, after a learning process with a given top-p in CDPG, the model still preserves
a distance from the target distribution, thus demanding a large top-p value. Therefore, we introduce
DYNAMIC CDPG that dynamically changes the top-p in each iteration of the approximation to EBM
in Equation 1 to investigate the upper-bound potential in applying CDPG with monolingual data.

A bilingual development set1 is leveraged in DYNAMIC CDPG to guide the training process by
measuring the current progress on the dataset. The basic idea of DYNAMIC CDPG is to divide the

1The development set refers to the text used to generate features.
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training process into several iterations, then start with a constant parameter for top-p, and reconsider
it in each training iteration such that a smaller top-p will be selected in the next iteration if a larger
top-p leads to inferior performance on the development set. The detailed settings are described in
Appendix B. Our preliminary studies showed that the training under DYNAMIC CDPG is always
stable under our top-p scheduling.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We conduct experiments with four translation pairs of English to German (en→de), German to
English (de→en), English to Chinese (en→zh), and Chinese to English (zh→en). For pairs
involving de, we collect four domains, including IT, Medical, Law, and Koran from the public
corpus2 released by Koehn & Knowles (2017a); Aharoni & Goldberg (2020), where each domain
has 2,000 sentences for the development set and test set, respectively. Given the low quality3 of
this corpus, we clean up and re-align the test set using de as the basis to avoid potential bias in
evaluation. For pairs involving zh, we collect four domains, including Education, Laws, Thesis,
and Science, from the UM-Corpus (Tian et al., 2014), which is public4 with high quality. Although
this corpus provides 456 – 790 sentences for test sets in those 4 domains, the development set is not
provided. Therefore, we randomly select 3,000 sentences from the training data for each domain
as the development sets. Moreover, we use the development sets5 of WMT from 2018 – 2022,
i.e., 14,482 translation instances of the newsdev set from a news domain, to train CDPG for all
translation directions by treating them as a generic domain data set. Specifically, the contexts τ(c)
are collected from the 14,482 source language sentences of the newsdev set and, the domain features
µ̄ are derived from the target language sentences of the domain specific instances.

4.2 MODELS

We employ four open-source MT models (Tiedemann & Thottingal, 2020) from HuggingFace6 as
backbones in our experiments. Those models are based on Transformer (Vaswani et al., 2017) and
are trained on OPUS with the same configuration7 comprising the encoder and decoder layers of
6, attention heads of 8, embedding size of 512, inner size of 2048. Given that the fine-tuning of
CDPG involves all parameters, we fine-tune models on the development sets as a baseline denoted
by FINE-TUNED. Note that the back-translation (Sennrich et al., 2016) is not included as a baseline
in our main experiments, because FINE-TUNED is based on real translation instances in the specific
domains comprising a small number of sentences, e.g., only 3,000 instances each, representing the
upper bound of the back-translation8. Furthermore, we employ LORA for fine-tuning by adapting
the attention weights (Hu et al., 2021) with the inner rank of 8 as the second baseline. All fine-tuning
experiments are training for 10 epochs, and hyper-parameter settings are described in Appendix E.
Finally, the checkpoint, which has the best performance on the development set, is measured for
comparison. We used the disco9 (Kruszewski et al., 2023) to implement the EBMs and the CDPG
training code10.

4.3 EVALUATION

We set the beam size of 4 for each model to generate translations for the entire test set, and did not
employ nucleus sampling (Holtzman et al., 2020) in the final evaluation, because top-p is the param-

2https://github.com/roeeaharoni/unsupervised-domain-clusters
3The low quality includes but is not limited to repetition, not alignment, and noise. Furthermore, the refined

test data becomes unseen, enabling evaluation free from any data contamination issues in the existing training
corpus (Raunak & Menezes, 2022). We will make the cleaned dataset publicly available for future studies.

4http://nlp2ct.cis.umac.mo/um-corpus/
5http://data.statmt.org/wmt23/general-task/dev.tgz
6https://huggingface.co/Helsinki-NLP
7Details in: https://hf.co/Helsinki-NLP/opus-mt-en-zh/blob/main/config.json
8We provide further details of the relationship between FINE-TUNED and back-translation in Appendix F.
9https://github.com/naver/disco

10The detailed implementation code for our experiments will be made available upon acceptance.
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eter used only in the training process of CDPG. Then, translations are evaluated by four automatic
MT evaluation methods: 1) Confidence (Müller et al., 2019; Wang et al., 2020), calculated by taking
the average probability of each token at the generation11, 2) BLEU (Papineni et al., 2002), assessed
with the implementation of SacreBLEU (Post, 2018) to measure the surface-level similarities, 3)
NIST (Doddington, 2002), which is similar to BLEU but gives special attention to low-frequency
words to assess the qualities of domain-specific terminologies, and 4) BERTScore (Zhang et al.,
2020), which reports embedding similarities by Precision, Recall, and F1 scores, where the F1 score
being the harmonic mean of Precision and Recall12. Moreover, the statistical significance testing
(Koehn, 2004) is conducted using paired bootstrap resampling with 1,000 iterations and 0.5 resam-
pling ratios, where p < 0.1 means the difference is significant.

5 EXPERIMENTAL RESULTS

5.1 MAIN RESULTS

Table 1 shows the experimental results. First, FINE-TUNED and LORA fail to achieve improvement,
except in Medical of en→de, Laws of en→zh, and Thesis and Science of zh→en, where they
achieved slight enhancements. Second, even though CDPG are always improved in confidence,
CDPG has a heavy fluctuation in its performances. Specifically, we observed gains in some do-
mains, such as IT of en→de and Education of en→zh, comparable results with PRE-TRAINED
on some domains, and degraded performance on others based on the assessments of the general
evaluation methods. However, NIST scores, which give special attention to low-frequency words,
of CDPG are still improved in those degraded domains. For instance, although CDPG demon-
strates decreases of 0.92, 0.07, 0.05, and 0.05 in BLEU, P, R, and F1 scores, respectively, in the
performance of Laws of zh→en, its NIST score achieves the improvement of 0.07, which is signif-
icantly better than PRE-TRAINED. The similar phenomena are also shown in Medical and Koran of
en→de and Medical and Law of de→en. This result demonstrates that the high confidence in our
methods arises from the improvement of the preference of models on domain-specific words, which
are ignored by general automatic evaluation methods due to the relatively low frequency.

On the other hand, DYNAMIC CDPG shows the upper bound of the improvements of CDPG by
guiding the training process on the bilingual development set. In the Laws of zh→en, it achieves
the highest improvement, with specific gains in BLEU, P, R, and F1 scores of 3.01, 0.17, 0.12, and
0.31, respectively. Moreover, DYNAMIC CDPG also alleviates the extent of degradation to maintain
the same level as with PRE-TRAINED, such as Medical of de→en and Science of zh→en. Notably,
DYNAMIC CDPG is ineffective for the degradation in some cases, such as Laws of en→zh. Table
2 shows what top-p is used in the training of DYNAMIC CDPG. Considering the results from Table
1, we observe that setting larger values for top-p results in a minor increase in the confidence of
models. For instance, setting them to 1 does not enhance confidence, and setting smaller values for
top-p leads to a more confident model. However, higher confidence does not lead to performance
improvements. This observation leads to a hypothesis that the difference between the features used
in CDPG and the original knowledge of the base model affects the final performance of CDPG.

5.2 WHEN IS CDPG EFFECTIVE?

Given the fluctuations in the performance of CDPG in Table 1, we will investigate the root cause
of the problem. Specifically, we validate the hypothesis regarding the distributional differences pre-
sented in Section 5.1 by exploring the relationship between the features and the pre-trained models.

11The probability of generated tokens in an MT system is calculated by the Softmax function.
12Note that we did not include modern neural fine-tuned metrics, such as COMET (Rei et al., 2020b) and

BLEURT (Sellam et al., 2020), as part of our main evaluation. These metrics are fine-tuned on human-generated
MT quality annotation data (Ma et al., 2019), but such data does not capture sensitive patterns, such as named
entity differences (Amrhein & Sennrich, 2022; Glushkova et al., 2023). Moreover, due to overfitting on the
annotation data, these metrics tend to favor results closer to in-domain data of their fine-tuning data (Zouhar
et al., 2024a;b). Consequently, we determined that such fine-tuned metrics are not suitable for domain adapta-
tion experiments. Nonetheless, we included an evaluation with COMET in Appendix H. The results align with
previous reports (Zouhar et al., 2024b; Amrhein & Sennrich, 2022) and we provide additional findings.
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Table 1: Scores of our experiments. PRE-TRAINED indicates the performance of original models
without fine-tuning. CDPG is trained by monolingual features only with 0.5 of top-p, and DYNAMIC
CDPG is supervised by the bilingual development set. Conf. is the abbreviation of Confidence; P
and R mean Precision and Recall scores of BERTScore, respectively. Lang. indicates the language
involved in this pair, specifically, en→x and x→en indicate that translating from English and
translating to English, respectively. The best score in each block, which is divided by the domain
and pair, is in bold. Moreover, the decoration of † on the best score means it is significantly better
than PRE-TRAINED and baselines according to the significance test with p < 0.1.

Lang. Domain Method
en→x x→en

Conf. BLEU NIST P R F1 Conf. BLEU NIST P R F1

de

IT

PRE-TRAINED 68.39 27.58 5.97 87.48 87.70 87.52 72.02 38.80 7.96 94.93 94.92 94.91
FINE-TUNED 67.91 27.92 6.04 87.38 87.60 87.42 71.76 38.83 7.95 94.94 94.93 94.92
LORA 67.79 26.88 5.83 87.33 87.56 87.37 71.46 38.32 7.86 94.92 94.91 94.91

CDPG 74.44 29.01 6.25 87.68 87.77 87.67 77.91 39.79 8.30 94.95 94.94 94.93
DYNAMIC CDPG 79.36 30.78† 6.58† 88.00† 87.87 87.89† 77.65 40.55† 8.34† 95.01 94.96 94.98

Medical

PRE-TRAINED 75.93 43.19 8.45 91.55 91.17 91.31 78.06 45.50 8.47 96.65 96.50 96.57
FINE-TUNED 75.71 43.23 8.46 91.53 91.14 91.29 77.77 45.48 8.47 96.64 96.50 96.56
LORA 75.50 43.56 8.52 91.55 91.15 91.30 77.72 44.31 8.35 96.61 96.49 96.54

CDPG 80.85 42.54 8.60 91.61 91.28 91.40 82.84 44.56 8.56 96.57 96.50 96.53
DYNAMIC CDPG 82.32 43.51 8.54 91.60 91.20 91.36 77.72 45.06 8.55 96.63 96.47 96.54

Law

PRE-TRAINED 72.49 44.82 9.01 89.38 89.11 89.22 72.89 51.75 10.05 96.06 95.75 95.90
FINE-TUNED 72.08 44.83 9.01 89.39 89.10 89.22 72.53 51.70 10.04 96.06 95.74 95.89
LORA 72.05 44.80 9.01 89.42 89.12 89.25 72.55 51.67 10.04 96.05 95.73 95.89

CDPG 77.36 44.12 9.05 89.33 89.17 89.22 78.12 51.61 10.12 96.02 95.72 95.86
DYNAMIC CDPG 78.18 44.87 9.03 89.40 89.09 89.22 73.02 51.64 10.15 96.07 95.73 95.89

Koran

PRE-TRAINED 61.51 18.90 5.25 81.59 80.18 80.84 59.23 20.86 5.66 91.95 91.07 91.49
FINE-TUNED 61.39 18.86 5.24 81.56 80.16 80.82 58.80 20.81 5.65 91.94 91.06 91.48
LORA 61.18 18.86 5.24 81.54 80.13 80.80 58.94 20.83 5.65 91.94 91.05 91.48

CDPG 67.00 18.40 5.26 81.46 80.06 80.72 64.75 20.94 5.67 91.90 91.09 91.48
DYNAMIC CDPG 61.30 18.85 5.25 81.63 80.16 80.85 64.75 20.94 5.67 91.90 91.09 91.48

zh

Education

PRE-TRAINED 49.88 30.26 0.73 83.82 82.18 82.94 60.15 23.49 5.56 94.44 94.16 94.30
FINE-TUNED 49.28 30.07 0.68 83.70 81.96 82.78 59.63 23.54 5.56 94.43 94.16 94.29
LORA 49.03 30.19 0.68 83.70 81.92 82.75 59.64 23.69 5.57 94.49 94.16 94.30

CDPG 57.88 31.03 0.93 84.59 83.23 83.86† 66.05 23.69 5.60 94.52 94.28 94.40
DYNAMIC CDPG 57.22 31.16† 0.94† 84.71† 83.01 83.81 67.02 24.23 5.67 94.60 94.28 94.28

Laws

PRE-TRAINED 62.06 51.73 0.59 89.67 89.70 89.65 63.84 32.36 6.11 94.55 93.52 94.02
FINE-TUNED 61.46 51.71 0.59 89.74 89.70 89.69 63.47 32.27 6.10 94.52 93.49 93.99
LORA 61.38 51.87 0.60 89.75 89.63 89.66 63.16 32.33 6.09 94.51 93.45 93.97

CDPG 68.50 50.81 0.68† 89.60 89.65 89.60 70.09 35.37† 6.45† 94.74† 93.95† 94.33†

DYNAMIC CDPG 68.50 50.81 0.68† 89.60 89.65 89.60 70.09 35.37† 6.45† 94.74† 93.95† 94.33†

Thesis

PRE-TRAINED 47.62 18.95 1.14 76.09 75.69 75.78 50.83 8.65 3.48 89.55 88.33 88.92
FINE-TUNED 47.23 19.94 1.39 76.42 75.75 75.99 50.11 8.60 3.46 89.56 88.31 88.91
LORA 47.22 19.34 1.25 76.36 75.72 75.93 50.15 8.71 3.48 89.58 88.33 88.93

CDPG 54.19 19.94 1.29 76.11 75.53 75.72 57.16 8.53 3.51 89.52 88.38 88.93
DYNAMIC CDPG 51.22 20.14 1.52† 76.53 75.72 76.03 58.57 8.49 3.54 89.67 88.37 89.00

Science

PRE-TRAINED 47.56 24.45 0.94 81.28 79.06 80.09 57.97 16.20 4.86 92.80 92.60 92.69
FINE-TUNED 47.00 24.52 0.94 81.26 79.05 80.07 57.48 16.36 4.88 92.82 92.60 92.70
LORA 46.75 24.57 0.96 81.38 79.09 80.15 57.49 16.29 4.88 92.81 92.60 92.70

CDPG 56.27 24.78 1.02 81.48 79.70† 80.53† 64.06 15.96 4.88 92.76 92.66 92.70
DYNAMIC CDPG 52.38 24.80 1.00 81.63† 79.39 80.43 65.55 16.34 4.85 92.79 92.60 92.69

Table 2: The top-p values used in DYNAMIC CDPG. Those values are presented in the order they
are used.

IT Medical Law Koran

en→de 0.5,0.4,0.8 0.5,0.7,1.0 0.5,0.8 1.0
de→en 0.5,0.9 1.0 0.5,0.9 0.5

Education Laws Thesis Science

en→zh 0.5,0.9 0.5 0.5,0.7 0.5,0.6,0.7
zh→en 0.5,0.4 0.5 0.5,0.6,0.7,0.8 0.5,0.3,0.2,0.1

First, following the process described in Section 3.1, we acquire features, i.e., expectations for binary
scorers, from the development set denoted by Dev Features. Similarly, we obtain Test Features

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Comparisons on features. itr and uni are abbreviations of intersection and union, respec-
tively; sim indicates similarity computed by the cosine similarity.

Case of (i) Case of (ii)

Pair Domain sim.itr (%) sim.uni (%) sim.itr (%) sim.uni (%)

en→zh Thesis 74.88 73.23 92.81 91.82
en→zh Laws 68.11 64.99 29.43 24.64

zh→en Education 80.64 79.92 70.37 65.13
zh→en Science 61.38 60.64 65.3 56.79

en→de IT 83.14 65.09 93.14 90.99
en→de Koran 95.69 95.48 98.81 98.67

de→en Law 98.80 98.66 98.19 97.91
de→en Medical 95.83 94.97 94.22 93.48

Table 4: This table shows the results of experiments on CDPG with different hyperparameters and
corresponds to Table 3 row by row. Abbreviations in this table are consistent with Table 1. The best
score in each row is in bold.

top-p=0.5 top-p=0.8 top-p=1.0

Direction Domain Conf. BLEU NIST F1 Conf. BLEU NIST F1 Conf. BLEU NIST F1

en→zh Thesis 54.19 19.94 1.29 75.72 53.93 19.98 1.48 75.86 46.96 19.95 1.47 75.76
en→zh Laws 68.50 50.81 0.69 89.60 68.78 51.16 0.65 89.63 61.68 51.90 0.61 89.71
zh→en Education 66.05 23.69 5.59 94.40 65.86 23.92 5.65 94.37 59.68 23.50 5.58 94.31
zh→en Science 64.06 15.96 4.81 92.70 63.93 16.14 4.87 92.70 57.29 16.34 4.88 92.69

en→de IT 74.44 29.01 6.25 87.67 74.67 29.13 6.28 87.66 67.87 28.19 6.08 87.47
en→de Koran 67.00 18.40 5.14 80.72 67.14 18.50 5.19 80.74 61.30 18.85 5.25 80.85
de→en Law 78.12 51.61 10.12 95.86 78.33 51.53 10.16 95.86 71.83 51.58 10.16 95.87
de→en Medical 82.84 44.56 8.43 96.53 83.06 44.82 8.47 96.54 77.72 45.06 8.47 96.54

from the test set. Subsequently, we generate translations on the development set using the pre-
trained model and derive features from translations denoted by Pretrained Features. We use the
cosine similarity to compute the similarity between two sets of features: The case of (i) compares
Dev Features and Pretrained Features to demonstrate that when does CDPG make models more
confident; The case of (ii) compares Dev Features and Test Features to demonstrate that when is
CDPG effective. Additionally, considering the different lengths of each feature set, we compare
both the intersection and union of these sets.

Table 3 presents the analysis of features13 to complement Tables 1 and 2. First, we observe that DY-
NAMIC CDPG encourages the model to align with Dev Features only when there is a low similarity
between Dev Features and Pretrained Features. Specifically, in the process of DYNAMIC CDPG,
the model would use lower top-p values to increase the confidence of models. For instance, the
similarity of the intersection and union for the Thesis of en→zh is 74.88 and 73.23, respectively,
with top-p values of 0.5 and 0.7, resulting in a confidence increase of 3.60. Conversely, when the
similarity is high, DYNAMIC CDPG tends to preserve the knowledge of the pre-trained models. For
example, the similarity for Koran of en→de is 95.69 and 95.48, with top-p values of 1.0, leading
to no increase in confidence. Furthermore, we find that the similarity between Dev Features and
Test Features impacts the effectiveness of our approach. For instance, the similarity for Laws of
en→zh is 29.43 and 24.64, indicating a significant difference between the features used in CDPG
and the features of the test set. As a result, the performance degrades notably as reported in Table
1, even though the top-p value is 0.5 and the confidence increases by 6.44. This analysis validates
our hypotheses in Section 5.1 and further demonstrates that the fluctuations in the performance of
CDPG are caused by the differences of the distribution in domains.

To further support this statement, we conduct experiments on CDPG with a fixed value for top-p.
Table 4, which is row-aligned with Table 3, shows the results of domains with 3 different settings,

13The full statistical results, including the length of features, intersection, and union, are shown in Appendix
D.
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Table 5: Instances for generated test sets of PRE-TRAINED and CDPG, we select a short sentence
and a long sentence for de and zh, respectively. In #Changes, the numerator indicates how many
sentences are changed in the generated test texts of CDPG compared to PRE-TRAINED, and the
denominator indicates the size of the test set. Underline means the translation is inaccurate. Words
in red mean hitting the term accurately, but, words in blue mean that they are updated, but do not hit
the target.

Domain: Education Pair: en→zh #Changes: 408/790

Input What an absurd suggestion!
Reference 多荒谬的建议啊！
PRE-TRAINED 胡说八道！
CDPG 多么荒谬的建议！

Domain: Thesis Pair: en→zh #Changes: 414/625

Input Newton’s transformation family f w(z)=z-1wz w-1 containing only one complex parameter w(w̸=0 or 1) is
constructed from the transcendental mapping z→e z w+c.

Reference
用超越复映射F(z) =ezw+c构造出含有单参数w(w̸= 0或1)的牛顿变换族fw(z) =z- 1wzw-1模型，
fw(z)有可数无穷多个极值点。

PRE-TRAINED 牛顿的变换型fw(z) =z-1wz W-1仅包含一个复合参数w(w)0或1)的f(z) =z-1wz W-1。
CDPG 牛顿的变换型fw(z) =z-1wz W-1仅包含一个复合参数w(w)0或1)，是用超常绘图ze z+c构造的w-1模型。

Domain: IT Pair: en→de #Changes: 662/2000

Input SubDialog has one state, default.
Reference SubDialog hat nur einen Status, Standard.
PRE-TRAINED SubDialog hat einen Zustand, default.
CDPG SubDialog hat einen Zustand, Standard.

Domain: Medical Pair: en→de #Changes: 748/2000

Input 4 ml of solution in a 5 ml vial (type I glass) closed with a latex-free stopper (bromobutyl/ isoprene polymer) and
a seal (lacquered plastic).

Reference 4 ml Lösung in einer 5 ml-Durchstechflasche (Glastyp I), die mit einem latexfreien Stopfen (Bromobutyl/Isoprenpolymer)
und eine Kappe (lackierter Kunststoff) verschlossen ist.

PRE-TRAINED
4 ml Lösung in einer 5-ml-Durchstechflasche (Glas Typ I), die mit einem latexfreien Stopfen (Brombutyl/Isoprenpolymer)
und einem Siegel (Lackkunststoff) verschlossen ist.

CDPG 4 ml Lösung in einer 5 ml Durchstechflasche (Glas Typ I), die mit einem latexfreien Stopfen (Brombutyl/Isoprenpolymer)
und einem Siegel (lackierter Kunststoff) verschlossen ist.

and the results follow the analysis of Table 3.14 We categorize these results into two scenarios.
First, when the similarity between Dev Features and Pretrained Features is low, once the similarity
between Dev Features and Test Features is high, CDPG benefits with smaller parameters, as seen
in the Thesis of en→zh and IT of en→de. Conversely, a parameter of 1 ensures the model’s
performance, such as Laws of en→zh and Science of zh→en. Subsequently, when the similarity
between Dev Features and Pretrained Features is high, the enhancement from CDPG is always
limited, thus showing minimal fluctuation and 1 is the safer parameter. Finally, we also observe that
the confidence relates solely to the parameters. These results not only validate our hypothesis in
Section 5.1, that the performance of CDPG is related to the provided monolingual features, but also
demonstrate that even if CDPG effectively alters the knowledge of the base model, it may not be
detected by the test set.

6 DISCUSSION

6.1 QUALITATIVE ANALYSIS

Given that the test set may not be able to accurately reflect the effect of CDPG, we conduct qual-
itative analysis to quantify the results in detail. Table 5 presents 4 translation instances. We first
observe that CDPG only partially modifies the original model’s knowledge demonstrated by only
marginal changes in translations. Moreover, CDPG primarily enhances the model in word selec-
tion. Specifically, for two instances of en→de, regardless of sentence length, only keywords are
changed without affecting the semantics and syntax, resulting in that not all inferences of the test set
are changed. These findings confirm our motivation that CDPG can harmlessly modify the knowl-
edge of models. Notably, these findings also explain the non-significant difference in BERTScore
in Table 1, because representation-level evaluation methods are not sensitive to the word-specific
changes.

14We illustrate experiments with parameters from 0.3 to 1.0, which are provided in Appendix C.
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Table 6: Relative differences between scores of FINE-TUNED and scores of DYNAMIC CDPG.
The second column and second row indicate the domain used for training and testing, respectively.
Underline denotes that the value is in the aligned case, namely, training and testing are in the same
domain. Gen.f.t and Gen.d.c. indicate the difference between PRE-TRAINED and FINE-TUNED and
the difference between PRE-TRAINED and DYNAMIC CDPG on a generic domain (testing on the
newstest2020), respectively, which are pivots to measure the relative difference.

Confidence BLEU Scores

Education Thesis Science Gen.f.t Gen.d.c. Education Thesis Science Gen.f.t Gen.d.c.

→zh
Education 7.94 8.29 9.21 -1.16 8.52 1.09 0.29 -0.44 -0.76 -0.17

Thesis 6.70 3.99 5.58 -0.31 7.69 0.87 0.20 0.37 -0.28 0.13
Science 4.83 4.20 5.38 -0.68 4.92 0.87 0.50 0.28 -0.02 0.33

→en
Education 7.39 7.86 7.83 -0.59 8.31 0.69 -0.07 -0.27 -0.11 0.19

Thesis 7.72 8.46 8.03 -0.51 8.84 0.66 -0.11 0.09 -0.04 0.20
Science 7.81 8.51 8.07 -0.55 8.89 0.64 -0.26 -0.02 -0.07 0.26

IT Medical Koran Gen.f.t Gen.d.c. IT Medical Koran Gen.f.t Gen.d.c.

→de
IT 10.61 8.97 9.90 -0.22 12.75 2.86 0.38 -1.13 -0.15 -1.65

Medical 8.32 6.61 7.11 -0.27 9.47 2.44 0.28 -0.63 -0.07 -0.90
Koran 0.65 0.47 -0.09 -0.21 -0.86 1.05 0.93 -0.01 -0.18 -0.08

→en
IT 5.89 6.17 6.76 -0.22 10.38 2.72 -0.78 -0.04 -0.11 -0.81

Medical -1.02 -0.05 -0.82 -0.29 -1.50 -0.65 -0.42 -0.11 -0.06 -0.18
Koran 6.07 5.92 5.95 -0.20 8.28 0.97 -0.91 0.13 -0.14 -0.40

However, these findings do not mean CDPG benefits only the ability of word selection. For the in-
stance of Thesis of en→zh, the PRE-TRAINED shows issues of semantic loss and repetitive genera-
tion, while CDPG complements the missing semantics and addresses the repetition. This improve-
ment may be due to the enhanced confidence provided by GDC. Similarly, in the short sentence
from en→zh, the original model tends to translate the source sentences into Chinese idioms, which
do not fully align semantically with the source sentences, i.e., ignoring the semantics of the word
“suggestion.” In contrast, CDPG perfectly translates the keywords, indicating that GDC increases
the attention of models on keywords.

In addition, given that CDPG acts as a soft constraint, its use of keywords is not always accurate.
For example, in the long sentence of en→zh, the blue words represent an error in translation. This
occurs because CDPG translates “transcendental” and “mapping” separately, and both words are
present in the given features. This observation further corroborates our analysis in Section 5.2.

6.2 WILL OTHER DOMAINS BE INFLUENCED?

The primary goal of CDPG is to encourage the distribution of the pre-trained model to approach the
expectations of given features. However, there exists a risk in less generalization to other domains
due to the fitting to a single domain by CDPG. As shown in Table 6, we conduct experiments to
measure the performance changes of DYNAMIC CDPG in crossing domains from two perspectives:
1) The relative difference between FINE-TUNED and DYNAMIC CDPG in experimented domains;
2) The changes of FINE-TUNED and DYNAMIC CDPG in the generic domain. First, FINE-TUNED
consistently shows a decrease in both confidence and performance in the generic domain, whereas
DYNAMIC CDPG achieves a significant increase in confidence in most cases, albeit with some
fluctuations in performance. This indicates that the improvements by our method are generalized.
While DYNAMIC CDPG shows higher ability in generalization compared to FINE-TUNED in most
cases, there are two type exceptions: 1) The changes in confidence influence the generalization,
since CDPG induces a global increase in confidence rather than domain-specific. However, this
indirect influence is generally limited. Although, the highest degradation of BLEU scores brought
by increasing confidence is 1.13 on Koran of en→de, DYNAMIC CDPG correspondingly gains
2.86 BLEU scores in IT, which is significantly better than FINE-TUNED. 2) The performance of
the aligned case is lower than that of cross-domain performances, such as Thesis of en→zh and
Medical of en→de, suggesting that dev features have a negative impact. These results once again
corroborate our analysis in Section 5.2, that the effectiveness of CDPG is closely linked to the
provided features. We also evaluated the robustness of multi-domain adaptation, which can also be
regarded as noisy domain adaptation, in Appendix G and conducted a qualitative analysis of unseen
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terminology domain adaptation in Appendix I. These results align with the strengths of our CDPG
method.

7 RELATED WORK

When using parallel data, Luong & Manning (2015); Freitag & Al-Onaizan (2016) perform domain
adaptation by training on large-scale general domain data, then fine-tuning on a small amount of
domain data. Chu et al. (2017) mix general domain data and a small amount of domain data for
training at once. Furthermore, efficient domain adaptation is aimed through the use of add domain
tags (Kobus et al., 2017; Britz et al., 2017), considering subword tokenization units (Enomoto et al.,
2023), and data sampling for training steps (Wang et al., 2017). However, direct fine-tuning with a
small amount of data can lead to overfitting, so techniques like knowledge distillation (Dakwale &
Monz, 2017) and regularization (Miceli Barone et al., 2017) are proposed.

When focusing on the utilization of monolingual data, some methods have been explored such as
back translation (Sennrich et al., 2016), direct learning from monolingual data as LM (Gulcehre
et al., 2015; Zhang & Zong, 2016; Domhan & Hieber, 2017; Burlot & Yvon, 2018), exploiting task-
specific features (Dou et al., 2019b;a), utilizing knowledge graphs (Moussallem et al., 2019; Zhao
et al., 2020), and nearest neighbor search (Farajian et al., 2017; Bapna & Firat, 2019; Zheng et al.,
2021; Khandelwal et al., 2021; Wang et al., 2022; Deguchi et al., 2023; Agrawal et al., 2023), and the
combination of unsupervised NMT methods and back-translation technique (Mahdieh et al., 2020).
However, it can be challenging to find similar sentences in domain adaptation settings. Moreover,
they rely on a large amount of monolingual data, but obtaining sufficient domain data is difficult.

For terminology constrained decoding, hard constrained decoding methods (Hokamp & Liu, 2017;
Post & Vilar, 2018; Hu et al., 2019) by forcing the decoding of specific terminology, and soft con-
strained decoding methods Song et al. (2019); Chen et al. (2020) that use post-editing techniques
using phrase tables are proposed. However, since these approaches require predefined constrained
vocabularies, they face challenges when applied to real NMT scenarios that require inductive domain
adaptation, such as handling unseen terminology.

The original paper of CDPG method (Korbak et al., 2022) which is used in our study, explores
only minor changes such as converting numerical numbers to alphabetical numbers, not large-scale
domain adaptation that considers the distribution of the entire target domain. About reinforcement
learning methods (Ranzato et al., 2016; Kreutzer et al., 2017; Choshen et al., 2020; Kiegeland &
Kreutzer, 2021; Yang et al., 2024), outside of the GDC framework, rewards are based only on
overall scores such as BLEU, without the ability to impose fine-grained constraints. Furthermore,
there is a potential for causing catastrophic forgetting, making scaling like in this study particularly
challenging.

8 CONCLUSION AND FUTURE WORKS

We performed unsupervised domain adaptation by imposing large-scale distribution constraints us-
ing only features obtained from the entire target domain data through the CDPG method. Addi-
tionally, to effective large-scale constraints on CDPG, we proposed DYNAMIC CDPG, which dy-
namically changes feature selection in the training step, and verified its effectiveness. Although this
experiment utilized a large-scale pre-trained NMT model, next, we aim to explore the potential of
large-scale distribution constraints for cross-linguistic domain adaptation, such as improving trans-
lation performance for specific languages in low-resource languages or multilingual NMT models.
In addition, in this study, we used the word distribution of the target domain as feature represen-
tations. However, we believe that exploring optimal feature selection, such as n-gram features or
language model embeddings, for fine-tuning with CDPG should be pursued as a future direction.

ETHICS STATEMENT

All datasets and models used in this work are public data, and we can use the data for research pur-
poses. Moreover, there is no harmful content included in the examples used in the paper. Therefore,
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A LIMITATIONS

There are two main limitations in this work. The first is the limitation of our methodology, that is,
although CDPG can accurately modify the knowledge of base models, the soft constraint of CDPG
mentioned in Section 6.1 serves as both an advantage and a limitation. Specifically, several features
used during training may correspond to the same semantics, in which case the final translation may
not necessarily be the most ideal word from the perspective of human evaluation. The second is
the limitation of the evaluation in our experiments. As the statements in Sections 5.1 and 6.1,
representation-level evaluation MT methods are not sensitive to the improvements of CDPG, which
not only results in the non-significant difference on BERTScore (Zhang et al., 2020). Moreover, even
though NIST (Doddington, 2002) provides a reasonable assessment, NIST is limited by its BLEU
style. Thus, exploring the awareness of representation-level evaluation methods on word-specific
changes is considered as a future work.

B DETAILED SETTINGS OF DYNAMIC CDPG

For each iteration, we use an evaluation method, e.g., BLEU (Papineni et al., 2002), to assess
the model’s performance to decide whether to accept that iteration. Specifically, we heuristically
define two potential value sets for top-p, A = [0.5, 0.4, 0.3, 0.2, 0.1] in descending order and
B = [0.6, 0.7, 0.8, 0.9, 1.0] in ascending order, where A enables the model to gradually fit with
the target features, while B implies gradually conservative behavior in learning by sampling diverse
tokens. We start the iteration with the first element of A as the value of top-p; if this iteration is
accepted, we proceed to the next iteration with the second element of A; if rejected, we switch to B
and continue iterating until all elements in either A or B are completely iterated.

C MORE GRANULAR EXPERIMENTS FOR VERIFYING HINTS

Figure 1 visualizes our experimental results including scores on the development set and scores on
the test set. First, Figures 1a, 1b, 1c, and 1d show the confidence results for all 4 translation pairs.
We find that changes in model confidence relate solely to the parameters. Subsequently, Figures
1e, 1f, 1g, and 1h sequentially present the results for Koran of en→de in terms of BLEU and
BERTScore metrics. We observe that with high similarity between features (as indicated in Table
3), GDC performance decreases as parameter settings reduce. Finally, Figures 1i, 1j, 1k, and 1l show
the results for Thesis of en→de. We note that when there is low similarity between dev features
and pretrained features, performance on the development set improves with decreased parameter
settings, although the trend on the test set does not completely follow the development set trend.
These findings validate our statement in Section 5.2.

D FULL STATISTICAL RESULTS OF FEATURES

Full statistical results of features are shown in Table 7. We additionally provide the length of features
extracted from each set, the length of the intersection, and the length of the union to show the
comparison comprehensively.
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Figure 1: Illustrations of experimental results. For each subfigure, the caption shows the translation
pair and the legend shows the domain and the metric. The left vertical axis is the score on the
development set, the right axis is the score on the test set, and the horizontal axis is the top-p values.
In addition, the red and blue dashed lines are the scores of the PRE-TRAINED on the development
set and the test set, respectively.

Table 7: Corresponding to Table 3. #len.1 means the length of features in the first set; itr and uni are
abbreviations of intersection and union, respectively.

Dev Features v.s. Pretrained Features Dev Features v.s. Test Features

Pair Domain #len.1 #len.2 #len.itr sim.itr(%) #len.uni sim.uni(%) #len.1 #len.2 #len.itr sim.itr(%) #len.uni sim.uni(%)

en→zh Thesis 7533 7518 5395 74.88 9656 73.23 7533 3755 3188 92.81 8100 91.82
en→zh Laws 6903 6783 4865 68.11 8821 64.99 6903 1852 1373 29.43 7382 24.64

zh→en Education 10680 9546 7379 80.64 12847 79.92 10239 2357 1885 70.37 10711 65.13
zh→en Science 9807 9127 6866 61.38 12068 60.64 10920 3089 2317 65.39 11692 56.79

en→de IT 5832 5553 4152 83.14 7233 65.09 5832 5475 3366 93.14 7941 90.99
en→de Koran 4543 3948 2931 95.69 5560 95.48 4543 4435 3300 98.81 5678 98.67

de→en Law 7054 6469 5668 98.80 7855 98.66 7054 7014 4754 98.19 9314 97.91
de→en Medical 6543 6130 5367 95.83 7306 94.97 6543 6577 4604 94.22 8516 93.48

E TRAINING DETAILS

CDPG For training the parameter vector λ in Equation 4, we set a batch size of 8 and a learning
rate of 0.05 with a constant learning rate scheduler based on the training loss in our preliminary
studies. Likewise, for fine-tuning CDPG model parameters θ in Equation 5, we set batch size of 128,
epochs of 10, and learning rate of 2e-5 with a constant learning rate scheduler and Adam optimizer
(Kingma & Ba, 2017). We always set top-p to 0.5 in training λ and fine-tuning θ. Moreover,
we set the character length of the considered features, i.e., subwords, to be no less than 3 to filter
insignificant features, and the input texts are pre-processed by the tokenizer in each pre-trained
model.

Dynamic CDPG We maintain the hyperparameters of CDPG for DYNAMIC CDPG. We set
each iteration of DYNAMIC CDPG to 10 epochs. We use both BLEU (Papineni et al., 2002) and
BERTScore (Zhang et al., 2020) to calculate the validation score for each epoch. Additionally, we
set a bar that requires at least three improvements in the validation score for an iteration to be ac-
cepted. Furthermore, the initial learning rate of subsequent iteration is set to dividing the initial
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learning rate of the previously accepted iteration by the square root of the number of epochs to
ensure training stability.

Fine-tuning and LoRA We generally follow the original settings from the released checkpoints
for FINE-TUNED, but we adjust the batch size to 128 and set the learning rate to 2e-7. We set the
learning rate to 2e-7 for LORA.

F VERIFICATION OF BACK-TRANSLATION

In Section 4.2, we state that fine-tuning the model on bilingual data represents the upper bound
of enhancement achievable through back-translation (Sennrich et al., 2016). Therefore, the back-
translation results are not included in the main results, i.e., Table 1. In this appendix, we list the
results of back-translation. Specifically, first, we generate source-language data using the corre-
sponding reverse-direction model based on the data of the target language used in fine-tuning. We
then fine-tune the model using the same settings on the generated data. The results are shown in
Table 8.

G DESCRIPTION OF ROBUSTNESS

As shown in Table 9, we demonstrate the robustness of our method by comparing the performance
trends of FINE-TUNED and CDPG in mixed-domain scenarios, in which an extra domain dataset is
contaminated during training. The results reveal that the performance of FINE-TUNED consistently
declines as the degree of domain mixing increases. In contrast, the performance of CDPG remains
unaffected by the mixture of domains, underscoring its robustness.

H USAGE OF COMET

In our main experiments, we use BERTScore (Zhang et al., 2020) to measure the semantic simi-
larity of inference results at the representation level. However, we do not include another popular
representation-level metric, COMET (Rei et al., 2020a), in our main experiments due to observed
irregularities in its results under certain cases. Specifically, as shown in Table 10, we notice that for
translations involving German, COMET scores exhibit trends opposite to BLEU scores, with mini-
mal score fluctuations. To investigate this phenomenon further, we conduct sentence-level analyses
with the assistance of GPT-4o (OpenAI, 2024), as presented in Table 11. Overall, improvements in
certain terms are evaluated negatively by Unbabel/wmt22-comet-da. A possible explanation for this
behavior is that COMET emphasizes sentence-level coherence, which might conflict with domain-
specific term adaptations in translations. In contrast, BERTScore, although also a representation-
level metric, measures semantic similarity at the token level, making it more sensitive to term-level
changes. It is worth noting that a deeper analysis of COMET’s behavior lies beyond the scope of
this work. Consequently, we choose to use BERTScore rather than COMET in this study.

I GENERALIZATION OF DOMAIN FEATURES

Table 12 shows two instances of en→de. As discussed in Section 5.1, CDPG tends to increase the
confidence of the model. As a result, the inference of CDPG in Case #1 removes the repetition in
PRE-TRAINED. Moreover, CDPG in Case #2 hits the feature in reference by fixing the original inac-
curate word “Tunnelgeräts” to “Tunnelgerätes”, which is not a feature used in fine-tuning. Namely,
Case #2 shows the generalization of domain features in our proposed method. We therefore suspect
that the essence of increasing confidence is to encourage the model to be close to the target domain.
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Table 8: Scores of back-translation. BACK-TRANS indicates the model fine-tuned by the back-
translation. Src and Tgt abbreviate the source language and the target language, respectively. All
details follow Table 1.

Src Tgt Domain Method Conf. BLEU P R F1

en zh

Education
PRE-TRAINED 49.88 30.26 83.82 82.18 82.94
FINE-TUNED 49.28 30.07 83.70 81.96 82.78
BACK-TRANS 49.26 30.00 83.67 81.92 82.74

Thesis
PRE-TRAINED 47.62 18.95 76.09 75.69 75.78
FINE-TUNED 47.23 19.94 76.42 75.75 75.99
BACK-TRANS 47.20 19.30 76.41 75.70 75.95

zh en

Laws
PRE-TRAINED 63.84 32.36 94.55 93.52 94.02
FINE-TUNED 63.47 32.27 94.52 93.49 93.99
BACK-TRANS 63.18 32.22 94.52 93.46 93.97

Science
PRE-TRAINED 57.97 16.20 92.80 92.60 92.69
FINE-TUNED 57.48 16.36 92.82 92.60 92.70
BACK-TRANS 57.48 16.33 92.82 92.59 92.69

en de

IT
PRE-TRAINED 68.39 27.58 87.48 87.70 87.52
FINE-TUNED 67.91 27.92 87.38 87.60 87.42
BACK-TRANS 67.90 27.89 87.37 87.59 87.41

Medical
PRE-TRAINED 75.93 43.19 91.55 91.17 91.31
FINE-TUNED 75.71 43.23 91.53 91.14 91.29
BACK-TRANS 75.72 43.21 91.53 91.14 91.29

de en

Koran
PRE-TRAINED 59.23 20.86 91.95 91.07 91.49
FINE-TUNED 58.80 20.81 91.94 91.06 91.48
BACK-TRANS 58.78 20.79 91.92 91.05 91.47

Law
PRE-TRAINED 72.89 51.75 96.06 95.75 95.90
FINE-TUNED 72.53 51.70 96.06 95.74 95.89
BACK-TRANS 72.53 51.71 96.06 95.74 95.89

Table 9: Scores of experiments on mixing data of two domains. The data in Domain is fixed, and
we add sentences extracted from Mix.Domain into Domain. Then, we test the model performance
in Domain. #Sent. indicates the number of added sentences. The best value in each block is in bold.

Src Tgt Domain Mix.Domain Method #Sent. Conf. BLEU P R F1

en de IT Medical

FINE-TUNED

0 67.91 27.92 87.38 87.60 87.42
500 67.82 27.63 87.35 87.57 87.39

1000 67.75 27.61 87.36 87.58 87.40
2000 67.61 27.27 87.32 87.55 87.36

CDPG

0 74.29 29.32 87.70 87.79 87.69
500 74.24 29.70 87.70 87.80 87.70

1000 74.22 28.83 87.63 87.77 87.64
2000 74.14 29.43 87.68 87.79 87.68

en zh Thesis Laws

FINE-TUNED

0 47.23 19.94 76.42 75.75 75.99
750 47.14 19.77 76.44 75.73 75.98

1500 47.05 19.63 76.42 75.75 75.98
3000 46.83 19.13 76.37 75.74 75.95

CDPG

0 54.19 19.94 76.11 75.53 75.72
750 54.16 20.06 76.25 75.59 75.81

1500 54.12 20.15 76.21 75.59 75.80
3000 54.01 20.10 76.24 75.58 75.80
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Table 10: Scores of COMET, measured by Unbabel/wmt22-comet-da.

Direction Domain Method BLEU COMET Direction BLEU COMET

en→de

IT

PRE-TRAINED 27.58 83.31

de→en

38.80 87.45
FINE-TUNED 27.92 83.24 38.83 87.44
CDPG 29.32 83.38 39.79 87.52
DYNAMIC CDPG 30.78 83.59 40.55 87.56

Koran

PRE-TRAINED 18.90 72.85 20.86 73.92
FINE-TUNED 18.86 72.83 20.81 73.90
CDPG 18.85 72.85 20.94 73.84
DYNAMIC CDPG 18.85 72.85 20.94 73.84

Law

PRE-TRAINED 44.82 87.05 51.75 87.11
FINE-TUNED 44.83 87.04 51.70 87.09
CDPG 44.12 86.95 51.64 87.13
DYNAMIC CDPG 44.87 86.92 51.64 87.10

Medical

PRE-TRAINED 43.19 87.79 45.50 89.88
FINE-TUNED 43.23 87.76 45.48 89.81
CDPG 42.54 87.74 44.56 89.81
DYNAMIC CDPG 43.51 87.66 45.06 89.81

de→en

Education

PRE-TRAINED 30.26 84.41

zh→en

23.49 82.99
FINE-TUNED 30.07 84.39 23.54 83.02
CDPG 31.27 84.66 23.59 83.38
DYNAMIC CDPG 31.16 84.65 24.23 83.38

Laws

PRE-TRAINED 51.73 89.45 32.36 81.66
FINE-TUNED 51.71 89.43 32.27 81.50
CDPG 51.90 89.69 35.57 82.57
DYNAMIC CDPG 50.81 89.74 35.57 82.57

Thesis

PRE-TRAINED 18.95 70.62 8.65 69.21
FINE-TUNED 19.94 70.58 8.60 69.18
CDPG 19.94 70.89 8.53 69.40
DYNAMIC CDPG 20.14 70.86 8.49 69.47

Science

PRE-TRAINED 24.45 78.80 16.20 81.03
FINE-TUNED 24.52 78.78 16.36 81.03
CDPG 24.94 79.38 15.96 80.94
DYNAMIC CDPG 24.80 79.32 16.34 80.88

Table 11: Bad cases of COMET. GPT-4o makes the Judgment.

Input Reference Generation Scores Judgment

Screen only check box Nur Bildschirm-Markierfeld PRE-TRAINED: Nur Kontrollkästchen für den
Bildschirm

72.22 CDPG

CDPG: Nur das Kontrollkästchen für den Bild-
schirm

61.60

Failed to finalize Fehler beim Finalisieren PRE-TRAINED: Nicht fertig gestellt 66.67 CDPGCDPG: Nicht abgeschlossen 61.60

Enforce private variables to be
private across modules by set-
ting CompatibilityMode(true).

Durch das Setzen von Compat-
ibilityMode(true) werden pri-
vate Variablen bezüglich eines
einzelnen Moduls als privat be-
handelt.

PRE-TRAINED: Private Variablen müssen über
Module hinweg privat sein, indem Sie Compat-
ibilityMode(true) einstellen.

81.14 CDPG

CDPG: Erzwingen Sie private Variablen, um
über Module hinweg privat zu sein, indem Sie
KompatibilitätMode (true) einstellen.

68.47
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Table 12: Instances showing generalized features. Case #1 shows the direct influence of increased
confidence. Case #2 shows the hitting of the target-domain feature, which is not included in fine-
tuning features.

Case #1

Input PPM.
Reference PPM.
PRE-TRAINED PPM. - Nein, nein, nein, nein, nein, nein, nein, nein, nein, nein. . .
CDPG PPM.

Case #2

Input This is the type of your tunnel device.
Reference Dies ist der Typ des Tunnelgerätes.
PRE-TRAINED Dies ist der Typ Ihres Tunnelgeräts.
CDPG Dies ist der Typ Ihres Tunnelgerätes.
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