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Abstract

Pre-trained vision-language models (VLMs) have shown to be an useful model
class for zero- and few-shot learning tasks. In this work, we investigate probabilis-
tic active few-shot learning in VLMs by leveraging post-hoc uncertainty estimation
and targeted support set selection. To equip VLMs with a notion of uncertainty
on the target task, we utilize a Laplace approximation to the posterior of the VLM
and derive a Gaussian approximation to the distribution over the cosine similarities.
Further, we propose a simple adaptive target region selection based on k-nearest
neighbour search and evaluate on a series of selection strategies from the Bayesian
experimental design literature. Our experiments on standard benchmarks show that
leveraging epistemic uncertainties leads to improved performance and that further
improvements can be obtained by targeting the selection towards the query region.

1 Introduction

The rise of foundation models [4, 6, 9, 30] has led to their increasing adoption in downstream tasks
where data is scarce [16, 42]. Moreover, in many real-world settings it is imperative that predictions
are reliable and that sources of uncertainties are captured and incorporated to avoid failure modes. The
paradigm of active few-shot learning (or active fine-tuning) [1, 17, 40] aims to tackle the challenge of
actively selecting a support set (training set for adaption) that is most informative for the downstream
task. However, classical approaches, e.g., from the coreset literature [36] or information theory [14],
typically do not incorporate all sources of uncertainties into their metric of informativeness. Recent
works in Bayesian active learning [15] aim to address this issue by performing selection of support
set candidates based on their effect on the epistemic uncertainty of the model [11] or the predictive
distribution [3]. Moreover, progress in Bayesian deep learning [29] has resulted in methods that can
efficiently estimate epistemic uncertainties in a post-hoc manner [23, 8], making them particularly
attractive for active few-shot learning of large scale models.

In this work, we investigate probabilistic active few-shot learning for vision-language models (VLMs)
and show benefits of incorporating uncertainties in the support set selection process as well as
targeting the selection towards the query region. For this, we propose an uncertainty estimation-based
approach by leveraging a Laplace approximation [23] to the posterior of a pre-trained CLIP [30]
model. We derive a Gaussian approximation to the distribution over cosine similarities between
the image and text embeddings, and investigate different scoring mechanisms for the support set
candidate selection. In addition, we propose a simple adaptive target region selection based on
k-nearest neighbour (k-NN) search. In our experiments, we evaluate two few-shot classification
settings (i) support set selection from a large cross-domain training data source and (ii) selection from
the training set. We find improved performance over naı̈ve selection for uncertainty-based selection
methods and further improvements when the selection is based on an adaptive target region.
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Figure 1: Illustration of the setting.

Fig. 1 illustrates the setting we are considering in
this work: Given a pre-trained VLM, we aim to
predict labels for a query set of images of a novel
downstream task. The VLM agentM0 is asked
to first estimate its uncertainty over the predic-
tions on the query set, where the difficulty of the
prediction is proportional to the predictive uncer-
tainty. To avoid failure modes, the agent can select
a small number of labelled support set candidates
S from a large data source and use them to update
its internal state. Finally, the updated modelM1

is used to predict the labels for the query set.

Our main contributions are the following: (i) We
propose a post-hoc method for obtaining a distribu-
tion over the cosine similarities from a pre-trained
VLM without needing architecture changes or fur-
ther training. (ii) We apply our method in active
learning and assess various scoring mechanisms for support set selection. (iii) We show on benchmark
data sets that accounting for epistemic uncertainties improves performance and that targeted candidate
selection results in further improvements.

2 Methods

We denote vectors by bold lower-case letters (e.g., x,a) and use bold upper-case letters for matrices
(e.g., X,P ). Further, sets are denoted in upper-case calligraphic letters (e.g., D, I) and model
parameters or hyper-parameters are denoted using Greek letters (e.g., α,θ). In particular, let xi ∈
RpIMG and yj ∈ RpTXT denote the ith image and jth text description, respectively. Further, we use
ϕ : RpIMG → RdIMG and ψ : RpTXT → RdTXT to denote the image and text encoders of the VLM, where
pIMG and pTXT denote the respective input dimensionality and dIMG, dTXT is the dimensionality of the
respective feature space. The embeddings are projected into a joint space, given as g = Pϕ(x) and
h = Qψ(y), using linear projections denoted by P ∈ Rd×dIMG and Q ∈ Rd×dTXT , respectively.

VLMs (e.g., [30]) are typically trained by minimizing the InfoNCE loss [28], which is the sum of two
cross-entropy terms, one for each relational direction—image to text (IMG → TXT) or text to image
(IMG ← TXT). The loss is given as L(X,Y ) = 1/2LIMG→TXT

CE (X,Y ) + 1/2LIMG←TXT
CE (X,Y ) with

cross-entropy loss terms defined over the cosine similarities between the embeddings, i.e.,

LIMG→TXT
CE (X,Y ) =

n∑
i=1

− log

(
exp(ĝ⊤i ĥi)∑n
j=1 exp(ĝ

⊤
i ĥj)

)
, (1)

where ĝ and ĥ are the unit-length normalized embeddings. For further details see App. B.1.

In this work, we utilize post-hoc uncertainty estimation based on the Laplace approximation [23] to
estimate uncertainties over the model parameters. This approach has found increasing application in
contemporary deep learning (e.g., [8, 20, 25]) and uses a Gaussian approximation to the posterior
distribution. Utilising a Laplace approximation allows us to induce uncertainty over the feature
embeddings of both encoders and results in a distribution over cosine similarities, which in turn
enables quantifying model uncertainties in a principled manner. Fig. 2 illustrates the propagation of
uncertainties in our setup by estimating uncertainties over the projection matrices.

Laplace approximation One of the main computational challenges associated with the Laplace
approximation is related to the estimation of the Hessian matrix of the log joint w.r.t. the model
parameters. Since a naı̈ve approach is computationally impractical in the case of VLMs, we chose
to estimate the Kronecker-factored Generalized Gauss–Newton (GGN) approximation [33, 24].
Moreover, we apply the Laplace approximation only for the projection matrices P and Q of the
image and text encoders. Hence, resulting in GGN approximations GGNIMG and GGNTXT given in
form of their Kronecker factors, see App. C.1 for details.

However, naı̈vely applying Laplace approximations in VLMs is challenging as the contrastive loss
entangles P and Q, which further complicates the estimation of the Hessian. These models are
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Figure 2: Illustration of uncertainty propagation in VLMs: We estimate uncertainties over the
projection matrices of both encoders using a Laplace approximation, which induces distributions over
the feature projections. We then approximate the distribution over cosine similarities by a Gaussian.

also typically trained with mini-batch sizes of around 30k samples. In order to compute the GGN
approximations in VLMs, we simplify the contrastive loss L used for pre-training by assuming
independence between P and Q. Specifically, we treat each of the two loss terms independent and
consider only LIMG→TXT

CE for the image encoder and LIMG←TXT
CE for the text encoder in the Laplace

approximation. Hence, dropping interactions between the image and text encoders in the Laplace
approximation. Lastly, we use an incremental computation of the Kronecker factors to account for
large mini-batch sizes. Further details and derivations are given in App. C.1.

Distribution over cosine similarities As the Laplace approximation uses a Gaussian approximation,
the feature embeddings are distributed according to another Gaussian distribution. Specifically, the
distribution over embedding vectors g (or h) for a datum x (or y) can be expressed as follows due to
linearity, i.e.,

N
(
g,
(
ϕ(x)

⊤
A−1IMGϕ(x)

)
B−1IMG

)
and N

(
h,
(
ψ(y)

⊤
A−1TXTψ(y)

)
B−1TXT

)
, (2)

where A and B denote the Kronecker factors of the GNN approximation of the Hessian matrix,
respectively. Unfortunately, the distribution over cosine similarities is in general not Gaussian. How-
ever, by assuming independence between the elements of g and h and in the limit of d→∞ we can
approximate the distribution over cosine similarities to be Gaussian distributed. We find this approx-
imation to work well in practice, while not accurately capturing the skewness of the distributions.
A detailed derivation and empirical results on the approximation quality are given in App. C.2.

Targeted support set selection Let Xtest = {x∗i } with x∗i ∼ p(x∗) be a set of unseen test data
(query set) with unknown class labels. We aim to find a set {(xj ,yj)}mj of support candidates of
cardinality m with xj ,yj ∼ p(xj ,yj) such that we reduce uncertainty over the class labels of Xtest.
To approach this problem, we target the selection process towards the predictive distribution of the
query set. In particular, we propose to use a k-nearest neighbours selection in the joint space to pre-
select support set candidates based on the Wasserstein distance between the distributions over image
embeddings. After pre-selection, we quantify the information gain of the support set candidates either
using the entropy over the predictive distribution, the expected predictive information gain (EPIG,
[3]), or the BALD score [15]. Doing so adaptively targets the candidate search for the the support set
towards the predictive distribution of the query set and reduces the computational complexity of the
selection process. Further details on the selection process and the score functions are given in App. D.

3 Experiments

To evaluate our approach for probabilistic active few-show learning, we conducted experiments using
pre-trained OpenCLIP models from Hugging Face [18]. We estimated the Laplace approximations
of the OpenCLIP model with ViT-Base backbone and ViT-Huge backbone [10] using a randomly
sampled subset from the Laion-400M data set [35]. Further details are given in App. E.

For probabilistic active few-shot learning with VLMs we consider the task of image classification and
present results on the Flowers102 [27], Food101 [5], CIFAR-100 [21], ImageNet-R [13], EuroSAT
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Figure 3: Results on the Office-Home data set with support set selection from all training domains.
We observe that incorporating epistemic uncertainties ( ) improves over entropy based targeted
selection ( ) in most of the cases and outperforms naı̈ve random selection ( ) and random
selection with targeted support set candidates ( ). Shaded regions indicate the std over 5 runs.

[12], and the Office-Home [39] data sets. To assess the performance of the proposal, we investi-
gated the following questions: (i) Do approaches that account for epistemic uncertainties improve
performance? (ii) What is the effect of targeting the support set candidates towards the query region?
(iii) How does the model capacity affect the performance of the proposed approach?

To address these questions, we performed support set selection from all training domains available in
the Office-Home data set and evaluated on the test set (query set) of each domain independently. In
Fig. 3 we compare the performance of targeted entropy-based support set selection, random selection,
random selection with targeted support set region, and the best performing (according to the vali-
dation loss) acquisition function that incorporates epistemic uncertainties. We find that incorporating
epistemic uncertainties improves the few-shot learning performance in most cases and generally
outperforms random selection. Further, we observe that targeted support set selection improves the per-
formance as indicated by the performance gap between naı̈ve random selection and targeted random
selection and that the model capacity can have a substantial impact on the performance gains across
all approaches. A listing of the results using the negative log-predictive density are given in App. E.2.

Single-domain Finetuning In App. E.2, we show results for single-domain finetuning on standard
benchmark data sets (e.g. CIFAR-100, Imagenet-R, Flowers102, etc.) using the different support set
selection methods with the OpenCLIP model. The selection methods using the epistemic uncertainty
(BALD and EPIG) perform better or on par with the Targeted Maximum Entropy across the different
subset sizes and data sets, which demonstrates the benefits of using our proposed uncertainty estimates
for support set selection.

4 Discussion and Conclusion

In this work, we have introduced a probabilistic active few-shot learning approach for VLMs. Our
approach leverages a Laplace approximation to the posterior of the projection layers of the VLM
to estimate epistemic uncertainties. We have further introduced an adaptive targeted support set
candidate selection based on k-NN selection using the Wasserstein distance between the distributions
over image embeddings in the joint space. To assess the performance of probabilistic active few-shot
learning in VLMs, we have conducted two sets of experiments, one in the cross-domain setting on
the Office-Home data set and one in the single-domain setting on standard benchmark data sets. We
found that incorporating epistemic uncertainties improves the few-shot learning performance in most
cases and generally outperforms random selection. Moreover, targeting the selection process towards
the query region provides further improvements in all cases.
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Reproducibility The code for the experiments is available at: https://aaltoml.github.io/
BayesVLM/.
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Probabilistic Active Few-Shot Learning in
Vision-Language Models

Supplementary Material

A Related Work

A.1 Active Learning

The active learning setting [32] entails an agent learning a task from an unlabelled dataset, while
simultaneously determining which data points to label for maximal benefit to the target task. The
learner uses an acquisition function to base its sample selection on that should quantify how beneficial
(or informative) this sample will be to learn from for the target task. There exist various acquisition
functions, e.g., (i) entropy-based which aims to minimize the expected entropy after observing
data points [14], and (ii) core-set based methods which are trained to minimize the generalization
error between the unlabelled and labelled sets and use clustering for selection [36]. Uncertainty-
based acquisition functions have been explored to select data points that will mostly reduce the
epistemic uncertainty in the model, e.g., Bayesian Active Learning by Disagreement (BALD) score
[11, 15]. More recently, the expected predictive information gain (EPIG) [3] was proposed to measure
the information gain in the space of predictions rather than parameters. We experiment with the
mentioned uncertainty-based acquisition functions combined with our probabilistic embeddings for
targeted data selection in VLM finetuning.

A.2 Probabilistic Vision-Language Models

Several works are aiming to extend VLMs to produce predictive uncertainty estimates for various
downstream tasks, e.g., cross-modal retrieval [7, 22] and visual-question answering [19]. These
methods learn probabilistic embeddings on each modality by estimating probability distributions
from the network. However, this approach requires training the networks from scratch, which limits
their applicability to pretrained VLMs ( e.g. CLIP). To this end, Upadhyay et al. [38] proposed a
post-hoc method called ProbVLM that learns probabilistic embeddings from finetuned adapters on
a frozen VLM backbone. Similar to this work, they also apply their method to the active learning
task and use the uncertainty estimates for selecting informative subsets of training data for finetuning.
However, ProbVLM requires finetuning the probabilistic embeddings on a proxy task, while our
method can be applied directly on the pretrained model.

B Preliminaries

This section provides a brief overview of the background concepts relevant to this work.

B.1 Vision-Language Models

In this work, we consider vision-language models (VLM) learned using the contrastive learning
objective known as InfoNCE. In particular, let xi ∈ RpIMG and yj ∈ RpTXT denote the ith image and
jth text description, respectively. Further, we use ϕ : RpIMG → RdIMG and ψ : RpTXT → RdTXT to
denote the image and text encoders of the VLM, where pIMG and pTXT denote the respective input
dimensionalities and dIMG, dTXT is the dimensionality of the respective feature space.
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To project the embeddings into a joint space, we assume a linear projection layer for both the image
and the text encoder denoted by P ∈ Rd×dIMG and Q ∈ Rd×dTXT , respectively. The embeddings in
the joint space are then given as gi = Pϕ(xi) and hj = Qψ(yj) and we use hat notation to denote
the unit-length normalized embeddings, e.g., ĝi =

Pϕ(xi)
∥Pϕ(xi)∥ .

VLM models ( e.g., [30]) are typically trained by minimizing the InfoNCE loss, which is given
as the sum of two cross-entropy terms, one for each relational direction – image to text (IMG →
TXT) or text to image (IMG ← TXT). Specifically, the InfoNCE loss is given as L(X,Y ) =
1/2LIMG→TXT

CE (X,Y ) + 1/2LIMG←TXT
CE (X,Y ) with cross-entropy loss terms given as:

LIMG→TXT
CE (X,Y ) =

n∑
i=1

− log

(
exp(ĝ⊤i ĥi)∑n
j=1 exp(ĝ

⊤
i ĥj)

)
(3)

LIMG←TXT
CE (X,Y ) =

n∑
i=1

− log

(
exp(ĥ⊤i ĝi)∑n
j=1 exp(ĥ

⊤
i ĝj)

)
. (4)

For further details we refer the reader to [30, 41]

B.2 Bayesian Deep Learning

We will briefly review concepts on Bayesian deep learning relevant to this work. Given a dataset
D = {(xi,yi)}ni=1 and a probabilistic models with likelihood function p(y | x,θ) and prior
distribution p(θ), we aim to estimate the posterior distribution p(θ | D) of the model parameters
θ given the training data D. In the context of deep learning, exact inference of the posterior
distribution is at least NP-hard in most settings and only becomes tractable if p(θ | D) constitute
sufficient structure [23]. Henceforth, we consider approximate Bayesian inference using the Laplace
approximation [23] in this work, which has gained increasing popularity in the community ( e.g.,
[33, 8, 25, 34]) as a post-hoc techniques to estimate epistemic uncertainties.

The Laplace approximation uses a second-order Taylor expansion of the log-joint around the
maximum-a-posteriori (MAP) estimate θMAP. The resulting distribution is then approximated
with an un-normalised Gaussian density, which in turn results in an approximate posterior distribution
given by a Gaussian distribution located at the MAP estimate, i.e., p(θ | D) ≈ N (θ | θMAP,Σ).
Resulting from the Taylor expansion, the covariance is given by the inverse Hessian at the MAP,
i.e., Σ = (−∇2 log p(θ,D)|θ=θMAP

)−1. Predictions are then made based on the posterior predictive
distribution p(y | x,D) =

∫
p(y | x,θ)p(θ | D)dθ, which is typically performed by Monte Carlo

sampling in case of non-linear likelihoods functions, e.g., classification settings. We refer to [8] for a
detailed review of the topic.

C Derivations

This section provides detailed derivations of the equations presented in the main text.

C.1 Laplace Approximation

To obtain the Laplace approximation to the VLM, we first assume independence between P and Q.
The resulting GGN approximations GGNIMG and GGNTXT are then given in form of their Kronecker
factors A and B, i.e.,

GGNIMG ≈

[
1√
n

n∑
i=1

ϕ(xi)ϕ(xi)
⊤

]
︸ ︷︷ ︸

=AIMG

⊗

[
1√
n

n∑
i=1

JIMG(xi)
⊤ΛIMG JIMG(xi)

]
︸ ︷︷ ︸

=BIMG

, (5)

where JIMG(xi) =
∂ĝ⊤

i Ĥ
∂gi

and

GGNTXT ≈

[
1√
n

n∑
i=1

ψ(yi)ψ(yi)
⊤

]
︸ ︷︷ ︸

=ATXT

⊗

[
1√
n

n∑
i=1

JTXT(xi)
⊤ΛTXT JTXT(xi)

]
︸ ︷︷ ︸

=BTXT

, (6)
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where n is the number image-text pairs in the training set.

We further incorporate the prior precision λ into the GGN approximation by adding the prior precision
to the diagonal of the GGN Hessian, i.e.,

GGNIMG ≈ τ (AIMG ⊗BIMG) + λI (7)

≈
(√

τ AIMG +
√
λ I
)
⊗
(√

τ BIMG +
√
λ I
)
. (8)

In our experiments, we set τ = 0.75 for the ViT-Base model and τ = 0.3 for the ViT-Huge model
and obtain the prior precision λ through marginal likelihood maximization.

C.1.1 Obtaining the Posterior Predictive Distribution

For conciseness, we denote the posterior precision matrices associated with the image encoder
as AIMG and BIMG. We have obtained the posterior distribution over the image projection matrix
P represented as N (vec(P ); vec(PMAP),GGN−1IMG). Given that GGN−1IMG is formulated using the
Kronecker product of the inverses of these matrices, i.e., A−1IMG ⊗ B−1IMG, we proceed to express
the posterior predictive distribution as a matrix normal distributionMN (P ;PMAP,B

−1
IMG,A

−1
IMG) as

referenced in [2]:
P ∼MN (PMAP,B

−1
IMG,A

−1
IMG) (9)

=⇒ g = Pϕ(x) ∼MN (PMAPϕ(x),B
−1
IMG, ϕ(x)

⊤A−1IMGϕ(x)) (10)

=⇒ g ∼ N (PMAPa,
(
ϕ(x)⊤A−1IMGϕ(x)

)
B−1IMG) (11)

C.1.2 Online Laplace Approximation

For the EPIG score, we update our Laplace approximation online after each data point is added to
the support set. Given the current Laplace approximation of the posterior over the image projection
matrix P we update the posterior distribution as follows:

Pt+1 = Pt − γ∇PLIMG→TXT
CE (x∗,Y ) (12)

AIMG,t+1 = AIMG,t + βϕ(x∗)ϕ(x∗)⊤ (13)

BIMG,t+1 = BIMG,t + βJIMG(x
∗)⊤ΛIMGJIMG(x

∗) (14)
From the updated AIMG,t+1 and BIMG,t+1 we obtain the updated GGN approximation of the Hessian
matrix:

GGNIMG,t+1 ≈
(√

τ AIMG,t+1 +
√
λ I
)
⊗
(√

τ BIMG,t+1 +
√
λ I
)

(15)

After each update, we optimize for the prior precision λ by maximizing the marginal likelihood. For
our experiments, we set the learning rates γ = 10−3 and β = 1.

C.1.3 Jacobians for the GGN Approximation

In the following we derive the Jacobians JIMG(xi) and JTXT(yi) used in the Kronecker-factored
Generalized Gauss-Newton (GGN) approximation of the Hessian matrices. Let ĝi and ĥj denote the
normalized image and text embedding, respectively. With some misuse of notation, let Ĥ denote
the matrix of normalized text embeddings with ĥj as its columns, and Ĝ the matrix of normalized
image embeddings with ĝi as its columns. Then, for the InfoNCE likelihood, which depends on the
dot product between the normalized embedding in the batch, we compute the Jacobian for the image
encoder as follows:

JIMG(xi)
⊤ =

∂Ĥ⊤ĝi
∂gi

= Ĥ⊤
∂

∂gi

gi
∥gi∥

= Ĥ⊤
∥gi∥ − gi

∂∥gi∥
∂gi

∥gi∥2
= Ĥ⊤

∥gi∥ − gig
⊤
i

∥gi∥

∥gi∥2
(16)

= Ĥ⊤
(

1

∥gi∥
− gig

⊤
i

∥gi∥3

)
(17)

Analogously, we obtain the Jacobian for the text encoder as:

JTXT(yi)
⊤ = Ĝ⊤

(
1

∥hi∥
− hih

⊤
i

∥hi∥3

)
(18)
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C.1.4 Likelihood Hessian for the GGN Approximation

The zero-shot classifier induced by CLIP computes unnormalized logits for each class c, represented
by ĝ⊤i ĥc =: fc. By applying the softmax function, we calculate the probabilities for each class c as
πc =

exp(fc)∑
c′ exp(fc′ )

. The likelihood Hessian of the cross-entropy loss for this classifier is represented
by:

ΛIMG = diag(π)− ππ⊤ (19)

Similarly, the likelihood Hessian for the text encoder follows analogous principles in the text-to-image
direction. For a more detailed derivation of the likelihood Hessian, we refer to [31]. Rearranging
terms in the analytical expression for J⊤IMGΛIMGJIMG facilitates space-efficient computation of the
GGN approximation.

C.2 Distribution over Cosine Similarities

For the derivation of the distribution over cosine similarities, first recall the definition of the cosine
similarity between two vectors, g and h, which is given as SCOS(g,h) = g⊤h

∥g∥∥h∥ . Now, with
some abuse of notation, let g and h denote random vectors for the image and text embeddings,
respectively. Further, let us assume that their distribution follows a Gaussian distribution with
mean µg = (µg,1, . . . , µg,d) and µh = (µh,1, . . . , µh,d) and diagonal covariance structure, i.e.,
Σg = diag(σ2

g,1, . . . , σ
2
g,d) and Σh = diag(σ2

h,1, . . . , σ
2
h,d).

Then the expected value of the cosine similarity is:

E[SCOS(g,h)] =
E[g⊤h]

E[∥g∥]E[∥h∥]
(20)

=

∑d
i µg,iµh,i

E[∥g∥]E[∥h∥]
. (21)

Note that computing E[∥x∥] is intractable, and we therefore bound the expected value by application
of the triangle inequality, i.e.,

E[∥x∥] ≤
√∑

i

µ2
x,i + σ2

x,i , (22)

where we use the fact that E[x2] = µ2
x + σ2

x. Consequently, we obtain an approximation to the
expected value of the cosine similarity given by:

E[SCOS(g,h)] ≈
∑d

i µg,iµh,i√∑
i µ

2
g,i + σ2

g,i

√∑
i µ

2
h,i + σ2

h,i

. (23)

Next, we will derive the second moment (variance) of the cosine similarity of two random vectors.
First note that the variance can be written as the difference of two expectations, i.e.,

Var[SCOS(g,h)] = E[SCOS(g,h)
2]− E[SCOS(g,h)]

2, (24)

where the second expection corresponds to:

E[SCOS(g,h)]
2 ≈

(
∑d

i µg,iµh,i)
2∑

i µ
2
g,i + σ2

g,i

∑
i µ

2
h,i + σ2

h,i

. (25)

Next we can obtain E[SCOS(g,h)
2] for which we will use the fact that E[x2] = µ2

x + σ2
x again, i.e.,

E[SCOS(g,h)
2] =

E[(g⊤h)2]∑
i µ

2
g,i + σ2

g,i

∑
i µ

2
h,i + σ2

h,i

(26)

where

E[(g⊤h)2] =
∑
i

∑
j

µg,iµh,iµg,jµh,j (27)

+
∑
i

σ2
g,iµ

2
h,i + µ2

g,iσ
2
h,i + σ2

g,iσ
2
h,i. (28)
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Figure 4: Approximation quality of the Gaussian approximation ( ) to the distribution over cosine
similarities compared to KDE over samples ( ) for image-text pairs with increasing Euclidean
distance between their feature projection means (µg,µh).

Henceforth, we obtain for the variance:

Var[SCOS(g,h)] =

∑
i σ

2
g,i(σ

2
h,i + µ2

h,i) + σ2
h,iµ

2
g,i∑

i µ
2
g,i + σ2

g,i

∑
i µ

2
h,i + σ2

h,i

. (29)

To empirically assess the approximation quality, we compared the approximation to a kernel density
estimate (KDE) over Monte Carlo samples. In particular, we generated 500 samples for the image
and text feature distributions for a given input. For the resulting samples, we then computed the
respective cosine similarity for each pair and performed kernel density estimation with Gaussian
kernel and lengthscale of 0.3 on the similarity scores. We added increasing shifts to the distribution
mean to evaluate the change in the approximation quality under varying cosine similarity values.
Fig. 4 illustrates the approximation quality compared to a Monte Carlo simulation for image-text
pairs with increasing distance between their feature projection means.

D Details on Support Set Selection

This section provides further details on the support set selection strategies used in this work.

D.1 k-Nearest Selection

Active learning acquisition functions like Maximum Entropy Selection or BALD are often applied
to the training set, lacking consideration of the target distribution and resulting in unrepresentative
selections. To address this, we propose the following heuristic: we greedily acquire a maximally
informative intermediate set S∗ ⊆ Xtest from the test set, followed by selecting training data points in
the vicinity of the intermediate set S∗. In case of deterministic embeddings one can use the cosine
similarity or Euclidean distance for this purpose. However, as the embeddings are probabilistic in our
setting, a point-wise comparison is not possible. Henceforth, we propose to compute the Wasserstein
distance between the distributions of the embeddings of the test set and the training set, and select
the training samples with minimal Wasserstein distance to the test set. For multivariate Gaussian
distributions, the Wasserstein distance can be computed in closed form and is given as:

W 2
2 (N (µ1,Σ1),N (µ2,Σ2)) = ∥µ1 − µ2∥22 + tr

(
Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

)
(30)

where ∥ · ∥2 denotes the Euclidean norm, Tr(·) is the trace operator, and Σ1/2 is the matrix square
root of Σ. As computing the Wasserstein distance exactly is computationally and memory intensive,
we approximate it by ignoring the correlation terms between the dimensions of the embeddings
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Figure 5: Illustration of the nearest neighbour based support set selection for adaptive targeted
selection. The circles show test data points with uncertainty scores depicted through their colours:
high, medium, low. For each test datum we find the k = 1 nearest neighbour from the support
set candidates . If the k = 1 nearest neighbour is already selected, we increase k for those with
occupied neighbours and choose the second nearest neighbour, i.e., k = 2. This recursion continues
until every test datum has a selected support set candidate. The selected candidates are shown by
coloured circles. Note that in case of the blue test datum, the closest support set candidate has already
been chosen by the yellow and hence the second closes candidate is selected in the second stage.

Target Space

x

y

Figure 6: Illustration of targeted support set selection. We aim to select an informative support
set that reduces the uncertainty over the predictions on the query set . Only focusing on the
epistemic uncertainties would not lead to a good selection as we would select uninformative support
set candidates with high epistemic uncertainty. Hence, we target the selection process.

resulting in the Wasserstein distance for univariate Gaussian distributions. We aim to explore more
sophisticated approximations, e.g., using the sliced Wasserstein distance [26], in future work. Based
on this distance, we select the training samples closest to the test set in the joint embedding space,
resulting in:

S =
⋃

g∗∈S∗

Nk(g
∗,Xtrain), (31)

with Nk(g
∗,Xtrain) denoting the set of k-nearest neighbours of g∗ in the training set Xtrain according

to the Wasserstein distance over the distributions of the normalized image embeddings. To ensure that
we select k distinct training samples for each test sample, we perform an iterative search in which we
discard the already selected training samples and iteratively increase the search radius until k distinct
samples are found. This process is illustrated in Fig. 5.

D.2 Acquisition Functions

Naive Random For the naı̈ve random acquisition function, we randomly sample m data points from
the train set Xtrain to form the support set SID.

Targeted Random For the targeted random acquisition function, we randomly sample m data
points from the test set Xtest to form a intermediate support set S∗. According to App. D.1, we then
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select the nearest neighbours to S∗ from the training set Xtrain based on the cosine similarity of the
normalized image embeddings to form the support set St-ID.

Targeted Maximum Entropy For the entropy acquisition function, we compute the predictive
entropy H(y∗i | x∗i ) for each data point x∗i ∈ Xtest and select the m data points with the highest
entropy. We use the predictive entropy on the MAP estimate of the model parameters to estimate the
predictive entropy of the model:

H (y | x,θMAP) = −
C∑

c=1

p(y = c | x,θMAP) log p(y = c | x,θMAP) (32)

According to App. D.1, we then select the most similar data points from Xtrain to form the support set
St-entropy.

BALD We compute the BALD score [15] for each data point in Xtrain and select the m data points
with the highest score. The score is approximated using nested Monte Carlo sampling as in [15].

BALD(x) = Ep(y|x) [H (p(θ))−H (p(θ | x, y))] (33)

= Ep(θ|D) [H (p(y | x,θ))−H (p(y | x,D))] (34)

Targeted BALD We compute the BALD score (Eq. (34)) for each data point x∗i ∈ Xtest and select
the m data points with the highest score. According to App. D.1, we then select the most similar data
points from Xtrain to form the support set St-BALD.

EPIG The Expected Predictive Information Gain (EPIG) score [3] calculates the expected mutual
information between the model parameters and the predictive distribution resulting from the acqui-
sition of a training data point. This method is specifically designed to target relevant information,
eliminating the need for a k-nearest neighbor search typically used in other acquisition functions.
The EPIG score is given by

EPIG(x) = Ep∗(x∗)pϕ(y|x) (H (pϕ(y
∗ | x∗))−H (pϕ(y

∗ | x∗, x, y))) (35)

= Ep∗(x∗) [DKL (pϕ(y, y
∗ | x,x∗) ∥ pϕ(y | x)pϕ(y∗ | x∗))] (36)

= Ep∗(x∗)

∑
y∈Y

∑
y∗∈Y

pϕ(y, y
∗ | x,x∗) log pϕ(y, y

∗ | x,x∗)
pϕ(y | x)pϕ(y∗ | x∗)

 (37)

and can be approximated using Monte Carlo sampling. For the EPIG selection we perform online
updates to the model weights using the online Laplace as described in App. C.1.2.

E Experiments

E.1 Experimental Details

In our experiments we used the a pre-trained CLIP model [30] as the vision-language model with a
ViT-Base and ViT-Huge backbone. We estimated the Hessians separately for the CLIP image and text
encoders using the pre-training dataset Laion-400M [35]. For this estimation, we randomly sampled
a subset of 3 million data points for the CLIP model with a ViT-Base backbone and 0.5 million
data points for the CLIP model with a ViT-Huge backbone. The pre-training dataset was filtered to
exclude NSFW content. For the Laplace approximation, we used the GGN approximation of the
Hessian matrices as described in Sec. 2 and estimated the covariance matrices A and B for the image
and text encoders. We use a grid search to find the Hessian scaling τ and learned the optimal prior
precision by maximizing the marginal likelihood of the training data. The grid for the Hessian scale
was set to τ ∈ {0.3, 0.35, 0.4, 0.45, 0.5} for the ViT-Base model and τ ∈ {0.6, 0.65, 0.7, 0.75, 0.8}
for the ViT-Huge model.

For the Office-Home and Flowers data sets, we used the pre-defined splits provided by the original
authors. For EuroSAT, we utilized the splits provided by [37]. For ImageNet-R, we divided the
provided training set into a training and validation set with a validation ratio of 0.25 and used the
provided test set as is. Similarly, for the Food and CIFAR-10/100 data sets, we split the training set
into a training and validation set with a validation ratio of 0.2 and used the provided test set without
modifications.
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Table 1: Data specifications for finetuning data sets with the number of classes c, training set size
ntrain, validation set size nval, and test set size ntest.

Dataset c ntrain nval ntest

Flowers [27] 102 1020 1020 6100
Food-101 [5] 101 75750 15150 25250
CIFAR-10/100 [21] 10/100 50000 10000 10000
ImageNet-R [13] 200 22500 4500 7500
ImageNet1k (subset classes) 200 11168 2792 2298
EuroSAT [12] 10 13500 8100 5400
Office-Home (clipart) [39] 65 2793 699 873
Office-Home (product) [39] 65 2840 711 888
Office-Home (real world) [39] 65 2788 697 872

In our experiments, we compare the performance of the proposed EPIG acquisition function to
various baseline acquisition functions: Naive Random, Targeted Random, Targeted Maximum
Entropy, Targeted BALD, EPIG, and Targeted EPIG.

Finetuning Settings For the finetuning, we trained we create support sets of size m ∈
{10, 25, 50, 75, 100, 150, 200, 500, 1000} using the cross-entropy loss for 100 epochs. For eval-
uation, we report performance of best checkpoint according to validation loss.

Data sets We experiment with the following data sets: Flowers102 [27], Food101 [5], CIFAR-10/100
[21], ImageNet-R [13], EuroSAT [12] and Office-Home [39]. Table 1 shows the data split sizes and
number of classes for each dataset.

Metrics We evaluate each method by measuring the class-weighted accuracy (ACC) on the test
set that weights the accuracy based on the number of samples per class. Moreover, we use the
negative log predictive density (NLPD) to assess the quality of the uncertainty estimates. We report
the performance of each finetuned method at the epoch with the lowest validation loss.

E.2 Additional Results

This section provides additional experimental results and ablations of the proposed method.

Cross-domain Finetuning Results Fig. 9 show additional results for the cross-domain setting on
the Office-Home data set for both the base and huge variants of the OpenCLIP model.

Single-domain Finetuning Results Fig. 7 and Fig. 8 show the results for single-domain finetuning
with support set selection using the huge and base variants of the OpenCLIP model, respectively. We
also show the zero-shot performances from the pretrained CLIP models without any finetuning on the
target task (Zero-shot). Note that we only show the performance for EPIG without targeted support
set selection, as we noticed that EPIG performs competetively against the other selection methods in
this single-domain finetuning setting.

We observe that the selection methods using the epistemic uncertainty (BALD and EPIG) perform
better or on par with the Targeted Maximum Entropy across the different subset sizes and data sets.
The accuracy and NLPD become better when increasing the subset sizes, and the huge model variant
(Fig. 7) achieves higher accuracies and lower NLPD on all data sets compared to the base model
variant (Fig. 8) due to its larger model capacity. On EuroSAT, the Random baselines perform on par
with EPIG which possibly is due to that EuroSAT has a small number of classes that can be similar,
e.g., the classes Sea/Lake and River. These results demonstrate the benefits of using our proposed
uncertainty estimates for support set selection.

E.3 Covariance Analysis

In addition to the presented experiments, we performed an ablation on the sensitivity of the covariance
to perturbations in the inputs. As shown in App. E.3, we observe that the covariance over the cosine
similarities encodes meaningful information about the uncertainty of the model predictions under
input perturbations.
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Figure 7: Accuracy and negative log-probability density (NLPD) over subset sizes of the support
set across different data sets and subset selection methods using the OpenCLIP huge model variant.
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16



0.72

0.74

0.76

W
ei

gh
te

d
A

C
C
→

CIFAR-100

Random Random Targeted Max. Entropy Targeted BALD
BALD Targeted EPIG Zero-shot

0.74

0.75

0.76

0.77

Imagenet-r

0.87

0.88

0.89

Imagenet1k-r-classes

0.74

0.76

0.78

0.8

0.82

W
ei

gh
te

d
A

C
C
→

Office-Home ClipArt

0.92

0.93

0.94

0.95

0.96
Office-Home Product

0.91

0.92

0.92

0.93

Office-Home Real-World

0
20
0

40
0

60
0

80
0

1,
00
0

0.4

0.6

0.8

Subset size

W
ei

gh
te

d
A

C
C
→

EuroSAT

0
20
0

40
0

60
0

80
0

1,
00
0

0.7

0.8

0.9

Subset size

Flower 102

0
20
0

40
0

60
0

80
0

1,
00
0

0.8

0.81

0.82

0.83

Subset size

Food-101

(a) Weighted accuracy (ACC) by the number of samples per class.

0.9

1

1.1

←
N

L
PD

CIFAR-100

0.95

1

1.05

1.1

Imagenet-r

0.4

0.45

0.5

Imagenet1k-r-classes

0.6

0.7

0.8

0.9

1

←
N

L
PD

Office-Home ClipArt

0.15

0.2

0.25

Office-Home Product

0.24

0.26

0.28

Office-Home Real-World

0
20
0

40
0

60
0

80
0

1,
00
0

0.5

1

1.5

2

Subset size

←
N

L
PD

EuroSAT

0
20
0

40
0

60
0

80
0

1,
00
0

0.5

1

1.5

2

Subset size

Flower 102

0
20
0

40
0

60
0

80
0

1,
00
0

0.6

0.65

0.7

Subset size

Food-101

(b) Negative log-probability density (NLPD).

Figure 8: Accuracy and negative log-probability density (NLPD) over subset sizes of the support
set across different data sets and subset selection methods using the OpenCLIP base model variant.
Results for random are averaged over 5 seeds.
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Figure 9: Results on the Office-Home data set with support set selection from all training domains.
We depict the performance of the best performing acquisition function incorporating epistemic
uncertainties ( ), entropy based selection with targeted support set region ( ), naı̈ve random
selection ( ), and random selection with targeted support set candidates ( ).
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Figure 10: Illustration of the distribution over cosine similarities, depicting mean and variance, for
varying image and text perturbations. We can observe that the mean cosine similarity decreases with
increasing perturbation, while the variance increases, indicating that the distribution over cosine
similarities captures model uncertainties in out-of-distribution settings.
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