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ABSTRACT

Missing values are common in real-world time series, and multivariate time se-
ries forecasting with missing values (MTSF-M) has become a crucial area of re-
search for ensuring reliable predictions. To address the challenge of missing data,
current approaches have developed an imputation-then-prediction framework that
uses imputation modules to fill in missing values, followed by forecasting on the
imputed data. However, this framework overlooks a critical issue: there is no
ground truth for the missing values, making the imputation process susceptible to
errors that can degrade prediction accuracy. In this paper, we conduct a systematic
empirical study and reveal that imputation without direct supervision can corrupt
the underlying data distribution and actively degrade prediction accuracy. To ad-
dress this, we propose a paradigm shift that moves away from imputation and di-
rectly predicts from the partially observed time series. We introduce Consistency-
Regularized Information Bottleneck (CRIB), a novel framework built on the In-
formation Bottleneck principle. CRIB combines a unified-variate attention mech-
anism with a consistency regularization scheme to learn robust representations that
filter out noise introduced by missing values while preserving essential predictive
signals. Comprehensive experiments on four real-world datasets demonstrate the
effectiveness of CRIB, which predicts accurately even under high missing rates.
Our code is available in https://anonymous.4open.science/r/CRIB-F660.

1 INTRODUCTION

Multivariate time series forecasting (MTSF), which aims to predict future values of multiple variates
based on historical observations, plays an important role in many domains, such as traffic flow
forecasting (Shang et al., [2022; [Yu et al., |2017; Bai et al.| [2020), financial analysis (Schaffer et al.,
2021} |Zivot & Wang|, 20065 |Hu et al.,|2025bja)), and weather prediction (Zheng et al.| 2015;Wu et al.,
20215 Tan et al., [2022). However, due to uncontrollable factors such as data collection difficulties
and transmission failures (Li et al.,[2023} Marisca et al., [2022} Cini et al.,[2021;|Zhang et al.|[2025al),
real-world multivariate time series data is often partially observed, with missing values scattered
throughout the series. These missing values inevitably introduce noise, leading to distribution shifts
and disrupting the variate correlations. MTSF models (Cao et al.,|2020; Liu et al., 2022; [Ekambaram
et al., 2023 |Hu et al 2025¢), which typically rely on complete data, are highly sensitive to such
shifts and correlation destruction, thus failing to make accurate predictions (Zhou et al., 2023; [Hu
et al.,2025c¢)). This has driven increasing interest in multivariate time series forecasting with missing
values (MTSF-M) (Cao et al., 2018} Zuo et al.| 2023} Tang et al.l [2020), where the objective is to
generate accurate and robust forecasts despite the presence of incomplete data.

To mitigate the impact of missing values, recent MTSF-M research (Yu et all 2025} [Peng et al.,
2025) has focused on enhancing observed data by imputing missing values to improve prediction
performance. One common approach is the two-stage framework, where an imputation module (Wu
et al. 2022 |Cao et al.l 2018} |Du et al., 2023) first fills in the missing values, and a forecasting
model then predicts future values based on the imputed data (Peng et al.l 2025} |Chen et al., 2023;
Wu et al.| 2015). Moreover, to reduce error accumulation between these two stages of two separate
models, some studies have proposed an end-to-end framework (Yu et al.| 2024} 2025)) that imputes
missing values progressively during encoding and performs forecasting using the imputed represen-
tations. Overall, these methods generally follow an imputation-then-prediction paradigm, aiming
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Figure 1: Analysis of the imputation-then-prediction paradigm on PEMS-BAY (40% missing rate).
(a) t-SNE visualizations show that current imputation modules cannot recover the original data dis-
tribution and their forecasts mismatch with the prediction target, while our direct-prediction method
aligns better with the target. (b, ¢) Correlation maps reveal that imputation fails to recover true
variate correlations, whereas our method preserves underlying correlations more effectively.

to improve forecasting accuracy by mitigating the negative effects of missing values compared to
directly applying forecasting models to incomplete data.

However, current MTSF-M methods ignore a critical limitation in real-world applications: there
is no ground truth for missing values. In such scenarios, the imputation module of the current
MTSF-M methods would lack reliable guidance, which means the imputed values and reconstructed
correlations cannot be guaranteed to be accurate with only the final prediction guidance. As a result,
noise would propagate into the prediction stage and degrade forecasting performance, particularly
when the missing rate is high. To investigate this issue, we conduct an empirical analysis of repre-
sentative imputation-then-prediction methods, where original and observed data denote the complete
and partially observed data, respectively. This includes the two-stage framework combining Times-
Net for imputation and TimeXer for forecasting, as well as the
end-to-end framework BiTGraph 2023). Fig.[I]illustrates the empirical results, where
panel (a) visualizes the distributions of imputed and predicted values, and panels (b) and (c) present
the correlations among variates. Our findings highlight two key phenomena:

@ Improper imputation can corrupt the observed data. Current MTSF-M frameworks commonly
employ imputation modules to recover missing values. However, as shown in Fig. [T] (a-1, b),
without enough direct supervision, imputed values deviate considerably from the distribution of
the original complete data, and the underlying correlations among variates are not correctly re-
constructed. The deterioration of both the data distribution and variate correlations suggests that
imputation with only prediction guidance can degrade the observed data rather than repair it.

O Flawed imputation, in turn, leads to poor prediction performance. Errors from the imputation
stage inevitably propagate into forecasting. As shown in Fig. [I] (a-2, ¢), the predictions exhibit
large deviations from the prediction targets. Notably, even a model TimeXer applied directly to
incomplete observed data outperforms a more complex framework that combines TimesNet for
imputation with TimeXer for prediction. These findings indicate that a flawed imputation stage
can actively harm, rather than enhance, the forecasting capabilities of a model.

Based on these two observations, we ask a fundamental question: Is it possible to predict directly
Jrom partially observed time series, avoiding the pitfalls of imputation while maintaining high
accuracy? To answer this, we propose Consistency-Regularized Information Bottleneck (CRIB), a
novel framework that predicts directly from partially observed data, bypassing the issues associated
with imputation. CRIB is built on the Information Bottleneck (IB) principle, which enables it to
learn a compressed representation that filters noise from missing values while preserving essential
predictive signals. To achieve this, it employs a unified-variate attention mechanism to capture
complex correlations from the sparse input and is trained with a consistency regularization scheme
to enhance robustness, especially under high missing rates.
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Our main contributions can be summarized as follows:

* Empirical analysis: We perform a systematic empirical analysis of the dominant imputation-
then-prediction paradigm for MTSF-M. We reveal that, guided only by a prediction objective, im-
putation modules can corrupt the observed data distribution and degrade prediction performance.

* Method: We propose a novel direct-prediction method, CRIB, which removes the imputation
completely. CRIB is an IB-based method that integrates a unified-variate attention mechanism
and consistency regularization to get refined representations, effectively balancing the tradeoff
between filtering out noise and preserving task-relevant signals.

» Experiments: We conduct comprehensive experiments on four real-world benchmarks and show
that CRIB significantly outperforms existing state-of-the-art methods by an average of 18%, es-
pecially under high missing rates. Our results validate the superiority of the proposed direct-
prediction approach over the imputation-then-prediction paradigm.

2 PRELIMINARIES

Notations & Problem Formulation In MTSF-M tasks, the historical time series is denoted as
X ={zlT|i=1,---,N} € RV*T where T is the number of time steps and N is the number of
variates. The goal is to predict the future S time steps Y = {z "57T5 | j = 1,... N} € RV*S,
Missingness is represented by a binary mask M € {0, 1}V*7, where X° = {X%J|M*/ = 1} are
observed values and X™ = {X%J|M%J = 0} are missing values. We denote Z € RV*P ag the
intermediate representations of input, where D is the dimension of the representation.

Information Bottleneck for MTSF-M IB theory (Tishby & Zaslavsky, 2015} [Voloshynovskiy
et al.| 2019) provides an information-theoretic framework for learning compact and informative
representations. Given the partially observed input X° and the prediction target Y, the goal is to
learn a latent representation Z that is maximally compressive with respect to X° while remaining
maximally informative about Y. This trade-off in CRIB is formalized by the following objective:

min [o(Z; X°) = 5 - 1o(Y; 2)) (1)

Here, 0 represents the learnable parameters of our proposed CRIB. I(Z; X°) and I(Y’; Z) are the
mutual information terms measuring compactness and informativeness, respectively. The Lagrange
multiplier 5 € R* controls the balance between these two terms (Tishby et al.,[2000). Furthermore,
under standard assumptions in the IB literature (Alemi et al., 2016} (Chalk et al.l 2016, Ma et al.,
2023)), the joint distribution of the variables can be factorized as:

p(X%,Y, Z) = p(Z|X°, Y )p(Y|X°)p(X°) = p(Z]|X*)p(Y[X*)p(X°), 2

namely, there is a Markov chain Y < X° < Z, indicating that the representations Z is learned
only from X° without direct access to the target Y.

3 METHODOLOGY

As illustrated in Fig. [2] our proposed model, CRIB, bypasses the problematic imputation stage by
performing forecasts directly on the partially observed data. The architecture is composed of sev-
eral key stages, each designed to address the challenges of learning from partially observed data.
First, to handle the raw, sparse input, we introduce a Patching Embedding layer that employs a Tem-
poral Convolutional Network (TCN) (Bai et al.,[2018) to learn robust local feature representations
from available data points. Second, to capture the complex global correlations that are disrupted by
missingness, a Unified-Variate Attention mechanism models correlations across all patches simulta-
neously. Third, to ensure the model learns features that are stable and invariant to different missing-
ness, especially under high missing rates, we introduce a Consistency Regularization scheme based
on data augmentation. The entire learning process is guided by the IB principle, which provides
a theoretical foundation for learning a representation that is maximally compressive against noise
while being sufficiently informative for the forecasting task.
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Figure 2: Overall framework of CRIB. (a) Data Augmentation creates a more challenging view of the
partially observed data X° by generating an augmented version X", (b) The Patching Embedding
layer converts the X° and X A" into robust patch-level feature representations H and HA'¢. (c) The
Unified-Variate Attention mechanism models the global correlations between all the patches within
H and HA" to produce refined representations Z and ZA'¢. (d) Consistency Regularization aligns
the representations from the original Z and the augmented views Z4'¢, The entire process is guided

by the IB principles of compactness and informativeness to produce the final forecast Y.

3.1 PATCHING EMBEDDING

To effectively enhance the semantic information that is not available in the partially observed, point-
level time series X° € RY*T we first transform the input into a sequence of more meaningful
patch -level representations (Nie et al.||2022). The series is partitioned into non-overlapping patches
X= {Azl T/P |i=1,---,N} € RNX(T/P)XP of length P. We choose P such that the total length
T is evenly divisible. Consequently, this patching strategy reduces the sequence length from 7' to
T/ P, thus remarkably lowering the memory and computational cost of attention calculation.

Next, to enable the following unified-variate attention mechanism to capture the temporal direc-
tionality of each variate z}'T, we adopt the temporal encoding strategy inspired by vanilla trans-
former (Vaswani, [2017) as follows:

sin(t/10000%™/P)  if m = 2k,

TE(t,m) = { cos(t/10000>™/F) if m = 2k + 1, ®)

where m represents the m-th dimension of the feature. These temporal embeddings are added to the
input patches to provide temporal information. Each patch, now containing a mix of observed values
and temporal embeddings, is then processed by a TCN. It utilizes its efficient dilated convolution
structure to transform sparse patches with missing values into dense feature representations H €
RN X(T/P)xD that capture local temporal correlations.

3.2 UNIFIED-VARIATE ATTENTION

To model the complex, non-local correlations disrupted by missing data, we introduce a unified
attention mechanism. Instead of using separate modules for inter- and intra-variate correlations
among all the variates, our approach treats all patch representations uniformly. We first flatten the
patch representations H into a sequence H € RWXT/P)xD with N x T/P tokens. A standard
self-attention mechanism is then applied to this flattened sequence:

QKT
VD

7Z = Attention(Q, K, V') = Softmax(

WV, “4)
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where Q, K,V € RINXT/P)XD are the linear projections of tokens H, and T denotes the matrix
transpose. This allows the model to learn all possible correlations—both within a single variate’s
timeline (intra-variate) and across different variates (inter-variate)—without imposing strong, pre-
defined structural biases. Such flexibility is particularly advantageous for sparse data, as it permits
the model to rely on the most informative available signals, regardless of their origin. Unlike previ-
ous methods (Y1 et al.| 2024; Wang et al., 2024a)) that employ strategies to reduce the memory and
time costs of attention calculations, often at the expense of attention mechanism performance, we
accelerate attention computation by patching time series. This can reduce the number of temporal
tokens from 7" to T'/ P, lowering the memory and computational cost of attention calculation by a
factor of P2, while enhancing the semantic-level information of the data.

3.3 FINAL PREDICTION

In CRIB, we implement the predictor using a simple Multi-Layer Perceptron (MLP) as follows:
Y = Predictor(Z) = MLP(Z) € RV*5, (5)

where S is the prediction length and MLP(-) denotes a simple two-layer fully connected network
with a ReLU activation function applied between the layers. We deliberately employ a simple linear
predictor to demonstrate that the forecasting performance of CRIB stems from the high-quality,
robust representations Z learned by our IB-guided attention mechanism, rather than employing a
complex and powerful predictor (Liu et al.|[2023;|Zeng et al.,|2023).

3.4 INFORMATION BOTTLENECK GUIDANCE

To enhance the quality of the learned representations Z and improve forecasting accuracy, we pro-
pose an IB-based guidance. This guidance aims to balance compactness (filtering out irrelevant in-
formation) with informativeness (preserving relevant task-specific signals), allowing CRIB to focus
on the most significant factors for accurate forecasting. In this section, we present how the com-
pactness and informativeness principles are formulated and implemented in our framework. Full
derivations are detailed in Appendix

3.4.1 COMPACTNESS PRINCIPLE

The compactness principle, which aims to minimize the mutual information Iy(Z; X°), forces the
learned representation Z to be a minimal sufficient statistic of the input. In our context, this encour-
ages the model to discard non-essential information, which critically includes the noise introduced
by the arbitrary locations of missing values. Following the variational inference (Voloshynovskiy
et al| [2019), we derive a equivalent form of the compactness term in Eq.[T]as follows:

19(Z; X°) = Epan o llog M] — Eyan D (p(212)|a(2))] — Dicrlp(=) [ a(2). ()

Because of difficulty in posterior calculation and the non-negative property of Kullback-Leibler (KL)
divergence, we use pg(z|2°) to approximate the true posterior distribution p(z|2°) and bound Eq.[6}

15(Z; X°) < Epgeoy Drc1[po(212°)]1a(2)] € Leomp, (7

where we set isotropic Gaussian as the prior distribution of refined representations Z, i.e., p(Z) =
N(0, I). Therefore, representations Z are produced through a multivariate Gaussian distribution as:

po(Z|1X°) = N (po(X°), diag(0p(X°))), (®)

where pg(+) and og(-) are designed as neural networks with parameter §. For training, we use the
standard reparameterization trick (Kingma, 2013), Z = u(X°) + 09(X°) ® €, which makes the
objective in Eq. [7]differentiable without the need for stochastic estimation as follows:

12 . 2 . 2 . 2
Lcomp = 3 Z (1 + log (Uéj)(XO)) _ (M(gj)(Xo)) _ (Jéj)(X°)> > ] 9)
Jj=1

Here, /,Léj) (X°) and cr(gj) (X°) denote the j-th element of the mean and standard deviation vectors.
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3.4.2 INFORMATIVENESS PRINCIPLE

To balance the compactness objective, the informativeness principle ensures that the representation
Z preserves sufficient information for the forecasting task. To derive a tractable lower bound for
the informativeness term, we follow the framework in (Voloshynovskiy et al.,[1912)) and Eq. E], and
assume that time series data follow a Gaussian distribution with fixed variance (0°1), i.e., qo(y|2) =
N (7, 02%I) (Choi & Leel [2023). The derivation proceeds as follows:

p(y[2) g0 (y]2)
Iy(Y;Z)=E log———=| =E log +E log
o ) p(%y)[ »(y) ] p(z,y)[ »(y) ] p(z,y)[

p(yl2) |
a0 (y|2) ’

1 T
> Epiz ) llog ga(yl2)] = —Epzy) ﬁ\ly —711* + 3 log(2mo?) (10)

def

X 7Ep(z,y) [”y - 37”2] = 7£Preda

thus encouraging the model to extract task-relevant information from intermediate representations.

3.5 CONSISTENCY REGULARIZATION

While the IB framework encourages learning a compact representation, high missing rates can still
lead to unstable training as shown in Appendix where the model overfits to the specific variate
in a given time window (Choi & Leel 2023)). To mitigate this and enhance robustness, we introduce
a consistency regularization scheme (Bachman et al., 2014; Laine & Ailal|2016). The core intuition
is that the model’s prediction should be invariant to the missingness. We achieve this by creating
an augmented, more challenging view of the input, e.g, introducing additional noise to partially
observed data. By enforcing that the representations learned from the observed and augmented
views remain consistent, we regularize the model to handle missing values while stabilizing the
refined representations instead of focusing excessively on a limited subset of observed data and
neglecting crucial task-relevant variate correlations.

Data Augmentation Specifically, we generate XA% € RN*T by applying two augmenta-
tions (Wen et al., [2020): (1) Random Masking, where we randomly select an additional 10% of
the observed time points and set them to zero to simulate a more severe missingness scenario; and
(2) Gaussian Noise, where we add noise € € N(0, I) to all observed points to simulate sensor noise,
enhancing the model’s robustness to minor fluctuations in the input..

Consistency Regularization Then, through the same forward process as X°, we can get their
refined representations Z"¢, The refined representations of observed and augmented data are regu-
larized via the following consistency regularization loss function:

1 NXxT/P N
= _ o hue))2 11
EConsm N x T/P ; HZL Z || ’ ( )

where N x T'/P is the number of the flattened tokens. By aligning the representations of the ob-
served and augmented data, the model is encouraged to learn stable representations, thus enhancing
robustness in scenarios with high missing rates. Furthermore, this consistency regularization can
be seamlessly integrated into the overall optimization objective, complementing the IB theory to
ensure that the refined representations retain essential task-relevant information while filtering out
irrelevant noise from the missing values.

3.6 MODEL LEARNING

We have proposed a consistency-regularized method CRIB, which can complete MTSF-M tasks
based on the IB theory. Overall, we optimize our model based on the following objective by com-
bining all the introduced loss functions:

H}gin [Ck ’ (‘Cgomp + ﬁ ’ ’Cgred) + CCOHSiS}v (12)
where a, 8, € R are the preset balancing coefficients. This entire guidance helps CRIB extract the

most important task-relevant information from the partially observed time series data while filtering
out irrelevant noise introduced by missing values.
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4 EXPERIMENT

In this section, extensive experiments on four real-world time series forecasting datasets are con-
ducted to illustrate the effectiveness of our proposed CRIB. More experiments are in Appendix [F|

4.1 EXPERIMENT SETTINGS

Datasets. We evaluate our model on four MTSF datasets: PEMS-BAY (L1 et al.l 2017), Metr-
LA (Lietall2017), ETThl (Zhou et al.,[2021), and Electricity (Wu et al.,[2021)). The key statistics
and information of these datasets are summarized in Appendix |C| To assess the model’s effective-
ness and robustness in handling missing values, we introduce synthetic missingness by randomly
removing data points at varying missing rates of 20%, 40%, 60%, and 70% with three different
missing patterns. During the experiments, we normalized the data to facilitate better model fitting.

Baselines. We chose 12 representative models for performance comparison. (1) Representative
MTSF-M methods: BRITS (Cao et al.,[2018), SAITS (Du et al.,[2023)), SPIN (Marisca et al.,|2022),
GRIN (Cini et al.,2021)), and BiTGraph (Chen et al.}2023). (2) Transformer-based MTSF methods:
iTransformer (Liu et al., 2023)), PatchTST (Nie et al.,|2022)), and PAttn (Tan et al., 2024). (3) MLP-
based and RNN-based MTSF methods: DLinear (Zeng et al.,|2023)), WPMixer (Murad et al., 2025)),
TimeXer (Wang et al.,[2024b)), and SegRNN (Lin et al., 2023)).

Since the last two kinds of methods are not designed for MTSF-M tasks, we also study their variants
by combining them with the current SOTA time series imputation method TimesNet (Wu et al.|
2022) to build a two-stage framework, where TimesNet imputes and they predict. To simulate a
practical scenario where the ground truth for missing values is unavailable during inference, Times-
Net is trained on each dataset with a 10% missing rate and then imputes the observed data with 20%,
40%, 60%, and 70% missing rates. The original models and the variants are denoted as Original
and Imputed, respectively. More baseline details are in Appendix [D]

Implementation Details. We use Adam optimizer (Kingmal 2014) to learn the parameters of all
models with 10~3 learning rate. The unified-variate attention of CRIB is configured with 2 layers
and 4 heads, while the predictor is implemented as a simple 2-layer MLP. Both historical and future
time window sizes are set to 24 for all methods, following the setting of BiTGraph (Chen et al.,
2023). The patch length is set to 8, so every time series in a time window is patched into three
tokens. The entire dataset is divided into training, validation, and testing sets with ratios of 60%,
20%, and 20%. Hyperparameters of all baselines are consistent with their original papers.

Metrics. In our experiments, we use Mean Absolute Error (MAE) and Mean Squared Error (MSE)
to evaluate the forecasting performance of different methods.

4.2 MAIN RESULTS

Table 1: Performance comparison on four datasets with a point missing pattern (average MAE and
MSE across 20% to 70% missing rate). Best is Bold and second-best is Underlined.

. [BiTGraph BRITS GRIN SAITS SPIN  SegRNN WPMixer iTransformer PatchTST DLinear TimeXer PAitn Ours |
Data Metric! o R e IMP
| Original |Original|Original|Original |Original | Original Imputed|Original Imputed|Original Imputed|Original Imputed|Original Imputed|Original Imputed|Original Imputed|Original|

MAE | 0.413 |0.366 | 0.350 | OOM | 0.402{0.120 0.178|0.155 0.201|0.107 0.125|0.129 0.139|0.156 0.148|0.125 0.135|0.110 0.1480.093 [13%
MSE | 0.788 |0.705 | 0.623 | OOM | 0.649 | 0.067 0.203 | 0.082 0.140 | 0.055 0.072|0.060 0.086 |0.087 0.081|0.051 0.073|0.061 0.091 |0.043 [15%

0.445 ‘0,366 ‘ 0.389 ‘ 0.451 ‘0.625 ‘0,3I8 0.314 ‘ 0.356 0.342(0.273 0.290 ‘ 0.313 0.306 ‘ 0.399 0.366 ‘ 0.321 0.298 ‘0.302 0.294 ‘ 0.262

PEMS-BAY

MAE
MSE

q
Metr-LA 4%

0.760 |0.611{0.653|0.721 |0.965 | 0.345 0.360 | 0.356 0.385|0.317 0.330|0.320 0.349 |0.373 0.362|0.313 0.333]0.337 0.345|0.301 | 4%

0.337 {0.357]0.356|0.372 (0.437 | 0.356 0.425|0.340 0.399 |0.342 0.419|0.324 0.386|0.402 0.598 |0.314 0.347 |0.341 0.4320.256 [18%
0.387 |0.421|0.400|0.457 | 0.468 | 0.479 0.477|0.432 0.417 | 0.408 0.473|0.385 0.435|0.560 0.682|0.377 0.370 |0.416 0.470 | 0.269 |27 %

0.036 |0.035]0.034]0.053|0.136|0.078 0.255]0.049 0.218 |0.034 0.130|0.036 0.105|0.074 0.210]0.029 0.083|0.042 0.152|0.026 [10%
0.113 | 0.059|0.061|0.266 |0.358 | 1.010 1.286 | 0.172 0.286 | 0.054 0.547 | 0.092 0.379 | 0.404 2.000 | 0.064 0.100 |0.115 0.864 | 0.044 [18%

MAE
MSE

ETThl

MAE
MSE

Electricity

The average performance comparisons between baselines and CRIB across four datasets are pre-
sented in Tab.[I] with full results in Appendix [E|and more missing patterns performance comparison
in Fig.|3|and Appendix We denote out-of-memory and improvement as OOM and IMP, respec-
tively. Based on these results, we summarize our observations (Obs.) as follows:

Obs. @: CRIB demonstrates superior performance improvement in MTSF-M tasks. As shown
in Tabs. [T] and {] Fig. 3] and Appendix CRIB achieves the lowest MAE and MSE across all
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Figure 4: Ablation and Sensitivity experiment results on PEMS-BAY dataset of CRIB.

4 datasets and 3 missing patterns, with substantial improvements. Specifically, CRIB reduces the
MAE by over 18% on ETTh1 and over 13% on PEMS-BAY compared to the strongest baseline. We
attribute this improvement to our model’s design, which integrates patch embedding, unified-variate
attention, and consistency regularization under the IB principle, thus enabling CRIB to effectively
filter noise from incomplete data while preserving essential predictive signals.

Obs. ®: Modern MTSF models have surpassed specialized models, and applying imputation to
them is often detrimental. Our experiments show that recent MTSF models (e.g., PatchTST), when
applied directly to partially observed data, consistently outperform methods designed specifically for
missing values (e.g., BiTGraph). Moreover, we find that applying an explicit imputation step to these
modern models is often harmful; their performance on partially observed data is frequently superior
to that of their two-stage variants, which use a pre-trained imputer (e.g., TimesNet). For example,
PatchTST has an average 0.324 MAE while its variant has a worse average 0.386 MAE on the
ETTh1 dataset. These phenomena suggest that imputation without direct ground-truth supervision
can introduce erroneous values. This, in turn, distorts the underlying data distribution and corrupts
variate correlations, ultimately degrading forecasting performance.

4.3 ABLATION AND SENSITIVITY STUDY

Table 2: Ablation study of consistency regularization under different missing rates on ETTh1.

Method Missing 20 % Missing 40 % Missing 60 % Missing 70 %

etho MAE MSE MAE MSE MAE MSE MAE MSE
wlo Consis | 0.235£0.0022  0.26440.0001 | 0.283£0.0011  0.276::0.0003 | 0.339+0.0021  0.405-£0.0003 | 0.44840.0020  0.574+0.0010
CRST-IB | 0.220+0.0001  0.171+0.0001 | 0.251-0.0001  0.249--0.0001 | 0.267--0.0001  0.296-:0.0001 | 0.2884-0.0001  0.361--0.0008

We conduct ablation and parameter sensitivity studies to examine the contribution and robustness of
each component in CRIB. The experiments are performed on PEMS-BAY dataset with four missing
rates. In the Ablation Study (Fig.[d(a)), we design three ablation experiments with configurations
as follows: (1) w/o Uni-Atten: we replace the unified-variate attention mechanism with the vanilla
attention mechanism. (2) w/o Consis: we remove the consistency regularization. (3) w/o IB: we
remove the compactness and informativeness guidance of IB. In the Sensitivity Study (Fig. El (b)),
we vary the weights assigned to the Embedding Size, IB weight: o, and Consis Weight: ~ to study
how each impacts model performance. We get observations as follows:

Obs. ©: Capturing variate correlations and ensuring consistency are critical for direct fore-
casting. Both removing the unified-variate attention module (w/o Uni-Atten) and consistency reg-
ularization (w/o Consis) lead to a significant performance drop. This highlights the importance of
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modeling inter-variate dependencies to comprehend the true data correlations, especially when val-
ues are missing. Moreover, as shown in Tab. 2| consistency regularization is crucial for improving
the model’s accuracy and stability, evidenced by lower prediction error and variance.

Obs. @: The Information Bottleneck principle is the model’s foundational component. The
most severe performance degradation occurs when the IB guidance is removed (w/o IB). The relative
stability of the full model and the other variants, contrasted with the sharp decline of the w/o IB
variant, confirms that the IB principle is fundamental to our model’s ability to filter noise and achieve
robust performance from incomplete data.

Obs. ®: CRIB is robust to hyperparameter variations, though over-regularization can be
detrimental under high missing rates. As shown in Fig. 4] (b), a larger embedding size generally
correlates with better performance. However, the model remains effective even with a small em-
bedding size (e.g., 32), demonstrating its efficiency in terms of computational and memory costs.
For the IB and consistency regularization weights, we observe a trade-off. At low missing rates,
higher weight values can improve accuracy. However, as the missing rate increases, excessively
high weights tend to over-regularize the model, which can hinder its ability to capture complex
variate correlations and thus degrade the final forecasting performance.

5 RELATED WORK

Multivariate Time Series Forecasting with Missing Values Existing MTSF methods (Liu et al.,
2023;|Wang et al.,|2024bj Hu et al.|2025d), which typically assume complete data, suffer significant
performance degradation when applied to partially observed datasets. To address this issue, research
on MTSF-M has emerged, focusing mainly on two directions: two-stage frameworks and end-to-
end models. Two-stage methods combine imputation models (Cao et al., 2018 [Cini et al., 2021}
Marisca et al., 2022) with forecasting models (Liu et al.,|2023;|Wu et al., 2021} |Tashiro et al.,[2021]).
However, this decoupled design often leads to error propagation across stages (Chen et al., [2023),
reducing overall forecasting accuracy. End-to-end approaches, on the other hand, aim to jointly im-
pute missing values and perform forecasting by interleaving spatial and temporal modules (Yu et al.,
2024])). Despite their promise, these methods face a key limitation: the lack of ground truth for the
missing values. As a result, the imputation process becomes noisy, which negatively impacts predic-
tion performance. To address these limitations, we propose a direct prediction method CRIB, which
integrates an IB-based Consistency Regularization to effectively identify relevant signals while fil-
tering out redundant or noisy information, leading to more accurate forecasts.

Information Bottleneck for Time Series The IB principle offers a framework for learning a com-
pressed representation of an input that is maximally informative about a target task (Tishby et al.,
2000). In time series, this is often implemented via Variational Autoencoders (VAEs) (Kingma,
2013; |Voloshynovskiy et al.l [2019). Existing methods like GP-VAE (Fortuin et al., |2020), MTS-
IB (Ullmann et al.| [2023), and RIB (Xu & Fekri, |2018)) use the IB framework to model temporal
dynamics. However, these approaches face a key limitation: a direct application of the IB prin-
ciple can cause the model to concentrate too narrowly on observed features (Choi & Leel 2023
Zhang et al.,2025b), thereby neglecting the broader variate correlations crucial for forecasting from
incomplete data. In contrast to these works, our proposed CRIB applies the IB principle with a
unified-attention mechanism and a consistency regularization, which encourages the model to cap-
ture stable representations and robust variate correlations even from sparse, incomplete inputs.

6 CONCLUSION

In this paper, we analyze the dominant ‘imputation-then-prediction’ paradigm for MTSF-M tasks.
Our empirical analysis reveals a fundamental flaw in this framework: without direct supervision, im-
putation can corrupt data distribution and degrade, rather than improve, final forecasting accuracy.
To address this, we propose a direct prediction paradigm and introduce CRIB, a novel framework
designed to learn directly from incomplete data. By leveraging the IB principle with unified-variate
attention and consistency regularization, CRIB effectively filters noise while capturing robust pre-
dictive signals from partial observations. Extensive experiments validate our method, showing that
CRIB achieves a significant 18% improvement and confirms the superiority of direct prediction.
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7 ETHICS STATEMENT

As our work only focuses on the time series forecasting problem, there is no potential ethical risk.

8 REPRODUCIBILITY STATEMENT

In the main text, we have formally defined the model architecture with equations. All the implemen-
tation details, including dataset descriptions, metrics, and experiment configurations are provided in
the manuscript. Code is available in https://anonymous.4open.science/r/CRIB-F660.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) as auxiliary tools to assist with the writing process. They
were used solely to polish the language and improve readability, with no influence over the research
design, experimental implementation or analysis. We conceived and executed all methodological
contributions, experiments, and conclusions independently.

B FULL DERIVATION
We illustrate the full derivation of the two terms of IB as follows.

Compactness Principle:

19(Z; X°) = Ep(ao 2 [log p(i()x'ol;(zl)/"’)]’
By llog pLZ(IZm)o. Z_)fo)o) I,
B p(2(|2°)]7
B flog p;iIZO) . 38], (13)

= Ep(40,2)[log p(qz(tﬁ) )] — Ep(a0,2)[log 522],

By uog”;z(ff)] ~ Drslp(=) || 4(2))

= Epao) [Drr(p(22°)]19(2))] = Drrlp(2) || 4(2)];
< Epao) [Drer(p(2]2°)][p(2))]-

Informativeness Principle:

pzYy
I.g (Y; Z) :Ep(z,y) [log 7)],

pyl2) |
a0 (ylz)"
=Ep(z.y) [log qe(y';)] + //Z,yp(Z) p(y]2) - log Z¥2)

p(y a0 (y2)

e fos 2 (f;'f’] + [ Dicelplul2) 1l ao(v12)] =
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p(y) 7
=E, (2 log go(y|2)] + H(Y),
>Ep () [log go(y]2)].

The inequalities of the upper and lower bound in Egs. (I3)) and (T4) follow directly from the non-
negativity of the KL-divergence and Entropy.

=Ep (2, [log (1) ]+ Ep(z ) [log (14)

dzdy,

ZEp(z,y) [log
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C DATASETS

Table 3: Dataset Statistics.

Statistics | PEMS-BAY | Metr-LA | ETThl | Electricity
Timesteps (T) 52116 34272 17420 26304
Variates (N) 325 207 7 321
Frequency 5 min 5 min 1h 1h
Mean Value 62.62 53.72 4.58 2538.79
Std Value 9.59 20.26 6.53 15027.57

We introduce information about datasets (Yu et al., [2024) as follows:

« PEMS-BAY (Li et al., [2017): This is a traffic speed dataset collected by the California
Transportation Agencies’ Performance Measurement System. It contains data collected by
325 sensors from January 1, 2017, to May 31, 2017. Each time series is sampled at a
5-minute interval, resulting in a total of 52,116 time slices.

* METR-LA (Li et al., 2017): This is a traffic speed dataset collected using loop detectors
located on the LA County road network. It contains data collected by 207 sensors from
March 1, 2012, to June 30, 2012. Each time series is sampled at a 5-minute interval,
resulting in a total of 34,272 time slices.

e ETTh1 (Zhou et al., 2021): This is a dataset used for forecasting tasks, containing data
from a power plant. It consists of measurements taken hourly, including features such as
power consumption, temperature, and pressure. Each time series is sampled at a 1-hour
interval, resulting in a total of 17,420 time slices.

¢ Electricity (Wu et al.,|2021): This dataset contains electricity consumption data. Each time
series is sampled at a 1-hour interval, resulting in a total of 26,304 time slices.

D BASELINES

* BiTGraph (Chen et al., 2023): A model that jointly captures temporal correlations and
spatial structures using biased Multi-Scale Instance PartialTCN and Biased GCN modules
to effectively handle missing patterns in time series forecasting.

* BRITS (Cao et al.|[2018): A bidirectional RNN model that imputes missing values directly
within a recurrent dynamical system, effectively handling correlations, nonlinear dynamics,
and general missing data patterns.

e GRIN (Cini et al [2021): A graph neural network architecture designed for multivari-
ate time series imputation, leveraging spatial and temporal message passing to reconstruct
missing data.

e SAITS (Du et al.} 2023): A self-attention-based model for multivariate time series impu-
tation that uses diagonally-masked self-attention blocks to capture temporal and feature
correlations.

* SPIN (Marisca et al.,2022): An attention-based spatial-temporal model for imputing mul-
tivariate time series, which avoids error propagation and does not rely on bidirectional
encoding.

* SegRNN (Lin et al.,|2023): An RNN-based model using segment-wise iterations and paral-
lel multi-step forecasting to reduce recurrence and improve accuracy, speed, and efficiency
over Transformer baselines.

* WPMixer (Murad et al.l [2025): A MLP-based model (Wavelet Patch Mixer), leveraging
the benefits of patching, multi-resolution wavelet decomposition, and mixing.

¢ iTransformer (Liu et al.,2023)): A restructured Transformer for time series forecasting that
captures multivariate correlations via attention on variate tokens, enhancing performance
and efficiency across variable lookback windows.

15



Under review as a conference paper at ICLR 2026

* PatchTST (Nie et al., 2022): A Transformer-based model that segments time series into
patches with a channel-independent design, enhancing long-term forecasting.

* DLinear (Zeng et al.l 2023)): A model that uses a simple MLP as the predictor to forecast
accurately and has achieved great success.

* TimeXer (Wang et al.l |2024b): A Transformer-based model that employs patch-level and
variate-level representations respectively for endogenous and exogenous variables, with an
endogenous global token as a bridge in-between.

* PAttn (Tan et al| 2024): A simple Transformer-based model combining patching with
one-layer attention.

E FULL EXPERIMENTS

Table 4: Performance comparison of different models for multivariate time series forecasting with
missing values. Missing rate is set at 20%, 40%, 60%, and 70%. The best results are highlighted in
Bold and the second-best is highlighted in Underline.

Data  Metric ‘BlTGraph BRITS GRIN SAITS SPIN SegRNN WPMixer iTransformer PatchTST DLinear TimeXer PAttn Ours

riginal Original Imputed Original Imputed Original Imputed |Original Imputed|Original Impy riginal Impi riginal Imp riginal Imp riginal Imputed|Original
Ori I Original I d Original I d Original I d|Original T d|Original }0' I }9" 1 }0" 11 ‘}O" 11 d|Original

MAE@20%| 0.403 |0.351]0.343|OOM|0.218 | 0.114 0.231]0.122 0.249{0.097 0.153]0.107 0.158|0.145 0.163|0.097 0.146|0.109 0.173 |0.083
MSE@20%| 0.754 | 0.664 | 0.585|O0M | 0.234 | 0.066 0.232|0.068 0.193]0.048 0.094 |0.058 0.107 | 0.078 0.096 | 0.042 0.087|0.062 0.111|0.034

MAE@40%| 0.411 |0.360|0.346 | OOM | 0.288 | 0.108 0.179 0.129 0.203|0.093 0.127]0.106 0.142|0.144 0.138|0.097 0.140|0.098 0.165 | 0.085
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F EXTRA EXPERIMENTS

F.1 FORECASTING RESULTS VISUALIZATION

We present a spatial visualization of forecasting results to demonstrate the effectiveness of CRIB
under varying missing rates. Fig. [5|shows the final timestamp in the historical time window and the
first forecasting timestamp on the PEMS-BAY dataset. At lower missing rates (20% and 40%), by
effectively leveraging inter-variate correlations extracted from the data, CRIB accurately predicts the
future values. Even at higher missing rates (60% and 70%), CRIB can maintain stable performance
and predict the spatial distribution of the PEMS-BAY datasets. These findings underscore CRIB’s
capability to handle incomplete data and produce reliable predictions.
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Figure 5: Visualization of the input and forecasting results of CRIB on the PEMS-BAY dataset with
missing rates from 20% to 70%.
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Figure 6: Visualization comparison of attention maps on the Metr-LA dataset with 60% missing

values. Left: Two attention maps of the direct application of IB on the standard Transformer. Right:
Two attention maps of CRIB.

F.2 UNIFIED-VARIATE ATTENTION MAPS VISUALIZATION

In Fig. [ we compare visualizations of directly applying IB on the Transformer with our proposed
CRIB. In the first experiment, a transformer model serves as the predictor. The left two figures
clearly show that directly applying IB to the model would force the model to focus on a few specific
values (straight line attention), thereby neglecting global information. In contrast, the right figures
reveal that CRIB can not only capture the original intra-variate temporal correlations in one attention
head but also effectively uncovers cross-variate correlations in another, rather than relying solely on
raw correlations. As a result, the final forecasting performance is improved remarkably by our
unified-variate attention mechanism and consistency regularization scheme.

F.3 EXPERIMENTS ON VARIOUS MISSING PATTERNS

Figures [7]to[I4] present the main forecasting results, comparing our proposed model, CRIB, against
state-of-the-art baselines. The results clearly show that CRIB consistently achieves the lowest MAE
and MSE across all evaluated scenarios. This superiority holds true for both the PEMS-BAY and
ETThl datasets, under point, block, and column missing patterns, and across a wide range of miss-
ing rates from 20% to 70%. Notably, while the performance of most baseline models degrades
significantly as the missing rate increases, CRIB maintains its superior performance and stability.
This demonstrates the robustness and effectiveness of our direct-prediction approach, validating its
superiority over existing methods, especially in challenging high-missing-rate environments.
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Figure 7: MAE comparison on PEMS-BAY and ETTh1 with point, block, and column missing
patterns on 20% missing rate.
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Figure 8: MSE comparison on PEMS-BAY and ETThl1 with point, block, and column missing
patterns on 20% missing rate.
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Figure 9: MAE comparison on PEMS-BAY and ETTh1 with point, block, and column missing
patterns on 40% missing rate.
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Figure 10: MSE comparison on PEMS-BAY and ETThl with point, block, and column missing
patterns on 40% missing rate.
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Figure 11: MAE comparison on PEMS-BAY and ETTh1 with point, block, and column missing
patterns on 60% missing rate.
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Figure 12: MSE comparison on PEMS-BAY and ETThl with point, block, and column missing
patterns on 60% missing rate.

038 (a) PEMS-BAY 70% Missing (b) ETTh1 70% Missing
.. 0.55
0.32 0.50
= 0.26 0.45
E 0.40
0.20 035
0.14 0.30
0.08 0.25
3 Point Block Column Point Block Column
SegRNN [ WPMixer B iTrans. B PatchTST I DLinear I TimeXer HEE PAttn CRIB (Ours)

Figure 13: MAE comparison on PEMS-BAY and ETThl with point, block, and column missing
patterns on 70% missing rate.
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Figure 14: MSE comparison on PEMS-BAY and ETThl1 with point, block, and column missing
patterns on 70% missing rate.
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G REBUTTAL RESPONSES

G.1 MOTIVATION AND CONTRIBUTION

We acknowledge that the limitations of the ‘imputation-then-prediction’ paradigm have been dis-
cussed in prior works, and that direct prediction and Information Bottleneck (IB) frameworks are
established in previous literature. However, as detailed in our Introduction and Related Work, ex-
isting end-to-end methods still incorporate explicit imputation modules within their framework.
Consequently, they structurally remain within the “imputation-then-prediction” paradigm, merely
shifting the imputation to a latent or module scale. The distribution shift and correlation destruction
shown in Fig. [I] are calculated based on real data and model outputs (t-SNE and Correlation Map),
not a Toy Example. This intuitively reveals the risks of unsupervised imputation. Our contribution
extends beyond a simple critique to provide a systematic empirical re-evaluation and CRIB.

Table 5: Performance comparison on PEMS-BAY dataset (40% Missing).

. . . TimesNet . TimesNet
Metric CRIB BiTGraph DLinear + DLinear TimeXer + TimeXer
MAE 0.093 0.413 0.156 0.148 0.125 0.135
MSE 0.043 0.788 0.087 0.081 0.051 0.073

@ Detrimental Imputation: We demonstrate that imputation without ground truth is often harm-
ful. As visualized in Fig. (1| methods following the “imputation-then-prediction” paradigm fail to
recover the true data distribution and instead reinforce biased patterns from partial observations.

0 Performance Degradation: We provide counter-intuitive evidence that imputation actively harms
prediction accuracy. For instance, equipping the predictor TimeXer with the SOTA imputer Times-
Net increases the MAE from 0.125 to 0.135 as shown in Tab.[3] It also has no help in understanding
the data distribution and variate correlations as demonstrated in Fig.

® Limitations of Vanilla IB: We further observe that a naive application of the IB is insufficient.
Fig.[6]( Appendix[F2) shows that a direct IB-based Transformer yields degenerate attention maps,
biasing the model towards local linearity and neglecting global dependencies. Furthermore, results
in [2| indicate that CRIB without the consistency loss exhibits significantly higher variance. We
resolve this by integrating IB with Consistency Regularization and Unified-Variate Attention to
effectively filter noise introduced by missingness.

G.2 NEW BASELINES AND DATASETS

Justification: We selected the combination of TimesNet (Imputation) and DLinear (Prediction)
specifically to demonstrate that even current Time Series Forecasting models fail when applied
within the “imputation-then-prediction” framework. To make it more solid, we conducted addi-
tional experiments on the combination of TimesNet (Imputation) and TimeXer (Prediction) in Fig.[T}
which reveal similar issues, demonstrating that the imputation without ground truth is detrimental.

New Comparisons: To ensure a comprehensive and fair evaluation, we selected baselines based
on their code availability and their applicability to general MTSF-M scenarios, which typically
lack predefined graph structures. Accordingly, we have expanded our experimental validation to
include comparisons with CSDI (Tashiro et al., 2021}, ImputeFormer (Nie et al., 2024), Neural-
CDE (Kidger et all [2020), and TimesNet (Wu et al., 2022)) across a broader set of datasets. We
exclude GinAR (Yu et al.l 2024) and S4M (Peng et al., [2025) solely due to reproducibility issues
with their publicly available code.

Conclusion: As shown in Tab. [/} extensive experiments on these datasets confirm that CRIB con-
sistently achieves state-of-the-art performance, exhibiting superior robustness across varying miss-
ing rates compared to both direct prediction and imputation-based baselines.
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Table 6: Statistics of the 10 real-world datasets used in our experiments.
Statistics ETThl ETTh2 ETTml ETTm2 Electricity PEMS-BAY Metr-LA BeijingAir Weather Exchange

Time Steps 17,420 17,420 69,680 69,680 26,304 52,116 34,272 36,000 52,696 7,588
Variates 7 7 7 7 321 325 207 7 21 8

Table 7: Performance comparison on different datasets with varying mask ratios. The best is Bold.
CRIB SegRNN WPMixer iTransformer PatchTST DLinear PAttn CSDI NeuralCDE ImputeFormer TimesNet

Dataset  Mask Metric

(Ours)
00 MAE 0094 0096 0.095 0.098 0.096 0.098  0.09 0.113 0.197 0.101 0.097
Y MSE  0.023  0.024 0.024 0.025 0.024 0.025  0.025 0.033 0.074 0.026 0.025
02 MAE 0107 0.115 0.116 0.115 0.109 0.142  0.116 0255 0.244 0.122 0.121
““ MSE  0.028 0.031 0.030 0.033 0.030 0.040  0.033 0.192 0.105 0.034 0.033
ETTh2 04 MAE 0131 0148 0147 0.298 0215 0181 0289 0404 0276 0.140 0.153
“ MSE  0.039  0.047 0.045 0.180 0.125 0.065 0.173 0399 0.134 0.049 0.048
06 MAE 0154 0.183 0.202 0.270 0.216 0.253 0243 0618 0.347 0.173 0.209
® MSE  0.055 0.072 0.086 0.170 0.121 0.135  0.133  0.840 0.210 0.061 0.092
07 MAE 0172 0205 0.218 0.218 0.186 0325  0.196 0.798 0.413 0.174 0.246
" MSE  0.069 0.093 0.104 0.111 0.083 0.228  0.085 1303 0.303 0.071 0.132
00 MAE 02000 02265 02405 0.2309 0.2379 02772 02423 04759  0.3331 0.2999 0.2100
' MSE 02008 02302 02741 0.2514 0.2648 03504 02782 0.8854  0.4218 0.2682 0.2018
02 MAE 02368 02616 02900 0.2909 02779 03711 02971 05198  0.3809 0.3271 0.2584
““ MSE 02586 03068  0.3593 0.3751 0.3486  0.5499 0.3864 0.9345 05177 0.3282 0.2992
ETTml 04 MAE 02734 03005 03308 0.3593 0.3456 04418 03592 0.5787  0.4391 0.3571 0.3040
“ MSE 03382 04007  0.4645 0.4851 04671 07412 0.4801 1.0499  0.6643 0.4749 0.4093
06 MAE 03414 03678 04171 0.4365 04091 05551 04191 07038  0.5457 0.4315 0.3993
® MSE 05200 05960  0.7328 0.7580 0.6769  1.1067 0.7022 1.3801  0.9573 0.6978 0.6525
07 MAE 04013 04266 04863 0.5034 04743 0.6508 04816 0.8287  0.6278 0.4845 0.4828
" MSE 0.6956 0.8006  0.9928 1.0663 0.9325 14721 09837 1.7733 12710 0.9035 0.8988
00 MAE 00746 00802  0.0821 0.0781 0.0824  0.0918 0.0828 0.1313  0.1327 0.0813 0.0782
' MSE 0.0152 00175  0.0182 0.0161 0.0182  0.0217 0.0187 0.0410  0.0363 0.0160 0.0165
02 MAE 00885 00956  0.1059 0.1020 0.1005  0.1405 0.1024 02687  0.1760 0.0888 0.1087
““ MSE 0.0203 00231  0.0266 0.0284 0.0251  0.0391 0.0278 0.1976  0.0591 0.0222 0.0260
ETTm2 04 MAE 0037 01159 01355 0.2673 02041 01743 02441 04131  0.1984 0.1088  0.1417
“© MSE 0.0258 0.0305  0.0394 0.1688 0.1210  0.0601 0.1490 0.4003  0.0765 0.0267 0.0406
06 MAE 01266 0.1432  0.1790 0.2651 0.2425 02412 02398 0.6221  0.2479 0.1360 0.1986
® MSE 0.0384 0.0477  0.0685 0.1671 0.1423  0.1215 0.1448 0.8293  0.1194 0.0424 0.0811
07 MAE 01467 0.1650  0.1899 0.1905 0.1803 03104 0.1728 0.8024  0.3130 0.1602 0.2317
* MSE 0.0520 00619  0.0808 0.0861 0.0779 02056 0.0717 1.2968  0.1857 0.0569 0.1142
00 MAE 0028 0031 0.030 0.030 0.031 0.034  0.031 0.051 0.051 0.035 0.028
~ MSE  0.016 0.021 0.019 0.018 0.019 0.023  0.020 0.042 0.029 0.020 0.016
02 MAE 0038 0042 0.050 0.044 0.048 0.099  0.046 0.173 0.073 0.041 0.062
““ MSE  0.025 0.028 0.025 0.031 0.027 0.045  0.032  0.220 0.036 0.028 0.033
Weather 04 MAE 0050 0050 0.074 0.152 0.150 0.135  0.157  0.300 0.095 0.051 0.088
“© MSE  0.033  0.037 0.036 0.167 0.156 0.078  0.140 0500 0.060 0.033 0.047
06 MAE 0062 0066 0.102 0.175 0.169 0.197  0.168 0.466 0.150 0.066 0.128
' MSE  0.057 0.6l 0.062 0.223 0.169 0.178  0.163 1.099 0.150 0.064 0.089
07 MAE 0070 0076 0.121 0.101 0.118 0.254  0.100 0.586 0.204 0.076 0.166
“ MSE  0.075 0.081 0.084 0.138 0.128 0318 0.120 1.707 0.284 0.083 0.154
00 MAE 00184 00185 00187 0.0190 0.0186  0.0205 0.0187 0.0264  0.3223 0.0344 0.0195
' MSE 0.0009 0.0010  0.0010 0.0010 0.0010  0.0011 0.0010 0.0017  0.1724 0.0031 0.0011
02 MAE 00217 00202 00324 0.0288 0.0273  0.0795 0.0227 0.1992  0.2969 0.0364 0.0458
““ MSE 0.0016 0.0031  0.0024 0.0024 0.0019  0.0126 0.0016 0.2089  0.1592 0.0029 0.0041
Exchange 04 MAE 00253 00629  0.0783 0.1899 0.1416  0.1469 0.1408 0.4358  0.3326 0.0431 0.0786
“© MSE 0.0015 00129  0.0127 0.0770 0.0884  0.0429 0.1047 05718  0.2146 0.0034 0.0130
06 MAE 00363 0.1165  0.1364 0.2439 0.1978  0.2599 0.1283 0.7911  0.4334 0.0608 0.1357
® MSE 0.0031 0.0363  0.0405 0.1060 0.1129  0.1394 0.0831 13714  0.3814 0.0071 0.0404
07 MAE 00517 0.1418  0.1836 0.2865 0.1321 03778 0.0718 1.0766  0.5412 0.0846 0.1991
* MSE 0.0058 0.0490  0.0697 0.1413 0.0581 03011 0.0169 2.2850  0.5912 0.0128 0.0881
00 MAE 02526 02552 02571 0.2606 0.2609 02707 02601 0.3431 03167 0.2533 0.2583
Y MSE 02929 03026  0.3085 0.3156 0.3008  0.3263 03102 05141 03779 0.3189 0.2939
0p MAE 02758 02849 02896 0.2923 0.2866 03204 0.2949 0.4035  0.3478 0.2770 0.2922
" MSE 03317 03467  0.3651 0.3655 0.3421 03853 03603 0.6010  0.4196 0.3496 0.3488
BejingAir 04 MAE 03106 03188 03312 0.3545 03278  0.3620 0.3480 0.4714  0.3950 0.3297 0.3322
“© MSE 04120 04285 04601 0.4820 0.4305 04760 04689 0.7584  0.5474 0.4645 0.4422
06 MAE 03728 03860 04011 0.4124 0.3976  0.4362 04142 05930  0.4750 0.4006 0.4017
' MSE 05862 05939  0.6503 0.6573 0.6458  0.6799 0.6624 1.1378  0.7803 0.6110 0.6275
07 MAE 04337 04412 04632 0.4691 04613 05022 04673 0.7057  0.5456 0.4549 0.4789
' MSE 08010 0.7595  0.8730 0.8874 0.8540  0.9358 0.8745 1.5761  1.0151 0.8327 0.9234

G.3 NATURAL MISSINGNESS
We have conducted the experiments on the AQI dataset (Yi et al| [2016) with naturally occur-

ring missing data as suggested. To fairly compare ‘direct prediction’ against the ‘imputation-then-
prediction’ strategy, we designed the experiment as follows:
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* Imputation Model Setup: We first pre-trained a TimesNet model (Wu et al., 2022)) on the AQI
training set. To enable learning for imputation, we applied a 10% point missing mask to the
observed values during training. We selected a 10% masking rate because our statistical analysis
showed that the natural missing rate of the AQI dataset is approximately 10%.

* Two-Stage Process (AQI_IMP): We used this pre-trained TimesNet to impute the naturally oc-
curring Not a Number (NaN) values across the entire AQI dataset. We then trained and evaluated
the downstream forecasting models on this fully imputed dataset.

* Direct Prediction (AQI_ORI): For comparison, we trained and evaluated the models directly on
the original AQI dataset containing natural missing values.

» Evaluation Metric: To ensure a valid comparison, the MAE and MSE metrics were calculated
only on the observed data points (excluding original NaNs from the loss calculation via masking),
as the ground truth for the naturally missing parts is unknown.

Conclusion: The experimental results are presented in Tab. We observed that for multiple
forecasting models, using TimesNet to impute the missing values actually degraded the prediction
performance compared to direct prediction. This negative impact empirically corroborates our pa-
per’s central claim: in the absence of ground truth supervision, the ‘imputation-then-prediction’
strategy can introduce noise and corrupt the data distribution, making it suboptimal compared to
‘direct prediction’ methods like CRIB.

Table 8: Performance comparison on AQI datasets (Original vs. Imputed). The best results are
highlighted in Bold, and the second-best is highlighted in Underline.

Dataset \Metric \ CRIB SegRNN WPMixer iTransformer PatchTST DLinear PAttn CSDI NCDE ImpFormer TimesNet

AQLORI MAE | 0.555 0.604 0.624 0.608 0.627 0.598 0.621 0.858 0.798 0.795 0.648
- MSE | 0.663 0.804 0.843 0.818 0.844 0.741 0.843 1448 1438 1.313 0.925
AQLIMP MAE | 0.616 0.650 0.665 0.668 0.666 0.653 0.663  0.941  0.946 0.857 0.733
- MSE | 0.844 0.966 0.986 1.012 0.993 0.893 0995 1775 1928 1.543 1.206

G.4 TRAINING COST

To ensure fair comparisons, we train all baseline models from scratch using identical dataset splits
and experimental protocols, as detailed in Sec.[d.T] We evaluate computational efficiency by report-
ing the memory footprint and parameter counts of every model on ETThI as follows.

Conclusion: The results demonstrate that CRIB maintains a computational cost comparable to
efficient Transformer baselines (e.g., PatchTST (Nie et al., |2022))) while being more lightweight
than complex methods such as CSDI (Tashiro et al., |2021) and TimesNet (Wu et al., 2022).

Table 9: Comparison of model efficiency in terms of parameter count and memory cost. CRIB
achieves a balanced trade-off between performance and efficiency.

Model Parameters Memory (MB)
CRIB (Ours) 37,450 148.03
DLinear 1,200 18.99
PAttn 15,640 55.13
SegRNN 8,056 30.17
Transformer 57,063 189.38
iTransformer 39,768 154.18
PatchTST 41,528 179.80
TSMixer 6,837 21.16
WPMixer 44,370 50.16
CSDI 239,649 1,269.72
Neural CDE 37,767 41.40
ImputeFormer 264,193 1,488.22
TimesNet 863,895 1,427.44
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G.5 EXTRA ABLATION STUDY

We have done an extra ablation study on three cases of loss of CRIB to prove its effectiveness. The
ablation analysis across four datasets confirms the necessity of each component, as removing the
Consistency Regularization (Lconsis), Compactness (Lcomp), or Informativeness (Lpreq) Objectives
consistently leads to performance degradation, validating their collective role in ensuring robust and
accurate forecasting in MTSF-M tasks.

Table 10: Ablation study on ETTh1 dataset.

ETTh1 0.2 0.4 0.6 0.7
MAE MSE MAE MSE MAE MSE MAE MSE
w/o Consis 0.237 0.206 0.274 0.270 0.338 0.413 0.402 0.584
w/o Reg 0.236 0.206 0.274 0.270 0.339 0.410 0.400 0.579
w/oPred  0.432 0.559 0.505 0.698 0.655 1.066 0.796 1.486
Entire 0.220 0.171 0.251 0.249 0.267 0.296 0.288 0.361
Table 11: Ablation study on Elec dataset.
0.2 0.4 0.6 0.7

Elec

MAE MSE MAE MSE MAE MSE MAE MSE

w/o Consis 0.0201 0.0196 0.0267 0.0338 0.0346 0.0569 0.0415 0.0931
w/o Reg 0.0186 0.0175 0.0244 0.0286 0.0322 0.0544 0.0399 0.0980
w/oPred  0.0881 0.5454 0.1243 0.9424 0.1818 1.8995 0.2283 2.9058
Entire 0.0150 0.0120 0.0230 0.0280 0.0300 0.0470 0.0380 0.0910

Table 12: Ablation study on Metr-LLA dataset.

Metr-LA 0.2 0.4 0.6 0.7
MAE MSE MAE MSE MAE MSE MAE MSE
w/o Consis 0.271 0.332 0.257 0.275 0.271 0.306 0.314 0.366
w/o Reg 0.253 0.307 0.251 0.275 0.266 0.307 0.311 0.364
w/oPred  0.442 0.418 0.624 0.529 0.985 1.177 1.276 1.959
Entire 0.248 0.271 0.249 0.272 0.265 0.305 0.309 0.356

Table 13: Ablation study on PEMS-BAY dataset.

0.2 0.4 0.6 0.7

PEMS-BAY

MAE MSE MAE MSE MAE MSE MAE MSE

w/o Consis ~ 0.0959 0.0470 0.0882 0.0389 0.0976 0.0465 0.1296 0.0596
w/o Reg 0.0942 0.0453 0.0869 0.0373 0.0964 0.0456 0.1190 0.0591
w/o Pred 0.4006 0.2405 0.5618 0.3631 1.0832 1.2727 2.1480 4.8111
Entire 0.0830 0.0340 0.0850 0.0350 0.0930 0.0430 0.1100 0.0580

G.6 EXTRA SENSITIVITY STUDY

We analyze hyperparameter sensitivity in Fig. 4] (b) and conduct additional sensitivity studies. Em-
pirical results indicate that the optimal settings are consistent across different datasets and missing
rates. We set the weights for Lcomp, Lpreds and Lonsis t0 1076, 1, and 1 as default, respectively.
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Table 14: Sensitivity analysis of Lpq Weight across all missing rates. (H1: ETThl, Exch: Ex-
change, Ill: Illness)
Weight‘ 0% Missing \ 20% Missing |  40% Missing |  60% Missing | 70% Missing
| HI  Exch Il | HI Exch Il | H1 Exch Il | HI Exch Il | HI Exch m
0.1 |0.201 0.0186 0.1495|0.243 0.0332 0.2466|0.281 0.0439 0.2741|0.348 0.0413 0.3631|0.412 0.0373 0.4796
0.5 [0.198 0.0186 0.1474|0.238 0.0301 0.2341|0.273 0.0294 0.2828 |0.340 0.0362 0.3535|0.406 0.0423 0.4895
1.0 |0.198 0.0186 0.1457|0.237 0.0287 0.2306|0.274 0.0253 0.2573|0.337 0.0363 0.3703 | 0.403 0.0517 0.4914

2.0 0.199 0.0186 0.1500|0.236 0.0261 0.2383|0.273 0.0261 0.2660 |0.339 0.0363 0.3870|0.400 0.0475 0.4955
5.0 ]0.200 0.0186 0.1533]0.237 0.0246 0.2337|0.273 0.0258 0.2709 |0.338 0.0287 0.3509|0.401 0.0320 0.4497

Table 15: Sensitivity analysis of Lcomp Weight across all missing rates. (H1: ETThl, Exch: Ex-
change, I11: Illness)
Weight‘ 0% Missing | 20% Missing |  40% Missing |  60% Missing | 70% Missing
| HI Exch I | HI Exch Il | HI Exch Il | HI Exch I | HI Exch 1l
10 |0.214 0.0192 0.1713]0.260 0.0509 0.2936|0.314 0.0806 0.3263 |0.417 0.2131 0.4830|0.506 0.2851 0.6264
1 |0.208 0.0188 0.1702|0.251 0.0471 0.2802[0.296 0.0835 0.2942|0.365 0.1393 0.4377|0.437 0.2293 0.5119
1072 0.199 0.0186 0.15330.238 0.0300 0.2536|0.274 0.0319 0.2679|0.341 0.0435 0.3710|0.406 0.0499 0.4588

1076 10.198 0.0186 0.1457]0.237 0.0287 0.2306 | 0.274 0.0253 0.2573|0.337 0.0363 0.3703 |0.403 0.0517 0.4914
10710 |0.199 0.0186 0.1458|0.237 0.0276 0.2349|0.273 0.0260 0.2583|0.339 0.0417 0.3625|0.403 0.0408 0.4949

Table 16: Sensitivity analysis of Lconsis Weight across all missing rates. (H1: ETThl, Exch: Ex-
change, I11: Illness)
Weight‘ 0% Missing | 20% Missing |  40% Missing |  60% Missing | 70% Missing
| HI Exch Il | HI Exch Il | HI Exch Il | HI Exch I | HI Exch 1
0.1 ]0.201 0.0186 0.1556|0.237 0.0231 0.2289]0.274 0.0270 0.2527]0.340 0.0301 0.3519|0.400 0.0341 0.4587
0.5 ]0.199 0.0186 0.1497]0.236 0.0260 0.2348|0.274 0.0273 0.2582|0.339 0.0378 0.3647|0.401 0.0368 0.4919
1.0 {0.198 0.0186 0.1457|0.237 0.0287 0.2306|0.274 0.0253 0.2573|0.337 0.0363 0.3703|0.403 0.0517 0.4914

2.0 |0.199 0.0186 0.1477|0.239 0.0306 0.2344|0.275 0.0300 0.2801|0.340 0.0352 0.3414|0.404 0.0427 0.5009
5.0 |0.200 0.0186 0.1497|0.240 0.0312 0.2402|0.278 0.0377 0.2808 |0.344 0.0376 0.3524|0.410 0.0357 0.5203
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