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ABSTRACT

The relationship between overparameterization, stability, and generalization re-
mains incompletely understood in the setting of discontinuous classifiers. We
address this gap by establishing a generalization bound for finite function classes
that improves inversely with class stability, defined as the expected distance to the
decision boundary in the input domain (margin). Interpreting class stability as a
quantifiable notion of robustness, we derive as a corollary a law of robustness for
classification that extends the results of Bubeck and Selke beyond smoothness as-
sumptions to discontinuous functions. In particular, any interpolating model with
p ≈ n parameters on n data points must be unstable, implying that substantial
overparameterization is necessary to achieve high stability. We obtain analogous
results for (parameterized) infinite function classes by analyzing a stronger ro-
bustness measure derived from the margin in the codomain, which we refer to as
the normalized co-stability. Preliminary experiments support our theory: stability
increases with model size and correlates with test performance, while traditional
norm-based measures remain largely uninformative.

1 INTRODUCTION

The generalization behavior of overparameterized neural networks presents fundamental challenges
to classical statistical learning theory. Traditional complexity measures, such as parameter counts
or spectral norms of weights, form the basis of many generalization bounds, including those derived
from VC dimension theory (Sain, 1996) and Rademacher complexity (Bartlett & Mendelson, 2002).
However, these approaches do not adequately explain several empirical phenomena, e.g., double
descent (Belkin et al., 2019) and benign overfitting (Bartlett et al., 2020). The occurrence of dou-
ble descent illustrates that the test error, after initially increasing near the interpolation threshold,
can improve as the model size continues to grow. Similarly, the phenomenon of benign overfit-
ting demonstrates that models that perfectly interpolate noisy training data can nonetheless achieve
strong generalization. Such findings expose the limitations of norm- and size-based complexity
measures as predictors of generalization.

A large-scale empirical study evaluating more than forty complexity measures found that many
norm-based quantities not only fail to correlate with generalization, but often even correlate nega-
tively (Jiang et al., 2019). Beyond optimization-related metrics, one of the few quantities that con-
sistently correlated with generalization was the margin, i.e., the distance to the decision boundary,
closely related to the notion of (co-)stability we develop in this work. This aligns with an emerging
perspective: generalization in modern networks is governed less by model size or norms, and more
by the stability / robustness of predictions under input perturbations (Soloff et al., 2025; Ghosh &
Belkin, 2023; Zhang et al., 2022). Related insights also arise from the literature on algorithmic sta-
bility (Bousquet & Elisseeff, 2002) and flat minima (Keskar et al., 2017). However, most theoretical
results in this direction are restricted to linear models.

An exception is the universal law of robustness of Bubeck & Sellke (2021), which, under mild
distributional assumptions, establishes a formal link between robustness, generalization, and over-
parameterization: smoothness and overparameterization need to balance in order to ensure good
generalization while overfitting. The law of robustness relies on the assumption that the function
class is Lipschitz, which makes it inadequate for classifiers whose codomain is discrete by design.
We therefore take a step toward the open challenge posed in Bubeck & Sellke (2021, p. 4): “[. . . ]
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it is an interesting challenge to understand for which notions of smoothness there is a tradeoff with
size.” Specifically, we introduce class stability and normalized co-stability as geometric smooth-
ness measures that extend robustness laws to classification. In fact, replacing Lipschitz continuity
is essential: simply focusing on the Lipschitz constant of an underlying score function g, where the
classifier is of type f := argmax ◦g, is not informative. In particular, since g can be arbitrarily
rescaled without changing the predictions of f , its Lipschitz constant does not need to reflect the
geometry of the decision boundary (Liu & Hansen, 2024).

Paper Roadmap. We discuss related work in Section 2. Section 3 introduces class stability and
the isoperimetry assumption, a concentration property of the data that underlies our analysis. Sec-
tion 4 presents a generalization bound for finite hypothesis classes and examines its implications
for overparameterization. In Section 5, we extend the framework to infinite function classes via the
notion of normalized co-stability. Our theoretical predictions are tested experimentally on MNIST
and CIFAR-10 in Section 6. Finally, Section 7 concludes with a discussion of open directions.

Contributions We provide a summary of our main results.

1) We prove that, under an isoperimetry assumption on the data distribution, the data-dependent
Rademacher complexity of a finite hypothesis class of classifiers can be bounded in terms of the
minimum class stability. This yields an improved generalization bound for discontinuous classifiers
(Theorem 4),which tightens as stability increases.

2) We show that in the classically parameterized regime (#parameters ≈ #samples), any interpolating
classifier must be unstable (Corollary 6) with high probability. Consequently, achieving both near-
perfect fitting and high class stability requires substantial overparameterization of order p ≈ nd.

3) We extend the framework to infinite function classes by considering classifiers of the form
f(x) := argmax ◦gw(x), where gw is a parameterized Lipschitz-continuous (in both x and w)
score function. This enables us to define a robustness measure – the normalized co-stability –, based
on output score margins, and derive a corresponding generalization bound (Theorem 13). The added
regularity also results in a law of robustness for infinite function classes (Corollary 15).

4) We empirically validate our predictions on MNIST and CIFAR-10, observing that stability and
normalized co-stability grow with network width and closely track test error, supporting our claim
that generalization in overparameterized regimes is driven by (normalized co-)stability.

Taken together, our results extend the law of robustness to discontinuous classifiers and highlight
stability as a central factor in understanding generalization in modern networks.

2 RELATED WORK

Smoothness-based generalization. Our work is inspired by the law of robustness of Bubeck &
Sellke (2021), which shows that regression with Lipschitz predictors generalizes when smoothness
and overparameterization are properly balanced. Subsequent works have extended this perspective:
for example, Zhu et al. (2023) investigate how width, depth, and initialization affect robustness,
while more recent studies Das et al. (2025) establish refined smoothness–generalization trade-offs
for a wider range of loss landscapes.

Margin-based generalization. Classical generalization bounds combine a margin term, defined
with respect to a score function, with a capacity measure – for example, spectrally-normalized mar-
gin bounds (Bartlett et al., 2017) or path-norm bounds (Neyshabur et al., 2018). Recent extensions
include multi-class margin bounds in terms of margin-normalized geometric complexity (Munn
et al., 2024). These approaches are closely aligned with our normalized co-stability perspective:
both control a codomain margin while coupling it to a regularity property of the score function, and
both recover inverse-margin scaling.

Input-space margin bounds have also been studied, yielding that generalization is controlled by the
minimum robustness radius (Sokolic et al., 2017), while sample-complexity lower bounds show that
adversarial robustness increases the VC dimension (Gao et al., 2019). Our notion of class stability
differs: it is the expected input margin – the average distance to the decision boundary under the
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data distribution – rather than a minimum or an empirical quantile. This measure is closely tied to
robustness (Fawzi et al., 2016; Gilmer et al., 2018) and induces data-dependent bounds that track
generalization.

Limits of uniform generalization bounds. Uniform convergence–based bounds are often vacu-
ous in overparameterized networks (Nagarajan & Kolter, 2021), since SGD appears to find solutions
at a macroscopic level (supporting generalization) but with microscopic fluctuations that break uni-
form analyses. Our bounds remain uniform but depend on macroscopic, distribution-dependent
quantities: the Rademacher complexity—our applied technique to derive generalization bounds—
is controlled by stability (or co-stability). Whether this structure avoids the vacuity identified by
Nagarajan & Kolter (2021) remains open.

Stability, robustness, and implicit bias. Algorithmic stability (Bousquet & Elisseeff, 2002) and
the flat minima literature (Keskar et al., 2017) argue that robustness under perturbations drives gen-
eralization. More recently, Zou et al. (2024) derive out-of-distribution generalization bounds based
on the sharpness of the learned minima. Our contribution is to extend a stability-based perspective
to discontinuous neural classifiers, both theoretically and empirically. Complementary work on im-
plicit bias shows that gradient descent favors solutions with a small number of connected decision
regions, a proxy for large input-space margin (Li et al., 2025). This suggests that optimization dy-
namics may implicitly favor the same geometric simplicity that our stability-based bounds capture.

3 PRELIMINARIES AND NOTATION

In the following, we provide background on the key concepts underlying our analysis, namely sta-
bility, generalization, and isoperimetry. For clarity of exposition, we present our results in the binary
classification setting. The extension to multi-class problems follows by a one-vs-all reduction; see
Appendix F for details. Thus, let (X × {−1, 1}, µ) be a probability measure space with X ⊂ Rd

bounded and F ⊂ {f | f : X → {−1, 1}} a set of classifiers. The goal is to find a stable function
f ∈ F minimizing a bounded loss function ℓ : {−1, 1}2 → R+ on n i.i.d. samples (xi, yi) ∼ µ. A
natural loss in the classification setting is the 0–1 loss ℓ0 -1(y, y

′) := 1y ̸=y′ . In this setup, following
a similar approach as in Liu & Hansen (2024), we define the class stability of f as the expected
distance of a sample to the decision boundary in X , thereby capturing the average robustness of a
classifier f to input perturbations.
Definition 1 (Margin and Class Stability). Let f : X → {−1, 1}. The signed distance function df
of f at x ∈ X is defined as

df (x) :=

{
d(x, f−1({−1})), if f(x) = 1,

−d(x, f−1({1})), if f(x) = −1,

where d(x,A) := infy∈A ∥x − y∥2. We define the (unsigned) margin hf at x as the absolute value
of the signed distance function,

hf (x) := |df (x)| = inf{∥x− z∥2 : f(z) ̸= f(x), z ∈ Rd}.
The class stability S(f) of f is its expected margin under the data distribution:

S(f) := E[hf ].

Remark 2. The signed distance function df is 1-Lipschitz if X is path-connected. Moreover, if
sgn(0) = 1 and f−1({1}) is closed in X , then f admits the representation f = sgn ◦df (see
Appendix B for details).

Our goal is to relate the class stability to the Rademacher complexity of a function class, which,
in turn, connects to generalization bounds through classical results (Bartlett & Mendelson, 2002).
In particular, for a bounded loss |ℓ| ≤ a, the difference between the population risk Rℓ(f) :=

E[ℓ(f(x), y)] and the empirical risk R̂ℓ(f) :=
1
n

∑n
i=1 ℓ(f(xi), yi) is bounded with probability at

least 1− δ over the samples by

sup
f∈F

(
Rℓ(f)− R̂ℓ(f)

)
≤ 2Rn,µ(ℓ ◦ F) + a

√
2 log(2/δ)

n
, (1)
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where Rn,µ(G) denotes the Rademacher complexity of a general function class G, defined as

Rn,µ(G) =
1

n
Eσi,xi

[
sup
g∈G

∣∣∣∣∣
n∑

i=1

σig(xi)

∣∣∣∣∣
]
,

with (σi)
n
i=1 i.i.d. Rademacher random variables. To obtain a bound in Equation 1 in terms of

Rn,µ(F), note that Rn,µ(ℓ ◦ F) ≤ CRn,µ(F) holds under certain conditions on the loss, we have

Rn,µ(ℓ0 -1 ◦ F) ≤ 1

2
Rn,µ(F), i.e., C =

1

2
, (2)

whereas for L-Lipschitz losses C = L holds, see Bartlett & Mendelson (2002); Shalev-Shwartz
& Ben-David (2014) for detailed explanations. Overall, it therefore suffices to bound Rn,µ(F) in
terms of the class stability of functions f ∈ F in order to link generalization to stability. Equiv-
alently, the key step is to control how well stable functions can fit random labels, which requires
structural assumptions on the input distribution. We discuss in detail in Appendix A why such as-
sumptions are unavoidable. A natural and widely used condition is isoperimetry, which guarantees
sharp concentration for bounded Lipschitz-continuous functions (Bubeck & Sellke, 2021).
Definition 3 (Isoperimetry). A probability measure µ on X ⊂ Rd satisfies c-isoperimetry if for any
bounded L-Lipschitz function f : X → R, and any t ≥ 0,

P(|f(x)− E[f ]| ≥ t) ≤ 2e−
dt2

2cL2 . (3)

Isoperimetry is, for instance, satisfied by Gaussian measures and the volume measure on Riemannian
manifolds with positive curvature, such as the uniform measure on the sphere (Vershynin, 2018;
Bubeck & Sellke, 2021). Consequently, under the manifold hypothesis, the relevant dimension in
our bounds can be interpreted as the intrinsic manifold dimension rather than the ambient dimension.

4 A LAW OF ROBUSTNESS FOR CLASSIFICATION

In this section, we establish a law of robustness for classification, extending stability-generalization
trade-offs to discontinuous functions. Classical results for smooth functions characterize robustness
via the Lipschitz constant, which is ill-defined for classifiers with discrete outputs. To address this,
we follow the general strategy of Bubeck & Sellke (2021) (see Appendix A for details), but replace
their use of Lipschitz continuity with our notion of class stability (Definition 1). Formally, we
proceed under the following assumptions:

(H1) (X ×{−1, 1}, µ) is a probability space with bounded sample space X and c-isoperimetric1

marginal distribution µX ;
(H2) the considered hypothesis class F of classifiers f : X → {−1, 1} is finite, that is |F| < ∞.

These conditions ensure concentration of measure in the input space and allow complexity control
via a union bound. With this structure in place, class stability can be related to the Rademacher
complexity, leading to the bound stated below.
Theorem 4 (Rademacher Bound). Suppose Assumptions (H1) and (H2) hold, and that
minf∈F S(f) > S > 0 with log |F| ≥ n.

1. The empirical Rademacher complexity satisfies

Rn,µ(F) ≤ K1 max

{
1√
n
,

√
c

S
· log |F|

n
√
d

}
, (4)

for an absolute constant K1 > 0.

2. If, in addition, f−1({1}) is closed and X path-connected, the bound sharpens to

Rn,µ(F) ≤ K2 max

{
1√
n
,

√
c

S

√
log |F|
nd

, 2 exp
(
− dS2

8c

)}
, (5)

for another absolute constant K2 > 0.
1It is worth noting that our framework can be readily extended to mixtures of c-isoperimetric distributions.
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Proof sketch. Equation 4 is obtained via a Lipschitz surrogate argument combined with isoperime-
try. The refined bound in Equation 5 further leverages the representation f = sgn ◦df (Remark 2),
using that large stability ensures df remains well separated from the discontinuity at 0. Complete
details are provided in Appendix C.

Remark 5. In contrast to Bubeck & Sellke (2021), where stability is measured by the minimal
Lipschitz constant of the function class, our initial bound in Theorem 4 incurred an additional factor√
log |F|/n in the regime log |F| ≥ n. By assuming mild regularity conditions, we can eliminate

this gap and recover the same scaling as in Bubeck & Sellke (2021).

The key insight of Theorem 4, combined with the classical generalization bound in Equation 1, is
that good generalization can still be achieved in the highly overparameterized regime—provided the
classifiers exhibit sufficiently high class stability. Indeed, the presence of 1

S in front of
√
log |F| in

Equation 4 and Equation 5 indicates that class stability affects the effective complexity of the model
class, potentially mitigating the risks of overfitting in large models. Note that, using a uniform
discretization, a finite approximation of an infinite function class parameterized with p parameters
over a bounded subset of Rp satisfies log |F| ∈ O(p). In this sense, log |F| reflects the number of
model parameters. Therefore, when the number of parameters p ≈ log |F| is much larger than n,
the second term in the maximum in Equation 5 dominate, and the bounds becomes small if S scales
at least in the order of

√
p
nd .

We are now ready to state our law of robustness for discontinuous functions, obtained as a direct
corollary of the refined Rademacher bound in Equation 5 of Theorem 4.
Corollary 6 (Law of Robustness for Discontinuous Functions). Assume (H1), (H2), and the addi-
tional conditions in 2. of Theorem 4 hold. Let p := log |F| ≥ n. Fix ε, δ ∈ (0, 1) and consider the
0–1 loss ℓ0–1. There exists an absolute constant K > 0 such that, if

1. the minimal risk σ2 := minf∈F R0–1(f) satisfies σ2 ≥ ε, and

2. the sample size n is large enough to ensure (i) K√
n
< ε

3 and (ii)
√

2 log(2/δ)
n < ε

2 ,

then with probability at least 1− δ (over the sample), the following holds uniformly for all f ∈ F:

R̂0–1(f) ≤ σ2 − ε =⇒ S(f) < max

{
3K

ε

√
c log |F|

nd
,

√
8c

d
log

(
6K

ε

)}
. (6)

Proof sketch. Apply the Rademacher bound (Theorem 4) to the high-stability subset FS∗ := {f ∈
F : S(f) ≥ S∗}. For S∗ chosen large enough, such functions cannot achieve empirical risk below
σ2 − ε, so any interpolating classifier with risk ≤ σ2 − ε must lie outside FS∗ , i.e., must satisfy
S(f) < S∗. The full proof is provided in Appendix D.

Remark 7. Unlike Bubeck & Sellke (2021), which assume Lipschitz-continuous losses, our analysis
directly addresses the discontinuous 0–1 loss, making it more natural for classification tasks. The
overall proof strategy, however, extends to arbitrary losses provided one can derive an appropriate
bound on the Rademacher complexity of the composed function class, as in Equation 2.
Remark 8. Importantly, this result also covers intrinsically discontinuous classifiers, such as quan-
tized neural networks and spiking neural networks. Moreover, since self-attention is in general not
Lipschitz-continuous Kim et al. (2021), our framework appears particularly well-suited to the ana-
lyis of overparameterization of transformers, which underlie most state-of-the-art language models.

From Equation 6 we conclude that achieving both low training error and high stability requires pa-
rameterization on the order p ≈ nd. This necessity arises in the high-dimensional regime, since
when d is large the first term in the maximum dominates for p ≥ n. This reinforces our central
message: overparameterization may not harm generalization, but on the contrary, is necessary for
achieving robustness and good fitting in classification. Notably, modern neural networks, includ-
ing large language models (LLMs) (Brown et al., 2020), are trained in heavily overparameterized
regimes: Even though recent scaling laws Hoffmann et al. (2022) suggest a balance between model
and data size, these models remain functionally overparameterized in that their capacity far exceeds
what is required to fit the training data. Therefore, our result may help to understand why such
models still do generalize effectively.
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5 A LAW OF ROBUSTNESS FOR INFINITE FUNCTION CLASSES

In Theorem 4, our analysis does not straightforwardly extend to infinite function classes. The usual
proof strategy via a covering-number argument requires closeness in parameter space to imply close-
ness in function space. In Bubeck & Sellke (2021), this is enforced via Lipschitz continuity in the
parameters of the function class, but such a condition is in general meaningless for discontinuous
classifiers.

To overcome this, we restrict our attention to function classes with additional structure and introduce
a strengthened stability notion. Specifically, we impose a representation analogous to Remark 2,
namely,

(H3) The hypothesis class has the form F = sgn ◦G, where G = {gw : X → [−1, 1] : w ∈ W}
is a parameterized family of Lipschitz functions. The parameter space W ⊂ Rp is bounded
with diam(W) ≤ W , and the parameterization is Lipschitz:

∥gw1 − gw2∥∞ ≤ J ∥w1 − w2∥.

The extension from finite to infinite classes requires not only (i) Lipschitz continuity in w, but also
(ii) that the scores gw(x) stay quantitatively away from zero, so that small parameter perturbations
cannot cause arbitrary label flips. Class stability alone does not suffice to ensure (ii), as the following
example demonstrates.
Example 9 (Class stability does not prevent discontinuity). Let G = {gw(x) = w tanh(x) : w ∈
[−1, 1]}. The parameterization is Lipschitz since

∥gw1
− gw2

∥ ≤ ∥w1 − w2∥.
For w1 = ε

2 and w2 = −w1, ∥w1 − w2∥ ≤ ε, yet

∥ sgn(gw1
(x))− sgn(gw2

(x))∥ = 2

for almost all x. Each classifier has a single boundary (hence high class stability), but parameter
proximity does not imply classifier proximity.

To guarantee property (ii), we introduce a new robustness measure in the codomain.
Definition 10 (Co-margin and Co-stability). Let f = sgn ◦g : X → {−1, 1}. The co-margin at x is

h∗
g(x) := |g(x)|,

and we denote the normalized co-margin as

h̄∗
g(x) :=

|g(x)|
L(g)

,

where L(g) is the Lipschitz constant of g. The co-stability is then the expected co-margin

S∗(g) := E[h∗
g(x)],

and the normalized co-stability is accordingly defined as the expected normalized co-margin

S̄∗(f) := E[h̄∗
g(x)].

Remark 11 (Representation dependence). Unlike class stability S(f), which depends only on the
decision boundary of f , the co-stability S∗(g) and its normalized form S̄∗(g) depend on the partic-
ular representation f = sgn ◦g. Different score functions g inducing the same classifier f can yield
different values of S∗(g) and S̄∗(g). For the specific representation f = sgn ◦df from Lemma 18,
however, the quantities coincide: S∗(g) = S̄∗(g) = S(f).

Imposing S∗(g) ≥ S∗ > 0 ensures that scores remain, on average, a non-trivial distance away from
zero. Together with (H3), co-stability provides the continuity and separation properties required for
infinite-class generalization bounds.

Before turning to the formal statement of this fact, we want to discuss the relation of class stability
and co-stability. The connection between input- and codomain-based margins is immediate since

hg(x) ≥
h∗
g(x)

L(g)
= h̄∗

g(x).

6
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By L(g)-Lipschitz continuity, moving x by r changes g(x) by at most L(g)r, so flipping the predic-
tion requires r ≥ |g(x)|/L(g). Taking expectations yields

S(f) ≥ S̄∗(g). (7)

Thus normalized co-stability lower-bounds class stability. This inequality highlights two levers for
improving generalization: increasing S∗(g) or decreasing L(g). Importantly, S̄∗(g), like S(f), is
invariant to input rescaling and therefore serves as a natural robustness measure.
Remark 12. A related ratio, γ

Rf
, appears in Bartlett et al. (2017), where γ is the minimum margin

and Rf a spectral complexity term controlling Lipschitzness. Empirically, Lipschitz margin training,
which enforces

S̄∗(g) ≥ c,

improves adversarial robustness (Tsuzuku et al., 2018). Moreover, Béthune et al. (2022, Corollary 2)
show that among maximally accurate classifiers, there exists a 1-Lipschitz solution that achieves
maximal co-margins and satisfies S(f) = S∗(g). In particular, the Bayes classifier admits the
representation b = sgn ◦db, which fulfills these properties.

Combining Theorem 4 with Equation 7, the Rademacher complexity of a finite function class F =
sgn ◦G can be bounded in terms of normalized co-stability as

Rn,µ(F) ≤ K2 max

{
1√
n
,
√
c
L

S∗

√
log |F|
nd

, 2 exp
(
− dS∗2

L28c

)}
,

where S∗ > 0 and L > 0 are bounds on the minimal co-stability and maximal Lipschitz constant,
respectively. Under condition (H3), the statement can be extended to infinite function classes.
Theorem 13. Suppose (H1) and (H3) hold, and that S∗(g) > S∗ > 0 and L(g) ≤ L for all g ∈ G.
Assume further that p ≥ n. Then, for any covering precision ε̃ > 0,

Rn,µ(F) ≤ Kmax

{√
1

n
,

L

S∗

√
p

nd

√
c log

(
1 + 60WJε̃−1

)
, 2 exp

(
− dS∗2

8cL2

)
,

J

S∗ ε̃

}
, (8)

where K > 0 is an absolute constant independent of p, n, d, S∗, c.

Proof sketch. The proof follows the previously mentioned ε-net approach, standard in infinite-class
settings. The Lipschitz continuity in w (from (H3)) controls the covering number of G at scale ε̃,
while co-stability ensures that small perturbations in w do not induce flips through the sgn mapping.
The additional term J

S∗ ε̃ reflects the residual error introduced by the discretization. See Appendix E
for more details.

Remark 14. The factor L
S∗ shows that generalization depends jointly on the average prediction

confidence S∗(g) and the Lipschitz constant L(g), the latter quantifying robustness of predicted
probabilities. This aligns with empirical findings (Khromov & Singh, 2024; Gamba et al., 2025;
Gouk et al., 2020; Sanyal et al., 2020; Béthune et al., 2022), which report that smaller Lipschitz
constants typically improve generalization, and in some cases exhibit a double-descent behavior.

We obtain with the same reasoning as in Corollary 6 the following law of robustness for Lipschitz-
regular infinite function classes.
Corollary 15 (Law of Robustness for Infinite Function Classes). Assume (H1) and (H3), and fix
ε, δ ∈ (0, 1). Consider the 0–1 loss ℓ0–1. There exists an absolute constant K > 0 such that, if

1. the minimal risk σ2 := minf∈F R0–1(f) satisfies σ2 ≥ ε, and

2. the sample size n is large enough so that (i) K√
n
< ε

3 and (ii)
√

2 log(2/δ)
n < ε

2 ,

then with probability at least 1 − δ, for all ε̃ > 0, the following holds uniformly for all g ∈ G and
fg = sgn ◦ g:

R̂0–1(fg) ≤ σ2−ε =⇒ S∗(g)

L(g)
< max

{
3K

ε

√
p

nd

√
c log(1 + 60WJε̃−1),

√
8c

d
log

(
6K

ε

)}
.
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Remark 16. As in Bubeck & Sellke (2021), we require W and J to be at most polynomial in (n, d, p)
so that they do not affect the asymptotic scaling. In the case of feedforward neural networks, Bubeck
& Sellke (2021) further show that when the data distribution is concentrated in a ball of radius R,
it suffices to assume that W is polynomially bounded.

Analogous to the finite-class case, we conclude that Lipschitz-regular classifiers must be overpa-
rameterized of order nd to achieve both low training error and high normalized co-stability. Without
sufficient parameter capacity relative to sample size and ambient dimension, robustness cannot be
guaranteed: models may fit the training data, but will necessarily exhibit either large Lipschitz con-
stants of the score function or low co-stability, reflecting weak confidence in their predictions. Thus,
overparameterization emerges as a necessary condition for robustness, not a byproduct of current
training practice, but a structural limitation dictated by geometry and probability.

6 EXPERIMENTS

We empirically validate our theoretical prediction that class stability S(f) and co-stability S(f)∗

increase with model size in interpolating networks.

Setup. We train fully connected MLPs with four hidden layers and widths w ∈
{128, 256, 512, 1024, 2048} on MNIST and up to w = 1024 for CIFAR-10. All models are trained
until reaching at least 99% training accuracy, ensuring (near-)interpolation so that test accuracy
effectively coincides with generalization performance.

Class Stability. We estimate empirical class stability S(f) via adversarial perturbations. For each
input, we increase the perturbation radius r along a predefined grid r = (r1, . . . , rn) until the
classifier’s prediction changes. The minimal successful radius is recorded as the distance to the
decision boundary for that sample, and S(f) is reported as the average over the dataset.

Normalized Co-Stability. The empirical co-stability S∗(g) is computed via the multi-class margin

gj(x)−max
i ̸=j

gi(x), j = argmax
i

gi(x),

averaged over the dataset; see Appendix F for details about the mulitclass setting. We estimate the
Lipschitz constant L(g) using the efficient ECLIPSE method (Xu & Sivaranjani, 2024), and report
the normalized ratio S∗(g)/L(g) as a function of model size.

Results. Figure 1 shows that, for MLPs, both class stability S(f) and normalized co-stability
S∗(g)/L(g) increase consistently with model size. The observed saturation of (normalized co-)
stability aligns with theoretical intuition: the Bayes classifier admits a finite (normalized co-) sta-
bility level, and pushing beyond this level necessarily reduces accuracy - an instance of the robust-
ness/accuracy trade-off extensively discussed in the literature (Zhang et al., 2019; Tsipras et al.,
2019; Béthune et al., 2022).Accordingly, we expect stability to plateau once models approach the

Figure 1: Stability measures for MLPs trained on CIFAR-10. Both class stability S(f) and normal-
ized co-stability S̄∗(g) = S∗(g)/L(g) increase systematically with model size and closely follow
test accuracy, in line with our theoretical predictions.
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Bayes decision boundary. For CIFAR-10, although test accuracy remains far below the Bayes op-
timal (around 50%), the same reasoning applies relative to the best classifier achievable within the
restricted MLP architecture.

Empirically, class stability closely tracks test accuracy, whereas standard weight norms show no
systematic correlation with model size or generalization performance. On MNIST, however, we
observe that normalized co-stability exhibits large seed-to-seed fluctuations and no consistent trend
with model size. We conjecture that this reflects the simplicity of MNIST, which admits many local
minima with highly variable score functions. To probe this hypothesis, we train 4- MLPs width
widths w ∈ {128, 256, 512, 1024} using sharpness-aware optimization (SAM) (Foret et al., 2021;
Kwon et al., 2021), which biases training toward flatter minima. As shown in Figure 2, this reduces
variance across seeds and restores a clear monotonic dependence on model size. We note that the
absolute values of stability are smaller for SAM-trained models, but this is explained by the absence
of spectral normalization in SAM, which results in larger Lipschitz constants. What matters for our
purposes is the monotonic trend, not the absolute scale. These findings suggest a quantitative link
between sharpness and stability, and motivate further study of how optimization bias interacts with
the geometric structure underlying our robustness laws.

Additional details and plots are provided in Appendix G. Moreover, our code is available here:
https://anonymous.4open.science/r/ICLR26-Stability-AC53/README.md.

7 DISCUSSION AND FUTURE WORK

Our results identify class stability and its codomain analogue, normalized co-stability, as principled
quantities linking overparameterization, generalization, and robustness for discontinuous classifiers.
While we provide geometric laws of robustness for finite and infinite hypothesis classes, and our
experiments support their validity, several directions remain open.

Empirical directions. Computing class stability S(f) and Lipschitz constants L(g) of neural net-
works is NP-hard (Katz et al., 2017; Weng et al., 2018; Scaman & Virmaux, 2019), limiting the
direct use of (normalized co-)stability in training. However, practical relaxations exist: normalized
co-stability underlies Lipschitz margin training (Tsuzuku et al., 2018), while input-space stability is
related to adversarial training (Madry et al., 2018; Goodfellow et al., 2015). Biasing optimization
explicitly toward (co-)stable solutions is therefore a promising empirical direction. Another avenue
is to probe isoperimetry and related concentration phenomena on real data. This connects to the
manifold hypothesis and raises the question of whether robustness laws fail empirically when the
effective dimension of the data manifold is small.

Theoretical directions. Our framework motivates exploring alternative geometric measures, too.
Do quantities such as sharpness of the loss landscape obey robustness laws analogous to those for
(normalized co-)stability? Our experiments suggest a link, calling for deeper analysis. Another
question concerns sufficiency: we establish that overparmeterization is necessary for generalization,
but is it also sufficient under suitable optimization? Bombari et al. (2023) prove sufficiency for
Lipschitz regression in the NTK regime but show that it fails for a random features model. Extending
such results to discontinuous classifiers may reveal qualitative differences.

Finally, the role of implicit bias remains unclear. Does gradient descent or SGD exhibit a bias toward
classifiers with higher (normalized co-)stability, as suggested by analogous results on region counts
(Li et al., 2025)? Establishing such a bias would explain why stable solutions emerge in practice.

Overall, our findings suggest that stability-based laws capture a core structural constraint of mod-
ern overparameterized learning. Developing efficient estimators, stronger empirical validation, and
deeper theoretical connections (e.g., with sharpness and optimization bias) are promising next steps
toward a unified understanding of generalization and robustness.
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A THE NEED FOR ISOPERIMETRY

Concentration inequalities are essential tools in high-dimensional probability theory, providing
bounds on the tail behavior of random variables. Next, we outline the key strategy from Bubeck
& Selke (Bubeck & Sellke, 2021) for proving the law of robustness for regression, highlighting
the importance of an additional assumption on the measure µ. The authors employ the Lipschitz
constant of a function as a measure of robustness, where a small Lipschitz constant (i.e., ≈ 1) of
the realization indicates a robust model. The basic idea is to leverage the Lipschitz continuity of
functions f : X → R in conjunction with isoperimetric inequalities to bound the probability

P(∃f ∈ F : R̂ℓ(f) ≈ 0 ∧ L(f) ≤ L∗) < δ. (9)
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That is, we aim to bound the probability of observing a model that is both robust (i.e., has a small
Lipschitz constant L(f)) and fits the data well (i.e., R̂(f) ≈ 0, meaning it nearly interpolates).
By contraposition, this implies that with probability at least 1−δ, the following holds for all f ∈ F :

R̂ℓ(f) ≈ 0 =⇒ L(f) > L∗(p, n, d). (10)
Here, L∗(p, n, d) is an algebraic function of the number of parameters p ≈ log |F| (see the paragraph
below Theorem 4 for details), the number of training samples n, and the input dimension d. It
satisfies L∗(p, n, d) ≫ 1 in the non-overparameterized regime p ≈ n, thereby implying non-robust
behavior.

A key ingredient in Bubeck & Sellke (2021) for proving (a variant of) Equation 9 is the isoperimetry
assumption on the measure µ. Isoperimetry, originating in geometry, provides an upper bound
on a set’s volume in terms of its boundary’s surface area. In high dimensions, the principle of
isoperimetry induces a concentration of measure, where the measure of the ε-neighborhood Aε of
any set A with µ(A) > 0 has measure µ(Aε) → 1, and the complementary measure decays in the
order of exp(−dε2). This is equivalent to the sub-Gaussian behavior of every bounded Lipschitz-
continuous function as stated in Definition 3, yielding a concentration property for |f(x) − E(f)|
that depends on the Lipschitz constant L(f).

The induced concentration property allows us to bound the probability in Equation 9, leveraging the
intuition that a smaller Lipschitz constant limits the function’s capacity to align with random labels.
However, it is important to note that Equation 10 provides information about robustness within F
only if

P(∄f ∈ F : R̂ℓ(f) ≈ 0) ≤ 1− δ ⇐⇒ P(∃f ∈ F : R̂ℓ(f) ≈ 0) ≥ δ.

Otherwise, the implication becomes vacuous, as almost no function in F generalizes well, i.e.,
achieves near-zero empirical risk, to begin with. Without imposing any assumptions on µ, Ho-
effding’s inequality already suffices to derive a Lipschitz-independent bound for any function
f : X → [−1, 1]:

P(|f(x)− E(f)| ≥ t) ≤ 2 exp

(
− t2

2

)
∀t > 0. (11)

Thus, to ensure that the probability in Equation 9 remains below δ while simultaneously allowing
for P(∃f ∈ F : R̂ℓ(f) ≈ 0) > δ, any concentration inequality relying on the Lipschitz constant
must exhibit a sufficiently fast decay (in comparison with Equation 11) in the regime L(f) ≳ 1.
This is necessary to yield a non-vacuous bound in Equation 10, which allows to assess robustness
by the increase of the minimal Lipschitz constant L∗ even for L∗ > 1.

For instance, McDiarmid’s inequality applied to Lipschitz functions yields a tail bound of the order
exp(− 2t2

diam(X )2L(f)2 ), which is insufficient as it decays faster than the Hoeffding bound only for
L(f) < 2/diam(X ), i.e., at least diam(X ) < 2 is required to include the (relevant) range L(f) > 1
of Lipschitz constants. This indicates that a certain restriction of the admissible measures is indeed
necessary to obtain non-vacuous statements, i.e., they can not be derived in full generality.

Notably, the c-isoperimetry condition in Equation 3 leads to a faster decay than the Hoeffding bound
in Equation 11 when L(f) <

√
dc−1, making it effective for functions with moderate Lipschitz con-

stants in high-dimensional settings. Our goal is to generalize this strategy to handle discontinuous
functions, addressing the inherent challenges of classification tasks.

B THE SIGNED DISTANCE FUNCTION (REMARK 2)

We collect the main properties of the signed distance function

df (x) :=

{
d(x, f−1({−1})), if f(x) = 1,

−d(x, f−1({1})), if f(x) = −1,

where d(x,A) := infy∈A ∥x− y∥2.

Lemma 17. Let X ⊂ Rd be bounded and path-connected, and let f : X → {−1, 1}. Then the
signed distance function df is 1-Lipschitz.
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This is a classical fact, a special case of the Eikonal equation. For completeness, we include a direct
proof inspired by Liu & Hansen (2024, Prop. 7.5).

Proof. Case 1: f(x) = f(y). Assume w.l.o.g. f(x) = f(y) = 1. Let (zn)n be a sequence in
f−1({−1}) with |d(y, zn)− df (y)| ≤ 1

n . Then

df (x) = d(x, f−1({−1}))
≤ d(x, zn)

≤ ∥x− y∥2 + d(y, zn)

≤ ∥x− y∥2 + df (y) +
1
n .

Letting n → ∞ and exploiting symmetry yields |df (x)− df (y)| ≤ ∥x− y∥2.

Case 2: f(x) ̸= f(y). Assume w.l.o.g. f(x) = 1, f(y) = −1. Consider the line segment L =
{(1− t)x+ ty : t ∈ [0, 1]} ⊂ X and define

w1 = (1− t1)x+ t1y, t1 := inf{t : f((1− t)x+ ty) = −1},
w2 = (1− t2)x+ t2y, t2 := sup{t : f((1− t)x+ ty) = 1}.

Path-connectedness ensures t1 ≤ t2, otherwise the midpoint between w1 and w2 would be labeled
both 1 and −1, a contradiction.

Thus,

|df (x)− df (y)| = d(x, f−1({−1})) + d(y, f−1({1}))
≤ ∥x− w1∥2 + ∥y − w2∥2
≤ ∥x− y∥2.

Lemma 18. Let X ⊂ Rd and f : X → {−1, 1} with f−1({1}) closed. Then f can be represented
as

f(x) = sgn(df (x)),

where we adopt the convention sgn(0) = 1.

Proof. If df (x) ̸= 0, the claim follows directly from the definition of df . If df (x) = 0, then
x ∈ f−1({1}) by closedness, so f(x) = 1 = sgn(0).

Remark 19. Lemma 18 justifies the representation f = sgn ◦df used in the proof of Theorem 4.
This link between classifiers and their signed distance functions is what allows stability arguments
to be combined with smoothness-based tools.

C PROOF OF THE RADEMACHER BOUND (THEOREM 4)

In the regression setting, one can assume without loss of generality that the considered regressors
are Lipschitz continuous and thereby derive insightful statements about the expected and feasible
robustness of models in a given setting. In contrast, this approach is not meaningful anymore in
the classification setting as the considered classifiers are (except for trivial cases) discontinuous
by design, i.e., they can not be captured by a finite Lipschitz constant. Thus, statements about the
robustness of classification models can not be derived via Lipschitz constants. This motivates the use
of class stability as a replacement measure in the classification setting, which, however, is (inversely)
related to Lipschitzness as highlighted and exploited in the subsequent proof of Theorem 4. For
convenience, we repeat the statement with the corresponding assumptions.

(H1) (X , µ) is a probability space with bounded sample space X and c-isoperimetric measure µ;

(H2) the considered hypothesis class F of classifiers f : X → {−1, 1} is finite, that is |F| < ∞.
Theorem (Rademacher Bound). Suppose Assumptions (H1) and (H2) hold, and that
minf∈F S(f) > S > 0 with log |F| ≥ n.
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1. The empirical Rademacher complexity satisfies

Rn,µ(F) ≤ K1 max

{
1√
n
,

√
c

S
· log |F|

n
√
d

}
, (12)

for an absolute constant K1 > 0.

2. If, in addition, f−1({1}) is closed and X path connected, the bound sharpens to

Rn,µ(F) ≤ K2 max

{
1√
n
,

√
c

S

√
log |F|
nd

, 2 exp
(
− dS2

8c

)}
, (13)

for another absolute constant K2 > 0.

Proof. : 1. To begin, we explore the relationship between two measures of robustness: the Lipschitz
constant L(f) and the class stability S(f) of a f ∈ F on the set

At(f) := {x ∈ X : hf (x) > S(f)− t} for 0 ≤ t ≤ S(f).

Observe that for x1 ∈ At(f) and x2 ∈ X

|f(x1)− f(x2)| ≤


0, if f(x1) = f(x2)

2 ·

≥1︷ ︸︸ ︷
∥x1 − x2∥
S(f)− t

, if f(x1) ̸= f(x2)

≤ 2

S(f)− t
∥x1 − x2∥ ,

i.e., f is 2
S(f)−t -Lipschitz on At(f) and, therefore, according to the assumption S(f) > S, any

f ∈ F is at least 2
S−t -Lipschitz on At(f). Our strategy now is to apply the Rademacher bound based

on Lipschitz functions of Bubeck & Selke in Bubeck & Sellke (2021) to the restriction f|At(f), and
additionally exploit isoperimetry to control the measure of the complement At(f)

c. We rely on two
key facts:

• Fact 1: Every Lipschitz continuous function g : A → R, defined on a subset A ⊂ X
of a metric space, can be extended to a function Gg : X → R, preserving the same
Lipschitz constant (McShane (1934), Kirszbraun (1934)). =⇒ This allows us to apply
isoperimetry and thereby the result in (Bubeck & Sellke, 2021, Lemma 4.1) to the 2

S−t -
Lipschitz extension Ff of f|At(f) (by w.l.o.g. restricting its codomain to [−1, 1]) to obtain

1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σiFf (xi)

∣∣∣∣∣
]
≤ C1

1√
n
+ C2

1

S − t

√
c log |F|

nd

for some absolute constants C1, C2 > 0.

• Fact 2: The margin hf (x) : X → R, is 1-Lipschitz continuous with respect to the ℓ2-
norm ((Liu & Hansen, 2024, Prop. 7.5). =⇒ This allows us to control P(At(f)

c) via
isoperimetry:

P(At(f)
c) = P(

=E[hf ]︷︸︸︷
S(f) −hf (x) ≥ t) ≤ exp

(
− dt2

2cL(hf )2

)
= exp

(
−dt2

2c

)
. (14)

Via Fact 1, we can bound the Rademacher complexity by

Rn,µ(F) =
1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]

≤ 1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σiFf (xi)

∣∣∣∣∣
]
+

1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣
]

≤ C1
1√
n
+ C2

1

S − t

√
c log |F|

nd
+

1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣
]
. (15)
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To control the last term, we subdivide Xn into subsets on which specific samples achieve a minimum
margin. To that end, we fix t = S

2 (the exact value is not crucial since it will be subsumed into the
absolute constants) and define, for I ⊂ [n],

AI(f) = AI
S
2

(f) :=

{
x ∈ Xn : i ∈ I ⇐⇒ hf (xi) ≥

S

2

}
.

Note, that A[n](f) = AS
2
(f)n and ∪I∈P([n])A

I(f) is a disjoint partition of Xn. Thus, applying a
union bound yields for r > 0

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r

)
≤
∑
f∈F

∑
I∈P([n])

P

(∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r ∧ x ∈ AI(f)

)

=
∑
f∈F

∑
I∈P([n])

P

(∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r

∣∣∣∣∣x ∈ AI(f)

)
P(AI(f)). (16)

We make the following observations:

• By construction Ff = f holds on AI(f) for all f ∈ F .

• As a mean-zero and bounded random variable with range [−2, 2], σi(Ff − f)(xi) is (via
Hoeffding’s inequality) subgaussian with variance proxy (2−(−2))2

4 = 4 for every i ∈
[n], f ∈ F .

Using the fact that the sum of k independent subgaussian random variables with variance proxy σ2

is itself subgaussian with variance proxy kσ2 (Rigollet & Hütter, 2023), we obtain for every I ⊊ [n]
(the case I = [n] being trivial) that

P

(∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r
∣∣∣x ∈ AI(f)

)
≤ P

(∣∣∣∣∣∑
i∈Ic

σi(f − Ff )(xi)

∣∣∣∣∣ > r
∣∣∣x ∈ AI(f)

)

≤ 2 exp

(
− r2

2 · 4(n− |I|)

)
.

On the other hand, we get for I ⊂ [n] via Equation 14 that

P
(
AI(f)

)
≤ P

(
∀j ∈ Ic : xj ∈ AS

2
(f)c

)
= P

(
x ∈ AS

2
(f)c

)n−|I|
≤ exp

(
−dS2

23c

)n−|I|

.

Inserting in Equation 16 and replacing the constants independent of the parameters of interest
(n, |F|, d, r, S, and |I|) by c1, c2 > 0 then gives

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r

)
≤
∑
f∈F

∑
I∈P([n])\[n]

2 exp

(
− r2c1
n− |I|

)
exp

(
− (n− |I|)dS2c2

c

)
.

To simplify the above expression, we want to find the maximal term in the sum and use this worst
case as an upper bound over all terms in the sum. To that end, we introduce g : [0, n) → R+ by

g(x) =
r2c1
n− x

+
1

c
(n− x)S2dc2,

aiming to find its minima, which correspond to an upper bound on the sought worst-case term.
Differentiating g yields the extrema

g′(x) =
r2c1

(n− x)2
− 1

c
S2dc2

!
= 0

=⇒ x+/− = n± r

S

√
c1c

c2d
=: n± α(r) (17)

We calculate the second derivatives to be g′′(x−) > 0 and g′′(x+) < 0, thus only x− is a minimum.
Now, there are two cases associated with the location of x− (taking into account that α(r) > 0 for
every r > 0).
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• Case I: α(r) ≤ n.
Then, x− is a valid minimum in the considered range and therefore

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r

)

≤
∑
f∈F

∑
I∈P([n])\[n]

2 exp

(
− r2c1
α(r)

)
exp

(
−α(r)dS2c2

c

)

≤ 2|F|2n exp

(
−2rS

√
dc2c1
c

)
:= P(I)(r).

• Case II: α(r) > n.
Then, x− < 0 is outside of the domain of g. However, the derivative satisfies g′(x) > 0 for
any 0 ≤ x < n since x+ > n. Therefore, g necessarily takes its minimal value at x = 0 so
that

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r

)

≤
∑
f∈F

∑
I∈P([n])\[n]

2 exp

(
−r2c1

n

)
exp

(
−ndS2c2

c

)

≤ 2|F|2n exp
(
−r2c1

n

)
exp

(
−ndS2c2

c

)
=: P(II)(r).

Using Equation 17, condition α(r) > n is equivalent to r > nS
√

c2d
c1c

. In this range, we have
P(II)(r) ≤ P(I)(r) since

P(II)

(
nS

√
c2d

c1c

)
= 2|F|2n exp

(
−2nS2dc−1c2

)
= P(I)

(
nS

√
c2d

c1c

)
and one verifies that P(II)(r) decays faster than P(I)(r) when further increasing r. Therefore, we
conclude that for all r > 0

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − F )(xi)

∣∣∣∣∣ > r

)
≤ P(I)(r) = 2|F|2n exp

(
−2rS

√
dc2c1
c

)
. (18)

Further rewriting the expression, distinguishing between two cases with respect to the magnitude of
|F|2n yields the upper bounds:

• Case 1: |F|2n ≤ exp

(
rS
√

dc2c1
c

)
.

We immediately obtain via Equation 18 that

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r

)
≤ 2|F|2n exp

(
−2rS

√
dc2c1
c

)

≤ 2 exp

(
−rS

√
dc2c1
c

)

≤ 2 exp

− 2

3 log(|F|2n)︸ ︷︷ ︸
<1

rS

√
dc2c1
c

 .
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• Case 2: |F|2n > exp
(
rS
√

dc2c1
c

)
.

In this case, the probability is trivially bounded by

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r

)
≤ 1 < 2 exp

(
−2

3

)
< 2 exp

−2

3

rS
√

dc2c1
c

log(|F|2n)︸ ︷︷ ︸
<1


Putting both cases together, we proved that for all r > 0

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣ > r

)
≤ 2 exp

−
2S
√

dc2c1
c

3 log(|F|2n)
r

 .

This tail bound shows that supf∈F |
∑n

i=1 σi(f − Ff )(xi)| is sub-exponential. Since the expected
value of any sub-exponential random variable is up to an absolute constant given by its sub-
exponential norm, which corresponds (up to a constant) to the parameter 3 log(|F|2n)

2S

√
dc2c1

c

in the tail

bound Vershynin (2018), we obtain for a constant C3 > 0 that

1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣
]
≤ C3

1

S

 log |F|+ n log 2

n
√

d
c


Finally, the desired bound on the Rademacher complexity follows via Equation 15:

Rn,µ(F) =
1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]

≤ C1
1√
n
+ C2

1

S

√
c log |F|

nd
+ C3

1

S

√
c log |F|
n
√
d

+ C3
1

S

√
c

d
,

which, with the additional assumption log |F| ≥ n, gives the result in 1.

2. By Lemma 18, every f admits the representation f = sgn ◦df . This lets us follow the infinite-
class analysis (presented in detail in the proof of Theorem 13), without the ε-net step in Equation 22.
From Lemma 17, df is 1-Lipschitz, i.e., L(df ) = 1 under the given conditions. Furthermore,
recalling the co-stability definition we get

S∗(sgn ◦df ) = E[|df |] = E[hf ] = S(f).

Plugging this into the general bound in Equation 8 gives the result.

C.1 COMPARISON TO STANDARD BOUND WITHOUT ACCOUNTING FOR STABILITY

Note that the crucial expectation in the derivation, i.e., the last term in Equation 15, can be treated
without linking it to the minimum class stability. Indeed, the expectation of the maximum of N
subgaussians X1, . . . , XN with variance proxy σ2 scales as

E
[
max

1≤i≤N
|Xi|

]
≤ σ

√
2 log (2N), (19)

see for instance Rigollet & Hütter (2023). Hence, in our case, as σi(f − Ff )(xi) is subgaussian
with variance proxy 4 and therefore

∑n
i=1 σi(f − Ff )(xi) is subgaussian with variance proxy 4n,

we obtain

1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − Ff )(xi)

∣∣∣∣∣
]
≤ 1

n
2
√
n
√
2 log (2|F|) ≤ C4

(√
1

n
+

√
log |F|

n

)
.
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for some absolute constant C4 > 0. Neglecting the constants, this leads to the following comparison
to our bound in Equation 5:

√
c

S

√
p

nd
≤
√

log |F|
n

⇐⇒ S ≥
√

c

d
.

Thus, under the isoperimetry condition, our bound improves on the standard Rademacher complex-
ity estimate whenever the class stability S exceeds

√
c/d, a mild requirement in high-dimensional

settings.

D PROOF OF THE LAW OF ROBUSTNESS (COROLLARY 6)

Next, we provide the proof of Corollary 6, which we repeat for convenience.
Theorem (Law of Robustness for Discontinuous Functions). Assume (H1), (H2), and the additional
conditions in 2. of Theorem 4 hold. Let p := log |F| ≥ n. Fix ε, δ ∈ (0, 1) and consider the 0–1
loss ℓ0–1. There exists an absolute constant K > 0 such that, if

1. the minimal risk σ2 := minf∈F R0–1(f) satisfies σ2 ≥ ε, and

2. the sample size n is large enough to ensure (i) K√
n
< ε

3 and (ii)
√

2 log(2/δ)
n < ε

2 ,

then with probability at least 1− δ (over the sample), the following holds uniformly for all f ∈ F:

R̂0–1(f) ≤ σ2 − ε =⇒ S(f) < max

{
3K

ε

√
c log |F|

nd
,

√
8c

d
log

(
6K

ε

)}
.

Proof. Let K > 0 be an absolute constant such that Equation 5 holds, and define the threshold
stability

S∗ = S∗(p, n, d, ε) := max

{
3K

ε

√
c log |F|

nd
,

√
8c

d
log

(
6K

ε

)}
.

Then, Theorem 4, together with condition 2(i), implies that

Rn,µ(FS∗) ≤ Kmax

{
1√
n
,

√
c

S∗

√
log |F|
nd

, 2 exp
(
− dS2

∗
8c

)}
≤ ε/3,

where FS∗ := {f ∈ F : S(f) ≥ S∗} is the subset of functions in F with stability at least S∗.
Hence, applying the generalization inequality Equation 1, together with condition 2(ii), gives with
probability 1− δ:

sup
f∈FS∗

(
R0 -1(f)− R̂0 -1(f)

)
≤ 2Rn,µ(ℓ0 -1 ◦ FS∗) +

√
2 log(2/δ)

n
≤ Rn,µ(FS∗) +

ε

2
< ε,

where we additionally used Equation 2 in the second step. In particular, we can bound the probability

P(∀f ∈ FS∗ : R̂0 -1(f) > σ2 − ε) ≥ P(∀f ∈ FS∗ : R0 -1(f)− R̂0 -1(f) < ε) ≥ 1− δ,

where the first inequality follows from

R0 -1(f)− R̂0 -1(f) < ε
condition 1.
=⇒ σ2 − R̂0 -1(f) < ε =⇒ R̂0 -1(f) > σ2 − ε.

Decomposing this probability into two disjoint events

1− δ ≤ P(∀f ∈ FS∗ : R̂0 -1(f) > σ2 − ε) = P(∀f ∈ F : R̂0 -1(f) > σ2 − ε)

+ P(∃f ∈ Fc
S∗

: R̂0 -1(f) ≤ σ2 − ε). (20)

enables us to easily recognize that the expression exactly characterizes the probability that the fol-
lowing implication, and thereby the result, holds uniformly for all f ∈ F :

R̂0 -1(f) ≤ σ2 − ε =⇒ S(f) < S∗.

Indeed, the implication above holds if, for a given data sample (xi, yi)
n
i=1, either
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• no function f ∈ F satisfies R̂0 -1(f) ≤ σ2 − ε, or

• any such f lies in Fc
S∗

, that is, S(f) < S∗,

which is the case with probability at least 1− δ due to Equation 20.

E PROOF OF RADEMACHER BOUND FOR INFINITE FUNCTION CLASSES
(THEOREM 13)

Here we show how to extend the result for finite function classes to infinite function classes by a
covering argument, where the Lipschitz continuity of the parameterization turns out to be crucial.
Please find the exact statement about the Rademacher complexity of infinite function classes (of a
certain form) below, after restating our new regularity hypothesis replacing (H2).

(H3) The hypothesis class F is of the form F = sgn ◦ G, where G = {gw : X → [−1, 1] : w ∈
W} is a parameterized class of Lipschitz continuous functions. The parameter space W ⊂
Rp is bounded with diam(W) ≤ W , and the parameterization is Lipschitz continuous, i.e.,

∥gw1
− gw2

∥∞ ≤ J ∥w1 − w2∥.
Theorem. Under assumptions (H1) and (H3), suppose that S∗(g) > S∗ > 0 and L(g) ≤ L for all
f ∈ G. Furthermore, assume that p ≥ n. Then

Rn,µ(F) ≤ Kmax

{√
1
n ,

L
S∗

√
p
nd

√
c log(1 + 60WJε̃−1), 2 exp

(
−dS∗2

8cL2

)
, J

S∗ ε̃

}
,

where K > 0 is an absolute constant independent of p, n, d, S∗, c, L, J .

Proof. Given any discontinuous classifier fw = sgn ◦gw for gw ∈ G, define its Lipschitz continuous
approximation for γ > 0 as

Ffw = sgnγ ◦gw,
where

sgnγ(t) :=


−1, t ≤ −γ,
t
γ , t ∈ [−γ, γ],

1, t ≥ γ.

This approximation satisfies the useful property that both Ffw and the absolute difference |fw−Ffw |
are Lipschitz continuous in both the input space X and the weight space W , with

L(| sgnγ ◦gw − sgn ◦gw|) = L(sgnγ ◦gw) =
L(gw)

γ . (21)

Following the same strategy as in the proof of Theorem 4 with Lipschitz continuous approximations
introduced above (see Equation 15), coupled with a covering argument as in Bubeck & Sellke
(2021), we obtain

Rn,µ(F) =
1

n
Eσi,xi

[
sup
f∈F

∣∣∣ n∑
i=1

σif(xi)
∣∣∣]

≤ 1

n
Eσi,xi

[
sup
f∈F

∣∣∣ n∑
i=1

σiFf (xi)
∣∣∣]+ 1

n
Eσi,xi

[
sup
f∈F

∣∣∣ n∑
i=1

σi(f − Ff )(xi)
∣∣∣]

≤ C1
1√
n
+ C2

L
γ

√
c
nd

√
p log(1 + 60WJε̃−1)︸ ︷︷ ︸

≥
√

log |F|

+
1

n
Eσi,xi

[
sup
f∈F

∣∣∣ n∑
i=1

σi(f − Ff )(xi)
∣∣∣] .

Here the parameter ε̃ > 0 is related to a ε̃-net of W , which we denote by Wε̃. Note, that |Wε̃| ≤ (1+
60WJε̃−1)p (see e.g. Vershynin (2018) Corollary 4.2.13) so the same holds true for the induced net
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Fε̃ = {sgn ◦gw : w ∈ W˜̃ε}, which also allows us to treat the remaining expectation by subdividing
the supremum:

1

n
Eσi,xi

[
sup
f∈F

∣∣∣ n∑
i=1

σi(f − Ff )(xi)
∣∣∣] =

1

n
Eσi,xi

[
sup

wε̃∈Wε̃

sup
w∈Bε̃(wε̃)

∣∣∣ n∑
i=1

σi(fw − Ffw)(xi)
∣∣∣]

≤ 1

n
Exi

[
sup

wε̃∈Wε̃

n∑
i=1

|fwε̃
− Ffwε̃

|(xi)

]

+
1

n
Exi

[
sup

wε̃∈Wε̃

sup
w∈Bε̃(wε̃)

n∑
i=1

∣∣∣ |fw − Ffw |(xi)− |fwε̃
− Ffwε̃

|(xi)
∣∣∣] . (22)

By Lipschitz continuity of the parameterization and of |f−Ff | as derived in Equation 21, we obtain

∥ |fw − Ffw | − |fwε̃ − Ffwε̃
| ∥∞ ≤ J

γ ε̃ for any wε̃ ∈ Wε̃ and w ∈ Bε̃(wε̃)

so that

1

n
Exi

[
sup

wε̃∈Wε̃

sup
w∈Bε̃(wε̃)

n∑
i=1

∣∣∣ |fw − Ffw |(xi)− |fwε̃
− Ffwε̃

|(xi)
∣∣∣] ≤ J

γ
ε̃.

Via isoperimetry and using the same bound on the cadinality of Fε̃ as before, one concludes that the
first expectation in Equation 22 is of the same form as Equation 19 with subgaussian variance proxy
σ2 = L2

γ2
cn
d so that

1

n
Exi

[
sup

wε̃∈Wε̃

n∑
i=1

|fwε̃ − Ffwε̃
|(xi)

]
=

1

n
Exi

[
sup

wε̃∈Wε̃

n∑
i=1

|fwε̃ − Ffwε̃
|(xi)− E[|fwε̃ − Ffwε̃

|]
]

+ sup
wε̃∈Wε̃

E[|fwε̃ − Ffwε̃
|]

≤ C3
L

γ

√
c

nd

√
p log(1 + 60WJε̃−1) + sup

wε̃∈Wε̃

E[|fwε̃
− Ffwε̃

|].

Finally, for every f ∈ F ,

E[|f − Ff |] =
∫
X
|f(x)− Ff (x)| dµ(x) ≤ P(g(x) ∈ [−γ, γ]). (23)

Choosing γ = S∗(g)
2 , we obtain by the definitions of co-margin, and once again isoperimetry (since

the co-margin inherits the Lipschitzness from g by design)

P (g(x) ∈ [−γ, γ]) = P
(
|g(x)| ≤ S∗(g)

2

)
≤ P

(
|h∗

g(x)− S∗(g)| ≥ S∗(g)

2

)
≤ 2 exp

(
−dS∗(g)2

8cL(g)2

)
≤ 2 exp

(
−dS∗2

8cL2

)
= 2 exp

(
−d S̄∗2

8c

)
.

Putting it all together, we have

Rn,µ(F) ≤ C1
1√
n
+ C ′

2
L
S∗

√
c
nd

√
p log(1 + 60WJε̃−1) +

2J

S∗ ε̃+ 2 exp

(
−dS∗2

8cL2

)
.

F MULTI-CLASS CLASSIFICATION

In this section, we briefly outline how our results extend to categorical distributions with C ∈ N
classes. We assume that a classifier is given by

f : X → {0, 1}C ,
with exactly one non-zero entry for each x ∈ X . The additional regularity assumption (H3)′, the
adaptations of the conditions in (H3) to the multi-class setting can be formalized as follows.
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Table 1: Multi-class definitions.

Concept Definition

Isoperimetry P(∥f(x)− E[f ]∥∞ ≥ t) ≤ 2 exp
(
− dt2

2cL2

)
Rademacher complexity Rn,µ(F) = 1

nE
σi,j ,xi

[
supf∈F

∣∣∣∑n
i=1

∑C
j=1 σijfj(xi)

∣∣∣]
Margin hf (x) =

∑C
j=1 h

j
f (x), hj

f (x) := inf{∥x− z∥2 : f(z) ̸= j, z ∈ Rd}
Class stability S(f) =

∑C
j=1 S(f)

j , S(f)j := E[hj
f ]

Co-margin h∗
g(x) =

∑C
j=1 h

∗
g
j(x), h∗

g
j(x) := max

(
0, gj(x)−maxi ̸=j gi(x)

)
Co-stability S∗(g) =

∑C
j=1 S

∗j(g), S∗j(g) := E[h∗
g
j ]

(H3)’ The hypothesis class has the form F = argmax ◦G, where G = {gw : X → [0, 1]C : w ∈
W} is a parameterized family of Lipschitz functions. The parameter space W ⊂ Rp is
bounded with diam(W) ≤ W , and the parameterization is Lipschitz:

∥gw1
− gw2

∥∞ ≤ J ∥w1 − w2∥.

Thus, we can interpret g ∈ G as representing the class probabilities.

Remark 20. For binary classification, i.e. C = 2, the classifiers are of the form f : X → {0, 1}2,
instead of f : X → {−1, 1}, as considered earlier. However, one can translate between these
representations by post-composing with either

α(x1, x2) := x1 − x2 or β(x) :=
(

x+1
2 , 1−x

2

)
.

By the contraction principle for Rademacher complexity, it is therefore sufficient to compute the
complexity for one of these models.

As in the binary case, our proofs start by considering the Rademacher complexity of the function
class F :

Rn,µ(F) =
1

n
Eσij ,xi

sup
f∈F

∣∣∣ n∑
i=1

C∑
j=1

σijfj(xi)
∣∣∣
 ≤

C∑
j=1

1

n
Eσij ,xi

[
sup
f∈F

∣∣∣ n∑
i=1

σijfj(xi)
∣∣∣] .

Each summand corresponds to a binary classification problem with a one-vs-all classifier fj . Indeed,
fj is 2

S(f)−t -Lipschitz on At(f). Transforming via

fj 7→ 2fj − 1 : X → {−1, 1},

we can follow the same reasoning as in Appendix C, obtaining, up to a linear factor of C, the same
result as the first part of Theorem 4, generalized to the multi-class setting.

Similarly, under assumption (H3), we can write

2fj − 1 = sgn
(
gj −max

i ̸=j
gi(x)

)
,

which allows us to proceed as in Appendix E to obtain a multi-class generalization of the second part
of Theorem 4 and Theorem 13. The only minor difference lies in bounding the term in Equation 23:

E[|fj − Ffj |] ≤ P
[
|gj(x)−max

i ̸=j
gi(x)| ≤ γ

]
.
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Choosing γ = S∗(g)
2 , we use that for all j, |gj(x)−maxi ̸=j gi(x)| > h∗

g(x), which yields

P
[
|gj(x)−max

i̸=j
gi(x)| ≤ S∗(g)

2

]
≤ P

[
|h∗

g(x)− S∗(f)| ≥ S∗(g)
2

]
≤ 2 exp

(
− d S∗(g)2

8cL(g)2

)
≤ 2 exp

(
− d S∗2

8cL2

)
= 2 exp

(
−d S̄∗2

8c

)
.

We conclude that all of our results extend to the multi-class case. Moreover, the measure used in our
MNIST and CIFAR-10 experiments (Section 6) is the correct generalization.

G EXPERIMENTAL DETAILS FOR STABILITY MEASUREMENT

Training setup. To empirically validate our robustness law, we trained fully connected MLPs on
MNIST and CIFAR-10 datasets. Each model has 4 hidden layers with widths w ∈ {128, 256, 512,
1024, 2048} for MNIST and up to w = 1024 for CIFAR10. All models use ReLU activations,
batch normalization, and were initialized with standard parametrization. Training was conducted
using the Adam optimizer (Kingma & Ba, 2015) for the embedding and output layers, and the
Muon optimizer (Jordan et al., 2024) for the hidden layers. Models were trained with a batch size
of 256 and learning rate 10−3, until at least 99% training accuracy was achieved, ensuring (near)
interpolation. We further used sharpness-aware optimization based on (Foret et al., 2021; Kwon
et al., 2021) to reduce variance of the normalized co-stability on MNIST.

Parameter counts and normalization. For each model, we recorded the total number of trainable
parameters p, input dimension d, and total number of training samples n.

Stability estimation. Class stability S(f) was computed using adversarial perturbation analysis.
We performed a suite of ℓ2-based attacks (FGSM, PGD, DeepFool, and L2PGD (Goodfellow et al.,
2015; Moosavi-Dezfooli et al., 2016; Madry et al., 2018)) using the Foolbox library (Rauber et al.,
2017). For each input x, we recorded the minimum perturbation norm required to change the classi-
fier’s prediction, over a grid of radii r = (0.002, 0.01, 0.05, 0.1). The final stability score S(f) was
taken as the average ℓ2 distance across the dataset.

Normalized Co-Stability estimation. The empirical co-stability S∗(g) is computed via the multi-
class margin

gj(x)−max
i ̸=j

gi(x), j = argmax
i

gi(x),

averaged over the dataset. We estimate the Lipschitz constant L(g) using the efficient ECLIPSE
method (Xu & Sivaranjani, 2024), and report the normalized ratio S∗(g)/L(g) as a function of
model size.

Implementation. Training and evaluation code is implemented in PyTorch (Paszke et al., 2019).
For MLPs, images were flattened to vectors. Attack evaluations were conducted over the full dataset
(train and test).

Reproducibility. All experiments were run with multiple random seeds {0, 1, 2, 3, 4}, and mean
with standard deviation are reported.
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Figure 2: Stability measures for 4- and 8-layer MLPs trained on MNIST and CIFAR-10. For com-
parison, we also include a 4-layer MLP on MNIST trained with a sharpness-aware optimizer.
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