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1 Introduction

Urban mobility arises from the interplay between the structure of transport
networks and the behavioral dynamics of their users [IJ3]. Understanding this
relationship is key to developing realistic and transferable models of movement.
This work proposes a network-based framework that links the topology of a city’s
road network with the functional patterns of real taxi flows. Using New York City
as a case study [4], we examine how network geometry, travel times, and clusters
structure shape observed mobility, and how these insights can inform the design
of topology-aware agent-based models. Such agents are essential for studying
alternative mobility scenarios [6], such as car-sharing [2] or demand-responsive
transport, in cities where empirical trip data are limited or unavailable.

2 Approach

The New York City road network is modeled as a weighted directed graph, where
edge weights represent travel times. A random walk on this graph provides a
structural baseline of accessibility through its stationary distribution 7, which
represents the long-term probability of reaching each node when movement de-
pends solely on network connectivity and travel-time weights. Figure [1a| shows
the road network colored by node visitation probabilities for both the station-
ary distribution and real taxi data, together with their probability distributions.
This comparison captures how taxis use the network in practice, highlighting
the influence of external functional factors such as public transport coverage.

To quantify differences between theoretical and empirical usage, we compute
the Jensen—Shannon divergence between their node probability distributions [5].
We then compare the real taxi data to several source-target s — ¢ simulation
models (activity, gravity, hub, random, and zone). Figure illustrates the mis-
match between the empirical and simulated visitation probabilities, showing that
standard models reproduce the overall structure of flows but fail to align with
the true spatial distribution of demand.
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To analyze these discrepancies at a coarser scale, we cluster trip origins and
destinations separately using the K-Means (k = 30) algorithm on the weighted
network. The resulting origin and destination clusters for both real and simu-
lated trips are shown in Figure [2] Finally, we construct a cluster-to-cluster flow
matrix representing the probability of trips connecting each origin cluster to
each destination cluster (Fig. [3)).

3 Discussion

Figure [Ta] reveals that while the stationary distribution concentrates visits on
central nodes, reflecting structural accessibility, real taxi flows are more evenly
distributed across the city. This divergence highlights how taxi usage depends
on additional functional factors, such as the presence or absence of public trans-
port alternatives, rather than topology alone. More importantly, making these
deviations explicit allows us to characterize how functional demand relates to
network properties such as node centrality, degree, or cluster membership. For-
malizing these relationships enables their transfer to other networks, providing
a foundation for topology-aware mobility models in data-limited settings.

In Figure the comparison between taxi data and a representative s — ¢
model shows that, although the simulated visitation distribution is relatively
flat and spread across the network, it emphasizes different areas than those
observed in reality. The model does not reproduce the spatial organization of
demand—central and peripheral zones are visited in proportions that differ from
empirical patterns. These discrepancies indicate that current agent rules capture
general movement dispersion but fail to encode how demand relates to specific
structural features of the network, such as centrality, or local connectivity.

Cluster analysis (Fig. [2]) highlights these differences at the mesoscale. In real
taxi data, a few central clusters attract most destinations from various origins,
forming clear demand hubs and structured inter-cluster corridors (Fig. [34). In
contrast, the simulated cluster-to-cluster heatmap (Fig. shows a more diffuse
pattern with demand spread across many clusters and lacking dominant centers.
This absence of concentration reveals that simulated agents miss the hierarchical
organization of real mobility, reinforcing the need for topology-aware behavioral
rules that condition agent choices on structural descriptors.

Overall, understanding how real taxi flows diverge from the structural base-
line provides a concrete way to link network topology and functional demand.
Quantifying these deviations defines how process and structure interact, offer-
ing direct guidance to bias and improve source-target models. Embedding such
topology-informed rules into agents’ decision mechanisms could yield more re-
alistic and transferable simulations. These simulations can support the design
of data-efficient mobility systems and enable applications such as car-sharing,
demand-responsive transport, and urban mobility policy planning.
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Fig. 1: Comparison of node visitation probabilities on the road network. (a) Sta-
tionary distribution (structural baseline) versus real taxi data, showing how
functional use diverges from network accessibility. (b) Real taxi data versus
the activity source—target model, highlighting how simulated demand differs in
spatial emphasis and intensity.
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Fig. 2: Origin and destination clusters for real taxi trips and simulated trips using
the activity source-target model, obtained through K-Means method.
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Fig.3: Cluster-to-cluster flow matrices: (a) real taxi data and (b) activity
source—target model, showing differences in inter- and intra-cluster flow inten-
sity.
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