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ABSTRACT

Eliciting information to reduce uncertainty on a latent entity is a critical skill in
many application domains, e.g., assessing individual student learning outcomes,
diagnosing underlying diseases, or learning user preferences. Though natural lan-
guage is a powerful medium for this purpose, large language models (LLMs)
and existing fine-tuning algorithms lack mechanisms for strategically gathering
information to refine their own understanding of the latent entity. We propose
an adaptive elicitation framework that actively reduces uncertainty on the latent
entity by simulating counterfactual responses. Since probabilistic modeling of
an abstract latent entity is difficult, we validate and finetune LLM-based uncer-
tainty quantification methods using perplexity over masked future observations
produced by the latent entity. Our framework enables the development of sophisti-
cated information-gathering strategies, and we demonstrate its versatility through
experiments on dynamic opinion polling and adaptive student assessment.

1 INTRODUCTION

The performance of many valuables services and systems depends on the ability to efficiently elicit
information and reduce uncertainty about a new environment or problem instance. For example, be-
fore an optimal lesson plan can be prepared for a particular student, information must first be gath-
ered about their underlying skills and abilities. Similarly, a patient’s health status must be quickly
assessed upon intake, while an online service seeking retention aims to gain a fast understanding of
a new customer’s preferences.

Notably, in these (and many other) cases, the object of interest is latent, meaning it cannot be directly
measured or observed but can only be queried indirectly. This makes gathering information particu-
larly challenging, as it requires carefully designed strategies to infer the latent entity’s characteristics
through indirect signals. To achieve efficiency, these strategies must be adaptive, dynamically tailor-
ing subsequent queries based on the information gained so far. In the context of student assessment,
an adaptive approach might start with a broad math question covering multiple skills. If the student
demonstrates strength in algebra, the system would follow up with more challenging algebra ques-
tions to determine the limits of their proficiency. Conversely, if the student struggles with geometry,
the system would present easier geometry questions to pinpoint the exact concepts they have yet to
master. By progressively refining its queries in this way, the system efficiently maps out the student’s
knowledge boundaries, gaining a clearer picture of their individual skill profile (see Figure 1).

As natural language is a particularly powerful and flexible medium for eliciting such latent informa-
tion, one might assume that modern large language models (LLMs) (Brown et al., 2020; Bai et al.,
2022; DeepSeek-AI et al., 2025) could be helpful in such dynamic information-gathering efforts. To
do so would require the language model to quantify epistemic uncertainty, refine it given additional
information, and/or act to reduce uncertainty in an optimal way. However, LLMs and existing fine-
tuning algorithms often treat uncertainty passively, and lack mechanisms for strategically gathering
information to refine their own understanding of the latent entity.
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Figure 1: Left: Our algorithm can adaptively elicit information about a latent entity via natural
language interaction. For example, in assessing a new student, the system may ask questions in
areas where the student’s abilities are not yet known, to maximize the information gained from each
question and efficiently reduce uncertainty about the student’s individual skill profile. Right: An
example of how adaptive elicitation can improve over static strategies in student assessment. Each
square represents a question asked to the student, and is marked green (answered correctly) or red
(answered incorrectly). Here, a static strategy (a) would only expose that the student is strong in
algebra and weak in geometry. An adaptive strategy (b), on the other hand, will find the limits of
their knowledge in both, thus reducing more uncertainty about their true latent skills U . Though we
visualize uncertainty via distributions over latent features, these objects are high-dimensional and
ill-defined in nature and cannot be easily modeled.

To overcome this challenge, we introduce an adaptive elicitation framework that uses natural lan-
guage to actively reduce uncertainty on the latent entity by simulating counterfactual responses.
Rather than modeling a latent entity probabilistically (Blei et al., 2003; Salakhutdinov & Mnih,
2007)—a difficult and often intractable step—we validate and finetune LLM-based uncertainty
quantification methods through perplexity over masked future observations the latent entity might
produce (Ye et al., 2024; Fong et al., 2023). By aligning the LLM perplexity objective with the goal
of predicting future observations from a previously unseen latent entity, our approach enables the
model to identify epistemic uncertainty and facilitate sophisticated information-gathering strategies
as it updates its understanding of the latent. In doing so, we enable a wide range of exciting and
impactful applications, e.g., constructing a dynamic diagnostic questionnaire that maximizes the in-
formation gained about a patient’s health or generating a personalized set of test questions that yield
the most insight into a student’s learning needs.

In the remainder of this paper, we introduce our framework for latent uncertainty reduction using
natural language and demonstrate its effectiveness across several key applications. Our work con-
tributes a key conceptual and algorithmic insight to the accelerating field of LLMs: by obviating
the need for directly modeling the latent and instead employing a predictive view of uncertainty, we
enable the development of adaptive information-gathering strategies. Through experiments on tasks
such as dynamic opinion polling and adaptive student assessments, we illustrate the versatility and
significant potential of our framework to enable more efficient and targeted information elicitation
in critical domains and applications. Overall, we aim to lay the foundation for future research into
rigorous uncertainty quantification and adaptive decision-making in LLMs, highlighting the promise
of active, context-aware strategies in advancing real-world AI systems.1

2 ADAPTIVE ELICITATION FRAMEWORK

In this section, we present an approach to uncertainty quantification and adaptive question selection
in scenarios where the latent entity cannot be directly modeled. Our method: (1) Meta-learns a
predictive language model from historical question–answer data (2) Uses this model to quantify
uncertainty about future or unobserved answers via simulation (3) Adapts question selection in real
time to reduce uncertainty about the latent entity.

Throughout the rest of this paper, we adopt a predictive view of uncertainty: rather than specifying
a direct prior or complete model of the latent entity, we focus on how well the model can predict
future observations of that entity, interpreting predictive uncertainty as a strong proxy for epistemic
uncertainty. This approach echoes classical missing-data and Bayesian predictive viewpoints (Ru-

1Because of space constraints, we defer a thorough discussion of other related work to Appendix Section A.
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bin, 1976; Lindley, 1965; Hill, 1968; Dawid, 1984) as well as modern treatments of exchangeable
models in deep learning (Fong et al., 2023; Ye et al., 2024). We emphasize, however, that fully
rigorous exchangeability assumptions are often unrealistic in natural-language settings. Instead, our
aim is a practical heuristic that remains robust for complex, human-generated text.

2.1 PRELIMINARIES

Latent Entities and Observations. We consider an unobservable latent entity U ∈ U (e.g., a
student’s skill profile or a patient’s health status). We query U by posing a question X ∈ X (in
natural language) and observing an answer Y ∈ Y , Y ∼ P(·| Question X, Latent U). Our two
primary goals are to: (1) Quantify our uncertainty about U based on observed question–answer
pairs. (2) Reduce that uncertainty by adaptively choosing which questions X to ask next.

Following classical views that treat latent variables as unobserved data (Rubin, 1976; Lindley, 1965),
we interpret “knowing U” as being able to predict all future answers Y with high accuracy. Other
approaches might model U directly (e.g., by assigning a probability distribution over a structured la-
tent space) (Blei et al., 2003; Salakhutdinov & Mnih, 2007); yet specifying such models for complex
human-generated responses can be both restrictive and infeasible. In contrast, our predictive focus
aligns naturally with the goal of adaptive elicitation in a flexible domain (i.e., open-ended natural
language) where strict parametric assumptions about U are difficult to justify and often incomplete.

Predictive Uncertainty. Rather than directly modeling U with a parametric prior, we focus on
the model’s ability to predict future answers Yt+1:∞ given observed data Ht = {(Xi, Yi)}ti=1:
P(Yt+1:∞|Ht) = P(Future answers | Current info). Any uncertainty in these predictions serves as
a practical measure of our epistemic uncertainty about U . In formal Bayesian terms, this often
corresponds to a posterior-predictive distribution

∫
P (Yt+1:∞ | U)π(U | Ht) dU (Ye et al., 2024;

Zhang et al., 2024). Our framework aims to approximate this distribution directly, without requiring
an explicit prior π(·).

2.2 META-LEARNING A PREDICTIVE MODEL

We assume access to historical data from a collection of latent entities Utrain. Each entity U ∈ Utrain

is associated with a sequence of question–answer pairs {(X(U)
1:N , Y

(U)
1:N )}. Our first step is to meta-

train an autoregressive language model on this historical data consisting of sequences of questions
and answers from various latent entities Dtrain := {X(U)

1:N , Y
(U)
1:N : U ∈ Utrain}. In the student as-

sessment example, Dtrain may be a historical dataset of past students, each with an associated sets
of test questions and answers. For simplicity, we assume that each sequence is of length N , but our
framework is agnostic to differing sequence lengths.

Objective Define a sequence of previous observations Ht := {X1:t, Y1:t}. We train our autore-
gressive language model, parameterized by θ ∈ Θ, to output one-step probabilities over future an-
swers conditioned on previous observations (i.e., question/answer pairs) pθ(Yt+1| Ht, Xt+1 = x),
inducing a joint distribution over future outcomes

pθ(Yt+1:∞|Ht, Xt+1 = xt+1, Xt+2 = xt+2, ...) =

∞∏
s=t+1

pθ(Ys|Hs−1, Xs = xs). (1)

The training objective for our model is then to optimize the joint log likelihood/marginal likelihood
of the observed sequence within the historical dataset

maxθ∈Θ

{
1

|Utrain|
∑
U∈U

T∑
t=1

log pθ(Y
U
t |Ht−1, X

U
t = xt)

}
.

Training. For training, we process each sequence of questions and answers {X(U)
1:N , Y

(U)
1:N } corre-

sponding to a latent entity U by sequentially arranging them into one long natural language string
(X

(U)
1 , Y

(U)
1 , X

(U)
2 , Y

(U)
2 , ...). Then we optimize a language model to predict each answer Yt con-

ditioned on the current question Xt and previous observations Ht−1. To do so, we apply a gradient
mask that masks out tokens which do not correspond to any Yi. We use stochastic gradient descent
procedures to optimize the training loss.
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Exchangeability. While human-generated language data may generally fail to be exchangeable,
a condition necessary for valid predictive uncertainty estimates in classical treatments of Bayesian
predictive inference (de Finetti, 1937), our question-answer setting is conducive to this exchange-
ability condition. That is, the order in which someone answers questions should not affect their
answers. To enforce this condition during training, we randomly permute the order of pairs within
each entity’s sequence during training. This helps ensure the model remains relatively agnostic to
a particular question ordering and can better generalize to a new entity presented in arbitrary query
orders.

2.3 UNCERTAINTY QUANTIFICATION BY SIMULATED FUTURES

Given a new entity for which we have observed Ht = {(Xi, Yi)}ti=1, we interpret our predictive
model’s distribution over {Yt+1:∞} as our uncertainty about the entity. Concretely:

pθ(Yt+1:∞ | Ht) =

∞∏
s=t+1

pθ

(
Ys | Xs, Hs−1

)
,

where each one-step conditional probability is given by our meta-learned model.

Simulation for Inference. To quantify or visualize uncertainty, one can draw samples of “simu-
lated futures”: Y

(k)
t+1:∞ ∼ pθ( · | Ht) for k = 1, . . . ,K. Each sample represents one plausible

realization of the entity’s future answers. We can then treat the variability in these simulated futures
as a measure of epistemic uncertainty.

2.4 ADAPTIVE QUESTION SELECTION

Finally, we aim to reduce our predictive uncertainty by posing additional questions that maximally
inform the model about the new entity. In practice, this corresponds to an active learning or optimal
design paradigm where, at each step t, we choose Xt+1 (e.g., a test question) to maximize the
expected information gain about some target information Z (see Figure 1, right). In our case, Z will
be the set of answers to future questions Y U

t+1:∞

Information Gain. Let Z denote information of interest (e.g., “What answers would the student
select to this new set of questions?”). We measure current uncertainty by H(Z | Ht) (entropy). After
observing (Xt+1, Yt+1), the posterior entropy is H(Z | Ht, Xt+1, Yt+1). The one-step expected
information gain is:

EIGt:t+1(Z;Xt+1) = H(Z | Ht) − E
[
H
(
Z | Ht, Xt+1, Yt+1

)]
.

To choose the optimal question, ideally we would solve
argmax

Xt+1

EIGt:∞(Z;Xt+1) = H(Z | Ht) − EYt+1:∞ ∼ pθ

[
H
(
Z | Ht, Xt+1, Yt+1:∞

)]
(2)

In practice, it is intractable to simulate Yt+1:∞ and to calculate the expected information gain as
it is combinatorial in the number of steps. Instead, we introduce two procedures that show strong
practical performance while having feasible computational cost.

Greedy Selection. A simple heuristic is to first enumerate the candidate questions x ∈ x1, ..., xk.
Then for each xj , calculate the one-step expected information gain EIGt:t+1(Z;Xt+1). Finally,
choose the xj that maximizes this quantity. Although greedy, this often performs well in practice
and is computationally simpler than globally optimal planning. We prove the theoretical validity
of this procedure in Section B, where Theorem B.4 bounds the performance gap between a full
combinatorial planning approach and the greedy selection procedure.

Lookahead / Monte Carlo Planning. To account for multi-step effects (e.g., a question that might
not immediately reduce much uncertainty but paves the way for more informative follow-ups) and
to better approximate the intractable quantityin Equation 2, we can apply standard Monte Carlo
Tree Search (MCTS) techniques from reinforcement learning. With MCTS, we sample entire future
question–answer sequences using the meta-learned model pθ up to depth d to estimate the cumu-
lative information gain. Though more expensive computationally, this can find better long-horizon
query strategies.
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Figure 2: Accuracy (top) and perplexity (bottom) of our adaptive elicitation framework compared
to baseline methods across three datasets: OpinionQA, EEDI student assessment, and 20 Questions.
The x-axis represents the number of questions selected. Our method works best to gather informa-
tion and accurately characterize the latent in each case.

3 EXPERIMENT DETAILS

Our experiments considers 3 applications: opinion polling, student assessment, and the 20 questions
game. In each case, the goal is to adaptively select questions that are as informative as possible with
respect to the answers to another set of target questions. Questions are selected one at a time, and
each is added to the LLM context before selecting the next.

For each experiment, we have a dataset containing a collection of latent entities U , which are asso-
ciated with questions XU and answers Y U . To train our meta-learned model, we split each dataset
by groups of latent entities into train, validation, and test sets. We first meta-learn our model pθ
on questions and answers corresponding to latent entities in the training dataset. Then, we evaluate
the model’s ability to quantify and reduce uncertainty on questions and answers corresponding to
entities in the test set. More details on datasets, training, baselines, and evaluation are below.

3.1 DATASETS

OpinionQA Santurkar et al. (2023) Originally created to evaluate the alignment of LLM opin-
ions to those of 60 US demographic groups, this dataset contains 1498 multiple choice political
questions answered by a diverse collection of survey respondents. These questions target various
political issues ranging from abortion to automation. Here, each question corresponds to a question
X , the multiple choice answer corresponds to the observable feedback Y , and the survey respon-
dent’s latent political preference corresponds to the unobservable U .

EEDI Tutoring Dataset Wang et al. (2020) Eedi is an online educational and tutoring platform
that serves millions of students around the globe. This dataset includes a collection of 938 math
questions focusing on various areas such as algebra, number theory, and geometry, as well as indi-
vidual responses from many students. Each question is a multiple choice question with four answers
that includes a visual diagram as well as associated text. The student’s true mathematical ability U
generates the student’s answer Y to the math question X .

Twenty Questions We create a synthetic twenty questions dataset, where the objective is to ask
relevant questions in order to determine the underlying object or certain traits. We first retrieve
a collection of objects from the THINGS Hebart et al. (2019) dataset. Then we use Claude 3.5
Sonnet to generate potential questions, and answer each question given each object. We end up
with 800 objects and 1200 questions and answers for each. Here, each object corresponds to the
latent entity U , which generates the answers Y to each question X . While Claude 3.5 Sonnet may
generate wrong answers, we emphasize the correctness of the answers is not important, but rather
that our model learns the underlying data generating process according to which Claude produces
the answers (i.e., a conditional language model).
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3.2 META-TRAINING DETAILS

We first split the training datasets by entity into train, validation, and test with a 70%, 15%, 15%
split. To meta-train our model, we initialize a pre-trained Llama-3.1-8B model in FP16 precision
and use LoRA Hu et al. (2021) to finetune our model with parameters α = 24, rank= 8, and
dropout= 0.1. We initialize the AdamW Loshchilov & Hutter (2019) optimizer with learning rate
of 0.0001 and β = (0.9, 0.95), weight decay of 0.1, and we use a linear warmup for the learning
rate after which we use a cosine scheduler. We train our model for 10, 000 epochs with a batch size
of 4 and block size of 1024, after which we take the checkpoint with the lowest validation loss.

3.3 BASELINES

Base LLM First, we consider a simple baseline. For an LLM we use Llama-3.1-8B, from which
our meta-trained model is initialized; question selection is performed randomly.

In-Context Tuning (ICT) Next, we consider a typical in-context learning (ICL) baseline. First,
we meta-train the model via In-Context-Tuning (Chen et al., 2022), where the objective is to predict
the label for a query example given some number of in-context support examples. Then, questions
are selected based on embedding similarity to the target questions that we aim to answer (Liu et al.,
2021). We use the same model and parameters as 3.2, and we use Alibaba-NLP/gte-large-en-v1.5
as our embedding model.

3.4 EVALUATION

To evaluate how well each method can ask targeted questions to reduce uncertainty about the latent
entity, we randomly select 10,000 entities. For each entity, we randomly select a pool of N questions
from which the methods can sequentially choose questions to ask, and randomly select K held-out
target questions. The objective is to sequentially choose optimal questions from the N questions to
reduce the most uncertainty about the K held-out targets for each entity. In our experiments, we
choose N = 20 and K = 5, but we include ablations that vary these quantities in 4.4. We evaluate
the performance on the target questions with four metrics. (1) Accuracy, (2) Perplexity, (3) Expected
Calibration Error, and (4) Brier Score.

4 RESULTS AND DISCUSSION

In this section, we empirically study the following questions: (1) Can our framework be used to
adaptively select questions to reduce uncertainty and elicit information about the latent? (2) Do
we generate reasonable posterior probability updates and reduce uncertainty as more information is
gathered? (3) When is this adaptive procedure particularly helpful? (4) How important is our train-
ing procedure for producing actionable uncertainty quantification? Throughout, we connect these
findings to the paper’s broader motivation: eliciting information efficiently in real-world scenarios.

4.1 OVERALL GAINS FROM ADAPTIVE ELICITATION

Overall results for our method and 2 baselines across all 3 datasets are shown in Figure 2. The top
row of plots record accuracy on the target questions, while the bottom row record perplexity (or
negative log-likelihood loss). The Base LLM is omitted on bottom for ease of visualization. In both
figures, the X-axis records the number of questions that have been selected so far.

Across all 3 datasets and both metrics, our algorithm most effectively characterizes the latent by
predicting the answers to target questions (we show similar results for Brier Score in Figure 6).
Further, our algorithm consistently improves its characterization as more information is gathered,
whereas gathering more questions based on embedding distance does not always help. Overall, our
adaptive elicitation framework proves effective in gathering information and reducing uncertainty
across 3 diverse domains.
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Figure 3: Reliability diagrams comparing confidence and accuracy after different numbers of se-
lected questions (and observed answers). Our model maintains well-calibrated uncertainty esti-
mates, increasing both confidence and accuracy as more questions are asked.

Figure 4: Relative accuracy gain from adaptive question selection (EIG and MCTS) over random
selection for different subsets of target questions: all, medium difficulty (answered correctly by
< 50% of the population), and hard (answered correctly by < 30%). Adaptivity provides the
greatest benefits when identifying rare latent traits, demonstrating when strategic question selection
is most advantageous.

4.2 UNCERTAINTY QUANTIFICATION

A cornerstone of our approach is using predictive perplexity as an indicator of uncertainty; this
makes sense only if our model’s probabilities reflect genuine confidence about unseen data. To
assess this, we examine calibration, roughly the extend to which the model’s confidence reflects its
accuracy.

For each dataset, we plot reliability diagrams (Guo et al., 2017) of confidence vs. accuracy, where
perfect calibration lies on the y = x line, and record Expected Calibration Error (ECE). Both the
reliability diagram and ECE are produced by separating predictions into 10 bins by confidence, and
comparing the average confidence and accuracy for each bin. Results are shown after 1, 4, and 8
questions are selected, and the far right figure plots overall average confidence and accuracy for each
setting.

Results for OpinionQA are shown in Figure 3, while EEDI and 20 Questions are shown in Appendix
Figures 7 and 8. For all 3 datasets, we observe that the predicted probabilities lie close to the diagonal
of perfect calibration—our model’s confidence aligns well with actual accuracy. As more questions
are observed, the model’s average confidence (and accuracy) both go up, confirming that uncertainty
diminishes in an intuitive way. In the motivating student-assessment scenario, this means that by
asking just a few strategically chosen questions, the model not only improves its predictions but also
becomes more certain in them. For a high-stakes application such as medical diagnostics or skill
placement exams, it is crucial to know when a model has enough data to be sure in its predictions,
versus when it is still uncertain; these calibration results confirm our framework performs well in
this sense.

4.3 WHEN IS ADAPTIVITY MOST HELPFUL?

Having established that our adaptive question selection method is generally effective at quantifying
uncertainty and eliciting information about some latent, we next examine when such a procedure is
most helpful. In particular, we hypothesize that adaptive strategies are most important in character-
izing features of the latent which are relatively rare in the population. As a concrete example, while
many students may have overlapping weaknesses (e.g., many get the same test question wrong), it
can be harder to learn that a particular student is struggling in an area where other students generally
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do not. An adaptive strategy could help by selecting a test question that most find easy but this
student may answer incorrectly.

To investigate this hypothesis, we specify two different subgroups of questions as targets by run-
ning our evaluation where all target questions for each entity have probability less than either 50%
(“medium”) or 30% (“hard”) across the population. We use our meta-trained model with random,
EIG, and MCTS question selection, and record results after N questions have been selected. Results
are shown in Figure 4. For each question subgroup (as well as all questions from the previous ex-
periment), we record on the y-axis the relative accuracy gain from using EIG or MCTS, compared
to selecting questions randomly.

First, we notice that the more advanced MCTS planning strategy outperforms EIG in all cases, and
both always outperform random. This means that given a good model for uncertainty quantifica-
tion, we can improve our results by spending more compute, indicating good scaling behavior in
our algorithm. Next, we observe trends across different subgroups of questions. In all 3 example
applications, adaptivity and planning have a massive impact on the ability to answer hard questions
compared to random question selection. For EEDI and 20 Questions the percent gain over random
with EIG or MCTS is more than 10x higher for hard questions than for all questions; for Opin-
ionQA, it is 5x higher. We thus have strong evidence that our adaptive information elicitation strat-
egy is most important when characterizing the latent features which are most atypical with respect
to the population. If the latent entity exhibits atypical behavior (a student struggles with a concept
that most find easy, or an opinion respondent holds a rare viewpoint), an adaptive method can target
precisely those concepts that discriminate such cases. Conversely, random or fixed questionnaires
fail to unearth those nuances in a limited query budget.

4.4 PLANNING ABLATION

Our results in Figure 2 show the effectiveness of our full adaptive elicitation framework of meta-
training and adaptive information gathering via planning. Those in Figure 4 establish the significant
performance gains from applying planning algorithms on top of our model, as compared to random
question selection. With our final experiment, we aim to understand the importance of our meta-
training procedure. To do so, we compare the results of applying a planning strategy atop our
model, to those produced when applying the same strategy to the ICT and base LLM models. We
use the 20 Questions dataset, and the same splits of all, medium, and hard questions as the previous
experiment. For each question type and each of 3 underlying models, (Base, ICT, and ours), we
record the accuracy on target questions after selecting 3 questions with either random selection or
the EIG strategy. To measure what is gained from planning, we record the ratio of target question
accuracy with planning to that with random selection (a value above 1 indicates some accuracy gain
from planning).

Results are shown in Appendix Figure 5. First, we see that planning performs poorly using the Base
LLM, reducing accuracy almost 15% on hard questions compared to random question selection. The
ICT model performance is largely unchanged by planning, across all 3 question types. On the other
hand, our model’s performance is greatly improved when question selection is guided by planning,
highlighting that our training procedure is essential to enable such strategic information gathering
with LLMs.

4.5 OTHER ABLATIONS

We first ablate the number of targets and questions to choose from. Our experiments were run with
the models being able to select from 20 questions in order to accurately predict 5 targets. In Table 2
in Appendix E, we find that our method gains more accuracy as the question bank becomes larger. In
Table 1, we find that performance stays roughly the same as the number of target questions changes.
Finally, we study the effect of the base model for our meta-training procedure. We test GPT2,
Llama-3.2-1B, and Llama-3.1-8B, and find in Table 3 that performance increases as the model is
larger.
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A RELATED WORK

Reinforcement Learning with Sequence Models A number of works propose to train or use
powerful pre-trained models in order to solve complex reinforcement learning (RL) tasks, focusing
on how these models can make decisions using vast amounts of offline data Janner et al. (2021);
Yang et al. (2023); Chen et al. (2021); Du et al. (2024); Lee et al. (2022). Another line of works
show that using meta-learned sequence models to predict the next action can approximate standard
bandit algorithms Lin et al. (2024a); Lee et al. (2023); Zhang et al. (2024). We extend these ideas to
natural language while focusing on how our meta-learned model can quantify uncertainty to make a
decision.

Uncertainty Quantification over Natural Language. There has been a recent class of works fo-
cusing on developing uncertainty measures to augment the reliability of model responses. Kuhn et al.
(2023); Lin et al. (2024b); Malinin & Gales (2021); Duan et al. (2024) focus on predictive entropy
measures with off-the-shelf language models, while other approaches focus on self-consistency in
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other class of works focuses instead on detecting epistemic uncertainty from aleatoric uncertainty
in model outputs Yadkori et al. (2024); Osband et al. (2023); Hou et al. (2024); Glushkova et al.
(2021). Our meta-learning uncertainty quantification framework is complimentary to these works,
as these measures are designed to be applied on top of pre-trained foundation models.

Planning and Information Gathering with LLMs Our work is related to Uncertainty of
Thoughts (UoT) Hu et al. (2024) and OPEN Handa et al. (2024). While these methods build elic-
itation procedures on top of off-the-shelf language models, we use a meta-learning procedure in
order to accurately quantify uncertainty over new environments. Other works introduce methods to
enhance general reasoning or planning capabilities by using natural language reasoning steps Wei
et al. (2022); Wang et al. (2022); Yao et al. (2023).
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B THEORETICAL VALIDITY

B.1 GREEDY EIG SELECTION

In this section, we show the theoretical validity of using a greedy procedure to select actions with
the highest expected information gain. Consider a set of observable feedback Z = Yt+1:T corre-
sponding to a set of target designs Xt+1:T = xt+1:T that we would like to minimize our uncertainty
over. We first formally define the Expected Information Gain (EIG).

Definition B.1 (Expected Information Gain). Let Xt = (x1, x2, ..., xt) ⊆ X . Given a distribution
pθ and targets Yt:T , the EIG is defined as

EIG(Z = Yt:T ,X) = EY∼pθ
[H(Yt+1:T )−H(Yt+1:T |X)], (3)

where H(Yt+1:T |X) = H(Yt+1:T |X1:t = x1:t, Y1:t). Note that Y1:t are random variables and not
deterministic quantities.

Ultimately, our goal is to choose a set of designs X1:t = x1:t that approximates the set of designs
that provide the most amount of information possible.

We first begin with the assumption

Assumption B.2. Y1:∞ are conditionally, identically distributed.

As a consequence, Y1:∞ are exchangeable, which is a reasonable assumption given that someone’s
answers is likely not to depend on the order in which they are presented.

Define X∗
t and X∗

pθ
to be the optimal set of designs X under the true distribution q and the model pθ

such that
X∗ := argmax

{x1,x2,...,xt}∈X
EY∼q[log q(Yt:T |X1:t = x1:t, Y1:t)].

X∗
pθ

:= argmax
{x1,x2,...,xt}∈X

EY∼q[log pθ(Yt:T |X1:t = x1:t, Y1:t)].

Next, define Xgreedy to be the set of designs chosen through the greedy, information gain procedure
Xgreedy := (x1, x2, ..., xt), where each xi is chosen as

xi = argmax
x∈X

EIG(Yt:T , {x1, x2, ...xi−1} ∪ x)

In order to show that the greedy procedure is able to perform close to the optimal solution, we rely
on the following assumption.

Assumption B.3 (Submodularity). Consider any X′,X ⊆ X where X′ ⊆ X. Consider any target Z
and a random variable X : Ω → X . Then for an ε > 0,

Hpθ
(Z|X ∪ X)−Hpθ

(Z|X) + ε ≥ Hpθ
(Z|X ∪ X′)−Hpθ

(Z|X).

The submodularity assumption simply says that the entropy over future observations decreases as
the model conditions on more information. We assume an approximate version of submodularity to
account for training instabilities or inaccuracies in the model pθ. While full submodularity would
imply that conditioning on more context would strictly reduce entropy, we take a more relaxed
stance.

We quantify the information gained throughout the selection process in terms of the optimal per-
plexity under the true environment.

Theorem B.4. Under the greedy information gain selection procedure, the KL divergence between
the meta-learned model conditioned on the information gathered and the optimal distribution is
bounded as

KL (q(Yt:T | X∗
t )||pθ(Yt:T | Xgreedy)) ≤ KL(q(·|X∗

t )||pθ(·|X∗
pθ
)) + log(|Y|(T − t))

√
1

2
KL(q(·|X∗

pθ
)||pθ(·|X∗

pθ
))

+
1

e
(EIG(·|X∗

pθ
) + tε.
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This bound can be broken up into three intuitive terms. The first term KL(q(·|X∗
t )||pθ(·|X∗

pθ
))

is equivalent to the difference between the true environment and using the optimal selection
procedure under the meta-learned model in the true environment. The next term log(|Y|(T −
t))

√
1
2KL(q(·|X∗

pθ
)||pθ(·|X∗

pθ
)) quantifies the difference between choosing under the true environ-

ment distribution, and the distribution generated by the meta-learned model. Finally, the third term
1
e (EIG(·|X∗

pθ
) + tε quantifies the difference between using the greedy procedure versus the full

optimal selection procedure.

B.2 PROOF OF THEOREM B.4

Then, we can decompose

EY∼q[log q(Yt:T | X∗
t )− log pθ(Yt:T | Xgreedy)] = EY∼q[log q(Yt:T | X∗

t )− log pθ(Yt:T | X∗
pθ
)]

(4)
+ EY∼q[log pθ(Yt:T | X∗

pθ
)]− EY∼pθ

[log pθ(Yt:T | X∗
pθ
)]

(5)
+ EY∼pθ

[log pθ(Yt:T | X∗
pθ
)− log pθ(Yt:T | Xgreedy)]

(6)

First, EY∼q[log q(Yt:T | X∗
t )− log pθ(Yt:T | X∗

pθ
)] = KL(q(·|X∗

t )||pθ(·|X∗
pθ
).

Bounding the second term equation 5 To characterize the second term, we establish the follow-
ing facts For any S ∈ S,

0 ≤ H(S) ≤ log |S|.
[Russo & Van Roy (2016)] For any distributions P and Q such that P is absolutely continuous with
respect to Q, any random variable Z : Ω → Z , and any f : Z → R such that f∞ ≤ 1,

EP [f(Z)]− EQ[f(Z)] ≤
√

1

2
KL(P ||Q)

First, by making use of Fact equation B.2, we can see that because Yt:T is exchangeable, then both
Hq(Yt:T | X∗

pθ
) and Hpθ

(Yt:T | X∗
pθ
) are bounded by log(|Y|(T − t)). Then we can bound the

term equation 5 as

EY∼q[log pθ(Yt:T | X∗
pθ
)]− EY∼pθ

[log pθ(Yt:T | X∗
pθ
)]

= EY1:t∼q[Hq(Yt:T | X∗
pθ
)]− EY1:t∼pθ

[Hpθ
(Yt:T | X∗

pθ
)]

≤ log(|Y|(T − t))

√
1

2
KL(q(·|X∗

pθ
)||pθ(·|X∗

pθ
)).

Bounding the third term equation 6 It follows that

E[log pθ(Yt:T | X∗
pθ
)− log pθ(Yt:T | Xgreedy)]

=E[log pθ(Yt:T | X∗
pθ
)− log pθ(Yt:T )]

+E[log pθ(Yt:T )− log pθ(Yt:T | Xgreedy)]

=EIG(Yt:T ;X
∗
pθ
)− EIG(Yt:T ;Xgreedy)

The ϵ submodularity of entropy directly implies the ϵ submodularity of the Expected Information
Gain. Directly using results from Krause et al. (2008), we have

E[log pθ(Yt:T | X∗
pθ
)− log pθ(Yt:T | Xgreedy)] ≤

1

e
EIG(·|X∗

pθ
) + tε,

showing the result.

C EXPERIMENT DETAILS

For ease of reproducibility, our code will be made public upon release of this paper.
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Figure 5: Comparison of performance gains from planning (EIG-based selection) using different
models: a base LLM, an in-context tuning (ICT) model, and our meta-trained model. The y-axis
represents the ratio of accuracy with planning versus random selection; our model benefits the most
from planning, while the base and ICT models show accuracy loss or no improvement.

Figure 6: Brier score results in our overall setting across 3 datasets.

D EXPERIMENT RESULTS

Here we include additional experiment results. Figure 6 shows results for the overall experiments
with the Brier Score metric. Figure 7 shows calibration results for EEDI, and Figure 8 shows cali-
bration results for 20 Questions.

E ABLATIONS

Table 1: Ablating Number of Targets on EEDI Conditioned on 4 Questions
Accuracy 1 5 10 20
Base 0.6042 0.6005 0.6066 0.5987
Ictx 0.6269 0.6278 0.6295 0.6255
Ours 0.6759 0.6784 0.6871 0.6832
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Figure 7: Calibration results with EEDI.

Figure 8: Calibration results with 20 Questions.

Table 2: Ablating Number of Possible Questions on OpinionQA Conditioned on 4 Questions
Accuracy 10 15 20 25
Base 0.4030 0.4042 0.4089 0.4093
Ictx 0.4988 0.4993 0.5023 0.5009
Ours 0.5933 0.5953 0.5987 0.6068

Table 3: Ablating Base Model: Twentyq performance conditioned on 4 questions
GPT2 Llama-3.2-1B Llama-3.1-8B

Accuracy 0.5201 0.6131 0.7382
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