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Abstract

Language models are strong few-shot learners and achieve good overall
accuracy in text classification tasks, masking the fact that their results suffer
from great class accuracy imbalance. We believe that the pursuit of overall
accuracy should not come from enriching the strong classes, but from rais-
ing up the weak ones. To address the imbalance, we propose a Heaviside
step function based ensemble debiasing method, which enables flexible rec-
tifications of in-context learned class probabilities at both class and sample
levels. Evaluations with Llama-2-13B on seven text classification bench-
marks show that our approach achieves state-of-the-art overall accuracy
gains with balanced class accuracies. More importantly, we perform analy-
ses on the resulted probability correction scheme, showing that sample-level
corrections are necessary to elevate weak classes. Due to effectively correct-
ing weak classes, our method also brings significant performance gains to a
larger model variant, Llama-2-70B, especially on a biomedical domain task,
further demonstrating the necessity of ensemble debiasing at both levels.
Our source code is available at https://github.com/NUS-HPC-AI-Lab/DCS.

1 Introduction

Language models are good few-shot learners, but prompting can result in inevitable class
accuracy imbalance. A language model can perform significantly better on certain classes
compared to others, leading to biased performances across different classes (illustrated in
Figure 1). This issue is particularly relevant in tasks like classification, or any scenario where
the model must distinguish between multiple categories. For example, on DBpedia ontology
classification (Auer et al., 2007), the overall accuracy for 14 classes can reach 88% when
prompting Llama-2-13B (Touvron et al., 2023), but class Nature’s accuracy is 28%. Broadly,
for open-ended generation tasks, when treating each token in the vocabulary as a distinct
class, generating the most likely next token can be alternatively viewed as classifying over
the entire vocabulary or soft labels (Thrampoulidis, 2024; Zhao et al., 2024), also susceptible
to class accuracy imbalance. Therefore, accuracy imbalance is prevalent and affecting users
of language models, where classification is the most basic case manifesting such imbalances.

In text classifications, the prevalence of class accuracy imbalance is sometimes hidden by a
single or a dominant evaluation metric, such as overall accuracy. Especially for relatively
large models, the fact that they excel on benchmarks which emphasize overall performances
may hide a poor performance in some classes. To enable a focused evaluation of whether
language model performances are balanced across classes, the COBias metric was proposed
(Lin & You, 2024a) to dedicate evaluating pairwise class accuracy differences.

The class accuracy imbalance issue is not particularly easy to solve from the root. Its causes
come from within the model architecture. In details, language models rely on priors learned
during training to make predictions. However, built on self-attention, the models are prone
to the copying mechanism of the induction heads (Elhage et al., 2021; Olsson et al., 2022).
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These heads predict repeated sequences, which can over-capture surface-level patterns
in the data, leading to biased priors, and then biased predictions. Therefore, if certain
classes or concepts were more frequently emphasized in the training data, the model may
disproportionately favor them (Zhao et al., 2021). Although a systemic change at model
level or selecting high-quality data may help, it can be inefficient.
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Figure 1: The accuracy imbalance and
what we can achieve with debiasing

Besides what is rooted in the model and data,
the way prompts are phrased can further bias
the model towards certain classes (Lin & Ng,
2023; Ceballos-Arroyo et al., 2024; Sclar et al.,
2024). In few-shot prompting, imbalanced class
accuracy can be exacerbated because of under-
represented classes in the demonstrations of a
prompt. Nevertheless, it only helps to a limited
extent by making all classes well-represented in
the demonstrations (Lin & You, 2024a). In addi-
tion, Chain-of-Thought style outputs may facili-
tate self-correcting responses without relying on
prompt engineering (Wang & Zhou, 2024), but
the outcome is guided and restricted by reward
signals. Lastly, although certain types of biases, such as gender bias or truthfulness, can be
traced back to Transformer layers and intervened at inference time (Vig et al., 2020; Geiger
et al., 2021; Li et al., 2023), interventions can be inefficient to mitigate the accuracy bias,
especially when it could be better treated without altering of the model’s internal structure.

Therefore, to effectively and efficiently reduce class accuracy imbalances, post-hoc optimiza-
tion methods are introduced. As such, post-hoc probability correction complements training
and prompting strategies to prevent the model from overly relying on learned patterns, and
to incorporate necessary information in downstream tasks. This type of correction involves
correcting In-context learned (ICL) output probabilities in inference time by combinatorially
optimizing a relatively small mathematical model. These direct rectifications are useful,
because they can directly correct outputs, no matter what biases are encoded in the model
prior, or what prompts are used.

Related Work. Prior post-hoc correction work has investigated re-weighting ICL output
probabilities through combinatorial optimization addressing COBias(Lin & You, 2024a;b) or
calibration addressing biased predictions (Zhou et al., 2024; Zhao et al., 2021). The former
uses labeled instances for optimization while the latter does not. Both lines of work advance
overall classification accuracy with low costs and the flexibility of no language model
parameter updates. The performance difference is that the combinatorial optimization
works achieve better balanced class performances while improving overall accuracy. We
follow the combinatorial optimization perspective for our ensemble debiasing.

For a background on combinatorial optimization, it provides a mathematical framework for
maximizing or minimizing an objective function of decision variables, subject to constraints
on some or all of the variables, involving inequalities, equalities, and integrality restrictions
(Nemhauser & Wolsey, 1988). This framework essentially transforms a rich variety of tasks
into discrete optimization models, which is robust and remarkably versatile. It solves
real-world problems such as planning, scheduling, etc. in operations research, and has
diverse applications in NLP, from structured prediction such as named entity recognition
and dependency parsing, to reading comprehension, then to grammatical error correction,
and to align LLM outputs with human preferences (Martins et al., 2009; Wang et al., 2010;
Rush et al., 2010; Koo et al., 2010; Goldwasser et al., 2012; Wu & Ng, 2013; Berant et al., 2014;
Roth & Srikumar, 2017; Lin & Ng, 2021; Dakle et al., 2023; Zhang et al., 2024; Srikumar &
Roth, 2023; I. Garmendia et al., 2024). The core use of the framework is to translate a problem
into a mathematical statement of one of the forms of linear mixed-integer programming
problem (MIP), integer programming problem (IP), nonlinear integer programming problem
(NIP), or other types (Roth & Yih, 2004; 2005; Hemmecke et al., 2010; Srikumar & Roth,
2023). Solving combinatorial optimization models is not an easy task. Among which, NIP
is highly challenging, because the NIP model can contain discontinuous functions and is
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inherently non-differentiable. Lin & You (2024a;b) proposed to address the search difficulty
with metaheuristics, which we follow (more discussions in Appendix A).

Back to the combinatorial optimization based debiasing methods, their drawbacks lie in
the single consideration at either class level (Lin & You, 2024a) or sample level (Lin & You,
2024b). In (Lin & You, 2024a), any sample gets re-weighted by the same set of per-class
correction weights, making it hard to capture sample-level variances, which is particularly
needed for weak classes. In (Lin & You, 2024b), corrections are made at sample level
by assigning per-sample per-class correction weights that are computed by membership
functions, however, capturing too much nuance may over-corrects strong classes.

To overcome the insufficiency in previous works, we propose a meticulous post-hoc correc-
tion framework DCS (Debiasing at Class and Sample levels). DCS is an organic integration
of broad and fine-grained corrections across class and sample levels, pushing forward fairer
prompting accuracy for LLMs. DCS automatically detects which classes need corrections
that account for sample-level differences and which do not. In the following, we first intro-
duce the Heaviside step function based ensembling strategy for DCS (Section 2) and the
overall framework (Section 3), followed by quantitative evaluations and in-depth analyses
(Section 4). In Section 5, we conclude with prospective applications and open problems.

Our contributions are summarized as below:

• Post-hoc debiasing unifies class and sample level corrections. We ensemble weight
correction and membership correction to enable rectifications of class probabilities
at both class and sample levels, to enhance the performance of LLMs directly from
their outputs.

• SoTA scores on overall accuracy while maintaining low COBias DCS can achieve
leading overall accuracy improvements while good COBias reduction across seven
benchmark text classification tasks compared to the previous SoTA.

• Optimal solutions need weight correction to elevate weak classes. Quantitative
analyses show that the average ratio of classes using membership correction to
weight correction is between 0 and 1, where most classes apply weight corrections
but lowest-accuracy (weakest) classes more often apply membership corrections,
suggesting the necessity of keeping membership correction as an option and letting
the optimization process determine if it is needed for any particular class.

2 Using Heaviside Step Function to Ensemble Class and Sample Level
Debiasing

We introduce a robust ensemble debiasing framework across class and sample levels, which
is targeted specifically for balancing class accuracy while improving overall accuracy over
individual methods. To achieve ensembling, a Heaviside step function seamlessly unifies
two unique ICL output correction methods, bringing together the advantages of weight
coefficient and fuzzy rule based corrections. This unified framework captures the intricacies
of ICL output class probabilities with greater precision, reaching solutions that elevate weak
classes while maintaining the strong ones. List of notations are presented in Appendix B.

2.1 The Mapping Function for ICL Probability Correction

As mentioned, a common method for correcting probabilities involves multiplying each
class probability by a coefficient (Lin & You, 2024a). This is a class-level correction. For
an N-class task, we use a set of weights to adjust each dimension of the ICL output N-
dimensional probabilities without considering the variations in the initial probabilities across
different instances. In contrast, a more refined correction method employs membership
functions from fuzzy logic (Lin & You, 2024b), where a mapping function is applied to
adjust each dimension. Different classes use different mapping functions. As a result, class
probabilities of different instances undergo varying degrees of transformation - some are
adjusted significantly, others minimally, and some remain unchanged, reflecting a finer,
sample-level correction approach.
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We propose enabling a model-driven selection between coarse (class-level) and finer (sample-
level) corrections in the optimization process, promoting efficient and precise post-hoc
corrections for any class. Let’s denote the probability of the m-th instance’s i-th class as
pmi. We correct the per-sample per-class probability by a mapping function fi : p′mi ←
fi(pmi), pmi ∈ [0, 1]. To achieve our goal, the set of mapping functions Ψ combine weight
correction with membership function correction, i.e., Ψ = RWeight ∪RMembership, where
RWeight = {ω1, . . . , ωDW} and RMembership = {µ1, . . . , µDF}. To dynamically choose the
correction, we first introduce the Heaviside step function:

H(x) =
{

1, x ≥ 0
0, otherwise

(1)

Let ξi denote the selection variable for class i, each ξi will be optimized to choose a most
suitable correction from Ψ. We conventionally note when ξi is optimized to be one of
the indices from {1, ..., DF}, the i-th class probability of each instance gets a personalized
adjustment by a membership function determined by ξi; when ξi is one of the indices from
{DF + 1, ..., DF + DW}, the i-th class probability of any input instance is corrected by a
weight coefficient determined by ξi. Consequently, when ξi = k and k ≤ DF, the triangular
membership function (following (Lin & You, 2024b)) based correction function µk is selected,
the updated probability is computed by:

µk(pmi) =



0, pmi ≤ ak
pmi − ak
bk − ak

, ak < pmi ≤ bk

ck − pmi
ck − bk

, bk < pmi ≤ ck

0, otherwise

(2)

Special cases: when ak = bk = 0, µk(pmi) = ck−pmi
ck

for 0 ≤ pmi ≤ ck and 0 for pmi ≥ ck;

when bk = ck = 1, µk(pmi) =
pmi−ak
1−ak

for ak ≤ pmi ≤ 1 and 0 for pmi ≤ ak.

Otherwise, the weight correction function ωk is selected, and the updated probability is
obtained by:

ωk(pmi) =
k− DF

DW
pmi (3)

Therefore, the per-sample per-class probability pmi is precisely updated as follows.

p′mi = fi(pmi) = µξi (pmi) · H(DF − ξi) + ωξi (pmi) · H(ξi − DF − 1) (4)

This results in a more accurate correction for the ICL output probability, due to applying
flexible fixes at either the broad level or the fine-grained level.

2.2 Mathematical Model

The mathematical model used to drive the selection is based on the nonlinear integer pro-
gramming model in (Lin & You, 2024a) with accuracy-maximizing and COBias-minimizing
objectives. The combination of weight and membership corrections that optimizes the
model’s objective function will be selected. In short, the model is:

min Z = ZErr(ξ) + βZCOBias(ξ) + τZPMI(ξ)

s.t. ξ = (ξ1, . . . , ξN), ξi ∈ {1, . . . , DF + DW} (5)

where ZErr, ZCOBias, ZPMI respectively corresponds to the overall error rate, COBias of all
class pairs, and point-wise mutual information (PMI) between predicted and ground-truth
classes (Appendix C). During optimization, at the beginning of each simulated annealing
iteration, candidate selection ξi’s are generated and the correction functions fi’s correct
each sample in the optimization set, yielding corrected predictions {ŷm}M

m=1. Each of
the individual term in Z is essentially an evaluation score computed using the corrected
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Figure 2: Overall framework of DCS

predictions and ground-truth labels {ym}M
m=1. If the new Z is smaller than the current Z, the

candidate selection is accepted and the best selection is updated; otherwise, the algorithm
decides whether to accept the new selection based on the acceptance probability. Iterations
repeat until a stopping criterion is met. The optimization process will be elaborated in
Section 3.

Model parameters. This is a budget-friendly model with a total number of parameters (here
we refer to search space size) of N(DF + DW).

3 Simulated Annealing for Solving DCS

Due to the non-differentiable nature of the math model, we turn to heuristics and employ
the simulated annealing (SA) algorithm to solve the DCS model. The SA algorithm was
proposed by (Kirkpatrick et al., 1983; Cerny, 1985). The forerunners successfully introduced
the concept of annealing into combinatorial optimization, inspired by the annealing process
of solid materials. It starts at an initial temperature and cools down at a specified rate.
As the temperature gradually decreases, the algorithm leverages probabilistic jumps to
explore the solution space randomly, searching for the global optimum of the objective
function, so it can probabilistically escape local optima and eventually converge to the global
optimum (Steinbrunn et al., 1997). The optimization of DCS model is a search problem
in multidimensional space, where each solution makes a potential probability correction
scheme. Next, we uncover the overall framework that apply SA to solve our model.

3.1 Overall Framework

The overall solution framework for DCS is depicted in Fig. 2. The combinatorial optimiza-
tion relies on a labeled set of these initial class probabilities and their ground-truth labels.
The labeled set can be simply taken from the full or a subset of the classification task’s
training set. After ICL output class probabilities are obtained, the optimization process
starts with an initial solution. The iteration repeats until either a minimum temperature is
reached or a maximum number of iterations is reached, and we obtain the optimal correction
functions. In actual inference, the selected functions directly rectify a test instance’s ICL
output class probabilities and result in corrected predictions.
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3.2 Initial Solution

We can keep the initial probabilities unchanged as the initial solution for the DCS math
model. The fuzzy rule set RMembership = {µk}DF

k=1 designed in this paper must include Don’t
Change, the triangular membership function with ak = 0, bk = ck = 1, which will keep
the original probability unchanged. If the corresponding selection index is k0, the initial
solution can be chosen as: ξ j = k0, for class j = 1, . . . , N. For SA, the initial solution does
not affect the quality of the final solution, but it influences the annealing process, and we
empirically start with unchanged probabilities (Kirkpatrick et al., 1983).

3.3 Neighborhood Solution

It is necessary to generate a new solution in the neighborhood of the current solution. If
the current solution is ξ j = k j, for class j = 1, . . . , N, we can randomly select a class, for
example, j′ whose current solution is ξ j′ = k j′ , and perturb it by sampling kNew

j′ from the

set D \ k j′ as the new value for the variable ξ j′ . That is, ξ j′ = kNew
j′ . In this way, we obtain

a neighboring solution: ξNew = (ξ1 = k1, . . . , ξ j′ = kNew
j′ , . . . , ξN = kN). The transition

from the current solution at a given temperature to the new solution is a Markov chain
(Kirkpatrick et al., 1983; Cerny, 1985), and the transition probability is determined by the
Metropolis criterion Paccept = e−∆Z/T . If the new solution is better (∆Z < 0), accept the new
solution; if the new solution is worse (∆Z ≥ 0) and a uniform random number r ∼ U(0, 1)
is smaller than Paccept, namely r < Paccept, the new solution is also accepted.

3.4 Annealing Schedule

An annealing schedule is characterized by the initial value of the temperature, the cooling
rate, the inner-loop criterion, and the outer-loop criterion.

Initial Temperature: The initial temperature is chosen so that the acceptance probability is
relatively close to one. The higher the initial temperature, the more possible to obtain a high-
quality solution, but the longer the computation time. In this work, the initial temperature
is set to 200,000.

Inner-Loop Criterion: The inner loop simulates the process of the system reaching equilib-
rium at a given temperature. Theoretically, there should be a sufficient number of iterations.
The more decision variables there are, the more iterations the inner loop should have. There-
fore, in this paper, the inner loop stops when either the number of accepted solutions reaches
λ1 times of the number of variables, or the number of solutions generated exceeds λ2 times
of the number of variables. The value of λ1, λ2 are tuned alongside other hyperparameters.

Outer-Loop Criterion and Cooling Rate: Generally, the termination temperature should
be set to a sufficiently small positive number. The temperature update function follows a
geometric rate: Tcurr+1 = α · Tcurr, where α is set as 0.95 in this paper.

4 Experiments

We assess the capabilities of DCS in reducing class accuracy differences and enhancing
overall accuracy with three ICL settings: 1-shot, 5-shot, and N-shot. Demonstrations in
the prompt are randomly selected from the optimization set for 1-shot and 5-shot cases,
while the N-shot demonstration cascades examples from each class, to minimize under-
representations of any class. DCS is compared against SoTA methods, DNIP (Lin & You,
2024a) and FuRud (Lin & You, 2024b). We prompt LLMs with an A100 GPU to obtain
initial ICL outputs, following DNIP’s hyperparameters, then we run simulated annealing
on CPUs. Evaluations are performed on seven multi-class text classification tasks across
general and biomedical domains, including AGNews (AGN, 4-class;(Zhang et al., 2015)),
DBpedia (DBP, 14-class;(Auer et al., 2007)), SST-5 (SST, 5-class;(Socher et al., 2013)), TREC
(6-class;(Voorhees & Tice, 2000; Li & Roth, 2002)), RTE (binary;(Dagan et al., 2006)), DDI
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(5-class;(Segura-Bedmar et al., 2013)), and PubMedQA (PMQA, 3-class;(Jin et al., 2019)).
Appendix D presents more details.

4.1 Main Results

Setup We perform quantitative evaluations on Llama-2-13B, for its representativeness as a
widely applied open-source LLM. Indeed, Llama-2-13B is not particularly big in parameter
size, but its architecture can be seen as basic building blocks for many advanced LLMs
(Chiang et al., 2023; Rozière et al., 2024; Liu et al., 2023), and we expect similar findings in
larger model variants or models similar in architecture, which will be discussed in Section
4.3. Table 1 reports our main findings.

Acc COBias
General Domain Biomedical Domain General Domain Biomedical DomainMethod All

Avg AGN DBP SST TREC RTE Avg DDI PMQA
All

Avg AGN DBP SST TREC RTE Avg DDI PMQA

1-shot ICL + post-hoc debiasing

ICL 59.4 70.7 79.97.0 88.21.0 44.94.3 68.510.8 71.52.2 31.2 7.20.9 55.12.9 40.5 35.4 28.316.1 16.23.7 53.15.0 35.96.5 43.47.0 53.4 45.65.9 61.21.9

+DNIP 69.2 76.2 87.90.7 93.40.6 48.31.9 77.12.0 74.30.8 51.8 40.46.0 63.114.0 14.3 10.2 6.30.6 7.70.6 18.710.1 14.21.3 4.33.3 24.3 7.53.2 41.129.6

+FuRud 67.2 76.5 86.82.0 92.70.2 50.03.0 78.42.4 74.51.8 44.0 29.417.0 58.64.1 15.1 13.3 10.94.7 8.80.3 26.211.6 13.51.4 7.11.7 19.5 11.86.7 27.28.1

+DCS (Ours) 72.2 77.8 88.21.0 94.70.7 50.21.4 81.52.5 74.40.4 58.1 52.918.3 63.312.2 15.0 10.7 6.21.5 6.00.8 23.711.6 12.83.3 5.03.6 25.8 16.413.5 35.222.3

5-shot ICL + post-hoc debiasing

ICL 63.9 68.5 82.52.0 93.61.3 45.86.0 58.723.3 61.916.9 52.3 34.142.1 70.47.1 39.2 35.6 24.44.2 9.02.0 48.015.4 35.413.7 61.340.4 48.3 44.45.4 52.219.3

+DNIP 71.9 77.9 88.50.6 95.80.7 52.92.5 76.68.7 75.84.5 57.0 54.15.1 59.91.4 10.3 9.2 7.00.9 5.71.1 15.812.6 14.47.5 3.11.9 13.1 16.57.6 9.64.6

+FuRud 70.6 77.9 87.80.9 95.50.7 53.34.9 76.93.9 75.84.2 52.3 40.37.3 64.35.6 14.7 11.8 10.60.7 5.70.9 22.16.0 19.610.7 1.00.3 22.1 19.13.9 25.119.5

+DCS (Ours) 74.8 79.0 88.80.8 96.30.6 54.22.9 79.74.9 76.14.3 64.3 57.14.2 71.48.5 14.7 7.7 6.70.7 4.71.1 11.78.3 14.04.1 1.60.6 32.2 21.04.4 43.423.4

N-shot ICL + post-hoc debiasing

ICL 61.9 74.2 83.51.5 95.21.2 50.32.3 67.012.7 75.00.8 31.0 9.71.0 52.35.3 25.6 23.8 14.95.1 7.02.2 36.37.2 38.25.1 22.513.2 30.3 39.73.5 20.94.2

+DNIP 70.7 79.2 88.70.5 96.60.5 51.31.0 82.71.4 76.73.7 49.5 43.66.1 55.32.6 7.5 6.3 7.30.5 4.30.7 2.81.5 12.15.5 5.03.3 10.6 12.54.3 8.71.2

+FuRud 73.6 78.7 87.90.8 96.50.5 53.72.5 78.35.0 77.13.2 60.7 61.76.8 59.77.2 16.2 13.1 8.53.2 4.90.7 29.011.6 15.83.1 7.34.9 23.9 28.93.8 18.814.9

+DCS (Ours) 74.7 80.0 88.90.5 96.80.4 54.20.6 83.43.1 76.73.7 61.4 62.416.5 60.35.3 13.0 8.8 7.11.1 4.10.6 16.95.3 11.15.3 5.03.3 23.3 28.69.9 17.96.6

Table 1: Main results

The proposed method achieves SoTA overall accuracy improvements on all tasks except
for RTE across all ICL settings. As for RTE, due to its simplicity as a binary classification
task, all three methods obtain similar accuracy and COBias improvements. Meanwhile, it
achieves SoTA COBias performance on general domain tasks. In general, its COBias is on
par with the current best methods, with average COBias over all seven tasks falling between
that of DNIP and FuRud. On AGNews, DBpeida, and TREC, the proposed method achieves
both more overall accuracy improvements and more COBias reduction than DNIP and
FuRud across all ICL settings, demonstrating the superior performance gains achieved by
ensembling class-level and sample-level debiasing. Weak classes are elevated. We show in
Section 4.2 that DCS powers up the low-accuracy classes. We observe that weaker classes
are often corrected by rules, while stronger classes are most likely corrected by weights,
further highlighting the need of an ensemble method.

Annealing Time

Figure 3: Task annealing time

Figure 3 plots the time used to optimize correction
functions (left axis) and the search space size (right
axis) for each task. For fair comparisons, we fix the
weight scale for weight correction to 30 alongside 19
triangular membership functions, making a total of
49 possible correction functions and 49 · N possible
assignments across all variables. DCS is computa-
tionally efficient where all tasks finish optimization
within 150 outer loops, ranging from a maximum of
96.6 seconds to a minimum of 5.4 seconds. Notably,
SST-5, DDI, and AGNews have a relatively longer
time due to having a larger optimization set (Ap-
pendix D). In general, although larger optimization
sets and search spaces need more time to converge,
the annealing steps needed for a task can be further tuned to achieve cost-effective gains on
downstream applications.
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4.2 Overall Probability Correction Scheme

The overall probability correction scheme demonstrates the ratio of class-level corrections to
sample-level corrections among all classes. Which type of correction should be used for a
class is automatically determined by our method. Recall that: Class-level correction: Prob-
abilities of the same output class are corrected uniformly using a same correction weight
across all samples. It operates at the class level, not accounting for sample-based differences.
Sample-level correction: This is a more refined correction using membership correction func-
tions. Instead of a single weight, a unique mapping function is applied for each class. This
allows varying degrees of correction across different samples - some probabilities may be
adjusted significantly, others minimally, and some may remain unchanged - capturing the
nuances of individual samples, leading to more precise adjustments. By combining them,
our method ensures a balanced and adaptive correction, enhancing performances.

Dataset # Classes
# Classes that

use weight
corrections

# Classes that
use membership

corrections

Ratio of memberhsip
corrections to weight

corrections

#Classes that
use membership

corrections
in seed0/1/2 run

Remarks on any weakest class
that use membership

corrections

AGN 4 3.7 0.3 0.08 0/1/0 The weakest class Sports from seed1 run,
Acc: 0.75 (ICL)→ 0.98 (corrected)

DBP 14 12.3 1.7 0.14 2/2/1 -

SST 5 4.3 0.7 0.16 1/0/1

The weakest class Terrible from seed0 run,
Acc: 0.21 (ICL)→ 0.54 (corrected)

The weakest class Terrible from seed2 run,
Acc: 0.09 (ICL)→ 0.64 (corrected)

TREC 6 5 1 0.20 0/2/1 The weakest class Entity from seed2 run,
Acc: 0.04 (ICL)→ 0.76 (corrected)

RTE 2 0.7 1.3 1.86 1/2/1 The weakest class False from seed1 run,
Acc: 0.54 (ICL)→ 0.78 (corrected)

DDI 5 2.7 2.3 0.85 3/2/2

The weakest class Negative from seed0 run,
Acc: 0 (ICL)→ 0.73 (corrected)

The weakest class Negative from seed1 run,
Acc: 0 (ICL)→ 0.46 (corrected)

The weakest class Negative from seed2 run,
Acc: 0.02 (ICL)→ 0.93 (corrected)

PMQA 3 2.7 0.3 0.11 0/1/0 The weakest class Yes from seed1 run,
Acc: 0.38 (ICL)→ 0.62 (corrected)

Table 2: Overall probability correction scheme (N-shot)

We exemplify the overall probability correction scheme with the N-shot case in Table 2.
Numbers of classes are averaged over three runs of different demonstrations. As expected,
most classes select class-level weight corrections. Membership corrections are less selected,
but weakest classes benefit greatly from them, where 6 out of 7 tasks have selected mem-
bership corrections to correct their weakest classes (at least once over three runs). This
demonstrates the necessity of enabling sample-level corrections to boost the performance of
weak classes, and letting the optimization decide if sample-level corrections are needed.

4.3 Larger Models on DDI (Biomedical-domain)

Class Acc.
Model Acc. CB Prompt

Demon. Neg. Eff. Mech. Adv. Int.

Llama-2-13B

seed0 0.0 0.0 100.0 0.0 2.3
seed1 0.0 91.4 0.3 17.7 39.6ICL 7.2 45.6
seed2 0.0 0.8 84.1 54.8 88.5
seed0 32.5 38.1 32.1 29.0 32.3
seed1 62.1 30.6 32.8 42.1 31.3+DCS 52.9

(+45.7)

16.4
(-29.2) seed2 80.7 12.8 8.6 6.3 11.5

Llama-2-70B

seed0 0.1 86.9 3.0 4.1 19.8
seed1 8.7 64.2 3.0 18.1 56.3ICL 8.8 36.0
seed2 0.5 64.4 6.6 37.6 58.3
seed0 69.9 34.4 19.9 18.6 47.9
seed1 63.6 23.6 39.4 29.0 35.4+DCS 63.7

(+54.9)

24.3
(-11.7) seed2 80.5 16.1 26.2 18.6 33.3

Table 3: Significant DDI Performance gains
on both Llama-2-13B and Llama-2-70B.

Similar to its smaller variant Llama-2-13B,
1-shot ICL on Llama-2-70B also manifests
class accuracy imbalances. Especially on the
biomedical domain DDI classification, us-
ing 1-shot prompting, Llama-2-13B’s aver-
age ICL accuracy on DDI is 7.2% with CO-
Bias 45.6% as shown in Table 1, while Llama-
2-70B obtains 8.8% accuracy with COBias
36.0% as shown in Table 3, showing that the
larger variant is still highly prone to biased
predictions on biomedical tasks. This sug-
gests that the class accuracy imbalance may
not be effectively alleviated by increasing
model sizes, and the proposed post-hoc cor-
rections can exactly help with the situation.
Due to effectively correcting probabilities for
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low-accuracy classes as shown by Table 3, our method demonstrates significant accuracy
enhancements on DDI, across both small and large model variants. For more Llama-2-70B
performance gains, detailed scores can be found in Appendix E.

4.4 Ablations

Some may contend that more overall accuracy enhancements can be compensated by less
COBias reduction. While tradeoffs between overall accuracy and COBias generally exist,
relaxing COBias reduction (resulting in larger COBias score) can not guarantee higher
overall accuracy (Table 4), showing the need of a dedicated ZCOBias in the objective function.

AGN DBP SST TREC RTE DDI PMQA
Prompt Obj. Acc. CB. Acc. CB. Acc. CB. Acc. CB. Acc. CB. Acc. CB. Acc. CB.

Full 88.2 6.2 94.7(↑6.1) 6.0(↓10.2) 50.2 23.7 81.5(↑12.9) 12.8(↓23.1) 74.4 5.0 52.9 16.4 63.3 35.2
ZErr 88.4 7.8 92.8(↑4.2) 8.6(↓7.6) 51.4 50.9 80.6(↑12.0) 16.7(↓19.2) 75.7 12.8 82.2 39.8 71.3 58.81-shot

ZErr+ZPMI 88.5 7.5 94.1(↑5.5) 7.5(↓8.7) 51.7 53.0 81.1(↑12.5) 15.1(↓20.8) 75.8 13.0 82.9 40.0 71.1 59.1
Full 88.8 6.7 96.3(↑2.7) 4.7(↓4.3) 54.2 11.7 79.7(↑21.0) 14.0(↓21.4) 76.1 1.6 57.1 21.0 71.4 43.4
ZErr 88.9 7.8 95.0(↑1.4) 7.1(↓1.9) 54.2 41.6 79.5(↑20.8) 14.6(↓20.8) 76.2 13.7 82.8 40.0 76.7 58.85-shot

ZErr+ZPMI 88.9 7.9 95.9(↑2.3) 5.5(↓3.5) 54.9 41.4 78.9(↑20.2) 21.0(↓14.4) 76.9 10.2 82.9 40.2 76.8 58.8
Full 88.9 7.1 96.8(↑1.7) 4.1(↓2.8) 54.2 16.9 83.4(↑16.4) 11.1(↓27.1) 76.7 5.0 62.4 28.6 60.3 17.9
ZErr 88.8 7.5 96.3(↑1.2) 5.1(↓1.8) 54.4 37.4 81.9(↑14.9) 18.4(↓19.8) 76.9 17.0 82.8 40.1 76.0 60.5N-shot

ZErr+ZPMI 89.0 7.5 96.5(↑1.4) 4.8(↓2.1) 54.8 40.8 83.3(↑16.3) 15.3(↓22.9) 77.5 15.7 82.9 40.1 76.1 60.7

Table 4: ZErr objective ablations; average scores over three random seeds are reported.
Improvements over ICL scores are shown by (↑) and (↓).

To see this, we ablate the overall error term ZErr from the objective function and optimize
solely for ZErr. On DBpedia and TREC, DCS with only ZErr did not obtain a higher accuracy
than the DCS with the full objective function. This is because the optimization without an
explicit ZCOBias term may favor higher-accuracy classes which are easier to improve, and
becomes “lazy” to improve classes that have low accuracies initially. Applying the learned
correction functions will result in a good overall test accuracy with fair COBias. On the other
hand, explicitly setting ZCOBias in the objective function can help enforce fair improvements
for all classes while optimizing overall accuracy. It could bring more accuracy gains for
lower-accuracy classes, and thus obtaining even higher overall test accuracy with lower
COBias in some cases, especially when there are only a few low-accuracy classes among
many higher-accuracy classes initially, like DBpedia and TREC. This suggests that balancing
class accuracies can help with overall accuracy gains. Additionally, we ablate both accuracy
objectives ZErr and ZPMI, and optimize for these two terms without ZCOBias. On DBpedia
and TREC, its performance generally falls between optimizing for ZErr and the full objective,
further suggesting the importance of ZCOBias in reaching optimal solutions.

4.5 Discussions

We visualize the ablation of sample-level and class-level rebalancing in Appendix F,
demonstrating that sample-level rebalancing significantly elevates weak classes, while class-
level rebalancing steadily balances the stronger ones. Moreover, regarding more model
families, we provide experimental results with Gemma-2-2B in Appendix G, which obtain
consistent improvements similar to the Llama-2 cases, demonstrating that our method is
applicable to LLMs of varied sizes and families. Lastly, with respect to the time and cost of
applying the DCS method in real-world scenarios, we elaborate below.

Accessibility: DCS is model-agnostic, requiring only output probabilities, making it particu-
larly suitable for large or closed LLMs where only logits/output probabilities are accessible.

Cost of post-hoc optimization: The post-hoc, offline optimization of DCS requires no model
architecture modification and prompt engineering. The annealing time averages 46 seconds
(computed from Figure 3). Hyperparameter tuning can be done efficiently because most
hyperparameters are pre-configured in practice, with only a few scalar values (e.g., β, τ)
requiring tuning. Moreover, since the class-level correction method DNIP demonstrates low-

9



Published as a conference paper at COLM 2025

data optimization capability, we’d infer that DCS is amenable to low-data scenarios. These
make DCS particularly valuable in specialized applications where fairness and accuracy are
paramount.

Negligible inference overhead: The learned correction functions are reused on-the-fly with
mere milliseconds in prediction, introducing virtually no computation overhead or latency.

Scalability: Our method exhibits linear scaling with the number of classes (N). At each tem-
perature in simulated annealing, the number of searches remains within several multiples
of the search space size N(DF + DW), ensuring practical feasibility across small and large
classification tasks.

5 Conclusion and Limitations

This paper proposes DCS, a post-hoc ensemble debiasing framework to correct ICL probabil-
ities across class and sample level. It boosts low-accuracy classes, while keeping the strong
ones. It achieves SoTA accuracy on seven benchmark text classification tasks, while effec-
tively mitigating class performance imbalances. The resulting probability correction scheme
clearly shows that combining membership correction and weight correction is essential to
elevate weak classes. For limitations and future work, the post-hoc correction framework
can be extended to other useful scenarios, such as text generation. Combining DCS into
the decoding process can help rectify the probabilities of top candidates for the first token
(or first several tokens) to lead a better, less biased response. More future directions are
discussed in Appendix H.
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A Discussion on Solution Methods for NIP

Typical solutions for combinatorial optimization problems include the branch-and-bound
(B&B) algorithm, which is useful for solving mixed-integer linear programs (Land & Doig,
1960). Solvers are made into both open-source software such as CVXPY (Diamond & Boyd,
2016; Agrawal et al., 2018) or SCIP (Achterberg, 2009), and commercial solvers like Gurobi
(Gurobi Optimization, LLC, 2024) or LINGO (Schrage, 1999).

We need to point out that B&B and other related algorithms are not very suitable to search
solutions for the proposed nonlinear integer programming based optimization model,
which contain discontinuous functions and is inherently non-differentiable. Relaxation to
subproblems is needed if B&B has to be used. Relaxation can be done by creating Lagrange
multipliers and Lagrangian functions for each constraint, which is often easier to solve than
the original nonlinear integer programming problem, because only continuous variables are
involved (Luenberger & Ye, 2008; Jünger et al., 2010). The relaxed problem finds the optimal
value of the Lagrangian function, which is a lower bound for the original problem, and it
is used as a bound in the B&B search. However, solving the subproblems efficiently poses
challenges, as B&B is generally not a polynomial-time algorithm.

Instead, we can opt for metaheuristics (Hussain et al., 2019), such as simulated annealing
(Kirkpatrick et al., 1983; Cerny, 1985), to find the optimal solution. Although heuristic
search can get slower with increasing search space size (Jia et al., 2019), its computational
complexity is within polynomial time (Lin & You, 2024a). To enable application of our
proposed method to tasks with even more classes, we adopt simulated annealing (SA) to
solve our model.

In SA, we define an initial temperature T and an annealing schedule including the cooling
rate and the stopping criteria. In each iteration, a neighborhood solution is generated by
perturbing the current solution. The algorithm calculates the objective function value for
the new solution (Step Evaluate Z in Fig. 2). If the new solution is better, accept it; if the new
solution is worse, accept it with a probability determined by the Metropolis criterion. Then
the temperature is reduced according to the cooling rate, until convergence. In addition, the
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initial solution can also be randomly generated, where N numbers are randomly selected
from D = {1, . . . , DF + DW} as the initial values for the selection variables ξ j’s.

B List of notations

The parameters, sets and decision variables used throughout this paper are listed in Table 5.

Symbol Description

Parameters
pm The ICL output token’s class probabilities of the m-th instance in a dataset
ωk The k-th weight coefficient where k ∈ {1, ..., DF}
µk The k-th membership function where k ∈ {DF + 1, ..., DF + DW}
Sets
RWeight The set of DW weight coefficients, equally spaced discrete values from 0 to 1
RMembership The set of DF triangular membership functions
D The set of selection indices

Variables
ym, ŷm The label and prediction of the m-th instance
ξ j The integer selection variable for class j

Table 5: List of notations

C Details on the Objective Function

ZErr, ZCOBias, ZPMI respectively follows from the three terms of Eq. 5 in (Lin & You, 2024a),
which include:

The overall error rate for M optimization instances:

ZErr =
1
M

M

∑
m=1

1{ŷm ̸= ym}, where ŷm = arg max
n∈{1,...,N}

p′mn, m = 1, . . . , M (6)

COBias of all class pairs:

ZCOBias =

(
N
2

)−1 N−1

∑
i=1

N

∑
j=i+1

∣∣∣∣Aci − Acj

∣∣∣∣, where Ac∗ is class c∗’s accuracy (7)

PMI between ground-truth instances of class j and predictions of class j:

ZPMI = −
N

∑
j=1

PMIj (8)

where

PMIj = PMI(Ŝj, Sj) = log
f (Ŝj, Sj)

f (Ŝj) f (Sj)
, for j = 1, . . . , N (9)

Here, Ŝj and Sj denote the instances of prediction j and true label j respectively, f (Ŝj) is the
ratio between the number of instances with prediction j and the total number of instances,
similarly, f (Sj) is the ratio between the number of instances labeled j and the total number
of instances, f (Ŝj, Sj) is the ratio between the number of correct predictions of class j and
the total number of instances.
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D Experimental Setups

For each evaluation task, we tune the weight scale for weight correction, β and τ used in the
objective function, and the simulated annealing algorithm’s number of outer loops, inner
loops, the initial temperature, and stopping criteria (stopping temperature, the maximal
number of solutions generated, and the maximal number of accepted solutions) on a devel-
opment set. The optimization/development set split is 0.95/0.05. Dataset preprocessing
follows DNIP (Lin & You, 2024a), and their statistics are shown in Table 6.

Dataset
Optimization

set size
(incl. dev)

Evaluation
set size Prompt

AGN 10,000 5,000

Please classify the news articles into the categories of
World, Sports, Business, and Technology.\n\n
Article: [Input]
Answer:

DBP 10,000 5,000

Please classify the documents based on whether they are
about a Company, School, Artist, Athlete, Politician,
Transportation, Building, Nature, Village, Animal,
Plant, Album, Film, or Book.\n\n
Article: [Input]
Answer:

SST 8,544 2,210 Review: [Input]
Sentiment:

TREC 5,452 500

Please classify the questions based on whether their answer
type is a Number, Location, Person, Description, Entity,
or Abbreviation.\n\n
Question: [Input]
Answer Type:

RTE 2,490 277

[Input premise]
question:
[Input hypothesis]
True or False?
answer:

DDI 10,000 5,716

Please choose a most suitable answer from Negative, Effect,
Mechanism, Advice, or Interaction, for the drug-drug
interaction relation between the @drug$ pair in the
following description.\n\n
Description: [Input]
Answer:

PMQA 1,000 500

Please choose a most suitable answer from yes, no, or maybe,
for the following question given a context.\n\n
Context: [Input context]
Question: [Input question] yes, no, or maybe?
Answer:

Table 6: Dataset statistics

E Full Performance Comparisons on Llama-2-70B

Our method effectively applies to larger LLM variants, showcased by Llama-2-70B. Debi-
asing results using DCS on 1-shot ICL outputs in Table 7 show consistent improvements
in average overall accuracy across three seeds of demonstrations, outperforming DNIP
and FuRud. Our method achieves better COBias reduction than the other two methods on
general domain tasks, and better accuracy with comparable COBias reduction on biomedical
domain tasks. The takeaway is, increasing LLM sizes without post-hoc corrections may
not always be an effective way to resolve output class accuracy imbalances, which further
validates the necessity of the proposed post-hoc correction method.
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Acc COBias
General Domain Biomedical Domain General Domain Biomedical DomainMethod All

Avg AGN DBP SST TREC RTE Avg DDI PMQA
All

Avg AGN DBP SST TREC RTE Avg DDI PMQA

1-shot ICL + post-hoc debiasing

ICL 66.4 76.2 87.42.2 94.11.0 41.88.6 79.32.5 78.62.6 41.7 8.83.7 74.52.3 31.8 25.1 14.55.6 8.31.2 54.71.4 22.42.0 25.57.6 48.8 36.02.1 61.53.3

+DNIP 73.6 79.0 89.80.2 96.50.5 49.42.0 79.34.0 80.01.1 60.0 52.514.4 67.52.4 17.3 15.9 6.50.4 3.80.3 47.114.0 17.34.8 4.61.8 21.1 16.49.0 25.72.0

+FuRud 75.9 79.0 89.40.6 96.20.8 50.02.2 79.53.8 79.99.1 68.1 60.011.8 76.12.2 21.4 15.0 7.11.0 3.80.6 40.18.3 19.05.2 4.81.5 37.5 25.27.5 49.79.4

+DCS 76.8 79.6 89.90.2 96.70.5 50.11.7 81.03.6 80.11.1 70.0 63.76.2 76.22.4 20.7 14.3 6.60.1 3.60.2 40.38.2 15.65.6 5.31.6 36.8 24.35.5 49.29.1

Table 7: Quantitative evaluations on Llama-2-70B

F Ablation of Sample-level and Class-level Rebalancing

We visualize the ablation of sample-level and class-level rebalancing using TREC (general
domain) and PubMedQA (biomedical domain) in Figure 4a and 4b. Both datasets show that
sample-level rebalancing significantly elevates weak classes, while class-level rebalancing
steadily balances the stronger ones. Ensembling yields overall gains in both metrics.

(a) Accuracy by group of classes, TREC (b) Accuracy by group of classes, PubMedQA

Figure 4: Ablation of sample-/class-level rebalancing

G Additional Performance Comparisons on Gemma-2-2B

Acc COBias
General Domain Biomedical Domain General Domain Biomedical DomainMethod All

Avg AGN DBP SST TREC RTE Avg DDI PMQA
All

Avg AGN DBP SST TREC RTE Avg DDI PMQA

1-shot ICL + post-hoc debiasing

ICL 53.4 59.0 79.93.4 72.62.7 27.64.3 44.64.7 70.36.6 39.4 15.410.6 63.41.0 38.5 35.9 25.76.9 36.61.8 42.01.5 50.20.7 25.213.1 44.8 35.113.0 54.43.2

+DNIP 65.1 70.1 86.91.1 88.40.9 33.27.9 69.60.8 72.62.3 52.5 41.518.2 63.411.3 19.9 15.9 7.10.5 14.01.0 34.39.9 21.42.8 2.61.8 30.0 18.37.2 41.827.3

+FuRud 66.9 71.6 85.31.8 88.41.7 44.18.5 68.50.6 71.74.7 55.3 43.018.9 67.51.2 23.1 18.3 12.32.3 12.73.6 40.117.0 21.61.2 4.73.0 35.1 18.210.9 51.90.6

+DCS (Ours) 69.2 74.5 87.01.1 92.50.9 49.41.7 70.92.5 72.62.3 56.0 44.10.3 67.92.3 23.3 17.8 7.71.0 6.80.3 50.70.9 21.32.8 2.61.8 37.0 22.44.2 51.54.8

Table 8: Quantitative evaluations on Gemma-2-2B

We additionally experimented with Gemma-2-2B, and obtained consistent improvements
(Table 8) similar to the Llama cases, showing that our method is applicable to LLMs of
varied sizes and families.

H More Future Directions

This work deals with prediction biases when directly prompting LLMs. When LLMs or
smaller LMs like BERT (Devlin et al., 2019) are finetuned on tasks, which may result in
further imbalanced class accuracies, post-hoc corrections can make class accuracies fairer. It
would be valuable to understand how these output class probabilities differ from those by
direct prompting, and enable custom extensions to the current framework to provide more
targeted corrections. It would also be interesting to see how it may help with data-filtered or
data-augmented finetuning. In terms of interpretability, those classes that apply class-level
correction to any instance is interpretable only at the broader level, so further investigations
on how to enforce more interpretability to weight corrections could be conducted.
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