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ABSTRACT

Large pre-trained vision-language models (e.g., CLIP) are vulnerable to adversar-
ial attacks in image-text retrieval (ITR). Existing works primarily focus on defense
for image classification, overlooking two key aspects of ITR: multimodal manipu-
lation by attackers, and the one-to-many relationship in ITR, where a single image
can have multiple textual descriptions and vice versa (1:N and N:1). This is the
first work that explores defense strategies for robust ITR. We demonstrate that our
proposed multimodal adversarial training, which accounts for multimodal pertur-
bations, significantly improves robustness against multimodal attacks; however, it
suffers from overfitting to deterministic one-to-one (1:1) image-text pairs in the
training data. To address this, we conduct a conprehensive study on leveraging
one-to-many relationships to enhances robustness, investigating diverse augmen-
tation techniques. Our findings reveal that diversity and alignment of image-text
pairs are crucial for effective defense. Specifically, text augmentations outper-
form image augmentations, which tend to create either insufficient diversity or
excessive distribution shifts. Additionally, we find that cross-modal augmen-
tations (e.g., image — text) can outperform intra-modal augmentations (e.g.,
text — text) due to generating well-aligned image-text pairs. In summary, this
work pioneers defense strategies for robust ITR, identifying critical aspects over-
looked by prior research, and offers a promising direction for future studies.

1 INTRODUCTION

Image-text retrieval (ITR) is a fundamental Vision-Language (VL) task that involves cross-modal
representation alignment between vision and language modalities. It consists of retrieving the most
relevant text given an image query, and vice versa. One solution is using Vision-Language (VL)
models pre-trained on large-scale paired image-text data, such as CLIP (Radford et al.,2021)), which
learns a joint embedding space for images and texts. However, recent studies revealed that all VL
models for ITR are vulnerable to adversarial attacks (Zhang et al.| [2022; [Lu et al., |2023). Since
adversarial attacks can deceive models with nearly negligible perturbations for humans, they pose
significant risks of causing unintended consequences in real-world applications. For example, in
e-commerce, retailers may add perturbations to the product images or descriptions to manipulate
the retrieval results of an ITR system, unfairly promoting or demoting specific products. As the
deployment of VL models in practical applications grows, understanding and mitigating their vul-
nerabilities against adversarial attacks has become crucial and urgent.

While several defense strategies for VL models have been proposed (Mao et al., [2022; [Wang et al.,
2024bj; [Schlarmann et al., 2024)), they primarily focus on image attacks, e.g., for robust zero-shot
image classification, leaving defense strategies tailored for ITR fully unexplored. This is a con-
siderable oversight since ITR presents two challenges that make the problem much more complex
compared to image classification: (1) Multimodal manipulation: Adversarial attacks on ITR can
manipulate both image and text modalities, however, previous defense methods only consider image
perturbations. Such an increased attack capability in ITR requires more complex defense strategies.
(2) One-to-many (1:N) cross-modal alignment: Sentence-level text inputs in ITR exhibit a high
degree of variation and ambiguity, as a single image can be described in numerous ways, and vice
versa. The one-to-many nature of image-text alignment in ITR (e.g., a single image is described as
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“aman with glasses is wearing a beer can crocheted hat” or “a man wears an orange hat and glasses”)
contrasts with simple and unambiguous text inputs in image classification tasks (e.g., all dog photos
are paired with “a photo of a dog”), making harder to achieve a robust image-text alignment. Thus,
the existing defense strategies for VL models aimed at image classification (Mao et al.| [2022; Wang
et al.,[2024b) overlook these two critical aspects, casting doubt on their effectiveness for ITR.

To address this gap, we pioneer a study on defense strategies for VL. models in ITR. Specifically, in
this work, we study how to robustly fine-tune a large-scale vision-language model for downstream
ITR tasks.

First, by incorporating multimodal perturbations during adversarial training, our proposed multi-
modal adversarial training (MAT) largely improves robustness against multimodal attacks. This
highlights the need for defense strategies specifically tailored to multimodal threats in ITR, a re-
quirement distinct vision-only defense strategies (Mao et al.,[2022; |Schlarmann et al.| 2024)).

However, we find that MAT suffers from overfitting to deterministic (1:1) image-text pairs in the
training data. To mitigate this issue, we investigate how to consider the one-to-many (1:N) rela-
tionships in ITR to enhance adversarial robustness. Inspired by works in cross-modal ambiguity
modeling in ITR (Kim et al., [2023; [Song & Soleymani, [2019), we explore various text and image
augmentation techniques to create diverse one-to-many (1:N) and many-to-one (N:1) image-text
pairs. Our in-depth analysis reveal that diversity and alignment of image-text pairs are crucial for
effective defense. For instance, text augmentations outperform image augmentations, which tend
to create either insufficient diversity or excessive distribution shifts. Additionally, cross-modal aug-
mentations (e.g., tmage — text) can outperform intra-modal augmentations (e.g., text — text)
due to generating well-aligned image-text pairs. These findings are novel and unique for multi-
modal robustness settings, which has not been previously explored in unimodal adversarial training
literature.

Our contributions are summarized as follows:

* First defense strategy for ITR: We demonstrate that existing defense methods for image
classification are suboptimal for robust ITR, and pioneer research in this new direction.

* Introduced multimodal adversarial training: Our multimodal adversarial training
largely improves robustness against multimodal attacks, highlighting the importance of
considering multimodal perturbations for ITR defense.

¢ Comprehensive analysis of leveraging one-to-many relationships for robust ITR: We
identify overfitting in multimodal adversarial training to deterministic one-to-one (1:1)
image-text pairs. Thus, we provide an in-depth analysis of diverse augmentations, cov-
ering both image and text modalities, as well as intra- and cross-modal augmentations. We
reveal that leveraging one-to-many (1:N) relationships improves robustness, with diversity
and alignment of augmented image-text pairs being crucial for defense—insights not rec-
ognized in unimodal adversarial training literature.

2 RELATED WORK

Adversarial attacks on vision-language models. Adversarial attacks on VL models can be cat-
egorized into unimodal and multimodal attacks. Unimodal attacks, such as gradient-based image
attacks (Madry et al.,[2017) and BERT-Attack for text (L1 et al.,[2020), manipulate a single modality
to mislead the models. On the other hand, recent studies have revealed that multimodal attacks,
which perturb both image and text modalities, are significantly more effective (Zhang et al.| 2022;
Luetal.,2023;|Han et al., 2023; Wang et al.,[2024a). However, developing defense strategies against
multimodal attacks for ITR remains largely unexplored.

Adversarial defense for vision-language models. Existing defense strategies for VL models
mainly focus on vision robustness, where only the image modality is perturbed by adversarial at-
tacks. For example, Mao et al.| (2022) and [Wang et al.| (2024b)) have proposed robust fine-tuning
methods of CLIP for zero-shot image classification, which leverage adversarial training scheme to
improve the model’s adversarial robustness. |Schlarmann et al.| (2024)) proposed a method to robustly
fine-tune a CLIP’s vision encoder aimed at applications to diverse vision-language tasks, only fo-
cusing on image attacks. Unlike previous studies, we are the first to investigate adversarial defense
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strategies for ITR tasks, where both image and text modalities can be manipulated by adversaries.
Distinct from existing defense strategies, we propose multimodal adversarial training to improve
robustness against multimodal attacks in ITR, and leverage the one-to-many (1:N) relationship in
ITR to enhance adversarial robustness.

Leveraging the one-to-many (1:N) nature of image-text. To tackle robustness in VL models,
we take inspiration from current works for ITR. These works aim to improve retrieval accuracy by
modeling the ambiguity between image and text pairs; that is, although a sentence can have multiple
visual interpretations, normally only one is paired as the ground truth. Similarly, an image can be
described using multiple different captions, but only one is considered as its pair. Since such a 1:1
deterministic relationship is inconsistent with the 1:N nature of the data, ITR works propose repre-
senting image-text samples as probabilistic embeddings (Chun et al.| 202 1;|Chun, [2024)), considering
neighboring samples in the triplet loss (Thomas & Kovashkal [2020), and generating multiple and
diverse representations for each image-text sample (Song & Soleymani, 2019; Kim et al.| [2023).
Among these solutions, the latter naturally fits the data augmentation strategy of adversarial train-
ing. We hypothesize that leveraging data augmentation to increase diversity in a 1:N manner leads
to robustness against adversarial attacks.

3 DEFENDING AGAINST VISION-LANGUAGE ADVERSARIAL ATTACKS

3.1 PRELIMINARIES

VL models |[Radford et al.| (2021); |L1 et al.| (2021); Yang et al.| (2022) are fundamentally built on
image-text contrastive learning, where the training objective is to maximize the similarity between
matching image-text pairs while reducing the similarity between non-matching pairs in a shared
embedding space. Among them, CLIP (Radford et al.| 2021) is the representative VL model for
ITR and is the foundation for many other VL models (Li et al., [2021}; |Yang et al., [2022). Thus, we
focus on defense strategies for CLIP and conduct a comprehensive anlaysis on our proposed defense
strategy. Below, we provide a brief overview of CLIP, followed by an explanations of existing
adversarial attacks and defenses targeting CLIP.

CLIP. Contrastive Language-Image Pretraining (CLIP) consists of an image encoder ® : 7 —
R? and a text encoder ¥ : 7 — R<, where Z and 7 are the input spaces for images and texts,
respectively, and d is the dimension of the joint embedding space. Given an image I € 7 and a
text T' € T, CLIP is trained to embed them into the joint embedding space, and to maximize the
similarity score S w(I,T) = sim(®(I), ¥(T)) (cosine similarity of image-text embeddings) for
correct image-text pairs, and minimize it for incorrect pairs. CLIP is based on image-text contrastive
learning using the InfoNCE loss, where paired image-text samples form positive pairs, and unpaired
image-text samples form negative pairs. For the batch of N paired image-text samples {(I;, T;)};,
the InfoNCE loss (over images) is defined as:

N

Lovip = Lopip,(IT) = =Y log
i=1

exp(Se,w(L;, T;)/T)
S exp(Sew(L;, Ty) /1)

(D

where 7 is the learnable temperature parameter. The overall loss is the mean of the losses over
images and texts, Lorrp = (Lorip; + Loripy)/2, where Lo g py. is the InfoNCE loss over texts.

Multimodal adversarial attacks. We aim to defend against adversarial attacks on CLIP for ITR,
where both image and text modalities can be manipulated by adversarial attacks. The objective of
(untargeted) adversarial attacks on CLIP is to minimize the image-text similarity S¢ (I, T") for the
correct image-text pairs (I, 7T) to mislead the models’ predictions, as follows:

(I''T") = argmin So o (I', T"), st ||I' = I|| < e, T = T| < er. ()
T

Image attacks add small perturbations to the original image I to generate adversarial images I,
while maintaining perceptual similarity through an L,-norm constraint ||’ — I||, < ¢;. A com-
mon method is the projected gradient descent (PGD) (Madry et al.,|2017)), which iteratively updates
I’ by taking a small step in the direction of the gradient. Text attacks, such as BERT-Attack (Li
et al.; 2020), modify N words in the text T to maximize the divergence between ¥(T") and ¥ (7”).
Multimodal attacks perturb both image-text modalities to generate adversarial examples (I’,T"),
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effectively combining image and text attacks to manipulate the image-text alignment. For exam-
ple, Co-Attack (Zhang et al., [2022) perturbs both modalities in a step-wise manner, first perturbing
the text, then the image given the perturbed text. SGA (Lu et al., [2023) enhances Co-Attack by
considering the set-level interaction between the multiple images and texts.

Adversarial defense of CLIP for zero-shot image classification. The defacto standard defense
strategy against adversarial attacks is adversarial training (AT) (Madry et al., [2017), which trains
models using adversarial examples to improve robustness. To improve CLIP’s adversarial robust-
ness for zero-shot image classification tasks, TeCoA (Mao et al.| [2022) adversarially fine-tunes the
image encoder of CLIP by minimizing the contrastive loss between adversarial images and the text
embeddings of the corresponding class labels, formulated as:

Lrecos = Lopip, (I',T), where I' = arglr,nax Lcopip,(I',T), 3)

where I’ is the adversarial image for the text 7. However, TeCoA only defends against image
adversarial attacks, and does not account for the one-to-many (1:N) relationship in ITR. Changing
the previous paradigm, our work proposed a novel framework for robust fine-tuning of CLIP for ITR
tasks, where both image and text modalities can be manipulated by attackers.

3.2 MULTIMODAL ADVERSARIAL TRAINING FOR MULTIMODAL ROBUSTNESS

We aim to defend against adversarial attacks on CLIP for ITR, which involves multimodal attacks
that manipulate both image and text modalities. To this end, distinct from existing CLIP’s adversarial
fine-tuning methods (Mao et al, [2022; [Schlarmann et al [2024), which focus on vision robustness
and fine-tune only CLIP’s vision encoder, we start by fine-tuning the whole CLIP model to obtain
robustness against multimodal perturbations.

To effectively defend against multimodal attacks, we propose a multimodal adversarial training
framework (MAT), which perturbs both image and text modalities during adversarial training. Here,
we employ a step-by-step approach to generate adversarial examples (I’,7”) by perturbing the im-
age and text modalities sequentially. First, we generate adversarial texts 7’ by maximizing the
divergence between W(T') and ¥(T"), formulated as:

T' = argmax ||U(T") — U(T)||, where ||T" —T|| < er, 4)
T/

where the text perturbation is constrained by the number of words. Then, we generate adversarial
images I’ by minimizing the cosine similarity score between I’ and the generated adversarial text
T’ as follows:

(I - v (1)
[@(@)HIe )]’

where the image perturbation is constrained by L,-norm with €;. Finally, we update the model
parameters by minimizing the contrastive loss between the adversarial image I’ and the adversarial
text 7", formulated as:

I' = argmax — where ||I' — I|| < ¢y, (5)
II

Laar = Lepp(I',T'). (6)

To implement the text perturbation during fine-tuning, we use the BERT-Attack, which iteratively
replaces important words in the text to maximize the divergence between W (7T') and ¥ (7"”). In the
case of images, we utilize the widely adopted PGD to generate adversarial image perturbations.

In Section [4.3] we show that multimodal adversarial fine-tuning significantly improves robustness
against multimodal attacks in ITR, compared to existing defense strategies that only consider image
perturbations. Nevertheless, we find that this framework easily overfits to deterministic pairs in the
training data, which we discuss in the following section.

3.3 LEVERAGING ONE-TO-MANY IMAGE-TEXT PAIRS FOR ROBUSTNESS GENERALIZATION

Existing works on cross-modal ambiguity in ITR (Kim et al., 2023; Song & Soleymani, 2019)
demonstrated the importance of modeling the one-to-many (1:N) relationship that exists between
image and text descriptions. In our setting, a simple adversarial fine-tuning on a downstream ITR
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dataset would also easily overfit to deterministic (1:1) image-text pairs in the training data. There-
fore, the inherent ambiguity of image-text pairs in ITR needs to be considered to achieve a more
optimal adversarial robustness in ITR.

To this end, we propose Multimodal Augmented Adversarial Training (MA2T), leveraging data aug-
mentation strategies to create diverse one-to-many (1:N) and many-to-one (N:1) image-text pairs to
prevent overfitting in MAT. Our idea is streightforward: a single image can be described in numerous
ways, and vice versa. Text augmentation can generate diverse text samples for a given image, cre-
ating 1:N image-text pairs. Similarly, image augmentation can generate diverse images for a given
text, creating N:1 image-text pairs. In this way, we can prevent overfitting to deterministic (1:1)
pairs and naturally model the ambiguity of image-text pairs in ITR during mutlimodal adversarial
fine-tuning, improving adversarial robustness.

Thus, given an image-text pair (I, T"), we generate augmented images I,,4 < augr(I,T) or aug-
mented text T,y < augr (I, T'), where augr and augr are image and text augmentation functions,
respectively. Then, the new augmented pairs (1,4, ") or (I, T,.4) are added to the training data for
the image or text augmentation scenarios. Note that we do not use the pairs (/44, Taug) in the train-
ing process, as I,,4 and Tg,4 are not necessarily aligned with each other since they are generated
independently. Using these pairs empirically degrades the model’s performance.

The proposed defense strategy is summarized in Algorithm 1]

Algorithm 1 Multimodal Augmented Adversarial Training (MA?T)

Require: Image-text pairs (I,T") ~ D, Model 0, Learning rate o, Perturbation constraints €, ep
1: (Data Preparation:)

2: for each (I,T) € D do

3: (N:1 case) Image augmentation: 1°%9 < aug;(I,T), D < D U (1*%9,T)
4: (1:N case) Text augmentation: 7“9 <— augp(I,T), D < DU (I,T"9)
5: end for

6: (Training:)

7: for each batch do

8: T + arg maxp, || U(T") — U(T)||, where ||T" — T'|| < er

9: I’eargmaxl,—%,where 1" =I|| <er

10: 9%9—0&-V9£CL1P(I/,T/

11: end for

However, deciding which types of augmentations are more effective is not trivial, since these can
model either intra- or cross-modal relationships, and be more or less computationally complex. The
next section thoroughly explores which augmentations are more effective and why.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We employ the Flickr30k (Plummer et al., 2015) and COCO (Chen et al.| |2015) datasets,
which are widely used for ITR. We use the default train/test split of 29,000/1,000 images for
Flickr30k, and 82,783/40,775 images for COCO. While Flickr30k and COCO contain five captions
per image, our baseline training approach uses 1:1 image-text pairs, as this is the practical setting for
fine-tuning CLIP. Thus, when creating 1:1 pairs, we take the first annotated caption of each image.

Evaluation. We evaluate our proposed defense strategies against adversarial attacks in the ITR
task using the Recall@k (R@k) metric. This includes both image-to-text retrieval (TR) and text-
to-image retrieval (IR), where the objective is to retrieve the most relevant text for a given image
query and vice versa. We employ multimodal adversarial attacks, Co-Attack, and SGA, which are
more effective at deceiving VL models than unimodal attacks. The perturbation constraints are set
to e; = 2/255 with L.-norm for image attacks, and one word for text attacks. An evaluation for
unimodal attacks, including PGD and BERT-Attack, is provided in Appendix
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Table 1: Comparison of defense methods for clean (i.e., no attack), Co-Attack, and SGA scenarios.

Clean Co-Attack SGA

Method TR IR TR IR TR IR
R@l R@5 R@1 R@5 R@I R@5 RE@1 R@5 R@1 R@5 R@I R@5
Fine-tune 92.1 990 772 944 11.0 233 6.7 16.5 0.6 2.0 0.6 2.6
% TeCoA 813 947 676 89.0 533 799 359 612 31.6 604 22.1 46.0
T (ours) MATp,,; 848 963 687 894 528 777 316 568 273 529 17.9  40.0
(ours) MAT 81.8 954 670 880 550 8.0 358 623 339 60.7 23.0 47.7
° Fine-tune 66.6 880 50.1 765 29 7.5 1.8 5.1 0.1 0.5 0.1 0.6
O TeCoA 515 775 351 619 206 438 126 291 101 255 74 19.3
8 (ours) MAT1,e 592 830 420 699 214 453 123 290 100 246 6.2 17.5

(ours) MAT 556 805 402 68.1 292 556 184 409 157 354 110 276

Comparison methods. Our methods are compared with the baseline TeCoA, which fine-tunes only
the vision encoder of CLIP for zero-shot image classification. We also evaluate two variants of our
approach: (1) MAT,,,, which perturbs only the image modality using PGD, and (2) MAT, which
perturbs both modalities using PGD and BERT-Attack.

Training details. We use the pretrained CLIP-ViT-B/16 (Radford et al.| 2021) as the base model
to adversarially fine-tune. We fix the total number of training steps to 5,000, and the batch size to
128 for all experiments. We use the SGD optimizer with cosine learning rate scheduling, where the
initial learning rate is set to 0.0001, and the weight decay is set to 0.0001.

4.2 AUGMENTATION STRATEGIES

Augmentation types: Intra-modal and Cross-modal. We consider two types of augmentation
techniques: intra-modal and cross-modal. Intra-modal augmentation enhances data points without
considering image-text interactions (i.e., text — text, image — image). For example, basic image
augmentation, such as random cropping, corresponds to intra-modal augmentation, as it does not
require any knowledge of the paired text data. In contrast, cross-modal augmentation enhances data
points by leveraging the other modality (i.e., image — text, text — image). An example is generating
plausible images from a given caption via a text-to-image generative model.

Text augmentations. We consider two text augmentation techniques for intra-modal augmentation:
Easy Data Augmentation (EDA) (Wei & Zou, [2019) and Language Rewrite (LangRW) (Fan et al.,
2024). EDA is a simple text augmentation technique that applies four types of operations: synonym
replacement, random insertion, random deletion, and random swap. LangRW is a more advanced
text augmentation technique that leverages a large language model to rewrite the original texts.
For cross-modal augmentation, we consider an image-to-text generative model, OFA (Wang et al.,
2022), which generates plausible captions from a given image. Additionally, we consider human
annotations, denoted as Human, as cross-modal augmentation: Flickr30k and COCO contain five
captions per image, so we use the remaining four captions as augmented data points.

Image augmentations. For intra-modal augmentation, we consider two image augmentation tech-
niques: For intra-modal augmentation, RandAugment (RandAug; RA) (Cubuk et al., 2020). Ran-
dAug applies a series of image augmentations, such as random cropping, color distortion, and rota-
tion, to the original image. For cross-modal augmentation, we consider a text-to-image generative
model, Stable Diffusion (SD) (Rombach et al.||2022)), which generates plausible images from a given
caption.

Augmentation settings. For a fair comparison, we fix the number of augmented data points to
be five times the number of original data points (generating four augmented data points for each
original data point). Please refer to the Appendix [A.T]for the detailed settings of each augmentation
technique.

4.3 EFFECTIVENESS OF MULTIMODAL AUGMENTED ADVERSARIAL TRAINING (MAZ2T)

Effectiveness of multimodal adversarial training (MAT). Table |I| compares defense strategies
against clean (i.e., no adversarial attack), Co-Attack, and SGA scenarios on Flickr30k and COCO.
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Table 3: Effectiveness of augmentation techniques for MA2T on Flickr30k. We compare our meth-
ods with and without augmentation, highlighting the best performance boost for each MAT method
in bold text. T2T and I2I (i.e., text-to-text and image-to-image) denote intra-modal augmentations,
while T2I and I2T (i.e., text-to-image and image-to-text) denote cross-modal augmentations. The
results demonstrate the importance of leveraging 1:N and N:1 image-text pairs for further improving
robustness.

I Co-Attack SGA
mg aug. Text. aug.
TR IR TR IR
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
Fine-tune 11.0 233 6.7 16.5 0.6 2.0 0.6 2.6
TeCoA 55.2 80.7 33.1 58.8 33.6 61.1 21.7 44.9
(ours) MAT g 52.8 77.7 31.6 56.8 27.3 529 17.9 40.0
I T2T(EDA) 562 812135 348 610 327 581  20.1 456
+ 1IN Aug T2T(LangRW)  53.9 78.5 333 59.0 31.5 56.1 21.0 43.7
12T(OFA) 56.6 138 81.0 34.6 59.5 332 594 21.6 455
12T(Human) 56.6 80.4 357140 613144 347174 60.0 17.1 224145 46.9 16.9
- 7;1\};/;1; T RIRAY T 527 772 314 557 270 533 181 389
) T2I(SD) 50.9 76.5 31.5 57.4 29.7 54.8 18.7 41.3
(ours) MAT 55.0 80.0 35.8 62.3 33.9 60.7 23.0 47.7
I T2T(EDA) 581 ~ 817 =~ 393 ~ 660 374 638 262 525
+ 1N Aug T2T(LangRW)  58.7 81.4 40.1 66.2 38.2 62.5 26.8 53.4
12T(OFA) 58.4 83.2 39.9 66.2 382 673 27.5 539
12T(Human) 63.7187 839139 424166 68.7164 4441105 688181 30.817.8 56.719.0
B 7;1\}-17&1& T TRIRA) T 560 803 364 617 337 625 230 415
’ T2I(SD) 55.7 79.7 36.7 63.3 34.9 60.7 23.7 48.8

Fine-tuning is the case where no defense strategy is applied. By incorporating multimodal adver-
sarial perturbations, MAT outperforms both MAT},,, and TeCoA, which only considers image
perturbations, demonstrating the effectiveness of multimodal adversarial training for ITR. However,
MAT1mg achieves slightly worse performance than TeCoA in the attacked scenarios, highlighting
the limitations of traditional unimodal paradigms when applied to multimodal settings. The next
section further explores the challenge of adversarial fine-tuning the entire CLIP model for ITR tasks
due to overfitting.

Overfitting issue in Multimodal adversarial training Taple 2:  Overfit issue of MAT on
(MAT). In Table[2] we observe that the adversarial fine-  Fjickr30k. We report the performances on
tuning for ITR easily overfits to the train data, leading to  the train and test sets against Co-Attack.
poor robustness generalization to unseen data. For ex-

ample, MAT on Flickr30k shows a performance gap of 2

18.0% and 35.6% in TR@5 and IR @5, respectively, be- MAT MA Trzr(stuman)
tween the train and test sets. On the other hand, MAZ2T,
using augmented texts by human annotations, signifi-  Train  98.0 97.9 92.8 80.3
cantly mitigates the overfitting issue, reducing the per- _ Test _ 800 _ 623 = 839 687
formance gap to 8.9% and 11.6% in TR@5 and IR@5, : :

respectively.

TR@5 IR@5 TR@5 IR@5

Effectiveness of MA2T: Augmenting image-text pairs improve robustness. Table [3| summa-
rizes the effectiveness of one-to-many and many-to-one augmentations in improving adversarial
robustness on Flickr30k. We find that effectively leveraging augmentations can further improve ad-
versarial robustness of MAT. In the following sections, we analyze the factors that contribute to the
effectiveness of the augmentation techniques in MA2T.

4.4 LEVERAGING ONE-TO-MANY RELATIONSHIPS: A COMPREHENSIVE ANALYSIS

To understand the effectiveness of leveraging the one-to-many relationship in robust ITR, we an-
alyze the properties of the augmented data points generated by the augmentation techniques. To
this end, we analyze the alignment quality and diversity of the augmented image-text pairs. Figure[l]
shows the distribution of alignment scores of augmented image-text pairs, where the alignment score
is calculated as the cosine similarity of the embeddings of the image and text pairs, measured in a
pretrained CLIP’s joint embedding space. Figure [2] presents the distribution of L2 distance of em-
beddings before and after augmentation, with higher L2 distances indicating greater augmentation
diversity.
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Alignment score of image-text pairs Alignment score of image-text pairs
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Cosine similarity Cosine similarity
(a) Alignment analysis for image augmentation. (b) Alignment analysis for text augmentation.

Figure 1: Alignment measures the similarity between an image (or text) sample and its augmented
text (or image) pair (cross-modal) in the Flickr30k dataset. We denote the original 1:1 image-text
pairs as “Orig.” We plot the distribution of the alignment scores of the augmented image-text pairs
(cosine similarity between image and text embeddings), measured in the pretrained CLIP’s embed-
ding space as: sim(®(augr(I)), ¥(T)) or sim(P(I), ¥(augr(T))), where ® and ¥ are image (I)
and text (T) encoders of CLIP, respectively. A higher alignment score indicates that augmentations
are better aligned with their corresponding cross-modal pair, suggesting better augmentation quality.

L2 distance from orig. sample's representation L2 distance from orig. sample's representation

— T2I(sD)
Basic(RandAug) 300 4

—— T2T(LangRW)
—— 12T(OFA)
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L2 distance L2 distance

(a) Diversity analysis for image augmentation. (b) Diversity analysis for text augmentation.

Figure 2: Diversity measures the distance between an image (or text) sample and its augmented
image (or text) (uni-modal) in the Flickr30k dataset. We plot the distribution of the L2 distance
between the embeddings before and after augmentation, measured in the pretrained CLIP embedding
space as: L2(®(1I), ®(augr(I))) or L2(¥(T), ¥(augr(T))), where ® and ¥ are image (I) and text
(T) encoders of CLIP, respectively. A higher L2 distance indicates that the generated data points are
more distant from the original ones, suggesting greater augmentation diversity.

Cross-modal augmentation surpasses intra-modal augmentation due to better alignment of
augmented image-text pairs. In Table [3] we observe that cross-modal augmentations, such as
OFA and Human, can outperform intra-modal augmentations, such as EDA and LangRW, in im-
proving adversarial robustness. This is explained by the alignment analysis in Figure |1, where
cross-modal augmentations generate more aligned image-text pairs compared to intra-modal aug-
mentations: while both EDA and LangRW improved adversarial robustness, the alignment scores of
the augmented image-text pairs are lower compared to cross-modal augmentations, such as OFA and
Human, which achieved better alignment scores and adversarial robustness. In the case of images,
although cross-modal augmentations are qualitatively superior, alignment does not vary drastically.

Diverse and well-aligned image-text pairs lead to better robustness. Additionally, we observed
that the balance of alignment and diversity is crucial for the effectiveness of the defense strategy
in improving adversarial robustness. In Figure 2] we observe that intra-modal augmentations, like
RandAug for images and EDA and LangRW for text, generate less diverse image-text pairs because
they only slightly modify the original data points, mostly preserving their semantics. In contrast,
cross-modal augmentations, like SD for image and OFA and Human for text, generate more diverse
image-text pairs that are more distant from the original data points. This is due to the inherent
uncertainty in cross-modal generation caused by the one-to-many relationship in ITR, where a single
image can be described in several ways and vice versa, which naturally increases the diversity of
the augmented data. This property of cross-modal augmentations can lead to better adversarial



Under review as a conference paper at ICLR 2025

Table 4: Effectiveness of augmentation techniques for our methods on COCO. Well-aligned and
diverse augmentations (e.g., [2T(Human)) consistently provide performance gains, demonstrating
the consistent effectiveness of augmentations across different datasets.

I Co-Attack SGA
mg aug. Text. aug.
TR IR TR IR
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
Fine-tune 2.9 7.5 1.8 5.1 0.1 0.5 0.1 0.6
TeCoA 20.6 43.8 12.6 29.1 10.1 25.5 7.4 19.3
(ours) MAT 1 21.4 453 12.3 29.0 10.0 24.6 6.2 17.5
”;l’N’A’ug ””””” I2T(OFA)” ~ 227~ ~ "462 128 ~ 203 = 112"~ 270 © 69 0 184
I2T(Human) 23.51t21 471118 133111 30.6 116 115114 27.8133 7.0 108 19.3 118
T+ N:dlAug T2(SD) T 184~ 400 109 ~ 260 82 208 51 1527
(ours) MAT 29.2 55.6 184 40.9 15.7 354 11.0 21.6
B ’;l’N’A’ug ””””” IDT(OFA)  ~ 282~ ~ 540 ~ 180 ~ 395 ~ 160 ~ 352 113 215
I2T(Human) 309117 574118 197112 422113 179122 379124 120111 29.9 123
T +#N:iTAug  ~ T2ISD) T 255 496 168 0 369 131 301 95 T 2457

robustness, as shown in Table [3] that OFA and Human outperform RandAug and EDA/LangRW,
respectively.

Efficacy of text and image augmentations. In Table 3] we found an efficacy gap between text and
image augmentations, providing the latter higher boosts. While SD generates diverse image-text
pairs with high alignment scores, it does not improve adversarial robustness as much as OFA and
Human. This is due to a large distribution gap between the generated and the original images, which
leads to a distribution shift that degrades the model’s performance. Additionally, in Figure [3a] we
plot the robustness performance of MAT1y,,, with SD on Flickr30k against SGA, where the number
of additional images used for adversarial training is varied. Top indicates they are sorted decreas-
ingly by alignment score. We find that the adversarial robustness of MAT,, with SD improves
when up to two additional images are used, but beyond that, the performance starts to degrade.
This suggests that the effective defense strategy should employ augmentations that generate “mod-
erately” diverse image-text pairs that do not introduce a significant distribution shift. In comparison,
in Table[3] we observe that text augmentations, such as Human and OFA, can significantly improve
adversarial robustness. For example, Figure |3b|illustrates that increasing the number of Human
augmentations consistently boosts robustness. This is because generating image augmentations that
do not lack diversity but also do not deviate significantly from the original data distribution is more
challenging due to the high dimensionality of the image space. On the other hand, text modality is
more amenable to augmentation, as the text space is lower-dimensional and more structured, making
it easier to generate appropriate diversity in the augmented data points.

SGA: Text Retrieval SGA: Image Retrieval SGA: Text Retrieval SGA: Image Retrieval
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30_r/.+ R@L0 8——g zn-r—4+ R@I0 o o 30,M 20,._(___.—0— rR@10 —*
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T T T T T
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Num. of human captions

T T T T T
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(b) MAT 11 with I2T (Human).

Figure 3: Effectiveness of cross-modal augmentations, SD and Human, in improving adversarial
robustness in VL models for ITR.

Evaluation on COCO dataset. We also analyze augmentations on the COCO dataset in Table [4]
We find that only the well-aligned and diverse augmentations, I2T(Human), consistently provide
performance gains on COCO. This is because COCO has a larger number of training samples com-
pared to Flickr30k, and the improvements by augmentations are less significant. However, the gains
from I2T(Human) suggest that the effectiveness of well-aligned and diverse augmentations remains
consistent across datasets, with performance significantly surpassing that of TeCoA.
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5 LIMITATIONS

We focused on CLIP as the base model for our defense strategy in order to deeply analyze the
effectiveness of our framework, leaving the exploration of other vision-language models for future
work. Additionally, to improve our framework, a method that generates image augmentations that
do not create a distribution shift from the original data should be proposed.

6 CONCLUSIONS

This is the first work to study adversarial defense strategies for vision-language (VL) models in the
context of image-text retrieval (ITR). Existing defense methods for CLIP are not effective against
multimodal attacks, as they are designed to defend against image-only attacks and do not consider
the one-to-many (1:N) nature of images and texts. For this reason, we proposed a novel defense
framework, Multimodal Augmented Adversarial Training (MAZ2T), which leverages one-to-many
(1:N) image-text pairs via augmentations to enhance robustness for ITR. Our comprehensive analy-
sis reveals that our framework can significantly improve adversarial robustness against multimodal
attacks, and that well-aligned and diverse augmentations are crucial for effective defense, which was
previously unexplored in the literature on unimodal adversarial defense. This work identifies novel
challenges overlooked in previous works and provides a novel perspective on adversarial defense
strategies for VL models in ITR, fostering future research for reliable and secure Al systems.

Ethics Statement. In this work, we focus on improving the robustness of vision-language models
for Image-Text Retrieval (ITR) tasks against adversarial attacks. We use publicly available datasets
(Flickr30k and COCO) with no human subjects or personal data. We acknowledge potential biases
in pre-trained models like CLIP and emphasize that our work is aimed at enhancing security and
reliability, not harmful applications. While adversarial methods can be misused, our research is
focused on defense strategies, promoting secure Al systems. Our work complies with legal and
ethical standards, with no conflicts of interest, and we ensure research transparency by making our
methods and findings publicly available for reproducibility.

Reproducibility. We have made extensive efforts to ensure the reproducibility of our results. De-
tailed descriptions of our experimental setups, including model architectures, hyperparameters, and
training protocols, are provided in the main text and appendix. We also offer a comprehensive ex-
planation of data processing steps for the Flickr30k and COCO datasets. All algorithms, including
adversarial fine-tuning methods, are described in detail, and additional implementation details are
included in the supplementary materials. For further reproducibility, we will provide anonymous
access to the source code, which will be included in the supplementary materials.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 IMPLEMENTATION DETAILS OF AUGMENTATION TECHNIQUES
A.1.1 TEXT AUGMENTATIONS

EDA (Easy Data Augmentation). EDA randomly selects words in the text and performs the fol-
lowing operations: synonym replacement, random insertion, random swap, or random deletion. We
use the official implementation [1_1 The hyperparameter o controls the strength of the augmenta-
tion, where o determines the probability of each word being augmented. We use o = 0.3 for all
experiments.

LangRW (Language rewrite). Language rewrite (LangRW) (Fan et al., |2024)) is a method that
rewrites the text data to improve the robustness of the model, using a generative natural language
processing model, such as Llama (Touvron et al., 2023). We used Llama-2-7B El In our work, we
used slightly modified prompts from the original work to simultaneously generate four captions per
image. Given an original caption 7', the prompt for generating additional captions are as follows:

Rewrite image captions in 4 different ways.

{coco caption 1 for image i}

=> {coco caption 2 for image i}
=> {coco caption 3 for image i}
=> {coco caption 4 for image i}
=> {coco caption 5 for image i}

{coco caption 1 for image 7j}

=> {coco caption 2 for image Jj}
=> {coco caption 3 for image Jj}
=> {coco caption 4 for image 7J}
=> {coco caption 5 for image Jj}

{coco caption 1 for image k}

=> {coco caption 2 for image k}
=> {coco caption 3 for image k}
=> {coco caption 4 for image k}
=> {coco caption 5 for image k}

{original caption to be rewritten}
=>

where the coco captions are randomly sampled from the original captions from the COCO
dataset (Chen et al., 2015).

OFA. OFA (Wang et al.}|2022) is an image captioning model. We use the official implementationﬂ
We used the default prompt of ““ what does the image describe?” to generate additional captions for
each image.

Human. Human augmentation is a method that generates additional captions by human annotators.
Since we use 1:1 image-text pairs for training as default, we used the rest of the original captions
included in Flickr30k and COCO datasets as additional captions for each image.

A.1.2 IMAGE AUGMENTATIONS

RandAug (Random Augmentation). RandAug (Cubuk et all [2020) is an image augmentation
method that applies a series of random transformations to the image. We used the codes from

"https://github.com/jasonwei20/eda_nlp
Zhttps://huggingface.co/meta-llama/Llama-2-7b
3https://github.com/OFA-Sys/OFA
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ALBEF (Li et al., 2021) ﬂ We set the number of operations to 2 and the magnitude to 5 for all
experiments.

Stable Diffusion (SD). Stable Diffusion (SD) (Rombach et al., [2022) is a text-to-image generative
model. We used SD-v2.1P]

A.2 EVALUATION OF MA2T ON OTHER ATTACK TYPES: CLEAN, PGD, AND BERT

In this section, we present the evaluation results of the proposed MA 2T framework against different
attack types, including clean, PGD, and BERT attacks.

Table 5: Effectiveness of augmentation techniques for MA2T on Flickr30k for different attack types,
including clean, PGD, and BERT attacks.

Clean PGD BERT-Attack
Img aug. Text. aug.
TR IR TR IR
R@l R@5 R@]l R@5 R@lI R@5 R@l R@5 R@l R@5 R@l R@5
Finetune 921 990 772 944 07 2.0 0.7 2.1 754 934 531 783
TeCoA 816 955 682 893 527 787 434 705 682 90.1 469 720
(ours) MAT g 848 963 687 894 513 762 401 694 662 902 434 69.8
T T T2T(EDA) ~ ~ 856 958 ~ 709 904 544 780 432 ~ 717 714 915 478 133
+ I:N Aug T2T(LangRW) 838 949 693 895 542 756 433 706 658 883 442 705
I2T(OFA) 859 963 698 90.1 599 811 454 732 681 894 445 707
12T(Human) 8.7 973 731 926 581 80.7 482 748 696 909 47.0 737
AN I’A’u; TUTRIRAY T T T 85.0 ~ 968 ~ 674 886 540 763 406 691 658 888 416 678
T2I(SD) 857 966 70.1 909 508 748 390 673 678 898 456 715
(ours) MAT 81.8 954 670 880 538 772 394 683 70.1 911 50.1 745
T T T2T(EDA) ~ ~ 856 964 ~ 693 893 561 788 433 ~ 716 734 931 52.0 784
+ I:N Aug T2T(LangRW) 819 948 675 8.5 525 762 426 704 735 919 513 774
12T(OFA) 847 953 681 894 589 809 448 727 724 925 516 769
I2T(Human) 8.3 965 714 91.0 583 805 467 749 772 930 558 809
AN ;/;u; TUTRIRAY T T T 833 952 T 660 875 545 781 393 680 708 914 500 748
T2I(SD) 832 958 679 89.6 509 749 399 676 706 921 510 763

Table 6: Effectiveness of augmentation techniques for MA2T on COCO for different attack types,
including clean, PGD, and BERT attacks.

Clean PGD BERT-Attack
Img aug. Text. aug.
TR IR TR IR
R@! R@5 R@l R@5 R@1 R@5 R@] R@5 R@! R@5 R@! R@5
Finetune 66.6 8.0 50.1 765 02 0.9 0.2 0.7 369 652 237 467
TeCoA 515 775 351 619 292 53,6 200 421 293 555 176 375
(ours) MAT g 592 830 420 699 314 552 217 464 310 585 185 394

12T(OFA) 587 823 414 691 328 57.0 224 470 31.6 586 186 388

+ 1N Aug I2T(Human) 60.5 840 432 71.0 331 575 231 484 329 603 192 40.6
 +NdfAwg T T2(SD) T 542 792 384 660 269 477 183 401 286 552 172 365
(ours) MAT 556 805 402 68.1 30.5 550 219 457 406 693 268 52.6
B 7-:17]\17A7u; 77 77 T I2XI(OFA) T 545 801 3937 673 303 542 207 456 390 678 260 502

I2T(Human) 57.7 815 414 692 323 563 228 473 426 707 280 541
T +N:dTAwg T T T2TSD) T T 519 ~ 779 T 363 641 263 485 T 185 T 404 369 654 243 489

A.3  ABLATION STUDY FOR AUGMENTATIONS FOR MA?T,.

Here, we present the ablation results on the effectiveness of augmentations. Figure 4 @ [el and
show the effectiveness of intra-modal and cross-modal augmentation techniques for MA®T,,. In
Figures 5] [6] and[8] top indicates they are sorted decreasingly by alignment score. In Figure[7] the
strength of augmentation levels ranges from 1 (weakest) to 5 (strongest), and is defined by three
parameters {(minimum scale of random resizing, number of operations in RandAug, magnitude of
RandAug)} as {(0.8, 0, 0), (0.8, 2, 3), (0.7, 2, 5), (0.6, 2, 7), (0.5, 2, 9)}, respectively.

*https://github.com/salesforce/ ALBEF
>https://huggingface.co/stabilityai/stable-diffusion-2-1-base
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Figure 4: Effectiveness of intra-modal augmentation with EDA for enhancing adversarial robustness
in VL models for ITR.
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Figure 5: Effectiveness of intra-modal augmentation with LangRW for MA?T},,,.
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Figure 6: Effectiveness of (ideal) cross-modal augmentation with ground truth captions for
MAZT .
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Figure 7: Effectiveness of intra-modal augmentation with RandAug for MA?T,.
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Figure 8: Effectiveness of cross-modal augmentation with SD for MA2? Tp,g.
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