LEVERAGING ONE-TO-MANY RELATIONSHIPS IN MULTIMODAL ADVERSARIAL DEFENSE FOR ROBUST IMAGE-TEXT RETRIEVAL

Anonymous authors

Paper under double-blind review

ABSTRACT

Large pre-trained vision-language models (e.g., CLIP) are vulnerable to adversarial attacks in image-text retrieval (ITR). Existing works primarily focus on defense for image classification, overlooking two key aspects of ITR: multimodal manipulation by attackers, and the one-to-many relationship in ITR, where a single image can have multiple textual descriptions and vice versa (1:N and N:1). This is the first work that explores defense strategies for robust ITR. We demonstrate that our proposed multimodal adversarial training, which accounts for multimodal perturbations, significantly improves robustness against multimodal attacks; however, it suffers from overfitting to deterministic one-to-one (1:1) image-text pairs in the training data. To address this, we conduct a conprehensive study on leveraging one-to-many relationships to enhances robustness, investigating diverse augmentation techniques. Our findings reveal that diversity and alignment of image-text pairs are crucial for effective defense. Specifically, text augmentations outperform image augmentations, which tend to create either insufficient diversity or excessive distribution shifts. Additionally, we find that cross-modal augmentations (e.g., $image \rightarrow text$) can outperform intra-modal augmentations (e.g., $text \rightarrow text$) due to generating well-aligned image-text pairs. In summary, this work pioneers defense strategies for robust ITR, identifying critical aspects overlooked by prior research, and offers a promising direction for future studies.

029 030 031

032

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

1 INTRODUCTION

034 Image-text retrieval (ITR) is a fundamental Vision-Language (VL) task that involves cross-modal representation alignment between vision and language modalities. It consists of retrieving the most 035 relevant text given an image query, and vice versa. One solution is using Vision-Language (VL) 036 models pre-trained on large-scale paired image-text data, such as CLIP (Radford et al., 2021), which 037 learns a joint embedding space for images and texts. However, recent studies revealed that all VL models for ITR are vulnerable to adversarial attacks (Zhang et al., 2022; Lu et al., 2023). Since adversarial attacks can deceive models with nearly negligible perturbations for humans, they pose 040 significant risks of causing unintended consequences in real-world applications. For example, in 041 e-commerce, retailers may add perturbations to the product images or descriptions to manipulate 042 the retrieval results of an ITR system, unfairly promoting or demoting specific products. As the 043 deployment of VL models in practical applications grows, understanding and mitigating their vul-044 nerabilities against adversarial attacks has become crucial and urgent.

While several defense strategies for VL models have been proposed (Mao et al., 2022; Wang et al., 2024b; Schlarmann et al., 2024), they primarily focus on image attacks, e.g., for robust zero-shot image classification, leaving defense strategies tailored for ITR fully unexplored. This is a considerable oversight since ITR presents two challenges that make the problem much more complex compared to image classification: (1) *Multimodal manipulation*: Adversarial attacks on ITR can manipulate both image and text modalities, however, previous defense methods only consider image perturbations. Such an increased attack capability in ITR requires more complex defense strategies. (2) *One-to-many (1:N)* cross-modal alignment: Sentence-level text inputs in ITR exhibit a high degree of variation and ambiguity, as a single image can be described in numerous ways, and vice versa. The *one-to-many* nature of image-text alignment in ITR (e.g., a single image is described as

"a man with glasses is wearing a beer can crocheted hat" or "a man wears an orange hat and glasses")
contrasts with simple and unambiguous text inputs in image classification tasks (e.g., all dog photos are paired with "a photo of a dog"), making harder to achieve a robust image-text alignment. Thus, the existing defense strategies for VL models aimed at image classification (Mao et al., 2022; Wang et al., 2024b) overlook these two critical aspects, casting doubt on their effectiveness for ITR.

To address this gap, we pioneer a study on defense strategies for VL models in ITR. Specifically, in
 this work, we study how to robustly fine-tune a large-scale vision-language model for downstream
 ITR tasks.

First, by incorporating multimodal perturbations during adversarial training, our proposed multimodal adversarial training (MAT) largely improves robustness against multimodal attacks. This highlights the need for defense strategies specifically tailored to multimodal threats in ITR, a requirement distinct vision-only defense strategies (Mao et al., 2022; Schlarmann et al., 2024).

However, we find that MAT suffers from overfitting to deterministic (1:1) image-text pairs in the 067 training data. To mitigate this issue, we investigate how to consider the one-to-many (1:N) rela-068 tionships in ITR to enhance adversarial robustness. Inspired by works in cross-modal ambiguity 069 modeling in ITR (Kim et al., 2023; Song & Soleymani, 2019), we explore various text and image augmentation techniques to create diverse one-to-many (1:N) and many-to-one (N:1) image-text 071 pairs. Our in-depth analysis reveal that diversity and alignment of image-text pairs are crucial for 072 effective defense. For instance, text augmentations outperform image augmentations, which tend 073 to create either insufficient diversity or excessive distribution shifts. Additionally, cross-modal aug-074 mentations (e.g., $image \rightarrow text$) can outperform intra-modal augmentations (e.g., $text \rightarrow text$) 075 due to generating well-aligned image-text pairs. These findings are novel and unique for multi-076 modal robustness settings, which has not been previously explored in unimodal adversarial training 077 literature.

Our contributions are summarized as follows:

- First defense strategy for ITR: We demonstrate that existing defense methods for image classification are suboptimal for robust ITR, and pioneer research in this new direction.
- Introduced multimodal adversarial training: Our multimodal adversarial training largely improves robustness against multimodal attacks, highlighting the importance of considering multimodal perturbations for ITR defense.
- Comprehensive analysis of leveraging one-to-many relationships for robust ITR: We identify overfitting in multimodal adversarial training to deterministic one-to-one (1:1) image-text pairs. Thus, we provide an in-depth analysis of diverse augmentations, covering both image and text modalities, as well as intra- and cross-modal augmentations. We reveal that leveraging one-to-many (1:N) relationships improves robustness, with diversity and alignment of augmented image-text pairs being crucial for defense—insights not recognized in unimodal adversarial training literature.

2 Related work

093 094

090

091 092

081

082

084

085

Adversarial attacks on vision-language models. Adversarial attacks on VL models can be categorized into unimodal and multimodal attacks. Unimodal attacks, such as gradient-based image attacks (Madry et al., 2017) and BERT-Attack for text (Li et al., 2020), manipulate a single modality to mislead the models. On the other hand, recent studies have revealed that multimodal attacks, which perturb both image and text modalities, are significantly more effective (Zhang et al., 2022; Lu et al., 2023; Han et al., 2023; Wang et al., 2024a). However, developing defense strategies against multimodal attacks for ITR remains largely unexplored.

Adversarial defense for vision-language models. Existing defense strategies for VL models
 mainly focus on vision robustness, where only the image modality is perturbed by adversarial at tacks. For example, Mao et al. (2022) and Wang et al. (2024b) have proposed robust fine-tuning
 methods of CLIP for zero-shot image classification, which leverage adversarial training scheme to
 improve the model's adversarial robustness. Schlarmann et al. (2024) proposed a method to robustly
 fine-tune a CLIP's vision encoder aimed at applications to diverse vision-language tasks, only focusing on image attacks. Unlike previous studies, we are the first to investigate adversarial defense

strategies for ITR tasks, where both image and text modalities can be manipulated by adversaries.
 Distinct from existing defense strategies, we propose multimodal adversarial training to improve robustness against multimodal attacks in ITR, and leverage the one-to-many (1:N) relationship in ITR to enhance adversarial robustness.

112 Leveraging the one-to-many (1:N) nature of image-text. To tackle robustness in VL models, 113 we take inspiration from current works for ITR. These works aim to improve retrieval accuracy by 114 modeling the ambiguity between image and text pairs; that is, although a sentence can have multiple 115 visual interpretations, normally only one is paired as the ground truth. Similarly, an image can be 116 described using multiple different captions, but only one is considered as its pair. Since such a 1:1 117 deterministic relationship is inconsistent with the 1:N nature of the data, ITR works propose repre-118 senting image-text samples as probabilistic embeddings (Chun et al., 2021; Chun, 2024), considering neighboring samples in the triplet loss (Thomas & Kovashka, 2020), and generating multiple and 119 diverse representations for each image-text sample (Song & Soleymani, 2019; Kim et al., 2023). 120 Among these solutions, the latter naturally fits the data augmentation strategy of adversarial train-121 ing. We hypothesize that leveraging data augmentation to increase diversity in a 1:N manner leads 122 to robustness against adversarial attacks. 123

- 124
- 125 126

3 DEFENDING AGAINST VISION-LANGUAGE ADVERSARIAL ATTACKS

127 3.1 PRELIMINARIES

128 VL models Radford et al. (2021); Li et al. (2021); Yang et al. (2022) are fundamentally built on 129 image-text contrastive learning, where the training objective is to maximize the similarity between 130 matching image-text pairs while reducing the similarity between non-matching pairs in a shared 131 embedding space. Among them, CLIP (Radford et al., 2021) is the representative VL model for 132 ITR and is the foundation for many other VL models (Li et al., 2021; Yang et al., 2022). Thus, we 133 focus on defense strategies for CLIP and conduct a comprehensive anlaysis on our proposed defense 134 strategy. Below, we provide a brief overview of CLIP, followed by an explanations of existing 135 adversarial attacks and defenses targeting CLIP.

136 **CLIP.** Contrastive Language-Image Pretraining (CLIP) consists of an image encoder $\Phi : \mathcal{I} \rightarrow \mathcal{I}$ 137 \mathbb{R}^d and a text encoder $\Psi: \mathcal{T} \to \mathbb{R}^d$, where \mathcal{I} and \mathcal{T} are the input spaces for images and texts, 138 respectively, and d is the dimension of the joint embedding space. Given an image $I \in \mathcal{I}$ and a 139 text $T \in \mathcal{T}$, CLIP is trained to embed them into the joint embedding space, and to maximize the 140 similarity score $S_{\Phi,\Psi}(I,T) = sim(\Phi(I),\Psi(T))$ (cosine similarity of image-text embeddings) for 141 correct image-text pairs, and minimize it for incorrect pairs. CLIP is based on image-text contrastive 142 learning using the InfoNCE loss, where paired image-text samples form positive pairs, and unpaired image-text samples form negative pairs. For the batch of N paired image-text samples $\{(I_i, T_i)\}_{i=1}^N$ 143 the InfoNCE loss (over images) is defined as: 144

145 146

147 148

149

150

155 156

$$\mathcal{L}_{CLIP_I} = \mathcal{L}_{CLIP_I}(I,T) = -\sum_{i=1}^N \log \frac{\exp(S_{\Phi,\Psi}(I_i,T_i)/\tau)}{\sum_{j=1}^N \exp(S_{\Phi,\Psi}(I_i,T_j)/\tau)},\tag{1}$$

where τ is the learnable temperature parameter. The overall loss is the mean of the losses over images and texts, $\mathcal{L}_{CLIP} = (\mathcal{L}_{CLIP_I} + \mathcal{L}_{CLIP_T})/2$, where \mathcal{L}_{CLIP_T} is the InfoNCE loss over texts.

Multimodal adversarial attacks. We aim to defend against adversarial attacks on CLIP for ITR, where both image and text modalities can be manipulated by adversarial attacks. The objective of (untargeted) adversarial attacks on CLIP is to minimize the image-text similarity $S_{\Phi,\Psi}(I,T)$ for the correct image-text pairs (I,T) to mislead the models' predictions, as follows:

$$(I', T') = \underset{I', T'}{\arg\min} S_{\Phi, \Psi}(I', T'), \quad s.t., \|I' - I\| \le \epsilon_I, \|T' - T\| \le \epsilon_T.$$
(2)

157 Image attacks add small perturbations to the original image I to generate adversarial images I', 158 while maintaining perceptual similarity through an L_p -norm constraint $||I' - I||_p \le \epsilon_I$. A com-159 mon method is the projected gradient descent (PGD) (Madry et al., 2017), which iteratively updates 160 I' by taking a small step in the direction of the gradient. Text attacks, such as BERT-Attack (Li 161 et al., 2020), modify N words in the text T to maximize the divergence between $\Psi(T)$ and $\Psi(T')$. 161 Multimodal attacks perturb both image-text modalities to generate adversarial examples (I', T'), effectively combining image and text attacks to manipulate the image-text alignment. For example, Co-Attack (Zhang et al., 2022) perturbs both modalities in a step-wise manner, first perturbing the text, then the image given the perturbed text. SGA (Lu et al., 2023) enhances Co-Attack by considering the set-level interaction between the multiple images and texts.

Adversarial defense of CLIP for zero-shot image classification. The defacto standard defense strategy against adversarial attacks is adversarial training (AT) (Madry et al., 2017), which trains models using adversarial examples to improve robustness. To improve CLIP's adversarial robustness for zero-shot image classification tasks, TeCoA (Mao et al., 2022) adversarially fine-tunes the image encoder of CLIP by minimizing the contrastive loss between adversarial images and the text embeddings of the corresponding class labels, formulated as:

$$\mathcal{L}_{TeCoA} = \mathcal{L}_{CLIP_I}(I', T), \text{ where } I' = \arg\max_{I'} \mathcal{L}_{CLIP_I}(I', T), \tag{3}$$

where I' is the adversarial image for the text T. However, TeCoA only defends against image adversarial attacks, and does not account for the one-to-many (1:N) relationship in ITR. Changing the previous paradigm, our work proposed a novel framework for robust fine-tuning of CLIP for ITR tasks, where both image and text modalities can be manipulated by attackers.

179 180

172 173 174

3.2 MULTIMODAL ADVERSARIAL TRAINING FOR MULTIMODAL ROBUSTNESS

We aim to defend against adversarial attacks on CLIP for ITR, which involves multimodal attacks that manipulate both image and text modalities. To this end, distinct from existing CLIP's adversarial fine-tuning methods (Mao et al., 2022; Schlarmann et al., 2024), which focus on vision robustness and fine-tune only CLIP's vision encoder, we start by fine-tuning the whole CLIP model to obtain robustness against multimodal perturbations.

To effectively defend against multimodal attacks, we propose a multimodal adversarial training framework (MAT), which perturbs both image and text modalities during adversarial training. Here, we employ a step-by-step approach to generate adversarial examples (I', T') by perturbing the image and text modalities sequentially. First, we generate adversarial texts T' by maximizing the divergence between $\Psi(T)$ and $\Psi(T')$, formulated as:

$$T' = \arg\max_{T'} \|\Psi(T') - \Psi(T)\|, \text{ where } \|T' - T\| \le \epsilon_T,$$
(4)

where the text perturbation is constrained by the number of words. Then, we generate adversarial images I' by minimizing the cosine similarity score between I' and the generated adversarial text T' as follows:

$$I' = \underset{I'}{\arg\max} - \frac{\Phi(I') \cdot \Psi(T')}{\|\Phi(I')\| \|\Psi(T')\|}, \text{ where } \|I' - I\| \le \epsilon_I,$$
(5)

where the image perturbation is constrained by L_p -norm with ϵ_I . Finally, we update the model parameters by minimizing the contrastive loss between the adversarial image I' and the adversarial text T', formulated as:

$$\mathcal{L}_{\mathcal{MAT}} = \mathcal{L}_{CLIP}(I', T'). \tag{6}$$

202 203

192 193

197

To implement the text perturbation during fine-tuning, we use the BERT-Attack, which iteratively replaces important words in the text to maximize the divergence between $\Psi(T)$ and $\Psi(T')$. In the case of images, we utilize the widely adopted PGD to generate adversarial image perturbations.

In Section 4.3, we show that multimodal adversarial fine-tuning significantly improves robustness against multimodal attacks in ITR, compared to existing defense strategies that only consider image perturbations. Nevertheless, we find that this framework easily overfits to deterministic pairs in the training data, which we discuss in the following section.

211 212

213

3.3 Leveraging one-to-many image-text pairs for robustness generalization

Existing works on cross-modal ambiguity in ITR (Kim et al., 2023; Song & Soleymani, 2019)
 demonstrated the importance of modeling the one-to-many (1:N) relationship that exists between image and text descriptions. In our setting, a simple adversarial fine-tuning on a downstream ITR

dataset would also easily overfit to deterministic (1:1) image-text pairs in the training data. There fore, the inherent ambiguity of image-text pairs in ITR needs to be considered to achieve a more
 optimal adversarial robustness in ITR.

219 To this end, we propose Multimodal Augmented Adversarial Training (MA²T), leveraging data aug-220 mentation strategies to create diverse one-to-many (1:N) and many-to-one (N:1) image-text pairs to 221 prevent overfitting in MAT. Our idea is streightforward: a single image can be described in numerous 222 ways, and vice versa. Text augmentation can generate diverse text samples for a given image, cre-223 ating 1:N image-text pairs. Similarly, image augmentation can generate diverse images for a given 224 text, creating N:1 image-text pairs. In this way, we can prevent overfitting to deterministic (1:1) 225 pairs and naturally model the ambiguity of image-text pairs in ITR during mutlimodal adversarial 226 fine-tuning, improving adversarial robustness.

Thus, given an image-text pair (I, T), we generate augmented images $I_{aug} \leftarrow aug_I(I, T)$ or augmented text $T_{aug} \leftarrow aug_T(I, T)$, where aug_I and aug_T are image and text augmentation functions, respectively. Then, the new augmented pairs (I_{aug}, T) or (I, T_{aug}) are added to the training data for the image or text augmentation scenarios. Note that we do not use the pairs (I_{aug}, T_{aug}) in the training process, as I_{aug} and T_{aug} are not necessarily aligned with each other since they are generated independently. Using these pairs empirically degrades the model's performance.

The proposed defense strategy is summarized in Algorithm 1.

235

236

249 250

251

252

253 254 255

256 257

258

Algorithm 1 Multimodal Augmented Adversarial Training (MA²T)

237 **Require:** Image-text pairs $(I,T) \sim D$, Model θ , Learning rate α , Perturbation constraints ϵ_I, ϵ_T 238 1: (Data Preparation:) 239 2: for each $(I,T) \in D$ do (N:1 case) Image augmentation: $I^{aug} \leftarrow aug_I(I,T), D \leftarrow D \cup (I^{aug},T)$ 3: 240 (1:N case) Text augmentation: $T^{aug} \leftarrow aug_T(I,T), D \leftarrow D \cup (I,T^{aug})$ 4: 241 5: end for 242 6: (Training:) 243 7: for each batch do 244 $T' \leftarrow \arg \max_{T'} \|\Psi(T') - \Psi(T)\|$, where $\|T' - T\| \leq \epsilon_T$ 8: 245 $I' \leftarrow \arg \max_{I'} - \frac{\Phi(I') \cdot \Psi(T')}{\|\Phi(I')\| \|\Psi(T')\|}, \text{ where } \|I' - I\| \le \epsilon_I$ 9: 246 $\theta \leftarrow \theta - \alpha \cdot \nabla_{\theta} \mathcal{L}_{CLIP}(\vec{I}', \vec{T}')$ 10: 247 11: end for 248

However, deciding which types of augmentations are more effective is not trivial, since these can model either intra- or cross-modal relationships, and be more or less computationally complex. The next section thoroughly explores which augmentations are more effective and why.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We employ the Flickr30k (Plummer et al., 2015) and COCO (Chen et al., 2015) datasets, which are widely used for ITR. We use the default train/test split of 29,000/1,000 images for
Flickr30k, and 82,783/40,775 images for COCO. While Flickr30k and COCO contain five captions per image, our baseline training approach uses 1:1 image-text pairs, as this is the practical setting for fine-tuning CLIP. Thus, when creating 1:1 pairs, we take the first annotated caption of each image.

Evaluation. We evaluate our proposed defense strategies against adversarial attacks in the ITR task using the Recall@k (R@k) metric. This includes both image-to-text retrieval (TR) and textto-image retrieval (IR), where the objective is to retrieve the most relevant text for a given image query and vice versa. We employ multimodal adversarial attacks, Co-Attack, and SGA, which are more effective at deceiving VL models than unimodal attacks. The perturbation constraints are set to $\epsilon_I = 2/255$ with L_{∞} -norm for image attacks, and one word for text attacks. An evaluation for unimodal attacks, including PGD and BERT-Attack, is provided in Appendix A.2.

			Cl	ean			Co-A	ttack		SGA				
Method		TR		IR		TR		IR		TR		IR		
		R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	
	Fine-tune	92.1	99.0	77.2	94.4	11.0	23.3	6.7	16.5	0.6	2.0	0.6	2.6	
_k	TeCoA	81.3	94.7	67.6	89.0	<u>53.3</u>	79.9	35.9	61.2	31.6	60.4	22.1	46.0	
Ē	(ours) MAT_{Img}	84.8	96.3	68. 7	89.4	52.8	77.7	31.6	56.8	27.3	52.9	17.9	40.0	
	(ours) MAT	<u>81.8</u>	<u>95.4</u>	67.0	88.0	55.0	80.0	<u>35.8</u>	62.3	33.9	60.7	23.0	47.7	
~	Fine-tune	66.6	88.0	50.1	76.5	2.9	7.5	1.8	5.1	0.1	0.5	0.1	0.6	
5	TeCoA	51.5	77.5	35.1	61.9	20.6	43.8	12.6	29.1	10.1	25.5	7.4	19.3	
8	(ours) MAT_{Img}	59.2	83.0	42.0	69.9	21.4	45.3	12.3	29.0	10.0	24.6	6.2	17.5	
Ũ	(ours) MAT	<u>55.6</u>	80.5	40.2	68.1	29.2	55.6	18.4	40.9	15.7	35.4	11.0	27.6	

Table 1: Comparison of defense methods for clean (i.e., no attack), Co-Attack, and SGA scenarios.

Comparison methods. Our methods are compared with the baseline TeCoA, which fine-tunes only the vision encoder of CLIP for zero-shot image classification. We also evaluate two variants of our approach: (1) MAT_{Img}, which perturbs only the image modality using PGD, and (2) MAT, which perturbs both modalities using PGD and BERT-Attack.

Training details. We use the pretrained CLIP-ViT-B/16 (Radford et al., 2021) as the base model to adversarially fine-tune. We fix the total number of training steps to 5,000, and the batch size to 128 for all experiments. We use the SGD optimizer with cosine learning rate scheduling, where the initial learning rate is set to 0.0001, and the weight decay is set to 0.0001.

4.2 AUGMENTATION STRATEGIES

Augmentation types: Intra-modal and Cross-modal. We consider two types of augmentation techniques: *intra-modal* and *cross-modal*. Intra-modal augmentation enhances data points without considering image-text interactions (i.e., text \rightarrow text, image \rightarrow image). For example, basic image augmentation, such as random cropping, corresponds to intra-modal augmentation, as it does not require any knowledge of the paired text data. In contrast, cross-modal augmentation enhances data points by leveraging the other modality (i.e., image \rightarrow text, text \rightarrow image). An example is generating plausible images from a given caption via a text-to-image generative model.

301 **Text augmentations.** We consider two text augmentation techniques for intra-modal augmentation: 302 Easy Data Augmentation (EDA) (Wei & Zou, 2019) and Language Rewrite (LangRW) (Fan et al., 303 2024). EDA is a simple text augmentation technique that applies four types of operations: synonym 304 replacement, random insertion, random deletion, and random swap. LangRW is a more advanced text augmentation technique that leverages a large language model to rewrite the original texts. 305 For cross-modal augmentation, we consider an image-to-text generative model, OFA (Wang et al., 306 2022), which generates plausible captions from a given image. Additionally, we consider human 307 annotations, denoted as Human, as cross-modal augmentation: Flickr30k and COCO contain five 308 captions per image, so we use the remaining four captions as augmented data points. 309

Image augmentations. For intra-modal augmentation, we consider two image augmentation techniques: For intra-modal augmentation, RandAugment (RandAug; RA) (Cubuk et al., 2020). RandAug applies a series of image augmentations, such as random cropping, color distortion, and rotation, to the original image. For cross-modal augmentation, we consider a text-to-image generative model, Stable Diffusion (SD) (Rombach et al., 2022), which generates plausible images from a given caption.

Augmentation settings. For a fair comparison, we fix the number of augmented data points to
 be five times the number of original data points (generating four augmented data points for each
 original data point). Please refer to the Appendix A.1 for the detailed settings of each augmentation
 technique.

320

270

284

285

286

287

288

289

290

291 292

- 321 322
 - 4.3 Effectiveness of Multimodal Augmented Adversarial Training ($MA^{2}T$)
- **Effectiveness of multimodal adversarial training (MAT).** Table 1 compares defense strategies against clean (i.e., no adversarial attack), Co-Attack, and SGA scenarios on Flickr30k and COCO.

324 Table 3: Effectiveness of augmentation techniques for $MA^{2}T$ on Flickr30k. We compare our meth-325 ods with and without augmentation, highlighting the best performance boost for each MAT method 326 in bold text. T2T and I2I (i.e., text-to-text and image-to-image) denote intra-modal augmentations, while T2I and I2T (i.e., text-to-image and image-to-text) denote cross-modal augmentations. The 327 results demonstrate the importance of leveraging 1:N and N:1 image-text pairs for further improving 328 robustness. 329

	Img aug.	Text. aug.		Co-A		SGA				
	88-	B.	TR TR		Ι	R	Т	R	Ι	R
			R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5
Fine-tune			11.0	23.3	6.7	16.5	0.6	2.0	0.6	2.6
TeCoA			55.2	80.7	33.1	58.8	33.6	61.1	21.7	44.9
(ours) MAT	Img		52.8	77.7	31.6	56.8	27.3	52.9	17.9	40.0
		T2T(EDA)	- 56.2	81.2 ^{3.5}	$3\overline{4.8}$	<u>61.0</u>	32.7	58.1	21.1	<u>45.6</u>
1.N. A		T2T(LangRW)	53.9	78.5	33.3	59.0	31.5	56.1	21.0	43.7
+ 1.1 1 Aug		I2T(OFA)	56.6 <u>†3.8</u>	<u>81.0</u>	34.6	59.5	<u>33.2</u>	<u>59.4</u>	<u>21.6</u>	45.5
		I2T(Human)	56.6	80.4	35.7 14.0	61.3 <u>†4.4</u>	34.7 † 7.4	60.0 ↑ 7.1	22.4 14.5	46.9 <u>†6</u> .
+ N·1 Δμα	I2I(RA)		52.7	77.2	31.4	55.7	27.1	53.3	18.1	38.9
+ IG.I Aug	T2I(SD)		50.9	76.5	31.5	57.4	29.7	54.8	18.7	41.3
(ours) MAT			55.0	80.0	35.8	62.3	33.9	60.7	23.0	47.7
		T2T(EDA)	58.1	81.7	39.3	66.0	37.4	63.8	26.2	52.5
± 1·N ∆ue		T2T(LangRW)	<u>58.7</u>	81.4	<u>40.1</u>	<u>66.2</u>	38.2	62.5	26.8	53.4
+ I.I. Aug		I2T(OFA)	58.4	83.2	39.9	66.2	<u>38.2</u>	67.3	27.5	<u>53.9</u>
		I2T(Human)	63.7 <u>†8.7</u>	83.9 <u></u> † 3.9	42.4 <u>↑6.6</u>	68.7 <u>†6.4</u>	44.4 † 10.5	68.8 <u></u> * 8.1	30.8 † 7.8	56.7 <u>†</u> 9
+ N·1 Aug	$\overline{I2I(RA)}$		- 56.0	80.3	36.4	61.7	33.7	62.5	23.0	47.5
+ it.1 Aug	T2I(SD)		55.7	79.7	36.7	63.3	34.9	60.7	23.7	48.8

Fine-tuning is the case where no defense strategy is applied. By incorporating multimodal adver-346 sarial perturbations, MAT outperforms both MAT_{Img} and TeCoA, which only considers image 347 perturbations, demonstrating the effectiveness of multimodal adversarial training for ITR. However, 348 MAT_{Img} achieves slightly worse performance than TeCoA in the attacked scenarios, highlighting 349 the limitations of traditional unimodal paradigms when applied to multimodal settings. The next 350 section further explores the challenge of adversarial fine-tuning the entire CLIP model for ITR tasks due to overfitting.

Overfitting issue in Multimodal adversarial training 353 (MAT). In Table 2, we observe that the adversarial fine-354 tuning for ITR easily overfits to the train data, leading to 355 poor robustness generalization to unseen data. For ex-356 ample, MAT on Flickr30k shows a performance gap of 357 18.0% and 35.6% in TR@5 and IR@5, respectively, be-358 tween the train and test sets. On the other hand, $MA^{2}T$, 359 using augmented texts by human annotations, signifi-360 cantly mitigates the overfitting issue, reducing the per-361 formance gap to 8.9% and 11.6% in TR@5 and IR@5, respectively. 362

Table 2: Overfit issue of MAT on Flickr30k. We report the performances on the train and test sets against Co-Attack.

	M	АT	$MA^2T_{I2T(Human})$					
	TR@5	IR@5	TR@5	IR@5				
Train	98.0	97.9	92.8	80.3				
Test	80.0	62.3	83.9	68.7				
Diff	-18.0	-35.6	8.9	-11.6				

Effectiveness of MA²T: Augmenting image-text pairs improve robustness. Table 3, summa-364 rizes the effectiveness of one-to-many and many-to-one augmentations in improving adversarial 365 robustness on Flickr30k. We find that effectively leveraging augmentations can further improve ad-366 versarial robustness of MAT. In the following sections, we analyze the factors that contribute to the effectiveness of the augmentation techniques in $MA^{2}T$. 367

368

351

352

369 370

4.4 LEVERAGING ONE-TO-MANY RELATIONSHIPS: A COMPREHENSIVE ANALYSIS

371 To understand the effectiveness of leveraging the one-to-many relationship in robust ITR, we an-372 alyze the properties of the augmented data points generated by the augmentation techniques. To 373 this end, we analyze the alignment quality and diversity of the augmented image-text pairs. Figure 1 374 shows the distribution of alignment scores of augmented image-text pairs, where the alignment score 375 is calculated as the cosine similarity of the embeddings of the image and text pairs, measured in a pretrained CLIP's joint embedding space. Figure 2 presents the distribution of L2 distance of em-376 beddings before and after augmentation, with higher L2 distances indicating greater augmentation 377 diversity.

(a) Alignment analysis for image augmentation. (b) Alignment analysis for text augmentation.

Figure 1: Alignment measures the similarity between an image (or text) sample and its augmented text (or image) pair (cross-modal) in the Flickr30k dataset. We denote the original 1:1 image-text pairs as "Orig." We plot the distribution of the alignment scores of the augmented image-text pairs (cosine similarity between image and text embeddings), measured in the pretrained CLIP's embedding space as: $sim(\Phi(aug_I(I)), \Psi(T))$ or $sim(\Phi(I), \Psi(aug_T(T)))$, where Φ and Ψ are image (I) and text (T) encoders of CLIP, respectively. A higher alignment score indicates that augmentations are better aligned with their corresponding cross-modal pair, suggesting better augmentation quality.

(a) Diversity analysis for image augmentation. (b) Diversity analysis for text augmentation.

Figure 2: Diversity measures the distance between an image (or text) sample and its augmented image (or text) (uni-modal) in the Flickr30k dataset. We plot the distribution of the L2 distance between the embeddings before and after augmentation, measured in the pretrained CLIP embedding space as: $L2(\Phi(I), \Phi(aug_I(I)))$ or $L2(\Psi(T), \Psi(aug_T(T)))$, where Φ and Ψ are image (I) and text (T) encoders of CLIP, respectively. A higher L2 distance indicates that the generated data points are more distant from the original ones, suggesting greater augmentation diversity.

412 413

387 388

389

390

391

392

393

394 395 396

397

399

400

401

402

403

404

405 406

407

408

409

410

411

414

Cross-modal augmentation surpasses intra-modal augmentation due to better alignment of 415 **augmented image-text pairs.** In Table 3, we observe that cross-modal augmentations, such as 416 OFA and Human, can outperform intra-modal augmentations, such as EDA and LangRW, in im-417 proving adversarial robustness. This is explained by the alignment analysis in Figure 1, where 418 cross-modal augmentations generate more aligned image-text pairs compared to intra-modal aug-419 mentations: while both EDA and LangRW improved adversarial robustness, the alignment scores of 420 the augmented image-text pairs are lower compared to cross-modal augmentations, such as OFA and 421 Human, which achieved better alignment scores and adversarial robustness. In the case of images, 422 although cross-modal augmentations are qualitatively superior, alignment does not vary drastically.

423 Diverse and well-aligned image-text pairs lead to better robustness. Additionally, we observed 424 that the balance of alignment and diversity is crucial for the effectiveness of the defense strategy 425 in improving adversarial robustness. In Figure 2, we observe that intra-modal augmentations, like 426 RandAug for images and EDA and LangRW for text, generate less diverse image-text pairs because 427 they only slightly modify the original data points, mostly preserving their semantics. In contrast, 428 cross-modal augmentations, like SD for image and OFA and Human for text, generate more diverse 429 image-text pairs that are more distant from the original data points. This is due to the inherent uncertainty in cross-modal generation caused by the one-to-many relationship in ITR, where a single 430 image can be described in several ways and vice versa, which naturally increases the diversity of 431 the augmented data. This property of cross-modal augmentations can lead to better adversarial

Table 4: Effectiveness of augmentation techniques for our methods on COCO. Well-aligned and 433 diverse augmentations (e.g., I2T(Human)) consistently provide performance gains, demonstrating 434 the consistent effectiveness of augmentations across different datasets. 435

436		Img aug.	Text, aug.		Co-A	ttack		SGA				
437		88-		Т	TR		R	T	R	Ι	R	
400				R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	
438	Fine-tune			2.9	7.5	1.8	5.1	0.1	0.5	0.1	0.6	
439	TeCoA			20.6	43.8	12.6	29.1	10.1	25.5	7.4	19.3	
1/10	(ours) MAT_{Img}			21.4	45.3	12.3	29.0	10.0	24.6	6.2	17.5	
441	+ 1:N Aug		I2T(OFA) I2T(Human)	22.7 23.5 †2.1	$\frac{46.2}{47.1}$	<u>12.8</u> 13.3 ↑1.1	<u>29.3</u> 30.6 ↑1.6	<u>11.2</u> 11.5 ↑1.4	27.0 27.8 ↑3.3	6.9 7.0 ↑0.8	<u>18.4</u> 19.3 ↑1.8	
1/10	+ N:1 Aug	$\overline{T2I}(\overline{SD})$		18.4	- 40.0	10.9	26.1	- 8.2	20.8	5.1	15.2	
442	(ours) MAT			<u>29.2</u>	<u>55.6</u>	18.4	<u>40.9</u>	15.7	<u>35.4</u>	11.0	27.6	
443	+ 1:N Aug		I2T(OFA) I2T(Human)	^{-28.2}	54.0 57.4 ↑1.8	18.0 19.7 ↑1.2	39.5	<u>16.0</u> 17.9 ↑2.2	35.2	<u>11.3</u> 12.0 ↑1.1	27.5 29.9 12.3	
444	+ N:1 Aug	$\overline{T2I(SD)}$		25.5	49.6	16.8	36.9	- 13.1	30.1	9.5	24.5	

robustness, as shown in Table 3 that OFA and Human outperform RandAug and EDA/LangRW, respectively. 449

450 Efficacy of text and image augmentations. In Table 3, we found an efficacy gap between text and 451 image augmentations, providing the latter higher boosts. While SD generates diverse image-text pairs with high alignment scores, it does not improve adversarial robustness as much as OFA and 452 Human. This is due to a large distribution gap between the generated and the original images, which 453 leads to a distribution shift that degrades the model's performance. Additionally, in Figure 3a, we 454 plot the robustness performance of MAT_{Img} with SD on Flickr30k against SGA, where the number 455 of additional images used for adversarial training is varied. Top indicates they are sorted decreas-456 ingly by alignment score. We find that the adversarial robustness of MAT_{Img} with SD improves 457 when up to two additional images are used, but beyond that, the performance starts to degrade. 458 This suggests that the effective defense strategy should employ augmentations that generate "mod-459 erately" diverse image-text pairs that do not introduce a significant distribution shift. In comparison, 460 in Table 3, we observe that text augmentations, such as Human and OFA, can significantly improve 461 adversarial robustness. For example, Figure 3b illustrates that increasing the number of Human augmentations consistently boosts robustness. This is because generating image augmentations that 462 do not lack diversity but also do not deviate significantly from the original data distribution is more 463 challenging due to the high dimensionality of the image space. On the other hand, text modality is 464 more amenable to augmentation, as the text space is lower-dimensional and more structured, making 465 it easier to generate appropriate diversity in the augmented data points. 466

Figure 3: Effectiveness of cross-modal augmentations, SD and Human, in improving adversarial robustness in VL models for ITR.

479 480

477

478

467

481 **Evaluation on COCO dataset.** We also analyze augmentations on the COCO dataset in Table 4. 482 We find that only the well-aligned and diverse augmentations, I2T(Human), consistently provide performance gains on COCO. This is because COCO has a larger number of training samples com-483 pared to Flickr30k, and the improvements by augmentations are less significant. However, the gains 484 from I2T(Human) suggest that the effectiveness of well-aligned and diverse augmentations remains 485 consistent across datasets, with performance significantly surpassing that of TeCoA.

432

486 5 LIMITATIONS

We focused on CLIP as the base model for our defense strategy in order to deeply analyze the effectiveness of our framework, leaving the exploration of other vision-language models for future work. Additionally, to improve our framework, a method that generates image augmentations that do not create a distribution shift from the original data should be proposed.

6 CONCLUSIONS

492 493

494

495 This is the first work to study adversarial defense strategies for vision-language (VL) models in the 496 context of image-text retrieval (ITR). Existing defense methods for CLIP are not effective against 497 multimodal attacks, as they are designed to defend against image-only attacks and do not consider 498 the one-to-many (1:N) nature of images and texts. For this reason, we proposed a novel defense 499 framework, Multimodal Augmented Adversarial Training (MA²T), which leverages one-to-many (1:N) image-text pairs via augmentations to enhance robustness for ITR. Our comprehensive analy-500 sis reveals that our framework can significantly improve adversarial robustness against multimodal 501 attacks, and that well-aligned and diverse augmentations are crucial for effective defense, which was 502 previously unexplored in the literature on unimodal adversarial defense. This work identifies novel 503 challenges overlooked in previous works and provides a novel perspective on adversarial defense 504 strategies for VL models in ITR, fostering future research for reliable and secure AI systems. 505

Ethics Statement. In this work, we focus on improving the robustness of vision-language models 506 for Image-Text Retrieval (ITR) tasks against adversarial attacks. We use publicly available datasets 507 (Flickr30k and COCO) with no human subjects or personal data. We acknowledge potential biases 508 in pre-trained models like CLIP and emphasize that our work is aimed at enhancing security and 509 reliability, not harmful applications. While adversarial methods can be misused, our research is 510 focused on defense strategies, promoting secure AI systems. Our work complies with legal and 511 ethical standards, with no conflicts of interest, and we ensure research transparency by making our 512 methods and findings publicly available for reproducibility. 513

Reproducibility. We have made extensive efforts to ensure the reproducibility of our results. Detailed descriptions of our experimental setups, including model architectures, hyperparameters, and training protocols, are provided in the main text and appendix. We also offer a comprehensive explanation of data processing steps for the Flickr30k and COCO datasets. All algorithms, including adversarial fine-tuning methods, are described in detail, and additional implementation details are included in the supplementary materials. For further reproducibility, we will provide anonymous access to the source code, which will be included in the supplementary materials.

REFERENCES

521

522 523

524

525 526

527

528

529

530

- Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv* preprint arXiv:1504.00325, 2015.
 - Sanghyuk Chun. Improved probabilistic image-text representations. In *Proceedings of the International Conference on Learning Representations*, 2024.
- Sanghyuk Chun, Seong Joon Oh, Rafael Sampaio De Rezende, Yannis Kalantidis, and Diane Larlus. Probabilistic embeddings for cross-modal retrieval. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pp. 8415–8424, 2021.
- Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
 data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*, pp. 702–703, 2020.
- Lijie Fan, Dilip Krishnan, Phillip Isola, Dina Katabi, and Yonglong Tian. Improving clip training with language rewrites. *Advances in Neural Information Processing Systems*, 36, 2024.
- Dongchen Han, Xiaojun Jia, Yang Bai, Jindong Gu, Yang Liu, and Xiaochun Cao. Ot-attack: Enhancing adversarial transferability of vision-language models via optimal transport optimization. arXiv preprint arXiv:2312.04403, 2023.

540 541 542	Dongwon Kim, Namyup Kim, and Suha Kwak. Improving cross-modal retrieval with set of diverse embeddings. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 23422–23431, 2023.
543 544 545	Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum distillation. Advances in neural information processing systems 34:9694–9705, 2021
546 547 548	 Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. Bert-attack: Adversarial attack against bert using bert. <i>arXiv preprint arXiv:2004.09984</i>, 2020.
550 551 552	Dong Lu, Zhiqiang Wang, Teng Wang, Weili Guan, Hongchang Gao, and Feng Zheng. Set-level guidance attack: Boosting adversarial transferability of vision-language pre-training models. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i> , pp. 102–111, 2023.
553 554 555	Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. <i>arXiv preprint arXiv:1706.06083</i> , 2017.
556 557 558	Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-shot adversarial robustness for large-scale models. <i>ICLR</i> , 2022.
559 560 561 562	Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet- lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image- to-sentence models. In <i>Proceedings of the IEEE international conference on computer vision</i> , pp. 2641–2649, 2015.
563 564 565 566 567	Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In <i>International conference on machine learning</i> , pp. 8748–8763. PMLR, 2021.
568 569 570	Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 10684–10695, 2022.
572 573 574	Christian Schlarmann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: Un- supervised adversarial fine-tuning of vision embeddings for robust large vision-language models. <i>arXiv preprint arXiv:2402.12336</i> , 2024.
575 576 577	Yale Song and Mohammad Soleymani. Polysemous visual-semantic embedding for cross-modal retrieval. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 1979–1988, 2019.
578 579 580	Christopher Thomas and Adriana Kovashka. Preserving semantic neighborhoods for robust cross- modal retrieval. In <i>In Proc. European Conference on Computer Vision</i> , pp. 317–335, 2020.
581 582 583 584	Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. <i>arXiv preprint arXiv:2302.13971</i> , 2023.
585 586 587	Haodi Wang, Kai Dong, Zhilei Zhu, Haotong Qin, Aishan Liu, Xiaolin Fang, Jiakai Wang, and Xianglong Liu. Transferable multimodal attack on vision-language pre-training models. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 102–102. IEEE Computer Society, 2024a.
588 589 590 591 592	Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning framework. In <i>International conference on machine learning</i> , pp. 23318–23340. PMLR, 2022.
500	Sibo Wang Jie Zhang Zheng Yuan and Shiguang Shan. Pre-trained model guided fine-tuning for

593 Sibo Wang, Jie Zhang, Zheng Yuan, and Shiguang Shan. Pre-trained model guided fine-tuning for zero-shot adversarial robustness. *CVPR*, 2024b.

- Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text classification tasks. *arXiv preprint arXiv:1901.11196*, 2019.
- Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
 Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning.
 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15671–15680, 2022.
- Jiaming Zhang, Qi Yi, and Jitao Sang. Towards adversarial attack on vision-language pre-training
 models. In *Proceedings of the 30th ACM International Conference on Multimedia*, pp. 5005–5013, 2022.

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

648 A APPENDIX / SUPPLEMENTAL MATERIAL

650 A.1 IMPLEMENTATION DETAILS OF AUGMENTATION TECHNIQUES

652 A.1.1 TEXT AUGMENTATIONS

651

653

664

665 666

667

668

669

670

671

672

673

674

675

676 677

678

679

680

681

682

683

684 685 686

687

697

699

EDA (Easy Data Augmentation). EDA randomly selects words in the text and performs the following operations: synonym replacement, random insertion, random swap, or random deletion. We use the official implementation ¹. The hyperparameter α controls the strength of the augmentation, where α determines the probability of each word being augmented. We use $\alpha = 0.3$ for all experiments.

LangRW (Language rewrite). Language rewrite (LangRW) (Fan et al., 2024) is a method that rewrites the text data to improve the robustness of the model, using a generative natural language processing model, such as Llama (Touvron et al., 2023). We used Llama-2-7B². In our work, we used slightly modified prompts from the original work to simultaneously generate four captions per image. Given an original caption T, the prompt for generating additional captions are as follows:

```
Rewrite image captions in 4 different ways.
{coco caption 1 for image i}
=> {coco caption 2 for image i}
=> {coco caption 3 for image i}
=> {coco caption 4 for image i}
=> {coco caption 5 for image i}
{coco caption 1 for image j}
=> {coco caption 2 for image j}
=> {coco caption 3 for image j}
=> {coco caption 4 for image j}
=> {coco caption 5 for image j}
{coco caption 1 for image k}
=> {coco caption 2 for image k}
=> {coco caption 3 for image k}
=> \{ coco caption 4 for image k \}
=> {coco caption 5 for image k}
{original caption to be rewritten}
=>
```

where the coco captions are randomly sampled from the original captions from the COCO dataset (Chen et al., 2015).

688
689
689
690
691
691
OFA. OFA (Wang et al., 2022) is an image captioning model. We use the official implementation ³. We used the default prompt of " what does the image describe?" to generate additional captions for each image.

Human. Human augmentation is a method that generates additional captions by human annotators.
 Since we use 1:1 image-text pairs for training as default, we used the rest of the original captions included in Flickr30k and COCO datasets as additional captions for each image.

695 696 A.1.2 IMAGE AUGMENTATIONS

RandAug (Random Augmentation). RandAug (Cubuk et al., 2020) is an image augmentation method that applies a series of random transformations to the image. We used the codes from

³https://github.com/OFA-Sys/OFA

¹https://github.com/jasonwei20/eda_nlp

^{701 &}lt;sup>2</sup>https://huggingface.co/meta-llama/Llama-2-7b

ALBEF (Li et al., 2021) ⁴. We set the number of operations to 2 and the magnitude to 5 for all experiments.

Stable Diffusion (SD). Stable Diffusion (SD) (Rombach et al., 2022) is a text-to-image generative model. We used SD-v2.1 ⁵.

A.2 EVALUATION OF $MA^{2}T$ on other attack types: Clean, PGD, and BERT

In this section, we present the evaluation results of the proposed MA²T framework against different attack types, including clean, PGD, and BERT attacks.

Table 5: Effectiveness of augmentation techniques for MA²T on Flickr30k for different attack types, including clean, PGD, and BERT attacks.

	Img aug.	Text, aug.		Cl	ean		PGD				BERT-Attack			
	88-		TR		IR		Т	'R	Ι	R				
			R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5
Finetune			92.1	99.0	77.2	94.4	0.7	2.0	0.7	2.1	75.4	93.4	53.1	78.3
TeCoA			81.6	95.5	68.2	89.3	52.7	78.7	43.4	70.5	68.2	90.1	46.9	72.0
(ours) MAT_{Img}			84.8	96.3	68.7	89.4	51.3	76.2	40.1	69.4	66.2	90.2	43.4	69.8
		T2T(EDA)	85.6	95.8	70.9	- 90.4 -	-54.4 -	78.0	43.2	71.7	71.4	-91.5	47.8	73.3
L LIN Ang		T2T(LangRW)	83.8	94.9	69.3	89.5	54.2	75.6	43.3	70.6	65.8	88.3	44.2	70.5
+ I.N Aug		I2T(OFA)	<u>85.9</u>	96.3	69.8	90.1	59.9	81.1	<u>45.4</u>	<u>73.2</u>	68.1	89.4	44.5	70.7
		I2T(Human)	86.7	97.3	73.1	92.6	<u>58.1</u>	80.7	48.2	74.8	<u>69.6</u>	<u>90.9</u>	<u>47.0</u>	73.7
	IZI(RA)		85.0	96.8	67.4	88.6	54.0	76.3	40.6	69.1	65.8	88.8	41.6	67.8
+ N.I Aug	T2I(SD)		85.7	96.6	70.1	<u>90.9</u>	50.8	74.8	39.0	67.3	67.8	89.8	45.6	71.5
(ours) MAT			81.8	95.4	67.0	88.0	53.8	77.2	39.4	68.3	70.1	91.1	50.1	74.5
		T2T(EDA)	85.6	96.4	<u>69.3</u>	- 89.3 -	56.1	78.8	43.3	71.6	73.4	-93.ī -	52.1	78.4
+ 1·N Aug		T2T(LangRW)	81.9	94.8	67.5	88.5	52.5	76.2	42.6	70.4	<u>73.5</u>	91.9	51.3	77.4
+ 1:N Aug		I2T(OFA)	84.7	95.3	68.1	89.4	58.9	80.9	<u>44.8</u>	<u>72.7</u>	72.4	92.5	51.6	76.9
		I2T(Human)	86.3	96.5	71.4	91.0	<u>58.3</u>	80.5	46.7	74.9	77.2	<u>93.0</u>	55.8	80.9
	IZI(RA)		83.3	95.2	66.0	87.5	-54.5 -	78.1	39.3	68.0	70.8	-91.4 -	50.0	74.8
+ IN. I Aug	T2I(SD)		83.2	95.8	67.9	<u>89.6</u>	50.9	74.9	39.9	67.6	70.6	92.1	51.0	76.3

Table 6: Effectiveness of augmentation techniques for MA²T on COCO for different attack types, including clean, PGD, and BERT attacks.

	Img ang	Text and		Clean				PO	FD			BERT-	Attack	
	nng aug.	Text: uug.	TR		IR		TR		IR		-			
			R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5
Finetune			66.6	88.0	50.1	76.5	0.2	0.9	0.2	0.7	36.9	65.2	23.7	46.7
TeCoA			51.5	77.5	35.1	61.9	29.2	53.6	20.0	42.1	29.3	55.5	17.6	37.5
ours) MAT _{Img}			59.2	83.0	42.0	69.9	31.4	55.2	21.7	46.4	31.0	58.5	18.5	39.4
1.1.N Aug		12T(OFA)	58.7	82.3	41.4	69.1	<u>32.8</u>	<u>57.0</u>	22.4	<u>47.0</u>	<u>31.6</u>	<u>58.6</u>	18.6	38.8
+ 1.IV Aug		I2T(Human)	60.5	84.0	43.2	71.0	33.1	57.5	23.1	48.4	32.9	60.3	19.2	40.6
+ N:1 Aug	T2I(SD)		54.2	79.2	38.4	66.0	26.9	47.7	18.3	40.1	28.6	55.2	17.2	36.5
ours) MAT			55.6	80.5	40.2	68.1	30.5	55.0	21.9	45.7	40.6	69.3	26.8	52.6
. 1 NLA		I2T(OFA)	54.5	80.1	39.3	67.3	30.3	54.2	21.7	45.6	39.0	67.8	26.0	51.2
+ I:IN Aug		I2T(Human)	57.7	81.5	41.4	69.2	32.3	56.3	22.8	47.3	42.6	70.7	28.0	54.1
+ N:1 Aug	$\overline{T2T}(\overline{SD})$		51.9	77.9	36.3	64.1	26.3	48.5	18.5	40.4	- 36.9 -	65.4	24.3	48.9

A.3 Ablation study for augmentations for MA^2T_{Img} .

Here, we present the ablation results on the effectiveness of augmentations. Figure 4, 5, 6, and 7 show the effectiveness of intra-modal and cross-modal augmentation techniques for MA^2T_{Img} . In Figures 5, 6, and 8, top indicates they are sorted decreasingly by alignment score. In Figure 7, the strength of augmentation levels ranges from 1 (weakest) to 5 (strongest), and is defined by three parameters {(minimum scale of random resizing, number of operations in RandAug, magnitude of RandAug)} as {(0.8, 0, 0), (0.8, 2, 3), (0.7, 2, 5), (0.6, 2, 7), (0.5, 2, 9)}, respectively.

⁵https://huggingface.co/stabilityai/stable-diffusion-2-1-base

⁴https://github.com/salesforce/ALBEF

