
Published as a conference paper at MathAI 2025

NUMERICAL DIFFERENTIATION AND ITS IMPACT ON
UNCERTAINTY IN LEARNED DYNAMICAL SYSTEMS

Maria Khilchuk,Ilya Markov & Alexander Hvatov
NSS Lab
ITMO University
Saint-Peresburg, 197101, Russia
{mdkhilchuk,iomarkov,alex hvatov}@itmo.ru

ABSTRACT

This work examines how different differentiation techniques impact the discov-
ery of differential equations from data. Since real-world measurements are often
noisy, accurately computing derivatives is crucial for reliable algorithm perfor-
mance. We explore alternatives to finite difference methods, which are prone to in-
stability and amplify data errors. Our study considers four approaches: Savitzky-
Golay filtering, spectral differentiation using neural networks, and derivative reg-
ularization strategies. By assessing their suitability for realistic scenarios and their
influence on equation discovery convergence, we provide insights into enhancing
the robustness of data-driven modeling.

1 INTRODUCTION

Four critical components define the framework of any machine learning model: the architecture, the
parameters, the features, and the objective function. Similarly, modern approaches to differential
equation discovery treat differential equations (DEs) as machine learning models. This parallel
raises key questions about assessing the quality of identified DEs and the associated uncertainties,
leveraging established evaluation techniques from machine learning and sensitivity analysis (SA).

The architecture of a machine learning model determines its structure and complexity, encompassing
the design choices for machine learning models and the basis functions selected for representation.
Parameter uncertainty refers to variability in model parameters, often due to noisy data or suboptimal
training, while features represent the input data or derived variables essential to model performance.
Finally, the objective function defines the training criterion by minimizing a loss metric like mean
squared error, cross-entropy, or physics-informed residuals.

Uncertainty can be assessed for each component:

Architectural uncertainty is typically assessed through techniques such as pruning
Blalock et al. (2020) or ensemble methods Lakshminarayanan et al. (2017), which quantify the
robustness to structural variations.

Parameter uncertainty is often analyzed via sensitivity analysis (SA). Local SA methods,
such as the one-at-a-time (OAT) approach Hamby (1994), assess the effect of small perturbations in
individual inputs while keeping others constant. However, these methods are limited in capturing
non-linearities and interactions. In contrast, global SA methods, like Sobol indices Soboĺ (1993),
evaluate the impact of all variations across the parameter space and consider input interactions.

Feature uncertainty is managed through preprocessing, data augmentation, sampling, fea-
ture engineering, and strategies to handle noisy inputs, such as robust normalization techniques
Werner de Vargas et al. (2023).

The objective function, although often defined by design, can introduce uncertainties
when there is misalignment between the target and the model’s capacity Gonzalez & Miikkulainen
(2020).

1

Published as a conference paper at MathAI 2025

Recent differential equation distribution methods allow for threat differential equations as machine
learning methods. Therefore, we could also find analogs to machine learning components. Every
equation discovery method aims to find the equation structure — terms that are likely to appear in
the governing equation for the data; this structure is closely related to a neural network architecture
— it describes how features and layers are interconnected.

The second step is to identify the parameters. The parameters are the coefficients within the DE that
frequently correspond to physical properties. They could be referred to as neural network weights
(and are basically coefficients of a special type of linear regression).

Advancements in DE discovery techniques have refined these components’ uncertainty assessment.
For example, parameter uncertainty has been addressed using ensemble-based approaches, such
as E-SINDy, which employs term library ensembling to handle parameter robustness Fasel et al.
(2022). Structural uncertainty has been explored using methods like multi-objective evolutionary
optimization combined with Bayesian networks, as demonstrated by Hvatov & Titov (2023). These
approaches allow researchers to quantify structural robustness better and align the identified DEs
with physical phenomena.

Unlike traditional machine learning, the objective function in DE discovery is more constrained. It
is often defined as the discrepancy of the equation, evaluated either in a strong form (e.g., term-
by-term residuals) or in a weak form (e.g., weak formulations like wSINDy Messenger & Bortz
(2021)). Solver-based methods are also employed to minimize discrepancies between observed data
and solutions generated by the identified DE, such as physics-informed criterion (PIC) and others.

The critical distinction between DE discovery and machine learning lies in the treatment of features.
The feature is only observational data—it could be a time series or field (a multi-dimensional tensor
that could contain time as one axis). However, to build an equation, we require the differentials with
respect to every axis up to the given order. Differentials of the input data are not given in most cases
and, thus, must be computed numerically. Thus, the machine learning features are engineered within
the algorithm.

Noisy measurements exacerbate the challenge of numerical differentiation, leading to errors in
derivative estimates. Stable numerical differentiation techniques, such as finite differences, poly-
nomial interpolation, or machine-learning-based methods Chartrand (2011), have been proposed to
address these issues. However, the choice of differentiation method may significantly impact the
quality of the DE model discovered. Variations in derivative computation propagate uncertainty into
both the estimated parameters and the structural accuracy of the DE.

Despite progress in addressing parameter and structural uncertainties in DE discovery, the impact of
differentiation methods on feature uncertainty remains underexplored. This paper aims to system-
atically evaluate how differentiation techniques influence the quality of discovered models, with a
particular focus on both parameter and structural accuracy under varying levels of data uncertainty.

Contribution

- We describe differentiation as an “feature enginnering” uncertainty source in differential equation
discovery
- Experimentally prove the obvious fact that better differentiation quality leads to better discovery,
but also the non-obvious fact that different methods should be used for noisy and clean data to
achieve better performance
- We compare several frameworks (SINDy and EPDE) to make the results more reliable

Limitations Experimentally, we show results only for two frameworks. However, there may be
different performances in RL-based equation discovery, such as DISCOVER Du et al. (2024).

Data and code are available via the anonymized repository https://anonymous.4open.
science/r/UAI_diff-B53D

2 DIFFERENTIAL EQUATION DISCOVERY BACKGROUND

As noted above, in the differential equation as a machine learning model, we can distinguish the
components of such a model: structure/architecture, parameters, features, and target function.

2

https://anonymous.4open.science/r/UAI_diff-B53D
https://anonymous.4open.science/r/UAI_diff-B53D

Published as a conference paper at MathAI 2025

For differential equations discovery, as an input, we have the data placed on a discrete grid

X =
{
x(i) =

(
x
(i)
1 , . . . x

(i)
dim

)}i=N

i=1
, where N is the number of observations and dim is the di-

mensionality of the problem. We mention a particular case of time series, for which dim = 1 and
X = {tj}i=N

i=1 .

It is also assumed that for each point on the grid, there is an associated set of observations U ={
u(i) =

(
u
(i)
1 , . . . , u

(i)
L

)}N

i=1
to define a grid map u : X ⊂ Rdim → U ⊂ RL. This grid and

observations can be used as input data or features in the machine learning model. It is assumed that
u is defined explicitly by the model M which has the form:

M(S, P, x) → u(x) : M
(
S, P, x(i)

)
→ u (xi) ∼ u(i) (1)

In Eq. 1, we define two parts of the model in the form of the equation: the structure S and the param-
eters P . We note that we do not expect either interpolation (case M

(
S, P, x(i)

)
→ u (xi) = u(i)

)
or approximation (case M

(
S, P, x(i)

)
→ u (xi) ≈ u(i)

)
. It is assumed that the model M(S, P, x)

by itself can be interpreted by an expert and used, for example, to predict the behavior of the system
in states that have not yet been observed x̃(j). In an ideal scenario, the discovery of differential
equations enables the extraction of the complete set of underlying equations based on observational
data. Unfortunately, in practical situations, we can only approximate the system and obtain a rough
estimate.

It is convenient to separate numerical characteristics such as the coefficient of the term, the power
of the term, and the order of the derivative into a set of parameters P , i.e., to make every node or
element of the structure parametrized. The optimization process may be separated for structure S,
and parameter set P [maybe link here]. The target function occurs when a differential equation is
represented as a machine learning model. In most cases, the discrepancy between the target and the
calculated values or a solver of differential equations is selected as a target function.

For example, hyperbolic heat equation τ ∂2u
∂t2 + ∂u

∂t = α∇2u with parameters τ (relaxation time)
– parameter representing the time lag required for heat flux to respond to a temperature gradient.
It ensures a finite propagation speed of thermal signals (unlike the infinite speed implied by the
classical heat equation), α (thermal diffusivity) defined as α = k

ρc , where k is thermal conductivity
(material’s ability to conduct heat), ρ is density, c is specific heat capacity (energy required to raise
temperature per unit mass). The structure of the equation includes all the terms ∂2u

∂t2 , ∂u
∂t and all

components of ∇2 =
∑
i

∂2u
∂x2

i
, i.e. ∂2u

∂x2 ,
∂2u
∂y2 ,

∂2u
∂z2 if we consider standard Cartesian coordinates of

the equation and the operations that are used between them in the final form of the equation.

Equation discovery problem statement In the case of differential equations discovery and search-
ing for parameters of the equation, symbolic regression is used. Formally, this machine learning
symbolic regression problem can be formulated as follows: the set Ai = (xi, yi) is given, i = 1, N -
number of observations, xi - discrete grid, yi - data measured at grid points and aligned with the grid.
It is known that yi can be determined through a parameterized model as follows M(S, P, xi) ∼ yi,
and there is a loss function L(M(S, P, xi), yi). Thus, the optimization problem, which we aim to
solve, is

S∗, P ∗ = argmin
S,P

L(M(S, P, xi), yi) (2)

The methods of equation discovery differ in the way of determining L(·), model M(S, P, x), and
the optimization way, i.e., how do we achieve argmin. Below, we briefly outline the main groups of
methods.

As a classical algorithm in the area, we consider another algorithm, Sparse Identification of Nonlin-
ear Dynamics (SINDy) Brunton et al. (2016) presented in the form of the PySINDy library, which
provides opportunities for finding control equations based on data even in cases of chaotic dynamical
systems. This algorithm is based on the idea that we need to find coefficients for known observable

3

Published as a conference paper at MathAI 2025

terms, which are often represented as derivatives and have non-linearity in the form of given func-
tions. At the same time, the solution should include as few functions as possible because otherwise,
the solution converges worse.

Ξ = argmin
Ξ′

[∥∥∥ΘΞ′ − Ẋ
∥∥∥
2
+ α ∥Ξ′∥1

]
(3)

where X-future measurement data, Ẋ is derivative of X, Θ(X)- library of nonlinear functions
generated by X, Ẋ = Θ(X)·Ξ- the way to introduce sparse coefficient matrix Ξ and a regularization
parameter α that determines the desired sparsity of the solution Brunton et al. (2016). In our terms,
SINDy is the algorithm where structure S is fixed, and we only optimize parameters S.

In this regard, the field of methods for searching for differential equations can be much improved;
in particular, in addition to regression, evolutionary optimization is actively used, which refers to
genetic algorithms in combination with sparse regression, that is realized in EPDE (Evolutionary
Partial Differential Equations) framework Maslyaev et al. (2021). In this algorithm, instead of the
usual terms,” building blocks” are used - these are tokens, a combination of elementary functions
from data and from data derivatives. These tokens can include higher-order derivatives, grid func-
tions, and their combination with other elementary functions. All tokens together are formed into
a set of tokens F =

⋃
i Fi, where j defines the name of the token family. Next, evolutionary

optimization in model training is used for the selected set of tokens.

M(C,P, x̄) =

i≤L∑
i=1

ci ∗ ai (Pi, x̄) (4)

Here, C = ci, i = 0, L represents the constants before the terms of the equation, ai (Pi, x̄) =∏j=Ntokens
j=1 fj

(
p
(i)
1 , p

(i)
2 , . . . , x̄

)
denotes the products of tokens fj from the token families F , Pi ={

p
(i)
1 , p

(i)
2 , . . .

}
represents the parameter set for term ai, and P represents the parameter multi-index.

As mentioned before, the model M(S, P, x) is assessed by the loss function L(·). In the SINDy case,
it is a model discrepancy with respect to the selected term (in SINDy, it is usually ∂u

∂t). In EPDE,
one may choose between discrepancy and multi-objective optimization with additional objectives
such as complexity. We also may add physics-informed loss, as done in PIC (with SINDy), or
replace discrepancy with the difference between the equation solution and data obtained with PINN
architecture.

Except for the last case, we require separating data to compute loss, and this is one of the main
problems—the solution of the equation is computationally expensive, and if we replace it with a less
costly method, we should be able to handle differentiation operations properly.

3 DATA DIFFERENTIATION PROBLEM STATEMENT AND PROPOSED METHODS

In what follows, we will primarily discuss reducing random error in the measurements. While other
sources of inaccuracies in the data, such as systematic errors, can be significant, they tend to be
elusive even though they significantly affect the resulting data-driven equation.

Let us denote the input data for the differential equation discovery algorithm as u(t,x), which is
collected as measurements and, in addition to the correct state of the system u(t,x) contains noise
n(t,x). While we can be sure in the presence of noise in the data, several assumptions can be made
about the distribution F , to which it belongs. The measurement at the point (t,x) is assumed to
be drawn from the Gaussian distribution (Additive White Gaussian Noise, AWGN) with its mean
u(t,x) - the correct value of the underlying process. In our experiments, we introduce the noise
standard deviation σ dependent on the variable state σ = κu(t,x).

u(t,x) = u(t,x) + n(t,x), n(t,x) ∼ F (t,x) (5)

4

Published as a conference paper at MathAI 2025

This section is devoted to presenting alternative tools for calculating the derivatives of a modeled
function. The baseline approach to numerical differentiation involves finite-difference schemas that
employ values of the dependent variable in grid nodes to calculate its derivatives.

∂u(t,x)

∂xi
≈ ∆δ,iu

δi
=

u(t,x+ δi)− u(t,x)

δi
, (6)

where the partial derivative of the data-representing function u(t,x) over the i-th spatial axis is
reconstructed with the values in nodes (t,x+ δi) and (t,x) with the finite-difference operator ”for-
ward” ∆δ,i. By δi we denote the vector of increment over the i-th axis, δji = 0, i ̸= j, and δii -
non-zero step of the grid.

With the data contaminated in the manner presented in Eq. 5, it is possible to estimate the quality of
derivatives based on the finite differences. Let us assume that the input data on the compact Ω belong
to the Sobolev space W k,p(Ω) of functions that have their derivatives up to k-th order belong to the
Lp(Ω) space (have finite Lebesgue integral): u ∈ W k,p(Ω). Although we cannot be sure of the
same properties of the observation u, it can still be attributed to the Lebesgue space with ∞-norm:
u ∈ L∞(Ω). In this case, the finite-difference discrepancy can be estimated from the norms in the
corresponding spaces:

∥u′
xi

− ∆δ,iu

2δi
∥p ≤ ∥∆δ,i(u− u)

2δi
∥p

+ ∥u′
xi

− ∆δ,iu

2δi
∥p ≤ 2δi

h
+

hC

2
, (7)

whereby ∥·∥p we denote the norm in space Lp(Ω), and C is the constant obtained from the Taylor
series derivation of finite differences: C ≥ ∥f”xixi

∥p. This estimation indicates that the derivatives
are sensitive to errors in the measurement. Furthermore, reducing the grid step, usually preferable
due to the lower pure numerical error in the finite difference, leads to the magnification of random
errors.

The noise influence on the data can be viewed from the point of view of Fourier analysis. The
studied process shall not produce high-frequency oscillations or have amplitudes significantly lower
than the low-frequency counterparts. If the opposite is true, the data may have aliasing problems,
thus limiting the applicability of the frequency-based analysis. These high-frequency components in
the DFT (discrete Fourier transform) are linked to the measurement noise or small-scale processes
that shall be omitted during the equation construction and filtered out. In what follows, brief notes
of applied differentiation methods are presented, with a more detailed and expanded formulation in
Appendix A.

• Filtering-based approaches: One of the approaches considered in this work involves ap-
proximating the input data with the fully connected artificial neural network (ANN). One
of the valuable properties of the artificial neural network is that the low-frequency signal
in the data is learned first, while further training approximates the high-frequency com-
ponents Rahaman et al. (2019). Thus, by training an ANN representation of the process,
we can obtain its low-frequency approximation, which can be further differentiated with a
decreased noise component.
Savitzky-Golay (SG) filtering, developed in Savitzky & Golay (1964), is a commonly used
approach to signal or data filtering, coupled with an opportunity to compute derivatives,
involves a least squares-based local fitting of the polynomials to represent the data. For
each grid node, the data in its proximity is used to construct a polynomial that can be
analytically differentiated.

• Spectral domain differentiation: Although the process of differentiation in the spatial
domain can be complicated for the data described with an arbitrary function, in the Fourier
domain, the derivatives can be estimated on a term-to-term basis Johnson (2011). The
discrete Fourier transform (DFT) is the basis of our implementation of spectral domain
differentiation. In the spectral domain, integration and differentiation can be maintained

5

Published as a conference paper at MathAI 2025

by multiplication of series terms with an appropriate exponential. This leads to low com-
putational costs, especially if the data are located on a uniform grid, thus allowing the use
of the Fast Fourier Transform instead of DFT. The Butterworth filter does the signal filter-
ing, which can preserve the signals with frequencies lower than the cutoff frequency while
dampening the high-frequency ones.

• Total variation regularization: Variational principles provide an alternative method that
incorporates inverse problem solution with the regularization of the gradient variation or
its higher-order analogs (e.g., Hessian). One of the main advances in this field was made in
Chartrand (2011; 2017).

4 EXPERIMENTS

To investigate the influence of the above differentiation methods on the discovery of differential
equations, we will conduct a series of complex numerical experiments. The search for equations
will be carried out using discharged regression and an evolutionary approach.

4.1 EXPERIMENTAL SETUP

Several types of partial differential equations were chosen, each with different solutions: analytical
(KdV), numerical (Burgers, wave, Laplace), and data modeling behavior in the atmosphere. Also
we take benchmark Ross et al. (2023) where the exact equation is not known a priori (it is refered
below as pyqg).

The workflow includes selecting and generating data; as noted earlier, it is either obtaining an analyt-
ical solution in the form of a matrix of values or finding a solution matrix using numerical methods,
setting boundary and initial conditions, where necessary, and choosing constants. After that, all the
data obtained are differentiated by the described methods, while the derivatives sought are those
that, as is known in advance, occur in the equation. These may be derivatives of the form ∂u(t,x)

∂x ,
∂u(t,x)

∂t ,∂
2u(t,x)
∂x2 , etc. Then, an evolutionary algorithm is applied using the EPDE framework. Data is

loaded with the grid and all derivatives, and then we choose a multi-objective mode. The population
size is 7 for all equations, and the number of training epochs ranges from 30-80 depending on the
complexity of the equation; the maximum number of terms in the equation is 8 for all equations; this
is done to obtain greater variability in the equations. Then the algorithm is run; one run gives about
5-7 equations per the Pareto frontier; we make only 50 runs for each equation to avoid too much
variation in the data and more accurately estimate the average approximation for all coefficients.

For each data set, a series of experiments was carried out, resulting in boxplots showing the distribu-
tion of coefficients in front of the correct terms. The difference between the obtained equations and
the true ones was also analyzed using the difference metric—structural hamming distance (SHD).

4.2 ORDINARY DIFFERENTIAL EQUATION

As a simple example, we consider second-order ODE in the form

mu′′ + qu′ + ku = 0 (8)

with parameters m = 1, q = 0.25, k = 3 and initial conditions u(0) = 1, u′(0) = 0. The detailed
experimental results are placed in Appendix B with a further discussion in Section 5.

4.3 KORTEWEG – DE VRIES EQUATION

The Korteweg-de Vries equation is a partial differential equation u′
t + u′”xxx +6uu′

x = 0, which is
one of the few that has analytical one-soliton and two-soliton solutions.

We will study its one-soliton solution, presented in the following form

u(x, t) =
2(k2)

ch2(−k(x− 4(k2)t))
(9)

6

Published as a conference paper at MathAI 2025

,where k = 0.7 is the constant that determines the velocity of the soliton 4k2 and the amplitude 2k2.
The detailed experimental results are placed in Appendix C with a further discussion in Section 5.

4.4 BURGER’S EQUATION

u′
t + uu′

x = vu′′
xx (10)

,where v = 0.05 is the diffusion coefficient.

The solution was obtained using an implicit numerical scheme for the diffusion term and an explicit
numerical scheme for the convective term. An initial condition was set, and the right and left bound-
aries were fixed at zero. The detailed experimental results are placed in Appendix D with a further
discussion in Section 5.

4.5 WAVE EQUATION

u′′
xx = c2u′′

tt (11)

, where c = 0.25 is the propagation speed of the wave. The initial conditions were set as a sinusoidal
function; the boundary conditions were fixed at zero, and the finite difference method solved the
problem. The detailed experimental results are placed in Appendix E with a further discussion in
Section 5.

4.6 LAPLACE EQUATION

u′′
xx + u′′

yy = 0 (12)

The Dirichlet boundary conditions were set, and the problem was solved using the finite difference
method. The detailed experimental results are placed in Appendix F with a further discussion in
Section 5.

4.7 QUASIGEOSTROPHIC POTENTIAL VORTICITY EQUATION

Original data was obtained via the pyqg framework for quasigeostrophic modeling. The maxi-
mum number of terms for the pyqg case was extended to 15 to capture the complex dynamics of
the data. The equations discovered from quasigeostrophic data cannot be effectively characterized
using Hamming distance or coefficient distribution, as the governing equations’ exact form is un-
known a priori. Instead, the most appropriate metric for evaluation is the discrepancy between
the original data and the numerical solutions obtained via a differential equation solver based on
Physics-Informed Neural Networks (PINNs).

The use of PINNs is necessitated by the high degree of non-linearity in the inferred equations, which
renders conventional Finite Element Method (FEM) implementations inadequate for capturing the
system’s dynamics. Dirichlet boundary conditions were set from data to solve boundary value prob-
lems with generated equations. As original data contains stationary potential vorticity field the
general form of the governing equation is given by:

Vg · ∇q = 0 (13)

, where Vg represents the geostrophic velocity and q denotes the potential vorticity. Equations
discovered:

Via spectral domain differentiation

3.2602× 10−6uxx + 0.0067028u+ 0.7095uy

− 0.6485uy cos(1.7965y) + 2.5201× 10−5uuyy

− 0.01010uxu− 1.2018× 10−6uxxuyy

+ 3.2084× 10−5yuyy + 2.4292× 10−5uxxuy

+ 0.1998uy sin(2.7363y)− 0.000223− yuy = 0

(14)

7

Published as a conference paper at MathAI 2025

Via SG filtering
0.044994162ux − 5.34527× 10−5 uxx

− 0.000760196uxuyy + 0.001192827− uxu = 0
(15)

Presented equations were discovered using Savitzky-Golay (SG) filtering and spectral-domain dif-
ferentiation methods, respectively, as alternative approaches failed to capture the eddy-driven struc-
ture of the derivatives, leading to suboptimal preprocessing. The solutions to these equations simi-
larly exhibit a lack of regions with pronounced eddy behavior, which may indicate a tendency toward
identifying broader-scale features in the data. Visual representations of the original data, numerical
solutions, and error maps are provided in Appendix G.

These results show that, in real cases, we cannot achieve consistent results for unknown equations
and that we require optimizing errors using differentiation methods as a hyperparameter.

5 DISCUSSION

During the experiments, we also gather SHD (structural Hamming distance, see Appendix H for de-
tailed results) and differentiation errors (see detailed results in Appendix I) for every field and every
equation. The integral characteristics are shown in Tab. 1, Tab. 2, and Tab. 3 for every noise level
considered and for both methods (SINDy and EPDE) simultaneously (detailed results are available
in appendices for every equation considered).

Table 1: Means of scores, noise=0

Methods D. error Coeff. error SHD
Gradient 0.003248 0.7309±0.0515 2±0.0782
Adaptive 8035.51 0.7354±0.0522 2±0.091
Polynomial 0.9285 0.8971±0.0517 2±0.13
Spectral 9988.1043 1.1074±0.0461 4±0.1309
Inverse 1041.2036 1.0482±0.0518 4±0.1929
Total 1056.3452 1.2669±0.0878 3±0.1055

Table 2: Means of scores, noise=0.5

Methods D. error Coeff. error SHD
Gradient 0.00602 0.9179±0.0683 3±0.1153
Adaptive 8279.4516 0.9989±0.0497 4±0.1349
Polynomial 1358.1108 0.9611±0.039 3±0.126
Spectral 10434.3221 1.1737±0.0462 5±0.1558
Inverse 1698.2769 1.2806±0.0656 4±0.1776
Total 1419.437 1.4814±0.1017 3±0.0997

Table 3: Means of scores, noise=1

Methods D. error Coeff. errors SHD
Gradient 0.0168 1.0068±0.2449 4±0.1482
Adaptive 9119.1626 1.0602±0.0462 3±0.131
Polynomial 5717.7849 0.9148±0.1551 3±0.1323
Spectral 11392.3523 1.1924±0.0466 4±0.1498
Inverse 10990.5993 1.3120±0.0816 5±0.1537
Total 2797.4304 1.5737±0.0878 3±0.1063

As a rule of thumb, a lesser differentiation method leads to lower SHD since, in differential equation
discovery, we are mostly interested in the structure, not the proper coefficients. Coefficients could
be obtained after discovery using other means, such as different types of regression.

Remarkably, for high noise in Tab. 3, the second-best method provides the best result despite the
low gradient method error.

8

Published as a conference paper at MathAI 2025

6 CONCLUSION

The paper considers another aspect of differential equation discovery as a machine learning method.

The error of the differentiation algorithm as the ”feature engineering” method plays a role in the
general uncertainty and is often left out of the scope.

The main results are as follows.

• The differentiation is an important part of every equation discovery method
• Best differentiation methods for noise data and clean data are different
• Absolute value of differentiation error is less important – very precise methods give poor

discovery results in some cases

We also mention that the conclusion remains the same regardless of the method used, LASSO
regression-based SINDy or evolutionary EPDE.

REFERENCES

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Rick Chartrand. Numerical differentiation of noisy, nonsmooth data. International Scholarly Re-
search Notices, 2011, 2011.

Rick Chartrand. Numerical differentiation of noisy, nonsmooth, multidimensional data. In 2017
IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 244–248. IEEE,
2017.

Mengge Du, Yuntian Chen, and Dongxiao Zhang. Discover: Deep identification of symbolically
concise open-form partial differential equations via enhanced reinforcement learning. Physical
Review Research, 6(1):013182, 2024.

Urban Fasel, J Nathan Kutz, Bingni W Brunton, and Steven L Brunton. Ensemble-sindy: Robust
sparse model discovery in the low-data, high-noise limit, with active learning and control. Pro-
ceedings of the Royal Society A, 478(2260):20210904, 2022.

Santiago Gonzalez and Risto Miikkulainen. Improved training speed, accuracy, and data utilization
through loss function optimization. In 2020 IEEE congress on evolutionary computation (CEC),
pp. 1–8. IEEE, 2020.

David M Hamby. A review of techniques for parameter sensitivity analysis of environmental models.
Environmental monitoring and assessment, 32:135–154, 1994.

Alexander Hvatov and Roman Titov. Towards true discovery of the differential equations. arXiv
preprint arXiv:2308.04901, 2023.

Steven G Johnson. Notes on fft-based differentiation. MIT Applied Mathematics, Tech. Rep., 2011.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Mikhail Maslyaev, Alexander Hvatov, and Anna V Kalyuzhnaya. Partial differential equations dis-
covery with epde framework: Application for real and synthetic data. Journal of Computational
Science, 53:101345, 2021.

Daniel A Messenger and David M Bortz. Weak sindy: Galerkin-based data-driven model selection.
Multiscale Modeling & Simulation, 19(3):1474–1497, 2021.

9

Published as a conference paper at MathAI 2025

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Confer-
ence on Machine Learning, pp. 5301–5310. PMLR, 2019.

Andrew Ross, Ziwei Li, Pavel Perezhogin, Carlos Fernandez-Granda, and Laure Zanna. Bench-
marking of machine learning ocean subgrid parameterizations in an idealized model. Journal of
Advances in Modeling Earth Systems, 15(1), 2023.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation of data by simplified least
squares procedures. Analytical chemistry, 36(8):1627–1639, 1964.

Michael Schmid, David Rath, and Ulrike Diebold. Why and how savitzky–golay filters should be
replaced. ACS Measurement Science Au, 2(2):185–196, 2022.

IM Soboĺ. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp., 1:
407, 1993.

Vitor Werner de Vargas, Jorge Arthur Schneider Aranda, Ricardo dos Santos Costa, Paulo Ricardo
da Silva Pereira, and Jorge Luis Victória Barbosa. Imbalanced data preprocessing techniques
for machine learning: a systematic mapping study. Knowledge and Information Systems, 65(1):
31–57, 2023.

10

Published as a conference paper at MathAI 2025

A DIFFERENTIATION APPROACH FORMULATION

A.1 SAVITZKY-GOLAY FILTERING

Savitzky-Golay (SG) filtering, developed in Savitzky & Golay (1964), is a commonly used ap-
proach to signal or data filtering, coupled with an opportunity to compute derivatives, involves a
least squares-based local fitting of the polynomials to represent the data. To the set of data samples
along an axis, we introduce the window of (commonly, odd) length N = 2M + 1, allowing the
construction of series of polynomials P0(x), P1(x), ... up to (even) order n, n < N to approximate
the data in the interior of our domain. With the selection of appropriate window size, from which the
function values are used for the approximation, and polynomial order, the overdetermined system
is constructed. Its solution provides the polynomial coefficients that represent the smoothed signal,
without oscillations, caused by the random error. Even though the boundaries of length M can be
processed in a separate way, with the finite-difference schema or by a shifted approximation, the
quality of results tend to decrease, thus for the equation discovery only the domain interior shall be
used.

During the calculation of the partial derivative u′
j for the sample u(xi), matching the xi grid node

along the j-th axis, we select samples ui = (ui−M , ui−M+1, ... , ui, ... , ui+M) in the afore-
mentioned window. Using the corresponding coordinates yi = (xi−M , ... , xi, ... , xi+M), we
introduce the least-square problem of detecting coefficient vector α = (α0, ... , αn−1) for the series
P0, ... , Pn−1. The representation of data samples is as follows:

ui =

n−1∑
k=0

αkPk(xi). (16)

α = argmin
α′

|ui − Pyi|, (17)

where matrix P contains values of the polynomials in the grid nodes.

In our case, we utilize orthogonal Chebyshev polynomials of the first kind, where by C2k
m we denote

the number of combination of 2k elements from the set of cardinality m:

Tm(x) =

⌊m/2⌋∑
k=0

C2k
m (x2 − 1)kxm−2k (18)

Having a series of Chebyshev polynomials with calculated coefficients, differentiation can be
held analytically. Using the representation of data as series in 16, we get the derivative as
u′
i =

∑n−1
k=0 αkUk(xi), where Uk is a Chebyshev polynomial of the second kind.

Um(x) =

⌊m/2⌋∑
k=0

C2k+1
m+1 (x

2 − 1)kxm−2k (19)

Although the provided approach is capable of filtering the data and stably calculating the derivatives,
work Schmid et al. (2022) suggests that modification of Savitzky-Golay filtering by adding fitting
weights or by implementing other filters, such as Whittaker-Henderson filter, can lead to better
results in noise suppression.

A.2 SPECTRAL DOMAIN DIFFERENTIATION

Although the process of differentiation in the spatial domain can be complicated for the data, de-
scribed with an arbitrary function, in the Fourier domain the derivatives can be estimated in term-
to-term basis Johnson (2011). In general, the series of the derivatives, taken on a term-to-term basis
may not converge. However, if we assume that the data represents continuous piecewise smooth
function that has piecewise differentiable derivatives, the data can be differentiated term-to-term.

11

Published as a conference paper at MathAI 2025

A discrete Fourier transform (DFT) is the basis for our implementation of spectral domain dif-
ferentiation. Let us examine a case of one-dimensional data, even though the algorithm can op-
erate on multi-dimensional data, with the canonical discrete Fourier transform algorithm replaced
by n-dimensional DFT. In data-driven equation discovery problems, one-dimensional data u(t) is
viewed from the point of view of samples un = u(nT/N), n = 0, 1, ... , N − 1, where T is
the length of time interval and N - the number of samples, and the corresponding coordinates will
be tn = nT/N, n = 0, 1, ... , N − 1. The Fourier coefficients are denoted as ûk, and they are
calculated as:

ûk =
1

N

N−1∑
n=0

unexp(−2πi
nk

N
). (20)

In many cases, the data are provided on the regular (even multi-dimensional) grid, thus to improve
the algorithm performance a fast Fourier transform can be used. Due to the lower computational
complexity, the increase in performance is substantial. The process of data reconstruction, using the
obtained Fourier coefficients, is held with an inverse discrete Fourier transform:

un =

N−1∑
k=0

ûkexp(2πi
nk

N
). (21)

Full term-by-term differentiation is performed in the Fourier domain, and the derivatives values are
computed by the inverse DFT. For example, an expression for the first-order derivative has form, as
in Eq. 22.

u′(tk) =
∑

0<k<N−1
2

2πi

T
k

(
ûnexp(2πi

nk

N
)− ûN−kexp(−2πi

nk

N
)

)
. (22)

Filtering with the desired properties can be done with low-pass filters that pass signals with lower
frequencies, while dampen the high-frequency ones. Butterworth filter is a representative of such
tools, and is flat for the passband (the frequencies that we do not want to penalize). The latter
property prevents distortion of the modeled process by introducing factors, close to 1, to the low-
frequency Fourier components. The penalizing factor is introduced with the expression eq. 23:

G(ω) =
1

1 + (ω/ωcutoff)2s
, (23)

where ω is the frequency, ωcutoff is the cutoff frequency, indicating the boundary frequency, from
which the damping begins, and s is the filter steepness parameter. The resulting expression is ob-
tained with the introduction of penalizing factors G(ω) = G(k/N) into the series, representing
derivatives:

u′(tk) =
∑

0<k<N−1
2

G(k/N)
2πi

T
k

(
ûnexp(2πi

nk

N
)− ûN−kexp(−2πi

nk

N
)

)
(24)

The derivative of the higher orders can be calculated recursively from the lower order ones with the
same filtering-based differentiation procedures, or, preferably, by the further multiplication with the
integrating coefficient and IDFT.

A.3 TOTAL VARIATION REGULARIZATION

Variational principles provide an alternative method that incorporates inverse problem solution with
the regularization of the variation of the gradient or its higher order analogues (e.g. Hessian). Rudin-
Osher-Fatemi model Rudin et al. (1992) in its discrete formulation can be represented by the opti-
mization problem of minimizing functional 25.

12

Published as a conference paper at MathAI 2025

|D(∇ · u)|1 +
µ

2
|K(∇ · u)− u|22 −→ min

u
, (25)

where ∇ · u = (∂u∂t ,
∂u
∂x1

, ...) is the gradient of the data field and K and D = (Dt, Dx1
, Dx2

, ...)
represent discrete integration operators onf differentiation. Regularization of gradient variation is

maintained with term |D(∇ · u)|1 =
∑

Ω

√∑
i, j

∂2u)
∂xi∂xj

.

Chartrand (2011; 2017)

Although there are multiple approaches to the solution of the problem, we employ an approach,
proposed in articles Chartrand (2011; 2017), that is designed for a function of one variable. While
this approach can be generalized to the problems of higher dimensionality, the computational costs
associated with the optimization limit the method’s applicability to large datasets. To perform the
functional optimization required in Eq. 25, the corresponding Euler-Lagrange equation has to be
formed and solved.

13

Published as a conference paper at MathAI 2025

B ODE EQUATION COEFFICIENTS AND DIFFERENTIATION ERRORS

u' u'' u
Term

4

2

0

2

4

C
oe

ffi
ci

en
t v

al
ue

ODE, noise=0%

Method
Gradient
Adaptive
Polynomial
Spectral
Total
Inverse

u' u'' u
Term

5

4

3

2

1

0

C
oe

ffi
ci

en
t v

al
ue

ODE, noise=0.5%

Method
Gradient
Adaptive
Polynomial
Spectral
Total
Inverse

u' u'' u
Term

4

2

0

2

4

C
oe

ffi
ci

en
t v

al
ue

ODE, noise=1%

Method
Gradient
Adaptive
Polynomial
Spectral
Total
Inverse

Figure 1: Distribution of coefficients values for different noise level

14

Published as a conference paper at MathAI 2025

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

0

1

2

3

4

5

6

7

8

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

0

1

2

3

4

5

6

7

8

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0.5%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

0

1

2

3

4

5

6

7

8

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=1%

Figure 2: Distribution of coefficients values for different noise level

Table 4: Coefficients values calculated with EPDE, noise = 0

Methods/Terms u u’ u”
Gradient 0.0219 ± 0.0082 -0.2156 ± 0.0048 -1
Adaptive 0.0197 ± 0.0077 -0.2086 ± 0.0053 -1

Polynomial 0.0541 ± 0.0452 -0.2348 ± 0.0002 -1
Spectral -0.0312 ± 0.0412 -0.3008 ± 0.0392 -0.8997 ± 0.0460
Inverse -0.0142 ± 0.0282 -0.5213 ± 0.0632 -0.5069 ± 0.1026
Total -0.3901 ± 0.0032 -0.9952 ± 0.0068 -0.9353 ± 0.0003

Ground truth 3 0.25 1

15

Published as a conference paper at MathAI 2025

Table 5: Coefficients values calculated with EPDE, noise = 0.5

Methods/Terms u u’ u”
Gradient 0.0205 ± 0.0000 -0.2222 ± 0.0043 -1
Adaptive 0.0152 ± 0.0112 -0.2173 ± 0.0055 -1

Polynomial 0.0363 ± 0.0331 -0.2412 ± 0.0058 -1
Spectral -0.0288 ± 0.0241 -0.2694 ± 0.0375 -0.9048 ± 0.0480
Inverse -0.0255 ± 0.0177 -0.2840 ± 0.0533 -0.1348 ± 0.0804
Total -0.3937 ± 0.0027 -1 -0.9387

Ground truth 3 0.25 1

Table 6: Coefficients values calculated with EPDE, noise = 1

Methods/Terms u u’ u”
Gradient 0.0098 ± 0.0251 -0.2248 ± 0.0053 -1
Adaptive 0.0444 ± 0.0523 -0.2149 ± 0.0040 -1

Polynomial 0.0983 ± 0.0748 -0.2455 ± 0.0082 -1
Spectral -0.0651 ± 0.0643 -0.3254 ± 0.0391 -0.9172 ± 0.0400
Inverse 0.0639 ± 0.0191 -0.1889 ± 0.0410 0.0789 ± 0.0746
Total -0.3949 ± 0.0027 -1.0002 ± 0.0003 -0.9371 ± 0.0003

Ground truth 3 0.25 1

Table 7: Coefficients values calculated with SINDy, noise =0

Methods/Terms u u’ u”
Gradient 2.845 0.208 1
Adaptive 2.385 0.249 1

Polynomial 2.874 0.193 1
Spectral 3.199 - 1
Inverse 2.732 0.264 1
Total 0.413 1.070 1

Ground truth 3 0.25 1

Table 8: Coefficients values calculated with SINDy, noise =0.5

Methods/Terms u u’ u”
Gradient 2.824 0.212 1
Adaptive 2.368 0.253 1

Polynomial 2.854 0.206 1
Spectral 3.180 - 1
Inverse 3.697 0.376 1
Total 0.409 1.066 1

Ground truth 3 0.25 1

Table 9: Coefficients values calculated with SINDy, noise =1

Methods/Terms u u’ u”
Gradient 2.754 0.212 1
Adaptive 2.353 0.256 1

Polynomial 2.785 0.176 1
Spectral 3.197 - 1
Inverse 3.240 0.268 1
Total 0.414 1.072 1

Ground truth 3 0.25 1

16

Published as a conference paper at MathAI 2025

C KDV EQUATION COEFFICIENTS AND DIFFERENTIATION ERRORS

u*du/dx' du/dt d^3u/dx^3
Term

2.0

1.5

1.0

0.5

0.0

0.5

1.0

C
oe

ffi
ci

en
t v

al
ue

KdV, noise=0%

Method
Gradient
Adaptive
Polynomial
Spectral
Inverse
Total

du/dt u*du/dx' d^3u/dx^3
Term

2.0

1.5

1.0

0.5

0.0

0.5

1.0

C
oe

ffi
ci

en
t v

al
ue

KdV, noise=0.5%

Method
Gradient
Adaptive
Polynomial
Spectral
Inverse
Total

du/dt u*du/dx' d^3u/dx^3
Term

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
oe

ffi
ci

en
t v

al
ue

KdV, noise=1%

Method
Gradient
Adaptive
Polynomial
Spectral
Inverse
Total

Figure 3: Distribution of coefficients values for different noise level

17

Published as a conference paper at MathAI 2025

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

2

4

6

8

10

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

2

4

6

8

10

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0.5%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

0

2

4

6

8

10

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=1%

Figure 4: Distribution of coefficients values for different noise level

Table 10: Coefficients values calculated with EPDE, noise =0

Methods/Terms du/dt dˆ3u/dxˆ3 u*du/dx
Gradient -0.4565 ± 0.2045 0.0008 ± 0.0038 -1.3444 ± 0.1839
Adaptive -0.5045 ± 0.4228 - -0.0303 ± 0.0011

Polynomial -0.5045 ± 0.4228 - -0.0303 ± 0.0011
Spectral 0.0202 ± 0.0401 0.0002 ± 0.0000 -0.2297 ± 0.1165
Inverse 0.0142 ± 0.0007 - -0.2412 ± 0.0004
Total -0.8334 ± 0.4282 1.1503 -0.9770 ± 0.0231

Ground truth 1 1 6

18

Published as a conference paper at MathAI 2025

Table 11: Coefficients values calculated with EPDE, noise =0.5

Methods/Terms du/dt dˆ3u/dxˆ3 u*du/dx
Gradient -0.1973 ± 0.2523 -0.0001 -1.5692 ± 0.1447
Adaptive -0.6169 ± 0.2999 - -0.0292 ± 0.0016

Polynomial -0.9822 ± 0.0248 -0.0022 -0.8874 ± 0.2106
Spectral 0.0191 ± 0.0614 -0.0000 ± 0.0003 -0.1706 ± 0.1092
Inverse -0.4698 ± 0.1770 0.0001 ± 0.0003 0.0419 ± 0.0954
Total -0.8164 ± 0.1561 1.1569 ± 0.1997 -0.9282 ± 0.0466

Ground truth 1 1 6

Table 12: Coefficients values calculated with EPDE, noise =1

Methods/Terms du/dt dˆ3u/dxˆ3 u*du/dx
Gradient -0.3711 ± 0.1267 -0.0819 ± 0.0647 -0.7199 ± 0.3075
Adaptive -0.2784 ± 0.1686 -0.0028 -0.0953 ± 0.0751

Polynomial -0.6898 ± 0.1512 -0.1111 ± 1.4098 -0.9766 ± 0.1917
Spectral 0.0320 ± 0.0667 -0.0001 ± 0.0006 -0.1036 ± 0.0779
Inverse -0.1240 ± 0.0939 0.1313 ± 0.1499 0.0565 ± 0.0776
Total -0.8394 ± 0.1006 - -0.6780 ± 0.1103

Ground truth 1 1 6

Table 13: Coefficients values calculated with SINDy, noise =0

Methods/Terms du/dt dˆ3u/dxˆ3 u*du/dx
Gradient 1 -0.009 0.077
Adaptive 1 - -

Polynomial 1 - 0.595
Spectral 1 -0.067 2.530
Inverse 1 0.072 0.025
Total 1 -4.011 -0.599

Ground truth 1 1 6

Table 14: Coefficients values calculated with SINDy, noise =0.5

Methods/Terms du/dt dˆ3u/dxˆ3 u*du/dx
Gradient 1 0.158 1.295
Adaptive 1 - -

Polynomial 1 - 0.472
Spectral 1 -0.066 2.530
Inverse 1 - -
Total 1 -4.010 -0.639

Ground truth 1 1 6

Table 15: Coefficients values calculated with SINDy, noise =1

Methods/Terms du/dt dˆ3u/dxˆ3 u*du/dx
Gradient 1 0.052 0.443
Adaptive 1 - -

Polynomial 1 - 0.841
Spectral 1 -0.067 2.523
Inverse 1 - -
Total 1 -4.015 -0.731

Ground truth 1 1 6

19

Published as a conference paper at MathAI 2025

D BURGERS EQUATION COEFFICIENTS AND DIFFERENTIATION ERRORS

u*du/dx' du/dt d^2u/dx^2
Term

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
oe

ffi
ci

en
t v

al
ue

Burgers, noise=0%

Method
Gradient
Adaptive
Polynomial
Spectral
Inverse
Total

u*du/dx' du/dt d^2u/dx^2
Term

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
oe

ffi
ci

en
t v

al
ue

Burgers, noise=0.5%

Method
Gradient
Adaptive
Polynomial
Spectral
Inverse
Total

u*du/dx' du/dt d^2u/dx^2
Term

1.5

1.0

0.5

0.0

0.5

1.0

C
oe

ffi
ci

en
t v

al
ue

Burgers, noise=1%

Method
Gradient
Adaptive
Polynomial
Spectral
Inverse
Total

Figure 5: Distribution of coefficients values for different noise level

20

Published as a conference paper at MathAI 2025

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

2

3

4

5

6

7

8

9

10

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

2

4

6

8

10

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0.5%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

2

4

6

8

10

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=1%

Figure 6: Distribution of coefficients values for different noise level

Table 16: Coefficients values calculated with EPDE, noise =0

Methods/Terms du/dt dˆ2u/dxˆ2 u*du/dx
Gradient -0.9454 ± 0.0301 0.0346 ± 0.0133 -0.8945 ± 0.0327
Adaptive -0.9454 ± 0.0301 0.0346 ± 0.0133 -0.8945 ± 0.0327

Polynomial -0.9283 ± 0.0332 0.0439 ± 0.0188 -0.8931 ± 0.0556
Spectral -0.4025 ± 0.0549 0.0032 ± 0.0171 -0.3732 ± 0.0849
Inverse -0.2118 ± 0.1229 -0.0239 ± 0.1173 0.0773 ± 0.1174
Total -0.4373 ± 0.2731 -1.2180 ± 0.2525 -0.1324 ± 0.1249

Ground truth 1 -0.05 1

21

Published as a conference paper at MathAI 2025

Table 17: Coefficients values calculated with EPDE, noise =0.5

Methods/Terms du/dt dˆ2u/dxˆ2 u*du/dx
Gradient -0.8727 ± 0.0398 0.0428 ± 0.0035 -0.8520 ± 0.0479
Adaptive -0.3827 ± 0.0621 0.0081 ± 0.0085 -0.0278 ± 0.0198

Polynomial -0.9428 ± 0.0150 0.0378 ± 0.0202 -0.9510 ± 0.0382
Spectral -0.3064 ± 0.0521 0.0138 ± 0.0033 -0.3226 ± 0.0810
Inverse -0.3064 ± 0.0521 0.0138 ± 0.0033 -0.3226 ± 0.0810
Total -0.5372 ± 0.3144 -0.6960 ± 0.3206 -0.0470 ± 0.0646

Ground truth 1 -0.05 1

Table 18: Coefficients values calculated with EPDE, noise =1

Methods/Terms du/dt dˆ2u/dxˆ2 u*du/dx
Gradient -0.4088 ± 0.0448 0.0051 ± 0.0269 -0.5262 ± 0.0840
Adaptive -0.2707 ± 0.0511 -0.0140 ± 0.0313 -0.0913 ± 0.0478

Polynomial -0.8245 ± 0.0360 0.0384 ± 0.0208 -0.9395 ± 0.0375
Spectral -0.3414 ± 0.0472 0.0049 ± 0.0207 -0.3910 ± 0.0798
Inverse -0.1569 ± 0.0575 0.0238 ± 0.0420 -0.0533 ± 0.0453
Total -0.4989 ± 0.1903 -0.3595 ± 0.2082 -0.0269 ± 0.0465

Ground truth 1 -0.05 1

Table 19: Coefficients values calculated with SINDy, noise =0

Methods/Terms du/dt dˆ2u/dxˆ2 u*du/dx
Gradient 1 -0.044 0.952
Adaptive 1 - 0.041

Polynomial 1 -0.058 1.057
Spectral 1 - 0.273
Inverse 1 -0.134 0.205
Total 1 1.765 -

Ground truth 1 -0.05 1

Table 20: Coefficients values calculated with SINDy, noise =0.5

Methods/Terms du/dt dˆ2u/dxˆ2 u*du/dx
Gradient 1 -0.044 0.955
Adaptive 1 - 0.041

Polynomial 1 -0.055 1.039
Spectral 1 - 0.277
Inverse 1 - 0.188
Total 1 1.763 -

Ground truth 1 -0.05 1

Table 21: Coefficients values calculated with SINDy, noise =1

Methods/Terms du/dt dˆ2u/dxˆ2 u*du/dx
Gradient 1 - 0.661
Adaptive 1 - 0.041

Polynomial 1 -0.050 1.004
Spectral 1 - 0.271
Inverse 1 -0.129 0.202
Total 1 1.736 -0.014

Ground truth 1 -0.05 1

22

Published as a conference paper at MathAI 2025

E WAVE EQUATION COEFFICIENTS AND DIFFERENTIATION ERRORS

d^2u/dx^2 d^2u/dt^2
Term

2.0

1.5

1.0

0.5

0.0

C
oe

ffi
ci

en
t v

al
ue

Wave, noise=0%

Method
Gradient
Adaptive
Polynomial
Total
Inverse

d^2u/dt^2 d^2u/dx^2
Term

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

C
oe

ffi
ci

en
t v

al
ue

Wave, noise=0.5%

Method
Gradient
Adaptive
Polynomial
Spectral
Total
Inverse

d^2u/dt^2 d^2u/dx^2
Term

2.0

1.5

1.0

0.5

0.0

C
oe

ffi
ci

en
t v

al
ue

Wave, noise=1%

Method
Gradient
Adaptive
Polynomial
Spectral
Total
Inverse

Figure 7: Distribution of coefficients values for different noise level

23

Published as a conference paper at MathAI 2025

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

0

1

2

3

4

5

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

0

1

2

3

4

5

6

7

8

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0.5%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

1

2

3

4

5

6

7

8

9

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=1%

Figure 8: Distribution of coefficients values for different noise level

Table 22: Coefficients values calculated with EPDE, noise =0

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dtˆ2
Gradient -1 -0.0005 ± 0.0338
Adaptive -1 -0.0579 ± 0.0408

Polynomial -1 -0.0827 ± 0.0430
Spectral - -
Inverse -0.9486 ± 0.0502 0.0038 ± 0.0162
Total -1.0049 ± 0.0097 -0.9904 ± 0.0191

Ground truth 1 -0.0625

24

Published as a conference paper at MathAI 2025

Table 23: Coefficients values calculated with EPDE, noise =0.5

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dtˆ2
Gradient 0.0037 ± 0.0075 0.0688 ± 0.0199
Adaptive 0.0008 ± 0.0061 0.0972 ± 0.0131

Polynomial 0.0018 ± 0.0030 0.1539 ± 0.0345
Spectral 0.1549 ± 0.0041 -
Inverse -0.8171 ± 0.1025 -0.5975 ± 0.1638
Total -1 -1

Ground truth 1 -0.0625

Table 24: Coefficients values calculated with EPDE, noise =1

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dtˆ2
Gradient -0.0041 ± 0.0068 0.0064 ± 0.0070
Adaptive 0.0004 ± 0.0003 0.0108 ± 0.0056

Polynomial -0.0001 ± 0.0005 0.1041 ± 0.0191
Spectral 0.1533 ± 0.0039 -
Inverse -0.8946 ± 0.0792 -0.6434 ± 0.1901
Total -0.3441 ± 0.1927 -1.0066 ± 0.0092

Ground truth 1 -0.0625

Table 25: Coefficients values calculated with SINDy, noise =0

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dtˆ2
Adaptive 1 -0.055

Polynomial 1 -0.063
Spectral 1 -
Inverse 1 -0.008
Total 1 -0.007

Ground truth 1 -0.0625

Table 26: Coefficients values calculated with SINDy, noise =0.5

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dtˆ2
Gradient 1 -0.193
Adaptive 1 -0.163

Polynomial 1 -0.049
Spectral 1 -
Inverse 1 -0.221
Total 1 -0.027

Ground truth 1 -0.0625

Table 27: Coefficients values calculated with SINDy, noise =1

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dtˆ2
Gradient 1 -0.395
Adaptive 1 -0.332

Polynomial 1 -0.1
Spectral 1 -
Inverse 1 -4.586
Total 1 -0.079

Ground truth 1 -0.0625

25

Published as a conference paper at MathAI 2025

F LAPLACE EQUATION COEFFICIENTS AND DIFFERENTIATION ERRORS

d^2u/dx^2 d^2u/dy^2
Term

1.0

0.5

0.0

0.5

1.0

1.5

C
oe

ffi
ci

en
t v

al
ue

Laplace, noise=0%

Method
Gradient
Adaptive
Polynomial
Spectral
Total
Inverse

d^2u/dy^2 d^2u/dx^2
Term

1.0

0.5

0.0

0.5

1.0

1.5

C
oe

ffi
ci

en
t v

al
ue

Laplace, noise=0.5%

Method
Gradient
Adaptive
Polynomial
Spectral
Total
Inverse

d^2u/dy^2 d^2u/dx^2
Term

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
oe

ffi
ci

en
t v

al
ue

Laplace, noise=1%

Method
Gradient
Adaptive
Polynomial
Spectral
Total
Inverse

Figure 9: Distribution of coefficients values for different noise level

26

Published as a conference paper at MathAI 2025

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

0

1

2

3

4

5

6

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

0

1

2

3

4

5

6

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=0.5%

Grad
ien

t

Ada
pti

ve

Poly
no

mial

Spe
ctr

al

Inv
ers

e
To

tal

Method

0

1

2

3

4

5

6

H
am

m
in

g
di

st
an

ce
 v

al
ue

Hamming distance, noise=1%

Figure 10: Distribution of coefficients values for different noise level

Table 28: Coefficients values calculated with EPDE, noise =0

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dyˆ2
Gradient -1 -0.997
Adaptive -1 -0.997

Polynomial -1 -0.9964
Spectral -1 -1
Inverse -0.9985 ± 0.0007 -0.9955 ± 0.0013
Total -1 -1

Ground truth 1 1

27

Published as a conference paper at MathAI 2025

Table 29: Coefficients values calculated with EPDE, noise =0.5

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dyˆ2
Gradient 0.2072 ± 0.1540 0.5129 ± 0.0095
Adaptive 0.4755 ± 0.1158 0.5150 ± 0.0065

Polynomial 0.5139 ± 0.0077 0.3348 ± 0.0365
Spectral 0.4728 ± 0.0783 0.5393 ± 0.0137
Inverse -0.0000 ± 0.0025 0.5579 ± 0.0239
Total 0.3411 ± 0.1787 0.1874 ± 0.0382

Ground truth 1 1

Table 30: Coefficients values calculated with EPDE, noise =1

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dyˆ2
Gradient 0.4476 ± 0.1022 0.4962 ± 0.0192
Adaptive 0.4047 ± 0.0796 0.5056 ± 0.0164

Polynomial 0.5100 ± 0.0140 0.2119 ± 0.0521
Spectral 0.3388 ± 0.1160 0.5333 ± 0.0117
Inverse 0.5868 ± 0.0061 0.3661 ± 0.0714
Total 0.3295 ± 0.0528 0.2150 ± 0.0566

Ground truth 1 1

Table 31: Coefficients values calculated with SINDy, noise =0

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dyˆ2
Gradient 1 1.028
Adaptive 1 1.129

Polynomial 1 1.009
Spectral 1 -
Inverse 1 0.62
Total 1 -

Ground truth 1 1

Table 32: Coefficients values calculated with SINDy, noise =0.5

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dyˆ2
Gradient 1 -
Adaptive 1 -

Polynomial 1 -
Spectral 1 -
Inverse 1 -
Total 1 -

Ground truth 1 1

Table 33: Coefficients values calculated with SINDy, noise =1

Methods/Terms dˆ2u/dxˆ2 dˆ2u/dyˆ2
Gradient 1 -
Adaptive 1 -0.457

Polynomial 1 -
Spectral 1 -
Inverse 1 -
Total 1 -

Ground truth 1 1

28

Published as a conference paper at MathAI 2025

G QUASIGEOSTROPHIC POTENTIAL VORTICITY EQUATION

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

Normalized Potential Vorticity data, pyqg

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 11: Normalized potential vorticity data, pyqg

29

Published as a conference paper at MathAI 2025

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Normalized Potential Vorticity, equation obtained with spectral preprocessing

0.4

0.2

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Normalized Potential Vorticity, equation obtained with SG filtering preprocessing

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 12: Normalized Potential Vorticity, equation obtained with spectral preprocessing(left) and
SG filtering preprocessing(right)

30

Published as a conference paper at MathAI 2025

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

SE map, equation obtained with spectral preprocessing

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

SE map, equation obtained with SG filtering preprocessing

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 13: SE map, equation obtained with spectral preprocessing (left, MSE = 0.057) and SG
filtering preprocessing(right, MSE = 0.065)

31

Published as a conference paper at MathAI 2025

H HAMMING STRUCTURAL DISTANCES

Table 34: SHD for equations calculated with EPDE, noise = 0

Methods/Equations Burgers KdV Laplace ode Wave
Gradient 4 ± 0.091 3 ± 0.1302 1 0 + 0.0491 1 ± 0.1206
Adaptive 4 ± 0.091 3 ± 0.1655 0 + 0.0159 0 + 0.0636 1 ± 0.1189

Polynomial 4 ± 0.272 3 ± 0.1824 0 + 0.0112 0 + 0.0654 1 ± 0.119
Spectral 6 ± 0.1993 6 ± 0.1698 3 ± 0.0999 3 ± 0.1855 4
Inverse 6 ± 0.3554 4 ± 0.1267 2 ± 0.1432 4 ± 0.2077 3 ± 0.1314
Total 6 ± 0.1299 4 ± 0.1332 2 ± 0.1169 0 ± 0.0749 2 ± 0.0726

Table 35: SHD for equations calculated with EPDE, noise = 0.5

Methods/Equations Burgers KdV Laplace ode Wave
Gradient 5 ± 0.1412 5 ± 0.2209 2 ± 0.0629 0 + 0.0535 4 ± 0.0979
Adaptive 7 ± 0.2144 5 ± 0.2836 2 ± 0.0637 0 + 0.0458 4 ± 0.0671

Polynomial 4 ± 0.1334 5 ± 0.1935 2 ± 0.1062 0 + 0.0734 4 ± 0.1237
Spectral 6 ± 0.2107 7 ± 0.2087 3 ± 0.0992 3 ± 0.1971 4 ± 0.0631
Inverse 6 ± 0.2107 5 ± 0.2632 3 ± 0.124 4 ± 0.1531 3 ± 0.1305
Total 6 ± 0.1152 5 ± 0.1394 2 ± 0.1084 0 + 0.0783 2 ± 0.0571

Table 36: SHD for equations calculated with EPDE, noise = 1

Methods/Equations Burgers KdV Laplace ode Wave
Gradient 6 ± 0.2134 6 ± 0.2824 2 ± 0.0843 0 + 0.0424 5 ± 0.1186
Adaptive 4 ± 0.127 6 ± 0.3199 2 ± 0.0815 0 + 0.0433 5 ± 0.0833

Polynomial 4 ± 0.1248 6 ± 0.247 2 ± 0.102 0 + 0.0627 4 ± 0.1252
Spectral 6 ± 0.2096 7 ± 0.1827 3 ± 0.0974 3 ± 0.1904 3 ± 0.0687
Inverse 6 ± 0.2057 7 ± 0.2509 2 ± 0.0883 4 ± 0.1231 4 ± 0.1004
Total 6 ± 0.1283 5 ± 0.133 2 ± 0.1064 0 ± 0.0792 2 ± 0.0847

Table 37: SHD for equations calculated with SINDy, noise = 0

Methods/Equations Burgers KdV Laplace ode Wave
Gradient 0 1 0 0 0
Adaptive 1 3 0 0 1

Polynomial 1 3 0 0 1
Spectral 1 2 1 1 1
Inverse 1 1 1 0 1
Total 5 4 2 0 2

Table 38: SHD for equations calculated with SINDy, noise = 0.5

Methods/Equations Burgers KdV Laplace ode Wave
Gradient 0 2 2 0 2
Adaptive 1 3 2 0 2

Polynomial 1 2 2 0 2
Spectral 1 2 2 1 1
Inverse 3 3 4 0 1
Total 5 4 2 0 2

32

Published as a conference paper at MathAI 2025

Table 39: SHD for equations calculated with SINDy, noise = 1

Methods/Equations Burgers KdV Laplace ode Wave
Gradient 2 2 3 0 2
Adaptive 1 3 1 0 2

Polynomial 0 5 4 0 2
Spectral 1 2 2 1 1
Inverse 1 4 4 0 2
Total 3 4 2 0 2

33

Published as a conference paper at MathAI 2025

I DIFFERENTIATION ERRORS

0.0 0.5 1.0
Noise Level (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
SE

 V
al

ue
KdV, Gradient method

d^3u/dx^3
du/dx
du/dt

0.0 0.5 1.0
Noise Level (%)

0

10000

20000

30000

40000

50000

60000

70000

M
SE

 V
al

ue

KdV, Adaptive method

d^3u/dx^3
du/dx
du/dt

0.0 0.5 1.0
Noise Level (%)

0.00

0.02

0.04

0.06

0.08

0.10

M
SE

 V
al

ue

KdV, Polynomial method

d^3u/dx^3
du/dx
du/dt

0.0 0.5 1.0
Noise Level (%)

0

2

4

6

8

10

12

14

M
SE

 V
al

ue

KdV, Spectral method

d^3u/dx^3
du/dx
du/dt

0.0 0.5 1.0
Noise Level (%)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

 V
al

ue

KdV, Inverse method

d^3u/dx^3
du/dx
du/dt

0.0 0.5 1.0
Noise Level (%)

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

 V
al

ue

KdV, Total method

d^3u/dx^3
du/dx
du/dt

Figure 14: Differentiation errors (MSE) for KdV equation with different noise level

0.0 0.5 1.0
Noise Level (%)

0

5000

10000

15000

20000

25000

30000

M
SE

 V
al

ue

Burgers, Adaptive method

d^2u/dx^2
du/dx
du/dt

0.0 0.5 1.0
Noise Level (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
SE

 V
al

ue

Burgers, Polynomial method

d^2u/dx^2
du/dx
du/dt

0.0 0.5 1.0
Noise Level (%)

0

2

4

6

8

10

12

14

M
SE

 V
al

ue

Burgers, Spectral method

d^2u/dx^2
du/dx
du/dt

0.0 0.5 1.0
Noise Level (%)

0

20

40

60

80

100

120

140

160

M
SE

 V
al

ue

Burgers, Inverse method

d^2u/dx^2
du/dx
du/dt

0.0 0.5 1.0
Noise Level (%)

0

20

40

60

80

100

120

140

160
M

SE
 V

al
ue

Burgers, Total method

d^2u/dx^2
du/dx
du/dt

Figure 15: Differentiation errors (MSE) for Burgers equation with different noise level

0.0 0.5 1.0
Noise Level (%)

0

2

4

6

8

10

12

14

16

M
SE

 V
al

ue

Laplace, Adaptive method

d^2u/dx^2
d^2u/dy^2

0.0 0.5 1.0
Noise Level (%)

0

20

40

60

80

100

120

M
SE

 V
al

ue

Laplace, Polynomial method

d^2u/dx^2
d^2u/dy^2

0.0 0.5 1.0
Noise Level (%)

100

120

140

160

180

200

M
SE

 V
al

ue

Laplace, Spectral method

d^2u/dx^2
d^2u/dy^2

0.0 0.5 1.0
Noise Level (%)

0

20000

40000

60000

80000

M
SE

 V
al

ue

Laplace, Inverse method

d^2u/dx^2
d^2u/dy^2

0.0 0.5 1.0
Noise Level (%)

0

10

20

30

40

50

M
SE

 V
al

ue

Laplace, Total method

d^2u/dx^2
d^2u/dy^2

Figure 16: Differentiation errors (MSE) for Laplace equation with different noise level

34

Published as a conference paper at MathAI 2025

0.0 0.5 1.0
Noise Level (%)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
SE

 V
al

ue

ODE, Gradient method

u''
u'

0.0 0.5 1.0
Noise Level (%)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
SE

 V
al

ue

ODE, Adaptive method

u''
u'

0.0 0.5 1.0
Noise Level (%)

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

0.0400

0.0425

M
SE

 V
al

ue

ODE, Polynomial method

u''
u'

0.0 0.5 1.0
Noise Level (%)

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

M
SE

 V
al

ue

ODE, Spectral method

u''
u'

0.0 0.5 1.0
Noise Level (%)

2

4

6

8

10

M
SE

 V
al

ue

ODE, Inverse method

u''
u'

0.0 0.5 1.0
Noise Level (%)

0.8

1.0

1.2

1.4

1.6

1.8

M
SE

 V
al

ue

ODE, Total method

u''
u'

Figure 17: Differentiation errors (MSE) for ODE equation with different noise level

0.0 0.5 1.0
Noise Level (%)

0

1000

2000

3000

4000

M
SE

 V
al

ue

Wave, Adaptive method

d^2u/dx^2
d^2u/dt^2

0.0 0.5 1.0
Noise Level (%)

0

10000

20000

30000

40000

50000

60000

M
SE

 V
al

ue

Wave, Polynomial method

d^2u/dx^2
d^2u/dt^2

0.0 0.5 1.0
Noise Level (%)

30000

40000

50000

60000

70000

80000

90000

M
SE

 V
al

ue

Wave, Spectral method

d^2u/dx^2
d^2u/dt^2

0.0 0.5 1.0
Noise Level (%)

0

2500

5000

7500

10000

12500

15000

17500

M
SE

 V
al

ue

Wave, Inverse method

d^2u/dx^2
d^2u/dt^2

0.0 0.5 1.0
Noise Level (%)

0

2500

5000

7500

10000

12500

15000

17500

M
SE

 V
al

ue

Wave, Total method

d^2u/dx^2
d^2u/dt^2

Figure 18: Differentiation errors (MSE) for Wave equation with different noise level

35

Published as a conference paper at MathAI 2025

Table 40: Differentiation errors, noise = 0

Burgers equation
Methods/Terms du/dt dˆ2u/dxˆ2 du/dx

Adaptive 0.4530 30374.7349 43.9103
Polynomial 0.0012 1.1339 0.0724

Spectral 7.0597 14.0607 0.0757
Inverse 0.7638 153.0405 4.6508
Total 0.6760 154.9538 5.3229

KdV equation
Methods/Terms du/dt dˆ3u/dxˆ3 du/dx

Gradient 0.000329 0.0039 0.00004184
Adaptive 0.2540 65999.0757 4.0918

Polynomial 0.00007761 0.0254 0.0004532
Spectral 0.7798 14.2334 0.0129
Inverse 0.3105 0.3202 0.0473
Total 0.357 0.3275 0.0937

Laplace equation
Methods/Terms dˆ2u/dxˆ2 dˆ2u/dyˆ2

Adaptive 0.0124 0.0814
Polynomial 0.0058 0.0036

Spectral 152.6378 87.813
Inverse 0.0098 0.178
Total 1.0941 0.9853

ODE equation
Methods/Terms u’ u”

Gradient 0.00067 0.0113
Adaptive 0.00801 0.1507

Polynomial 0.022 0.0292
Spectral 0.0759 0.2517
Inverse 1.1231 3.9290
Total 0.6988 1.8895

Wave equation
Methods/Terms dˆ2u/dxˆ2 dˆ2u/dtˆ2

Adaptive 2.0602 1.2876
Polynomial 9.8417 0.0057

Spectral 87251.4516 32328.7991
Inverse 12282.1612 47.9087
Total 12444.1383 65.6059

36

Published as a conference paper at MathAI 2025

Table 41: Differentiation errors, noise = 0.5

Burgers equation
Methods/Terms du/dt dˆ2u/dxˆ2 du/dx

Adaptive 0.478 30505.6170 43.9511
Polynomial 0.0234 1.7973 0.0737

Spectral 7.0293 14.1771 0.0761
Inverse 0.8013 153.7448 4.6542
Total 0.7139 155.6498 5.3271

KdV equation
Methods/Terms du/dt dˆ3u/dxˆ3 du/dx

Gradient 0.00478 0.0120 0.0000947
Adaptive 0.2544 67786.0505 4.0969

Polynomial 0.0021 0.05 0.0004592
Spectral 0.7804 14.2418 0.0128
Inverse 0.3114 0.3211 0.0473
Total 0.3571 0.3275 0.0937

Laplace equation
Methods/Terms dˆ2u/dxˆ2 dˆ2u/dyˆ2

Adaptive 3.7555 5.4563
Polynomial 38.4966 41.9891

Spectral 165.1737 108.4259
Inverse 3138.8938 426.1978
Total 12.4789 15.7744

ODE equation
Methods/Terms u’ u”

Gradient 0.00081 0.0124
Adaptive 0.008 0.1498

Polynomial 0.0218 0.0349
Spectral 0.0764 0.2534
Inverse 1.1220 6.2318
Total 0.6998 1.8857

Wave equation
Methods/Terms dˆ2u/dxˆ2 dˆ2u/dtˆ2

Adaptive 56.2421 947.3597
Polynomial 3047.6637 13167.1760

Spectral 87963.7107 36937.9071
Inverse 13359.6413 3287.3561
Total 13524.8049 3315.1318

37

Published as a conference paper at MathAI 2025

Table 42: Differentiation errors, noise = 1

Burgers equation
Methods/Terms du/dt dˆ2u/dxˆ2 du/dx

Adaptive 0.5383 30565.1709 43.9511
Polynomial 0.088 3.5219 0.0761

Spectral 7.1244 14.7814 0.0783
Inverse 0.8933 154.1399 4.6562
Total 0.8085 156.0558 5.3286

KdV equation
Methods/Terms du/dt dˆ3u/dxˆ3 du/dx

Gradient 0.0260 0.0403 0.0002695
Adaptive 0.2543 74009.2666 4.1105

Polynomial 0.0106 0.1061 0.000499
Spectral 0.7811 14.2637 0.0129
Inverse 0.3108 0.3568 0.0473
Total 0.3573 0.3273 0.0936

Laplace equation
Methods/Terms dˆ2u/dxˆ2 dˆ2u/dyˆ2

Adaptive 15.2715 10.3725
Polynomial 126.9283 123.2955

Spectral 203.1654 128.0034
Inverse 4647.4401 94205.9511
Total 49.8341 35.4761

ODE equation
Methods/Terms u’ u”

Gradient 0.00122 0.0160
Adaptive 0.0096 0.1609

Polynomial 0.0241 0.0416
Spectral 0.0771 0.2538
Inverse 1.132 9.6419
Total 0.6993 1.9013

Wave equation
Methods/Terms dˆ2u/dxˆ2 dˆ2u/dtˆ2

Adaptive 213.6322 4567.2138
Polynomial 10740.0809 57619.2452

Spectral 92107.8232 44231.8631
Inverse 17561.9236 15300.6987
Total 17738.1271 15580.1558

38

	Introduction
	Differential equation discovery background
	Data differentiation problem statement and proposed methods
	Experiments
	Experimental setup
	Ordinary differential equation
	Korteweg – de Vries equation
	Burger's equation
	Wave equation
	Laplace equation
	Quasigeostrophic potential vorticity equation

	Discussion
	Conclusion
	Differentiation approach formulation
	Savitzky-Golay filtering
	Spectral domain differentiation
	Total variation regularization

	ODE equation coefficients and differentiation errors
	KdV equation coefficients and differentiation errors
	Burgers equation coefficients and differentiation errors
	Wave equation coefficients and differentiation errors
	Laplace equation coefficients and differentiation errors
	Quasigeostrophic potential vorticity equation
	Hamming structural distances
	Differentiation errors

