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Abstract

Despite recent progress in Language Models (LMs) for software engineering,
collecting training data remains a significant pain point. Existing datasets are
small, with at most 1,000s of training instances from 11 or fewer GitHub repos-
itories. The procedures to curate such datasets are often complex, necessitating
hundreds of hours of human labor; companion execution environments also take
up several terabytes of storage, severely limiting their scalability and usability.
To address this pain point, we introduce SWE-smith, a novel pipeline for gen-
erating software engineering training data at scale. Given any Python codebase,
SWE-smith constructs a corresponding execution environment, then automatically
synthesizes 100s to 1,000s of task instances that break existing test(s) in the code-
base. Using SWE-smith, we create a dataset of 50k instances sourced from 128
GitHub repositories, an order of magnitude larger than all previous works. We train
SWE-agent-LM-32B, achieving 40.2% Pass@1 resolve rate on the SWE-bench
Verified benchmark, state of the art among open source models. We open source
SWE-smith (collection procedure, task instances, trajectories, models) to lower the
barrier of entry for research in LM systems for automated software engineering.
All assets are available at https://swesmith.com.

1 Introduction

Language Model (LM) agents, such as SWE-agent [49] or OpenHands [38], have made remarkable
progress towards automating software engineering (SE) tasks, as tracked by benchmarks such as
SWE-bench [18]]. However, the most effective agents rely heavily on proprietary LMs. On the other
hand, building open source LMs for SE remains bottlenecked by the lack of large-scale, high-quality
training data. To keep open research relevant, it is critical to develop infrastructure for collecting
software engineering training data at scale.

The current open-source software ecosystem offers two kinds of data sources to train LMs on SE
tasks. One simple approach is to crawl pull requests (PRs) and issues from GitHub repositories.
However, without execution environments or tests, these instances offer no reliable way of validating
generated solutions, and LMs are limited to learning from the surface form of code [44] or via rewards
based on superficial string similarity [41].

In contrast, SWE-bench provides reliable validation by running unit tests against proposed solutions.
Another line of work has simply extended the SWE-bench collection strategy to a new set of
repositories for training purposes [31]. This produces flexible environments for training and distilling
LM agents, since we can generate agent trajectories and filter them based on the unit test results.
However, the scalability of this approach is severely limited by the challenges associated with SWE-
bench’s collection strategy. SWE-bench’s filtering process leaves only a small number of PRs that
not only resolve a Github issue, but also make meaningful changes to unit tests. Also, setting up
execution environments for each instance requires a substantial amount of human intervention.
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Figure 1: Scaling task instances (left) and performance (right) for SWE-agent with SWE-smith.
Using SWE-smith, we can create 100s to 1000s of instances for any Python codebase, enabling us to
train SWE-agent-LM-32B which achieves 40.2% on SWE-bench Verified.

In this paper, we introduce the SWE-smith toolkit, which marries the flexible execution environments
of SWE-bench with scalable instance collection (Figure[I). SWE-smith features several techniques to
automatically synthesize bugs in existing GitHub repositories, such as (1) generating errant rewrites
of functions with an LM, (2) procedurally modifying the abstract syntax tree (AST) of functions, (3)
undoing PRs, and (4) combining bugs. Our key insight is that execution-based validation can not
only validate proposed solutions, but also identify bug candidates which cause substantial software
regression (i.e., break tests).

In a nutshell, SWE-smith puts forth the following task creation workflow, as shown in Figure[2] Given
a codebase, we automatically set up a corresponding environment using SWE-agent [49]. Within
this environment, we then use the aforementioned techniques to synthesize 100s to 1, 000s of task
instances. Finally, we craft realistic issue descriptions automatically with LMs. SWE-smith’s design
significantly reduces the amount of human labor and storage required for constructing execution
environments. Using SWE-smith, we create a dataset of 50k task instances across 128 real-world
GitHub repositories.

Using the SWE-smith dataset, we achieve a new open-weight state of the art result on SWE-bench
verified. Using the SWE-smith task instances, we generate 5,016 expert trajectories with Claude
3.7 Sonnet and fine-tune Qwen 2.5 Coder Instruct 32B. The resulting LM, SWE-agent-LM-32B,
achieves 40.2% (+33.4%) on SWE-bench Verified in a single attempt, without inference-time scaling.
This sets a new state of the art for open-weight models.

The scale and diversity of the SWE-smith dataset enables us to investigate optimal strategies for
training SE agents. Training on more instances, bug types, and repositories improves LM performance.
LMs can generate realistic issue texts from bug patches. Using SWE-smith, it is possible to optimize
LMs for specific repositories while only suffering minor generalization loss.

We release SWE-smith as an open-source toolkit — including instances, environments, and trajecto-
ries — to catalyze the development of stronger open-source LM agents.

2 SWE-smith: Software Task Generation at Scale

The core principle of SWE-smith’s collection strategy is to define an execution environment first, and
then synthesize task instances within the environment. Conceptually, this is a simple inversion of
SWE-bench’s approach, which instead prioritizes identifying task instances, and then attempts to
build an environment for each. In this section, we describe the procedure in detail and show how, in
practice, SWE-smith scales significantly better in terms of repositories, task instances, and storage.

2.1 Collection

Building execution environments for repositories with passing tests. Given a repository, we run
SWE-agent [49] on the latest commit for at most 100 steps, instructing it to install the codebase and
run the test suite. We then manually verify the installation and testing instructions, check if more than
80% of existing tests pass, and finally create a Docker image for the repository. We target repositories
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Figure 2: SWE-smith creates training data for software engineering agents by crafting bugs in real
codebases. We employ several strategies to create task instances that break existing tests. Using SWE-
smith, we create 50k+ task instances with execution environments from 128 real world repositories.

for the 5K most downloaded packages listed in the Python Package Index (PyPI) as of Nov. 18, 2024,
then filter out any PyPI package with fewer than 1K stars on GitHub, as well as the 12 SWE-bench
test repositories. More in §A2]

Creating task instance candidates. Per repository, we employ four different strategies to create
candidates. As shown in Figure 2] each strategy takes in a repository as input, then produces task
instance candidates represented as .diff files. We provide extensive details in §B]

* LM Generation: Per repository, we identify all programmatic entities (functions, classes), then
take two approaches: (1) provide an LM with the function and prompt it to introduce errant
modifications (henceforth referred to as “LLM Modify"), and (2) given only the function header
and docstring, ask the LM to rewrite it (‘LM Rewrite"). See more in §B.1]

* Procedural Modification: Per function, we acquire an abstract syntax tree (AST) representation
of the code, then randomly perform one or more transformations (e.g., remove a conditional/loop,
change an operator, and 11 more. See Table[8). See more in §B.2}

* Combine Bugs: LM generation and Procedural Modification task instances exclusively edit one
function or class. To create more complex tasks that require editing multiple portions of the
codebase, we devise a “Patch Combination" strategy that creates a task instance by aggregating
candidates from the same file(s) or module(s). See more in @

* Invert PRs (or “PR Mirror"): Per repository, we collect all PRs that modify Python files. Per
PR, we attempt to undo its revisions in the current version of the repository. To achieve this, we
provide an LM with the PR’s code changes (a .diff plaintext) and prompt it to rewrite each
affected file such that the PR edits are reverted. Unlike SWE-bench, we do not check out the PR’s
base commit, as the install specifications determined in the previous step may not be compatible
with older versions of the repo. See more in §B.4]

Execution-based validation of candidates. We apply each candidate patch to the corresponding
repository, run the test suite, and only keep patches that break one or more existing, passing tests
(referred to as Fail-to-Pass or F2P test(s)). For efficiency purposes, we discard bug candidates where
test runtimes exceed two minutes. We provide minor additional details in §A3]

Generating problem statements. The issue text associated with a bug can significantly alter the
difficulty and feasibility of the task instance. Providing descriptions of “expected” vs. “observed”
behavior or reproduction code heavily affects an agent’s capacity to localize bugs or iterate on
proposed solutions. We explore several techniques covered fully in §C| and ultimately settle on a
simple strategy. Per task instance, we provide an LM with the .diff patch, source code of a random
F2P test, and execution output from running the repository’s test suite with the bug patch applied. We
prompt the LM to mimic the style of Github issues and to include reproduction code based on the
F2P test.

What human labor remains? The steps requiring manual effort are (1) parsing the correct installation
setup procedures from the agent trajectory (~ 7 min per repository), and (2) implementing the parser
for test outputs (~ 1 min per repository). Step two requires very little time because parsers can be
reused for repositories with the same testing infrastructure (e.g., pytest). SWE-smith removes the
need for resolving installation issues for multiple versions of a codebase across time, the most costly
step of SWE-bench collection. Creating SWE-smith took one author ~ 20h of human labor.
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2.2 Features

We apply SWE-smith to 128 Python repositories, generating a total of 50k instances. Table[T| captures
the key statistics. On average, we generate 381 task instances per repository, with as many as 2277
for pandas-dev/pandas. We summarize the distribution of task instances per repository in Figure 3]
where repositories are grouped into one of six general categories. SWE-smith took $1360 to create
($1000 to generate bugs, $160 for automatic repository installation with SWE-agent, $200 to generate
issues for 10K bugs). Generating an issue costs 2.54¢ on average. More dataset analyses in §D]

Bug generation strategies vary in cost and yield rate. Of methods reliant on LMs, PR Mirrors are
most expensive because the task entails rewriting entire files, as opposed to individual functions (LM
Modify, LM Rewrite). Yield rates are affected by lack of test coverage for the change, or because
the bug candidate did not actually introduce an issue. For LM Rewrite, the LM is simply asked to
re-implement the function. When a bug is requested outright (LM Modify), the yield is higher.

How difficult are SWE-smith task instances? To determine whether task instances produced by
SWE-smith are realistic and challenging, we train a Qwen 2.5 32B model on 1,699 human-annotated
(task, label) pairs from Chowdhury et al. [9] to rate tasks as (easy, medium, hard) by training. To
quantify difficulty, each difficulty label corresponds to values of 1/5/9. The model achieves 75.3%
test accuracy. We then rate difficulty of task instances from both SWE-smith and prior SWE-bench
style datasets [9} 18] 31, 150]. SWE-smith task instances span a broad range of difficulties, similar
to SWE-bench and SWE-gym. The average difficulty score for SWE-smith (5.27-5.72 across bug
generation strategies) is comparable to SWE-bench (5.01) and SWE-gym (5.62). This suggests
SWE-smith enables realistic and appropriately challenging evaluation. We discuss why bug strategies
yield different levels of difficulty and visualize difficulty per dataset in

Scaling execution environments. Unlike SWE-bench which creates a Docker image per task
instance, SWE-smith leverages a simpler design where tasks from the same repository share the same
environment, reducing storage overhead significantly, as shown in Table[2] This approach reduces

Table 2: Comparison of open source training datasets for software engineering tasks. Relative to
existing datasets, SWE-smith has multiple times the number of task instances, repositories, and
environments at a fraction of prior storage costs. SWE-fixer and SWE-bench-train task instances do
not have execution environments, so “Env. Size" is blank.

Dataset | #Tasks #Repos Exec? Source Env. Size
R2E [13] 0.25k 137 v Synth 270 GBs
R2E-gym (Subset) [16] 4.6k 10 v Synth 4 TBs
SWE-bench-extra [3] 6.38k 2k X Real -
SWE-bench-train [18] 19k 37 X Real -
SWE-fixer [44] 115k 856 X Real -
SWE-gym [31] 2.4k 11 v Real 6 TBs
SWE-smith | 50k 128 v Both 295 GBs




costs and makes SWE-smith more easily accessible and maintainable than existing datasets. We
estimate that creating a similar quantity of task instances (50k) using SWE-bench would require 50
to 150 TBs of storage for environments, a 500x difference. Extended discussion in §D.1]

3 Experiments

To explore the utility of SWE-smith for training software engineering agents, we use rejection
sampling fine-tuning [54] as the primary procedure for improving a base LM with SWE-smith.
Our experiment workflow is as follows. First, we curate a subset of SWE-smith task instances.
Next, we run an agent system with an expert model on this subset. At this step, the trajectory
corresponding to each run is recorded. Then, we fine-tune the base (or “student") model on the
trajectories corresponding to resolved instances. Finally, we evaluate the agent system run with the
student model on a separate, test split.

Models. For expert models, we use claude-3-7-sonnet-20250219 [2f]. For fair comparisons
with prior works [31], we also use claude-3-5-sonnet-20240620 and gpt-40-2024-08-06. We
use the Qwen-2.5-Coder-Instruct [14] 7B and 32B series as the base models. Training and
hyperparameter details are in §F.1]

Agent system. We use SWE-agent [49], an agent system for solving GitHub issues. SWE-agent
provides a base LM with an Agent Computer Interface (ACI) that enables more effective interactions
with a codebase. At each turn, SWE-agent prompts an LM to generate a ReAct [52] style (thought,
action) pair, where the action either edits a file or executes a shell command. We choose SWE-agent
because, at the time of writing, SWE-agent with Claude 3.7 Sonnet is the top open source solution on
SWE-bench. When generating trajectories with expert models, we run SWE-agent for at most 75
steps and $2.00 cost limit. For inference of student models, we impose the same 75 step maximum
and fix temperature at 0.0. Full configuration details are in §F.1]

Evaluation metrics. We evaluate on SWE-bench Lite and Verified [9]. SWE-bench evaluates Al
systems on their ability to solve software issues from 12 real world GitHub repositories. The Lite split
consists of 300 tasks, curated to be an easier evaluation set that’s less costly to run. The Verified split
is a human-curated subset of 500 instances, selected for clearer problem statements and more reliable
evaluation. We report the % resolved metric, the proportion of successfully resolved instances.

4 Results

Table 3] compares the performance of Qwen 2.5 Coder Instruct models (7B and 32B), fine-tuned on
5,016 SWE-smith trajectories. We refer to them as SWE-agent-LM-7B and SWE-agent-LM-32B;
the latter achieves state-of-the-art performance.

The final dataset of 5,016 training points was curated as follows. We start by collecting a large pool
of expert trajectories. First, we carried out each of the ablations in Section[4.1] giving us an initial set
of 5,105 trajectories. Next, based on our observation that PR Mirror and LM Rewrite task instances
yield the most effective expert trajectories (discussed below), we run the expert model on all task
instances of these types, bumping up the total number to 6,457 task instances. Ultimately, we attempt
to generate expert trajectories for 8,686 unique task instances, or 17.3% of the SWE-smith dataset.
Reinforcing the difficulty rating findings from Section[2.2] we observe that SWE-smith task instances
are non-trivial for the top agent systems today. The final pool of 6,457 represents a 36% resolve rate
of all 17,906 attempts to solve one of the 8,686 task instances.

Next, we perform minor filtering of this collection. As reported in Pan et al. [31]], we also observe that
“easier" trajectories — task instances that are repeatedly solved across multiple runs — degrade model
performance. Therefore, we limit the number of times any SWE-smith task instance is represented in
the training set to 3 trajectories. This leads to the final 5,016 training set. More details in

Performance improves with more data points. Extending similar scaling graphs from prior
works [16] [31]], Figure[T] shows increasing performance with more trajectories.

Comparison at the same training set size. To compare with prior works [16, [31]], we run expert
trajectory generation on 1000 random SWE-smith task instances with SWE-agent + Claude 3.5
Sonnet (800) or GPT-40 (200). We then fine-tune the 32B model on 500 successful trajectories, a



Table 3: Resolve rates for existing solutions on SWE-bench Lite and Verified, collected from Jimenez
et al. [17], compared to models fine-tuned on SWE-smith. All performance numbers are pass@1. We
do not compare against systems that use verifiers or multiple attempts at test time.

Model System | Train Size Lite  Verified
Closed Weight Models
GPT-4o [27] Agentless - 32.0 38.8
OpenHands - 22.0 -
SWE-agent - 18.3 23.0
Claude 3.5 Sonnet [1] Agentless - 40.7 50.8
AutoCodeRover - - 46.2
OpenHands - 41.7 53.0
SWE-agent - 23.0 33.6
Claude 3.7 Sonnet [2] SWE-agent - 48.0 58.2
Llama3-SWE-RL-70B [41]] Agentless 11M - 41.0
Open Weight Models
Lingma-SWE-GPT-72B [22] SWE-SynInfer - - 28.8
Qwen3-235B-A22B [33]] OpenHands - - 34.4
R2E-Gym-32B [16] OpenHands 3.3k - 34.4
SWE-fixer-72B [44] SWE-Fixer 110k 24.7 32.8
SWE-gym-32B [31] OpenHands 491 15.3 20.6
SWE-agent-LM-7B SWE-agent 2k 11.7 15.2
SWE-agent-LM-32B SWE-agent 5k 30.7 40.2

training set size both works report on. Our model achieves a 28.2% resolve rate on SWE-bench
Verified, a relative difference of +8.2% with Pan et al. [31]] and 4+0.7% with Jain et al. [[16].

4.1 Ablations of SWE-smith

We perform several ablations of how SWE-smith’s bug and problem statement generation strategies
impact the quality of training data. Unless otherwise specified, we use Claude 3.7 Sonnet as the expert
for fine-tuning Qwen 2.5 7B Coder Instruct, and report the performance on SWE-bench Verified.

LM Rewrite and Procedural bugs are comparable to PR mirrors. We randomly sample 1000
instances per bug generation strategy (LM Modify, LM Rewrite, Procedural Modifications, PR
Mirrors). For each instance, we generate issue text with an LM and run expert trajectory generation.
We then fine-tune separate student models per strategy, capping training points to the minimum
number of successful trajectories from any strategy (507) for fair comparison.

Table 4] summarizes the results. Trajectories generated from PR mirrors are empirically the most
effective training data — this is expected, since they are most reflective of SWE-bench. What’s
noteworthy is that trajectories from Procedural Modification and LM Rewrite instances lead to
competitive models. There is a steep drop-off with LM Modify bugs.

LM generated issues are comparable to real issues. We randomly sample 600 PR Mirror task
instances. We compare LM generated issues with three alternatives — fixed issue templates, the
source code + test logs of a random Fail-to-Pass test, and the original issue text associated with the
PR. We again cap training points to the minimum number of successful trajectories (259) for fairness.

As shown in Table 3] training on task instances with LM generated issues is empirically comparable
to using the original issue text. Using fixed issue templates not only leads to the fewest successful
trajectories, but also results in relatively homogeneous problem solving sequences. The expert
trajectories from fixed issue templates have 31% fewer unique actions compared to LM generated text
(379 vs. 550). While providing a Fail-to-Pass test case leads to more successful expert trajectories,
leaking the evaluation criteria causes the model to skip over writing a reproduction script, which
accounts for the performance drop. Of 500 SWE-bench Verified instances, the student model trained
on LM-generated issues attempts to reproduce the bug for 379 of the runs. The model trained on
test-based issues only does so for 127 cases, a 66% decrease.



Table 4: Comparison of training on 1000 SWE-smith  Table 5: Comparing training on 600 PR Mir-
instances created with different strategies. ror instances with varied issue text.

Strategy | #Trajs. % Resolved Issue | #Trajs. % Resolved
LM Modify 802 5.7 (£1.5) Fixed 259 6.4 (£1.5)
LM Rewrite 507 8.8 (£1.7) F2P Test 390 7.3 (£1.9)
Procedural 745 8.6 (£1.8) LM 328 7.7 (£1.5)
PR Mirror 557 9.2 (£1.7) Original 319 7.8 (£1.8)

Task difficulty correlates with solvability but not with effectiveness as training data. First, we
run our difficulty rating model on 10k randomly selected SWE-smith task instances. From this pool,
we curate subsets of 1000 instances corresponding to the three difficulty levels, then run expert
trajectory generation per subset 3 times. For the easy/medium/hard subsets, the resolve rate by the
expert model are 58.6%, 41.0%, and 17.0% respectively.

Next, from all successful trajectories, we create four fine-tuning datasets of 500 trajectories each
corresponding to difficulty scores of 2, 4, 6, and 8. As mentioned in Section@ the corresponding
scores for easy/medium/hard are 1/5/9. Therefore, the SFT dataset for score 2 is made up of
trajectories corresponding to 375 easy and 125 medium instances, and so on. Somewhat surprisingly,
we do not observe strong correlation between increased difficulty and downstream performance. For
the student models trained on the 2/4/6/8 difficulty SFT datasets, we get pass@1 scores of 12.4%,
10.8%, 13.6%, and 12.2% on SWE-bench Verified.

Training on more repositories improves general performance. We train models in four settings
by sampling 700 expert trajectories on Procedural Modification tasks from pools of 4, 25, 50, and
100 repositories. Echoing similar findings for code generation tasks [46], we find that increasing
repositories represented in the training set improves performance, as shown in Figure 5] with an
approximately logarithmic relation between model performance and number of repositories.

Repository-specialized models excel on the target repository with minor generalization loss. We
experiment with training models to be specialists on one particular repository. To assess performance,
we evaluate models on a subset of SWE-bench Verified tasks that are (1) from SymPy, and (2)
created after January Ist, 2022, a total of 22 instances. To create SymPy specific training data, we
first select a base commit of SymPy just before the cutoff date. Next, we create 1276 Procedural
Modification task instances, then generate 700 expert trajectories. We evaluate specialization in two
settings: (1) single-repository fine-tuning, and (2) specialist stage fine-tuning, both shown in Figure 4]
For single-repository tuning, we compare a model initialized with Qwen-2.5-Coder-Instruct
7B and trained on 700 instances sampled from 100 repositories, to the same Qwen base model but
fine-tuned on the 700 SymPy instances only. For specialist stage fine-tuning, we simply compare
SWE-agent-LM-32B to the same model further fine-tuned on the 700 SymPy instances.

Specialization significantly boosts performance for the target repository with only slight drops in
general performance in both the single-repository fine-tuning (21.2% vs. 13.6%) and specialist stage
fine-tuning (42.4% vs. 33.3%) settings, compared to baselines trained across 128 repositories.
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4.2 Analysis of Agent Behavior

This section analyzes the behavior, failure modes, and efficiency of SWE-agent when run with
SWE-agent-LM-32B or Claude 3.7 Sonnet on SWE-bench verified.

SWE-agent-LM-32B can solve tasks efficiently. SWE-agent-LM-32B resolves tasks in fewer steps
on average (24.9) than Claude 3.7 Sonnet (29.1), though the difference becomes marginal when
accounting for different average difficulties of the resolved tasks: On the overlap of tasks that
are resolved by both LMs, SWE-agent-LM-32B uses 24.8 steps compared to 25.6 used by Claude
3.7 Sonnet (see Fig. [6). While shorter trajectories are not always preferred (additional actions
can be used for additional validation purposes, for example), this shows that SWE-agent-LM-32B
solves tasks very efficiently. At the same time SWE-agent-LM-32B also demonstrates that it can
remain focused throughout long trajectories, with 31 instances being resolved after 40 steps or
more. We further highlight that the accuracy of naturally terminating [1_-] agent submissions with
SWE-agent-LM-32B achieve an accuracy nearly matching that of Claude 3.7 Sonnet (60% vs 63%),
showing that SWE-agent-LM-32B is adept at determining whether an instance has been resolved. As
the overall cost and turn count averages scale strongly with the cost and turn limits, we reserve a
more thorough analysis for §F.5.1]

Repetitive actions are a key problem. We observe a tendency for SWE-agent-LM-32B to get stuck
in long sequences of repetitive actions, in particular long sequences of calls that display different
portions of a file instead of using search commands. || More than 25% of SWE-agent-LM-32B
trajectories have a repetitive sequence of at least length 10, compared to less than 4% for Claude 3.7
Sonnet (see Figure[7). The occurrence of long repetitive sequences correlates strongly with the agent’s
ability to solve the corresponding task instance, largely because the LM continues issuing similar
commands until either the agent cost or turn limit is reached, at which point the run is terminated.
For example, repetitive sequences of length 10 correspond to an 89% failure probability. Simple
interventions from the agent scaffold can mitigate repetitive actions, but do not seem to improve
resolve rates (see §F.3).

Localization is the dominant failure mode. Guided by a short plan in the system prompt, SWE-
agent typically starts by localizing (search and read actions), reproducing (test file creation and
execution), before modifying source files and validating the fixes. If the agent gets stuck at any
of these stages or keeps on iterating, the agent loop is eventually interrupted by runtime limits
(cost, number of LM calls, runtime). While this rarely happens with Claude 3.7 Sonnet, 53% of
SWE-agent-LM-32b’s failures are associated with such limits (Figure [§). The agent often already
gets stuck during localization or initial efforts to reproduce a bug, with endlessly repeated actions
being a persistent issue. More on failure modes in

'i.e., excluding agent runs that are terminated due to errors or cost/step count limits. Note that SWE-agent
still extracts and submits any changes performed by the agent in these cases and some of them can be successful
(for example if the agent is terminated due to cost while testing already performed edits).

*In fact, these str_replace_editor view commands make up 73% of the longest repetitive sequences.
For this analysis, we look at repetitions of the base command, i.e., without any arguments. See @for more.
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Figure 8: More than half of the unresolved instances of SWE-agent-LM-32B correspond to runs terminated by
cost/step limits, and these limits are frequently reached before source code has been modified. See @for more.

5 Related Work

LMs for Software Engineering. As contemporary LMs have saturated traditional code generation
tasks [4, 8]], software engineering benchmarks [15} 18} 150,58} 55]], notably SWE-bench, have become
a new de facto evaluation setting due to their diverse, complex, real-world programming challenges.
The most significant source of open source progress on SWE-bench has been the development of
LM-based workflows [29, 42} 57] and agents [3, 138} 49, 156]. Workflow-based systems are typically
human-engineered decompositions of a task into a sequence of sub-goals. Yang et al. [50] suggests
such pipelines may not generalize effectively to non-Python repositories, requiring additional human
intervention to re-adapt. We therefore elect to focus on generating trajectories with and for LM agent
systems [36, 48} 52]]. Because no workflow is imposed, agent systems inherently rely more on the
LM to plan and refine its actions, putting more focus on an LM’s capabilities, not inference scaffolds.

Training Datasets for Coding. Prior work around training data has focused on instruction following
[21} 24, 135,139, 140l 153]] and preference learning [[19, 20] for code completion tasks. Several recent
works introduce training sets for retrieval augmented generation [[18| |44], workflows [41]], and
agent [5, 22| 31} [16] approaches to SWE-bench. Our work applies Haluptzok et al. [12] at a
repository level: by having an LM break a codebase, we drastically reduce the human effort needed
to define a task and build its environment. Concurrent to our work, Xie et al. [46] (RePOST) also
constructs execution environments for repository functions, but differs significantly in methodology
and evaluation. RePOST sandboxes a function and its dependencies to a separate script, then generates
tests with an LM, removing the original codebase as context. The tasks’ source is repository-level; the
environments and tasks are not. RePOST evaluates solely on code generation (e.g., HumanEval [8]]).
Jain et al. [[16] (R2E-Gym) improves open source LMs’ performance on SWE-bench with inference
time scaling and verifiers. R2E-gym’s 51% resolve rate is not comparable to Table [3|results, as each
instance is attempted 26 times. R2E-gym’s 4.6k training instances are collected using SWE-bench’s
pipeline, with some augmentations around using LMs to synthesize issue text and tests. To our
knowledge, we are the first to address the limited scalability of previous approaches.

6 Discussion

Limitations and future directions. First, SWE-smith’s collection pipeline is Python-centric. The
mechanisms to identify programmatic objects and perform transformations rely heavily on the Python
specific ast library. That said, SWE-smith’s collection strategy is transferable to other languages.
Second, due to both compute constraints and our work’s primary focus on contributing a dataset, we
only explore fine-tuning to demonstrate SWE-smith’s effectiveness. Future work could explore other
training techniques such as eliciting agentic capabilities via reinforcement learning.

Conclusion. We introduce SWE-smith, a dataset of 50k software engineering task instances from 128
real world GitHub repositories. SWE-smith collection pipeline scales up task instances, environments,
and trajectories at a fraction of prior costs without sacrificing faithfulness to open source software
development practices. Using SWE-smith, we train SWE-agent-LM-32B, achieving a state-of-the-art
40.2% on SWE-bench Verified. Our experiments show how SWE-smith leads to key insights on how
to develop SWE-agents. We believe SWE-smith provides the foundational infrastructure needed to
train software engineering agents in a truly scalable manner.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction (Section [I)), we highlight the size of our SWE-
smith dataset (50k task instances collected from 128 repositories), preview several collection
strategies, and highlight SWE-agent-LM-32B which achieves state of the art performance on
SWE-bench Verified. Our paper is organized such that each claim is discussed. In Section 2]
we discuss the collection strategies and characterize the dataset. In Sectiond] we discuss the
main result, and also provide many additional ablations reinforcing our findings.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .

Justification: We mention limitations inline for different bug generation methods in Section[2]
and also have a dedicated paragraph for covering the most glaring shortcomings in Section [6]
We have much more extensive discussions of what can be improved upon and offer concrete
future research directions in §B|for different bug generation techniques and §F for training
methods that we can explore. We also curate a SWE-bench Multilingual dataset, explicitly
demonstrating that the current SFT approach doesn’t really encourage generalizability, an
extremely actionable next step that SWE-smith can readily be used for.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This work is not particularly theoretical. It is mainly a dataset contribution,
and is meant to encourage more focus in a rather empirically driven and applied area of
Language Model development. Therefore, this is not applicable.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the experimental setup, including the
models used (e.g., Claude 3.7 Sonnet, Qwen 2.5 Coder Instruct), training procedures, and
evaluation metrics in Section [3] and Appendix [F} Additionally, we describe the dataset
creation process in Section 2] and provide open access to the dataset, code, and models via
https://swesmith.com/. The supplemental material includes instructions for reproduc-
ing the results, such as hyperparameters, data splits, and compute requirements. These
details ensure that the main experimental results can be faithfully reproduced.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As answered in the previous question, we provide open access to the data and
code, accessible at https://swesmith.com/. We also provide extensive documentation
discussing how to use the code at https://swesmith.com/getting_started/, which
also includes thorough details on how to recreate the main results and ablations. This links
are included in the last line of the abstract, and we cover specific training details in both
Section[fland §H

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide these details in Section [3] and §F where we discuss the
hyperparameter settings we used to fine-tune SWE-agent-LM-32B, and we also list out the
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specific settings used for SWE-agent, the primary inference scaffold we run our experiments
with. We also write down every third party service we use for compute (primarily Modal).

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, for all of our experiments and ablations across Section [3] and we
primarily use the Pass@]1 statistic to account for variance and report metrics that are
reproducible. Each ablation includes written or visualized error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We highlight the compute resources we used explicitly in §F.1] with additional
details in the rest of §F We list the number of GPUs/nodes we use for fine-tuning, along
with additional specifications that should communicate fully what kind of compute resources
are necessary to reproduce our paper’s experiments in their entirety. There is no hidden,
additional compute requirement that is not disclosed in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the code of ethics and can confirm that our work is not in
violation. Our work does not involve engagement with human participants, so there are
no concerns that would be raised around preserving anonymity or personally identifiable
information. The collection procedures and focus of the SWE-smith dataset do not have
any potential for harm towards humans. We also make sure to respect copyright laws, only
sourcing from open source repositories that have explicitly given permission for public use,
as shown in Table

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We address this directly in §G| where we talk about how the automation of
software might bring about concerns about how bug generation tools can be used maliciously,
but ultimately demonstrate how our infrastructure is built in a manner that is mindful of the
open source development community. Since our work is in the open, the community effort
we hope to grow around SWE-smith will also help mitigate concerns.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The dataset artifacts included with this work do not pose any immediate risks.
We anticipate and wrote our system to mitigate two kinds of misuse. First, we designed
our bug generation pipeline to only work for mirrors of real repositories, as opposed to on
the real repositories themselves. This is to avoid interfering or obstructing the work of the
repository’s maintainers. The actual training dataset itself does not have any safety risks -
no information about humans is collected.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The main kinds of assets we provide attribution for are the GitHub repositories
represented in the training dataset produced by SWE-smith, which we list exhaustively in

Table[6] We also provide attributions to prior works that we build upon, both in the paper
and also in the codebase as well whenever code is adopted or copied.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we have open-sourced every aspect of SWE-smith. The website (https:
//swesmith.com/) has links to every component of SWE-smith. The code, which features
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14.

15.

16.

the functionality for generating bugs and training code, is available at https://github,
com/SWE-bench/SWE-smith. The dataset and models for this work are available at https :
//huggingface.co/SWE-bench. Extensive documentation is provided to describe how
the assets should be used at https://swesmith.com/getting_started/.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve experiments or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve experiments or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [Yes]

Justification: Yes, a significant aspect of our project involves the use of language models to
generate bugs. We explicitly state this in Section 2} discussing exactly how language models
are used, and how they are prompted for this purpose. In §B.T] we also provide the actual
prompts verbatim that were used to generate both candidates, ultimately represented in the
SWE-smith training, data set.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The appendix is generally structured as follows. In Sections [A] to [D] we review details about
SWE-smith’s infrastructure and collection strategies for curating the SWE-smith task instances
and execution environments, providing comparisons to existing datasets such as SWE-bench and
SWE-gym along the way. In Sections[E]and onward, we discuss more about how we created the
trajectories dataset, then provide additional ablations and results showcasing the effectiveness of
SWE-smith as a dataset.

SWE-smith Overview

1. Given a GitHub repository, turn it into an execution environment

@ SWE-agent £ Developer Execution

Github [ Trajectory
g 9 Attempts to install the 9 9 Read trajectory, identify 9 Environment
Repo : of attempt ;
repository and run tests correct install/test specs

2. Given an execution environment, synthesize task instances

Execution Synthesize Tasks Task

Enviro > > >
nvironment Generate with LM Instances

“' Procedural Modification

D PR Mirroring

+ Combine Bug Patches

3, Given an execution environment + task instances, train SWE-agents!

Execution @@ SWE-agent

Expert -
: +Claude / GPT . . Trainin SWE-agent-LM
Environment [ > Trajectories > aning K 7
Attempts to solve task

instances
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Task Base Student
Instances Meesl
(e.g. Qwen)

Figure 9: An overview of pipelines in SWE-smith. Scripts/functions and manual steps are highlighted
in blue. Artifacts that are also the inputs and outputs of these scripts are in orange. SWE-smith
fits in seamlessly with the SWE-bench and SWE-agent ecosystem. Use SWE-smith to construct
execution environments and generate task instances. Use SWE-agent to generate expert trajectories
on SWE-smith task instances and run inference with models trained on these trajectories. Use
SWE-bench to evaluate your models on resolving GitHub issues and performing SWE tasks.

A Infrastructure

We cover additional details about how SWE-smith works, specifically

¢ The form factor of a SWE-smith task instance.

» How we identify repositories and the SWE-agent configuration we use to automatically
install them.

¢ How the task validation and evaluation harnesses work.
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A.1 SWE-smith Task Instance

We briefly review the format of a SWE-smith task instance, highlight how it is different from a
SWE-bench task instance, and discuss why SWE-smith’s relatively simple infrastructure compared to
SWE-bench allows us scale task collection much more efficiently.

A SWE-smith task instance is very similar to the form factor of a SWE-bench task instance, with
several minor differences. A SWE-smith task instance includes the following fields:

* repo: The repository the task instance is from.
* instance_id: A unique identifier (usually (repo) . (bug_type) . (hash))

* base_commit: Hash of the GitHub branch that points to the repository with the bug patch
applied.

» patch: The diff that causes the bug. It is applied to the original codebase to create the bug.
Reverting this patch is effectively the solution.

* problem_statement: The generated issue text that conveys the bug. It is provided to a
model or system before it begins attempting a fix.

e created_at: A timestamp matching when the bug was successfully validated and pushed
to the mirror repository as a branch.

e FAIL_TO_PASS: The unit tests that break when the test suite is run with the bug patch
applied.

e PASS_TO_PASS: The unit tests that do not break. These correspond to the set of all tests
minus the FATL_TO_PASS tests.

We summarize the key distinctions between a SWE-smith and SWE-bench task instance:

* SWE-smith task instances do not include the version or environment_setup_commit
fields, which SWE-bench requires as additional identifiers for specifying repository-specific
installation instructions across time. In SWE-smith, unique installation instructions are
specified for each (repository, commit).

e The hints_text field is not included. In SWE-bench, this refers to the issue and PR thread
comments written after the first commit of the corresponding PR.

* The created_at field is assigned the timestamp reflecting when the bug was successfully
validated. Originally, created_at refers to when a PR was created.

* There is no test_patch field, as the SWE-smith collection pipeline does not create or
synthesize any hidden tests. All FAIL_TO_PASS bugs are visible and runnable in the
repository at inference time.

A.2 Repository Selection

In addition to the criteria discussed in Section we also ensure that a repository has a license that
allows non-proprietary use. The majority of software licenses are permissive (BSD, MIT, Apache),
while the remainder are largely protective licenses (GPL) that still allow for non-commercial use.
We inspected the repositories with custom licenses and confirmed they allowed for the use cases
exercised in our work. The licenses for each repository are fully listed in Table [6]

We deliberately limit the search scope for repositories to those predominantly written in Python.
Following precedents, focusing on Python repositories allowed us to form assumptions about installa-
tion and testing procedures (e.g. repository is organized as a PyPI package, pytest is the testing
framework) that made scaling up automatic repository setup with SWE-agent more tractable. A
worthwhile direction to consider for future work is expanding the coverage of repositories to be more
comprehensive of codebases written in different programming languages, as Yang et al. [S0] does,
extending SWE-bench style evaluation to JavaScript repositories with multimodal inputs.

Automated repository installation. The goal of this step is to first, get the installation and testing
instructions for a repository, and second, create a Docker image containing the repository with the
development environment set up.
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Table 6: License associated with each repository as of April 8, 2025. All licenses are permissive and
allow for public, nonprofit use.

Apache
License 2.0

Project-MONAI/MONAI; alanjds/drf-nested-routers; arrow-py/arrow;
buriy/python-readability; facebookresearch/fvcore; getmoto/moto;
google/textfsm; iterative/dvc; jax-ml/jax; jd/tenacity; kayak/pypika;
modin-project/modin; pyca/pyopenssl; spulec/freezegun; tkrajina/gpxpy;
tornadoweb/tornado; weaveworks/grafanalib

BSD 2-Clause

madzak/python-json-logger; pyasnl/pyasnl; pygments/pygments;

"Simplified" sunpy/sunpy

License

BSD 3-Clause | Suor/funcy; alecthomas/voluptuous; andialbrecht/sqlparse;

"New" or cookiecutter/cookiecutter; dask/dask; django/channels; django/daphne;

"Revised" encode/starlette; gawel/pyquery; gweis/isodate;

License john-kurkowski/tldextract; lepture/mistune; oauthlib/oauthlib;
pallets/click; pallets/flask; pallets/jinja; pallets/markupsafe;
pandas-dev/pandas; scrapy/scrapy; theskumar/python-dotenv

GNU General | Cog-Creators/Red-DiscordBot; adrienverge/yamllint

Public License
v3.0

GNU Lesser chardet/chardet; paramiko/paramiko; pylint-dev/astroid
General Public

License v2.1

GNU Lesser Knio/dominate

General Public
License v3.0

ISC License

kennethreitz/records

MIT License

amueller/word_cloud; borntyping/python-colorlog; bottlepy/bottle;
cantools/cantools; cdgriffith/Box; cknd/stackprinter; conan-io/conan;
cool-RR/PySnooper; datamade/usaddress; dbader/schedule;
erikrose/parsimonious; facebookresearch/hydra; facelessuser/soupsieve;
getnikola/nikola; graphql-python/graphene; hukkin/tomli;
jaraco/inflect; jawah/charset_normalizer; joke2k/faker;
keleshev/schema; life4/textdistance;
luozhouyang/python-string-similarity; marshmallow-code/apispec;
marshmallow-code/marshmallow; marshmallow-code/webargs;
martinblech/xmltodict; matthewwithanm/python-markdownify;
mewwts/addict; mido/mido; mozillazg/python-pinyin; msiemens/tinydb;
pdfminer/pdfminer; pndurette/gTTS; pudo/dataset; pydantic/pydantic;
pyparsing/pyparsing; pytest-dev/iniconfig; python-hyper/hi1;
python-jsonschema/jsonschema; python-openxml/python-docx;
pyupio/safety; pyvista/pyvista; richardjOn3s/parse;
rsalmei/alive-progress; rubik/radon; rustedpy/result;
scanny/python-pptx; seatgeek/thefuzz; sloria/environs;
sqlfluff/sqlfluff; termcolor/termcolor; tobymao/sqlglot;
tox-dev/pipdeptree; tweepy/tweepy; un33k/python-slugify;
vi3k6i5/flashtext

Other

Mimino666/langdetect; PyCQA/flake8; agronholm/exceptiongroup;
agronholm/typeguard; aio-libs/async-timeout; benoitc/gunicorn;
cloudpipe/cloudpickle; davidhalter/parso; django-money/django-money;
gruns/furl; kurtmckee/feedparser; lincolnloop/python-qrcode;
mahmoud/boltons; mahmoud/glom; mozilla/bleach; pexpect/ptyprocess;
prettytable/prettytable; pwaller/pyfiglet; pydata/patsy;
pydicom/pydicom; python-trio/trio; python/mypy; pyutils/line_profiler;
seperman/deepdiff

We provide the system prompt given to SWE-agent that asks it to install a repository in Figure [A22}
Each repository installation task is initialized with a clone of the original repository. No additional
steps (e.g. pypi package downloads, conda environment setup) are performed.

We run SWE-agent with claude-3-5-sonnet-20241022 with a maximum cost limit of $2 and a
maximum call limit of 150. The installation run terminates whenever one of these conditions is met.
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For every run, we record the interactions. We then manually review the trajectory, identifying the
appropriate installation and testing specifications.

Each run incurs an average cost of $0.72 and an average of 17 steps before SWE-agent issues the
submit command. The runs typically finish within two minutes. The majority of Python repositories
require fewer steps — typically, SWE-agent will view the CONTRIBUTING.md, run the installation
command provided verbatim in the text, and then runs pytest, showing all tests passing. A minority
of repositories will require several steps because additional dependencies must be installed with
apt-get. The manual review process following this requires 3 to 20 minutes. One author carried out
this effort for 128 repositories, taking an estimated 18 human hours to accomplish. In the process of
reaching 128 repositories, the author gave up on 17 repositories at the manual review stage.

System prompt for generating bugs with an LM

<uploaded_files>

{{working_dir}}

</uploaded_files>

I’ve uploaded a python code repository in the directory {{working_dir}}.

Can you please install this repository? Your goal should be to configure the repository’s development
environment such that existing tests pass. You are currently in the root directory of the repository, and
nothing has been installed yet. You in an Ubuntu 22.04 environment.

The repository is predominantly written in Python. Here are several tips for installing it:

1. A good place to start is to look for a CONTRIBUTING. [md|rst] file, which will often contain
instructions on how to install the repository and any dependencies it may have. Occasionally, the
README . md file may also contain installation instructions.

2. Usually, a repository may have setup.py or pyproject.toml files which can be used to install
the package. pip install -e . is commonly used, although many packages will also require an
additional specifier that installs development packages as well (e.g. pip install -e .[dev]).

3. To check whether the repository was installed successfully, run tests and see if they pass. You
can usually find tests in a tests/ or test/ directory. You can run tests using pytest or unittest,
depending on the framework used by the repository.

4. Sometimes, you will need to install additional packages, often listed in a requirements.txt or
environment.yml file. Also, be mindful of Ubuntu system dependencies that may need to be installed
via apt-get (e.g. sudo apt-get install <package>).

Once you are finished with installing the repository, run the submit command to submit your changes
for review.

A.3 Validation, Evaluation Harnesses

We adapt SWE-bench’s validation script to convert each bug patch into a SWE-bench style task
instance. This step ensures SWE-smith can be run by existing SWE-bench solutions. The conversion
involves two steps. First, the bug patch is applied and pushed as a branch to a mirror clone of the
repository. Second, we create a SWE-bench style task instance from the bug patch, populating
important fields such as Fail-to-Pass and Pass-to-Pass tests with information from the validation logs.
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B Bug Generation Strategies

In this section, we review each of the bug generation strategies we employ in depth. While we
experimented with several bug generation strategies, the ones we elect to include are those we found
to satisfy several desirable properties.

1. The approach works in a codebase-agnostic manner.
2. The approach reliably yields usable task instances (meaning 1+ passing tests break).

3. The approach is controllable; via each strategy’s parameters, we can affect the quantity and
quality of the generated bugs.

System prompt for generating bugs with an LM

You are a software developer doing chaos monkey testing. Your job is to rewrite a function such that it
introduces a logical bug that will break existing unit test(s) in a codebase.
To this end, some kinds of bugs you might introduce include:

(Per inference call, only 3 of the following tips are randomly selected and shown)

- Alter calculation order for incorrect results: Rearrange the sequence of operations in a calculation to
subtly change the output (e.g., change (a + b) * cto a + (b * ¢)).

- Introduce subtle data transformation errors: Modify data processing logic, such as flipping a sign,
truncating a value, or applying the wrong transformation function.

- Change variable assignments to alter computation state: Assign a wrong or outdated value to a variable
that affects subsequent logic.

- Mishandle edge cases for specific inputs: Change handling logic to ignore or improperly handle
boundary cases, like an empty array or a null input.

- Modity logic in conditionals or loops: Adjust conditions or loop boundaries (e.g., replace <= with <)
to change the control flow.

- Introduce off-by-one errors in indices or loop boundaries: Shift an index or iteration boundary by one,
such as starting a loop at 1 instead of 0.

- Adjust default values or constants to affect behavior: Change a hardcoded value or default parameter
that alters how the function behaves under normal use.

- Reorder operations while maintaining syntax: Rearrange steps in a process so the function produces
incorrect intermediate results without breaking the code.

- Swallow exceptions or return defaults silently: Introduce logic that catches an error but doesn’t log or
handle it properly, leading to silent failures.

Tips about the bug-introducing task:

(At inference time, tips are randomly shuffled)

- It should not cause compilation errors.

- It should not be a syntax error.

- It should be subtle and challenging to detect.

- It should not modify the function signature.

- It should not modify the documentation significantly.

- For longer functions, if there is an opportunity to introduce multiple bugs, please do!" - Please DO
NOT INCLUDE COMMENTS IN THE CODE indicating the bug location or the bug itself.

Your answer should be formatted as follows:
Explanation: <explanation>
Bugged Code:

ccc

<bugged_code>

ccc

B.1 Generating with an LM
We describe our workflows for generating bugs with an LM. For each function or class in a codebase,

we prompt an LM to generate either a rewrite that introduces bugs or a complete re-implementation
from scratch. This strategy is illustrated in Figure [T0}
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Generate with LM

In: Function / Class Prompt for Bug Out: Buggy Code
-
(@classmethod You have been given the (@classmethod
def parse_list(cls, api, lst): following function source code. def parse_list(cls, api, lst):
if isinstance(lst, list): g : if isinstance(lst, list):
item_lst = 1st <source code> = item_list = 1st
else: - else:
item_lst = lst['users'] Please rewrite the code while - item_list = 1lst['users']
subtlety introducing a bug...
results = ResultSet() results = ResultSet()
- for obj in item_lst:
for obj in item_lst: + for obj in 1lst
results.append( + if not obj:
cls.parse(api, obj) + continue
.y results.append(
[ #4 Language Model ] cls.parse(api, obj)
return results

Figure 10: Workflow to generate bugs for a function or class with an LM. We first extract all functions
or classes from a codebase, then enumerate across all candidates and prompt the LM to generate
either a bug-laced rewrite or a re-implementation.

Modify existing functions. Given a Python codebase, we use the ast library to identify all unique
functions, excluding any functions found under a testing related directory (e.g. tests, testing).
Next, given a function, the LM is asked to write a new version that introduces logical, runtime
bugs. Within the prompt, shown in Figure [B| several suggestions of types of bugs along with a
demonstration of a rewrite are provided.

Prompts for reimplementing bugs with an LM

System Prompt
You are a software developer and you have been asked to implement a function.

You will be given the contents of an entire file, with one or more functions defined in it. Please
implement the function(s) that are missing. Do NOT modify the function signature, including the
function name, parameters, return types, or docstring if provided. Do NOT change any other code in
the file. You should not use any external libraries.

Task Instance Prompt
Please implement the function func_signature in the following code:

{file_src_code}

Remember, you should not modify the function signature, including the function name, parameters,
return types, or docstring if provided. Do NOT change any other code in the file. Format your output as:

[explanation]

{func_to_write}

In our experiments, we use OpenAl’s 03 mini model (03-mini-2025-01-31) as the main base
model for bug generation. Based on our empirical observations of an LM’s tendencies, we include
several explicit guidelines in the prompt about what the rewrite should not do. Notably, it is important
to ask the LM to not generate any inline comments denoting the location of a bug; we observe that
without explicitly specifying this, model generation outputs tend to have inline comments pointing
out the bug. We also want to avoid the complexities of identifying and removing such comments
from a file diff representation. Second, we state that rewrites causing compilation or syntax errors
(e.g. undeclared variables, function definition modifications) should be avoided because such bugs
are relatively trivial to solve. We do not experiment extensively with different prompts or generating
multiple buggy rewrites per function.

Modify existing classes. This method involves a simple amendment to the function rewriting
approach. Instead of identifying unique functions (ast.FunctionDef), the codebase traversal logic
instead looks for classes (ast .ClassDef). Otherwise, all other aspects of the implementation are
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near identical to function rewriting, with minor changes to the prompt to make bug suggestions and
the demonstration more class oriented.

Rewrite existing functions. Instead of providing an LM with the original function, we explore an
alternative strategy of asking an LM to re-implement a function from scratch. Similar to above, we
again use the ast library to identify all unique functions. However, instead of directly asking for a
bug, we remove the function’s implementation, then prompt the LM with the entire file containing
the function (minus the original implementation). In the task description, we then explicitly ask for
the LM to implement the function without changing the function signature.

B.2 Procedural Modification

We explore a zero-cost approach to create bugs by performing random modifications to the ast
representation of a function or class. A “procedural modification" refers to a function that takes in an
ast and applies a fixed transformation to it, such as removing a loop or swapping the blocks of an
if/else clause. This strategy is illustrated in Figure[TT]

4% Procedural Modification

In: Function / Class Mutate AST Out: Buggy Code

(@classmethod (@classmethod
def parse_list(cls, api, lst): t ] def parse_list(cls, api, lst):
Vv Vv

if isinstance(lst, list): if isinstance(lst, list):

clon f © (asa) (Ctor ) e

item_lst = lst['users'] item_lst = lst[‘users’]
results = ResultSet() \L Remove Random Assign - results = ResultSet()
for obj in item_lst: for obj in item_lst:
results.append( results.append(
cls.parse(api, obj) ( ) cls.parse(api, obj)
) )

N N
™
return results return results

Figure 11: Workflow to generate bugs via procedural modifications. Per function/class, the source
code is first convert into an ast. The modification then mutates the ast (e.g. removes an assignment
statement). The ast is then converted back into source code with the specific modification introduced.

Similar to the workflow for generating bugs with an LM, we first identify all functions or classes in a
repository. Per procedural modification, we first impose a set of criteria that filters out any candidates
for which the modification would be impossible. For instance, if the procedural modification removes
a random conditional from a function, the modification’s criteria will filter out any candidates that are
not functions or do not have a conditional. For the remaining candidates, the procedural modification
is applied with controlled 1ikelihood, where 1ikelihood is a fraction indicating how often the
procedural modification is applied within a candidate. For example, if the procedural modification
removes a random function with a 1ikelihood of (.5, then for every conditional declared within
the function, there is a 50% chance it gets removed. We introduce likelihood so procedural
modifications do not lead to changes that are too difficult. Finally, the modified ast is converted back
into source code.

Table [/|is a complete list of filtering criteria that is used for any procedural modification. For the
filter_min_complexity and filter_max_complexity criteria, we define a simple definition
of “complexity" as a sum of the number of conditional blocks, loops, boolean operators, exception
handling blocks, and comparison operators in a function. The purpose of filter_min_complexity
is to remove both simple, uninteresting functions (e.g. getter, setter methods) from consideration.
filter_max_complexity is occasionally used to avoid changing long, monolithic functions.

Table [8]is an exhaustive list of all procedural modifications used to create bugs in a codebase.
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Table 7: Pool of criteria used to filter for functions or classes with specific properties. Per procedural
modification, a subset of these criteria is first used to filter functions and/or classes from a codebase.
The modification is then run on the remainder.

Index Criteria | Description
1 filter_functions Is the ast a function definition
2 filter_classes Is the ast a class definition
3 filter_classes_has_base | Isthe ast a class definition with parents
4 filter_loops Does the ast contain a For or While loop?
5 filter_conditionals Does the ast contain a conditional block?
6 filter_assignments Is the ast a function def. with assignments?
7 filter_wrappers Does the ast contain try or with blocks?
8 filter_if_else Does the ast contain an if-else block?
9 filter_operators Does the ast contain binary, boolean operators?
10 filter_min_complexity Is the ast > a complexity score?
11 filter_max_complexity Is the ast < a complexity score?

B.3 Combine Bug Patches

We discuss the two strategies we use to combine bug patches from the same file or the same module.
In practice, we combine LM and procedurally generated bugs that have been validated successfully
as usable task instances.

From the same file. If two or more functions are defined within a single file, this strategy merges
the function-level bug patches together. Given n function-level bugs and k as the number of bugs to
combine, there are (Z) unique file-level candidate bug patches, which can be a large search space to
cover. To make the search space tractable, ensure no single function-level bug is repeatedly used,
and generate instances that reliably have 1+ Fail to Pass tests, we implement the following approach

described in Algorithm [I]

For each file in a codebase, we first identify the function-level bugs (or bug patches) that edit that
file. The pool of bugs we draw from have been validated, meaning we have already ensured there
is 1+ Fail to Pass test(s) associated with the bug. From these pool of file_bugs, the get _combos
function then generates up to max_combos sets of bugs, where the size of each set is num_bugs.
For each combo, or set of bugs, the bugs are applied to the codebase one by one. If all patches are
successfully combined, this means they were successfully merged, and the merged patch, which

Table 8: The 13 procedural modification techniques we use to create bugs in a codebase. The
“Criteria" column contains indices referencing the corresponding filter defined in Table[/] There
are four informal categories — Class, Control Flow, Expressions, Removal — which indicates the
general type of modification being made.

Procedural Modification Criteria  Description

Class Remove Functions | 2, 10 Removes method(s) + reference(s).
Remove Parent 3,10 Removes base class from class header.
Shuffle Methods 2,10 Shuffles method definitions in a class.
Control Invert If/Else 8 Inverts the if-else bodies of a condition.
Flow Shuffle Lines 11,12 Shuffies the lines of a function.

Expressions Change Constants | 1,9, 10 =1 to a constant numeric value.
Break Chains 1,9,10 Removes operator(s), operator(s).

Swap Operands 1,9,10 Mixes order of operands.

Change Operator 1,9,10 Changes operator(s) (e.g. + to —).
Removal Loops 1,4,10 Remove loops (e.g. for, while).

Conditionals 1,5,10 Remove conditionals (if).

Assignments 1,6,10 Remove assignment statements.

Wrappers 1,7,10 Remove exception (try), context (with).




< Combine Bug Patches

In: Sample Bugs / Module Merge Patches Out: Combined Bug

src/core/peripherals.py
@@ -360,4 +382,6 @@
def get_info(data_path):
+ if isinstance(data_path, Path
+ data_path = str(data_path) . -
. — = data_path = str(data_path
with open(data_path) as f: with oazn(data paih) a;pf: )

@ get_info info = data_path.read() info = data_path.read()
[9] + out = self.iprocessor(info)
data_path :
bug #2 éécfggéeépigéghgrgés Py def save_info(data_path):

@@ -382,5 +382,5 @@
Q) save_info def save_info(data_path): ; data_path = Path(data_path)

+ data_path =
- data_path = Path(data_path) - .
[9] data path e = datafpath.asfpoux() )
- i i, o5, mesid) fo¥fx_1n se]..f.components.
for x in self.components: if is active(x):

src/core/peripherals.py
@@ -360,4 +382,6 @@
def get_info(data_path):
+ 1if isinstance(data_path, Path

{ } core bug #1

Figure 12: Workflow to generate bugs by combining bug patches. We take n patches (generated using
an LM or procedural modification), then sequentially apply each bug patch to the codebase. If all
individual patches apply successfully, we save the resulting single patch which now represents all n
bugs combined.

Algorithm 1 Combine multiple patches from the same file.

Require: codebase, bugs; num_bugs, limit_per_file; max_combos
Ensure: min_bugs > 2;
max_bugs > min_bugs;
procedure COMBINEFILEBUGS
for each file in codebase do
file_bugs < bugs that apply to file
combinations < get_combos(file_bugs, num_bugs, max_combos)
for each combo in combinations do
Apply combo to codebase
if success then
Save combo to disk
if limit_per_ file reached then
break
end if
combinations + [c for ¢ in combinations if ¢ N combo = (]
end if
end for
end for
end procedure

consists of multiple function-level bugs, is saved and re-validated as a single bug. Merging patches
occasionally fails if there is an overlapping conflict between two files, akin to a merge conflict with
git; this usually happens when a function is declared within another. To ensure a function-level bug
is only used once, any remaining bug sets in combinations using any patch in combo are removed.

The 1imit_per_file and max_combos parameters prevent any one file from being over-represented
and constrains an otherwise combinatorial large search space. We run this algorithm across all code-
base files, typically setting num_bugs= [2, 4], 1imit_per_file= 3, max_combos= 40. Decreasing
num_bugs or increasing the other three parameters improves the yield.

From the same module. There are several ways one could imagine composing function-level bugs
from multiple bugs, such as combining those that break the same test or have a programmatic relation-
ship (e.g. function a calls function b). We found a relatively straightforward and effective approach
to be combining files that edit the same “module”. By “module" we are referring to a subdirectory
within the source code (e.g. sklearn/feature_extraction, astropy/convolution). Out of all
SWE-bench instances that edit 2+ files, 75% modify files within the same submodule, suggesting
a high degree of intra-module code changes. The implementation for our approach is described in
Algorithm
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Algorithm 2 Combine multiple patches from the same module.

Require: bugs; num_bugs; limit_per_module; max_combos; depth
Ensure: num_bugs > 2;
procedure COMBINEMODULEBUGS
map_path_to_bugs + {}
for each bug in bugs do
path < get_path_from(bug)
map_path_to_patches|path] < [bug]
end for
Collapse nested paths based on depth
for all (path, patches) in map_path_to_patches do
combinations <— get_combos(patches, num_bugs, max_combos)
for each combo in combinations do
Apply combo to codebase
if success and num_files_changed(combo) > 2 then
Save combo to disk
if limit_per_module reached then
break
end if
combinations <« [c for ¢ in combinations if ¢ N combo = 0]
end if
end for
end for
end procedure

The implementation for this approach is similar to Algorithm [l| with two key changes. First,
we do not do file-by-file or folder-by-folder traversal. Instead, using the diff patches, we cre-
ate a dictionary map_path_to_bugs that mimics the file structure of a codebase. For example,
if bug modifies path a/b/c/d.py, it is represented as map_path_to_bugs[a] [b] [c] [d.py] =
[bug]l. Additional bugs that modify the same path are appended to the list. Since every bug is
a function-level bug, there will never be a bug registered in multiple lists. We then “collapse”
up to depth indices. So for instance, at depth = 3, the above data structure is collapsed into
map_path_to_bugs[a/b/c] [d.py] = [bug]. Finally, any nested dictionaries are collapsed into
a single list of patches (e.g. map_path_to_bugs[a/b/c] = [bugl). Mirroring the procedure in
Algorithm [T} we then iterate across this dictionary’s values (lists of bugs). Second, we only save
patches that modify 2+ files; aggregate bugs (represented by combo) modifying a single file are not
considered.

Again, we run this strategy across all 100 repositories, with parameters num_bugs= [2,5],
limit_per_module= 10, max_combos= 100, and depth= 2. Reducing num_bugs, depth and
increasing the other parameters yields more bugs. We choose a depth of 2 because empirically,
we find that meaningful modules are usually declared as immediate sub-folders of the main source
code folder (e.g. in sklearn/feature_extraction, sklearn is the source code folder while
feature_extraction is the module). A shallower depth leads to less meaningful groupings, while
yield decreases significantly for every increased level of depth, particularly for smaller repositories.

B.4 Pull Request Mirroring

We finally discuss the fourth and last strategy for generating bugs - mirroring real world pull requests
(PR). We visualize this process in Figure[T3]

Why use an LM? When we initially implemented this approach, we attempted to directly perform
agit apply -reverse [patch] on the codebase. However, for the large majority of patches,
this fails. We performed troubleshooting by inspecting 100 PR patches on the sqlfluff/sqlfluff
repository, leading us to two observations.

1. The majority of these PRs reflect changes that remain present in the codebase today (making
the bug creation promising).

2. However, many patches can not be reversed because the exact location (e.g. lines, file) of
the relevant code changed because of other changes.
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In: PR Diff + Source File

@@ -360,14 +367,18 @@
if is_listlike(value):

return [
self._serialize_value(v)
for v in value]

] PR Mirroring

Prompt for Bug

You are given the source code of a
file and a corresponding diff patch.
Your task is to rewrite the entire
source code while reversing the
changes indicated by the diff patch.

-

Out: Reversed Code

@@ -360,14 +367,18 @@
if is_listlike(value):
return [
self._serialize_value(v)
for v in value]

+encode_func = to_bytes if \
+ self.binary else to_unicode
if isinstance(value, bytes):

-encode_func = to_bytes if \

- self.binary else to_unicode

if isinstance(value, bytes):

+ return to_unicode(

- return encode_func( +
value, encoding=self.enc) J/

return value

[ £2 Language Model ]
[@ scrapy/contracts/__init__.py

<source code>

<diff patch>
return to_unicode(

return encode_func(
value, encoding=self.enc)
return value

def _serialize_item(self,
item: Any) ->

Figure 13: Workflow to generate bugs by reverting changes made in the diff patch corresponding to a
real GitHub pull request (PR). Given the patch and the files modified by the patch, we prompt the LM
to generate a complete rewrite of each file that reverses the changes made in the PR. The changes are
applied to the codebase, and we extract the patch, which now captures the reversal of the PR changes.

Therefore, we employ LMs to perform patch reversal, and find that reasoning models (e.g.
03-mini [28])) are particularly effective.

Description of method. We follow SWE-bench’s methodology for crawling PRs created January 1st,
2023 and onwards, with minor and arbitrary exceptions for some repositories where we crawl older
PRs as well. Per PR, we iterate across the file(s) changed by the patch. Per file, we prompt an LM
with the file-specific changes from the patch along with the file’s source code in the current state of
the repository (not the repository’s state corresponding to when the PR was applied, referred to as
the base_commit in SWE-bench). The LM is asked to generate a rewrite of the file that reverts the
changes reflected in the PR. We aggregate the changes across all file(s) into a single patch.

Because we are interested in problems that our expert trajectory generation method (SWE-agent +
Claude 3.7 Sonnet) has a chance of solving, we do not attempt to reproduce PRs that change more
than 8 files. This constraint is imposed because no SWE-bench instance that edits more than 6 files
has ever been solved [[17]].

How well does PR mirroring work? We scrape the PRs corresponding to 100 randomly selected
SWE-bench task instances from the django/django GitHub repository and attempt to recreate
these task instances with SWE-smith’s collection process. We successfully recovered 92 of 100 task
instances. Of these, 84 break identical F2P test(s), with the remaining 8 breaking a subset because
some tests were removed over time. This sanity check gives us confidence that the PR mirroring
strategy lives up to its name.

Comparison to SWE-bench. This approach has several benefits and drawbacks compared to SWE-
bench’s collection pipeline. First, it removes the need to create instance-specific Docker images
— all PRs are mirrored against the same version of a repository. This also implies that there is no
need to write installation specifications for past versions of a repository, which is typically the most
laborious step in task construction with SWE-bench. Finally, this strategy also allows us to loosen
the requirements on what PRs we attempt to convert into a task instance. In SWE-bench, the core
requirements for what PRs to attempt to convert into a task instance include:

1. It must edit 14 code files (e.g. not just .md, .rst files).
2. It must reference 14 GitHub issues, which serves as the problem statement.
3. It must edit 14 testing related files (14 files with a test-adjacent keyword in it).

With this collection strategy and SWE-smith’s focus on training data, the second and third require-
ments are no longer necessary. If there is no associated issue, issue text can simply be generated. If
the patch does not contain any testing related changes, this is tolerable, as the validation stage will
determine whether the PR breaks any tests. With these considerations, we purport that SWE-smith’s
PR mirroring strategy can re-purpose a higher percentage of real world code changes for training
purposes.
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The main downside is that the rest of the repository is out of sync with the state of the codebase
when the PR was applied. As a result, it’s possible that changes in the behavior of the rest of the
codebase may affect the issue’s reproducibility or the accuracy of the issue description (e.g. line
numbers referenced in the issue text are likely somewhat off with respect to the codebase). However,
a simple mitigation for this is to create a Docker image for a repository at an earlier commit that’s
closer to the original creation date of the issue. While we do not carry out a targeted experiment, we
hypothesize that using SWE-smith, we would be able to reproduce SWE-bench entirely with 10x less
human hours with an estimated 2294 x $0.055 = $126.17 in costs.

C Issue Generation

We cover the four issue generation strategies we experiment with to determine issue text’s effect on
how solvable a SWE-smith instance is along with the trajectory’s value as a training data point.

Generated with LM. We prompt an LM with a randomly selected SWE-bench Verified problem
statement, the bug patch, list of Fail-to-Pass tests, source code for one Fail-to-Pass test, and the
execution logs of running all the Fail-to-Pass tests. We ask the LM to generate an issue that describes
the bug conveyed in the patch in the style of the SWE-bench Verified demonstration. Figure [C] shows
the system prompt for this strategy.

System prompt for generating issues with an LM

You are a software engineer helping to create a realistic dataset of synthetic GitHub issues.
You will be given the following input:

1. Demonstration: A realistic GitHub issue to mimic (included in the <demonstration> tag).

2. Patch: A git diff output/PR changes that introduces a bug (included in the <patch>> tag).

3. Test output: The output of running the tests after the patch is applied (included in the
<test_output> tag).

4.  Test source code: Source code for one or more tests that failed (included in the
<test_source_code> tag).

Output: A realistic GitHub issue for the patch.

Guidelines:

- Mimic the style and structure of the demonstration issues. If the demonstration issues are not well
structured, your output should also be not well structured. If the demonstrations use improper or no
markdown, your output should also use improper or no markdown. If the demonstrations are short/long,
your output should also be short/long (if possible). If the demonstrations include human "flavor text" or
"fluff", your output should also include human "flavor text" or "fluff". Do this even if it conflicts with
your default behavior of trying to be extremely concise and helpful.

- DO NOT explain the fix/what caused the bug itself, focus on how to reproduce the issue it introduces
- Do not mention pytest or what exact test failed. Instead, generate a realistic issue.

- If possible, include information about how to reproduce the issue. An ideal reproduction script should
raise an error

or print an unexpected output together with the expected output.

However, still include this information in a style very similar to the demonstration issues.

Fixed issue templates. We create a set of 7 pre-defined issue templates, listed in Table [9] Each
template uses information from the bug patch or Fail-to-Pass tests associated with every task instance.
Given a dataset of task instances, we randomly select one of the templates to use as the problem
statement according to the probabilities listed in Table[0] The reason we assign the highest likelihood
for the prompt that provides all four categories of information (bug type, files changed, functions
changed, Fail-to-Pass tests) is to ensure that a higher proportion of task instances are well-specified.

Fail-to-Pass test code and execution logs. Another approach is showing the source code and test
execution logs for a randomly selected Fail-to-Pass test. This approach is motivated by the lack of
reproduction code or expected/actual behavior of code communicated with fixed issue templates. We
show code and execution logs only for a single Fail-to-Pass test; if a task instance has more than one
Fail-to-Pass test, we do not disclose remaining tests.
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Table 9: List of issue text templates we use to generate problem statements. Across all templates,
four types of information are included — the files with bugs, functions with bugs, Fail-to-Pass test(s),
and the type of bug. Templates that offer less information are generally assigned a lower probability.

Template \ Prob. Information Provided

Basic 0.05 None

Files 0.1 States which file(s) have bug(s).

Funcs 0.15  States which file(s) and func(s) have bug(s).

Tests 0.1  States that some tests are failing.

F2P Tests 0.1 States which tests are failing.

Bug Type 0.05 States failure type.

Bug Type + Files | 0.15 States failure type and which file(s) have bug(s)

Bug Type + Files | 0.15 States failure type, which file(s) have bug(s),
+ Test and a random F2P test.

Bug Type + Files | 0.15 States failure type, which file(s) and func(s)
+ Funcs + Test have bug(s), and a random F2P test.

Original issue text. This strategy works exclusively for some task instances generated using PR
Mirroring. If a PR is successfully mirrored, we use the text from the associated issues as the problem
statement, exactly as done in SWE-bench. Of the 2345 task instances represented in SWE-smith
mirrored from real-world PRs, 708 or 30.19% of these have one or more associated GitHub issue(s)
to create a SWE-bench style problem statement.

D Dataset Statistics

We present additional breakdowns and analyses of the SWE-smith dataset, focusing on the kinds of
repositories and bugs that are represented.

Repository categorization. We present an exhaustive list of repositories used in SWE-smith in
Table[D] We categorize the repositories into seven general buckets: Data Parsing and Transformation
(39), Web & API Development (11), Code Quality & Testing (12), Visualization & Presentation
(8), System Tools & Protocols (17), Natural Language Processing (7), and Miscellaneous (6). The
categorizations were performed by first, determining an appropriate set of categories based on manual
inspection supported by the descriptions and GitHub topics associated with each repository. After
settling upon the buckets, we asked GPT-40 to provide a label based on the repository’s metadata and
README dump. SWE-smith represents a wider and more variegated coverage of software tools and
applications compared to any prior works.

Repository \ Description
Code Quality and Testing

PyCQA/flake8 flake8 is a python tool that glues together pycodestyle, pyflakes,
mccabe, and third-party plugins to check the style and quality of
some python code.

Suor/funcy A fancy and practical functional tools

adrienverge/yamllint A linter for YAML files.

agronholm/typeguard Run-time type checker for Python

cknd/stackprinter Debugging-friendly exceptions for Python

cool-RR/PySnooper Never use print for debugging again

getmoto/moto A library that allows you to easily mock out tests based on AWS

pylint-dev/astroid

pytest-dev/iniconfig ~ None

pytest-dev/iniconfig
python/mypy

infrastructure.

A common base representation of python source code for pylint
and other projects

None

Optional static typing for Python

Continued on next page
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Repository

Description

pyupio/safety

pyutils/line_profiler
rubik/radon
spulec/freezegun
sqlfluff/sqlfluff

Safety checks Python dependencies for known security vulnera-
bilities and suggests the proper remediations for vulnerabilities
detected.

Line-by-line profiling for Python

Various code metrics for Python code

Let your Python tests travel through time

A modular SQL linter and auto-formatter with support for multiple
dialects and templated code.

Data Parsing and Transformation

alecthomas/voluptuous

andialbrecht/sqlparse
buriy/python-readability

burnash/gspread
chardet/chardet
cloudpipe/cloudpickle
dask/dask
datamade/usaddress

davidhalter/parso
erikrose/parsimonious
facelessuser/soupsieve
gawel/pyquery
google/textfsm

gruns/furl

gweis/isodate
hukkin/tomli
jawah/charset_normalizer
john-kurkowski/tldextract

joke2k/faker
jsvine/pdfplumber

kayak/pypika

keleshev/schema
kennethreitz/records
kurtmckee/feedparser
lepture/mistune

madzak/python-json-logger
mahmoud/glom

marshmallow-
code/marshmallow
martinblech/xmltodict

matthewwithanm/python-
markdownify
mewwts/addict
mido/mido

CONTRIBUTIONS ONLY: Voluptuous, despite the name, is a
Python data validation library.

A non-validating SQL parser module for Python

fast python port of arc90’s readability tool, updated to match latest
readability.js!

Google Sheets Python API

Python character encoding detector

Extended pickling support for Python objects

Parallel computing with task scheduling

:us: a python library for parsing unstructured United States ad-
dress strings into address components

A Python Parser

The fastest pure-Python PEG parser I can muster

A modern CSS selector implementation for BeautifulSoup

A jquery-like library for python

Python module for parsing semi-structured text into python tables.
URL parsing and manipulation made easy.

ISO 8601 date/time parser

A 1il’ TOML parser

Truly universal encoding detector in pure Python

Accurately separates a URL’s subdomain, domain, and public
suffix, using the Public Suffix List (PSL).

Faker is a Python package that generates fake data for you.
Plumb a PDF for detailed information about each char, rectangle,
line, et cetera — and easily extract text and tables.

PyPika is a python SQL query builder that exposes the full richness
of the SQL language using a syntax that reflects the resulting query.
PyPika excels at all sorts of SQL queries but is especially useful
for data analysis.

Schema validation just got Pythonic

SQL for Humans™

Parse feeds in Python

A fast yet powerful Python Markdown parser with renderers and
plugins.

Json Formatter for the standard python logger

Python’s nested data operator (and CLI), for all your declarative
restructuring needs. Got data? Glom it!

A lightweight library for converting complex objects to and from
simple Python datatypes.

Python module that makes working with XML feel like you are
working with JSON

Convert HTML to Markdown

The Python Dict that’s better than heroin.
MIDI Objects for Python

Continued on next page
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Repository

| Description

modin-project/modin
mozilla/bleach
msiemens/tinydb

pandas-dev/pandas

pdfminer/pdfminer.six
pudo/dataset

pydantic/pydantic
pydata/patsy
pydicom/pydicom
pygments/pygments
pyparsing/pyparsing

python-
jsonschema/jsonschema
python-openxml/python-docx
rlchardjOn3s/parse

scanny/python-pptx
scrapy/scrapy

seperman/deepdiff
sloria/environs
sunpy/sunpy
tkrajina/gpxpy

tobymao/sqlglot
un33k/python-slugify

Modin: Scale your Pandas workflows by changing a single line of
code

Bleach is an allowed-list-based HTML sanitizing library that
escapes or strips markup and attributes

TinyDB is a lightweight document oriented database optimized
for your happiness :)

Flexible and powerful data analysis / manipulation library for
Python, providing labeled data structures similar to R data.frame
objects, statistical functions, and much more

Community maintained fork of pdfminer - we fathom PDF
Easy-to-use data handling for SQL data stores with support for
implicit table creation, bulk loading, and transactions.

Data validation using Python type hints

Describing statistical models in Python using symbolic formulas
Read, modify and write DICOM files with python code
Pygments is a generic syntax highlighter written in Python
Python library for creating PEG parsers

An implementation of the JSON Schema specification for Python

Create and modify Word documents with Python

Parse strings using a specification based on the Python format()
syntax.

Create Open XML PowerPoint documents in Python

Scrapy, a fast high-level web crawling & scraping framework for
Python.

DeepDift: Deep Difference and search of any Python object/data.
DeepHash: Hash of any object based on its contents. Delta: Use
deltas to reconstruct objects by adding deltas together.

simplified environment variable parsing

SunPy - Python for Solar Physics

gpx-py is a python GPX parser. GPX (GPS eXchange Format) is
an XML based file format for GPS tracks.

Python SQL Parser and Transpiler

Returns unicode slugs

Machine Learning and Al

facebookresearch/fvcore
facebookresearch/hydra

HIPS/autograd
iterative/dvc
jaraco/inflect

life4/textdistance

luozhouyang/python-string-
similarity
Mimino666/langdetect
mozillazg/python-pinyin
pndurette/gTTS

Project-MONAI/MONAI
seatgeek/thefuzz

Collection of common code that’s shared among different research
projects in FAIR computer vision team.

Hydra is a framework for elegantly configuring complex applica-
tions

Efficiently computes derivatives of NumPy code.

Data Versioning and ML Experiments

Correctly generate plurals, ordinals, indefinite articles; convert
numbers to words

Compute distance between sequences. 30+ algorithms, pure
python implementation, common interface, optional external libs
usage.

A library implementing different string similarity and distance
measures using Python.

Port of Google’s language-detection library to Python.

PP F B (pypinyin)

Python library and CLI tool to interface with Google Translate’s
text-to-speech API

Al Toolkit for Healthcare Imaging

Fuzzy String Matching in Python

Continued on next page
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Repository

| Description

vi3k6iS/flashtext

Extract Keywords from sentence or Replace keywords in sen-
tences.

System Tools and Protocols

agronholm/exceptiongroup
aio-libs/async-timeout
arrow-py/arrow
borntyping/python-colorlog
cantools/cantools
conan-io/conan
cookiecutter/cookiecutter

dbader/schedule
gruns/icecream
jd/tenacity
mahmoud/boltons

oauthlib/oauthlib

pallets/click
paramiko/paramiko
pexpect/ptyprocess
pyasnl/pyasnl
pyca/pyopenssl
python-hyper/h11
python-trio/trio
rustedpy/result

termcolor/termcolor
theskumar/python-dotenv

tox-dev/pipdeptree

Backport of PEP 654 (exception groups)

asyncio-compatible timeout class

Better dates & times for Python

A colored formatter for the python logging module

CAN bus tools.

Conan - The open-source C and C++ package manager

A cross-platform command-line utility that creates projects from
cookiecutters (project templates), e.g. Python package projects, C
projects.

Python job scheduling for humans.

Never use print() to debug again.

Retrying library for Python

Like builtins, but boltons. 250+ constructs, recipes, and snippets
which extend (and rely on nothing but) the Python standard library.
Nothing like Michael Bolton.

A generic, spec-compliant, thorough implementation of the OAuth
request-signing logic

Python composable command line interface toolkit

The leading native Python SSHv?2 protocol library.

Run a subprocess in a pseudo terminal

Generic ASN.1 library for Python

A Python wrapper around the OpenSSL library

A pure-Python, bring-your-own-I/O implementation of HTTP/1.1
Trio — a friendly Python library for async concurrency and I/O
NOT MAINTAINED - A simple Rust like Result type for Python
3. Fully type annotated.

ANSI color formatting for output in terminal

Reads key-value pairs from a .env file and can set them as envi-
ronment variables. It helps in developing applications following
the 12-factor principles.

A command line utility to display dependency tree of the installed
Python packages

Visualization and Presentation

amueller/word_cloud
lincolnloop/python-qrcode
prettytable/prettytable
pwaller/pyfiglet
rsalmei/alive-progress

weaveworks/grafanalib

A little word cloud generator in Python

Python QR Code image generator

Display tabular data in a visually appealing ASCII table format
An implementation of figlet written in Python

A new kind of Progress Bar, with real-time throughput, ETA, and
very cool animations!

Python library for building Grafana dashboards

Web and API Development

Cog-Creators/Red-
DiscordBot
Knio/dominate

alanjds/drf-nested-routers

A multi-function Discord bot

Dominate is a Python library for creating and manipulating HTML
documents using an elegant DOM API. It allows you to write
HTML pages in pure Python very concisely, which eliminate the
need to learn another template language, and to take advantage of
the more powerful features of Python.

Nested Routers for Django Rest Framework

Continued on next page
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Repository

| Description

benoitc/gunicorn
bottlepy/bottle

django-money/django-money
django/channels
django/daphne
encode/starlette
getnikola/nikola
graphqgl-python/graphene
marshmallow-code/apispec

marshmallow-code/webargs
pallets/jinja
pallets/markupsafe

tornadoweb/tornado

tweepy/tweepy

gunicorn *Green Unicorn’ is a WSGI HTTP Server for UNIX, fast
clients and sleepy applications.

bottle.py is a fast and simple micro-framework for python web-
applications.

Money fields for Django forms and models.

Developer-friendly asynchrony for Django

Django Channels HTTP/WebSocket server

The little ASGI framework that shines.

A static website and blog generator

GraphQL framework for Python

A pluggable API specification generator. Currently supports the
OpenAPI Specification (f.k.a. the Swagger specification)..

A friendly library for parsing HTTP request arguments, with built-
in support for popular web frameworks, including Flask, Django,
Bottle, Tornado, Pyramid, webapp2, Falcon, and aiohttp.

A very fast and expressive template engine.

Safely add untrusted strings to HTML/XML markup.

Tornado is a Python web framework and asynchronous networking
library, originally developed at FriendFeed.

Twitter for Python!

D.1 Bug Generation Statistics

We provide extensive details about different aspects of each of the bug generation strategies, including
the yield rates, labor/monetary costs, and dataset characterizations.

Yield rates. In Table we provide the yield rates for each bug generation method across all
repositories in SWE-smith. In general, we find that the PR Mirroring has the lowest yield rate at
13.18% (although this rate is somewhat higher than SWE-bench’s yield rate of 2294/93139 = 2.46%).
For using LMs to generate bugs, modifying functions to introduce bugs intentionally has a higher
yield than asking LMs to perform a best-effort rewrite. The efficacy of Procedural Modifications
varies by strategy. For instance, shuffling the functions declared in a class only breaks existing test(s)
1.93% of the time, but inverting a conditional will lead to a task instance for 47.04% of modifications.
Finally, combining bug patches has an extremely high yield rate - this is to be expected because we
only attempt to combine bug patches that have been validated as usable task instances breaking 1+
tests.

The number of repositories captured by each bug generation technique varies due to each strategy’s
specific preconditions, which at times may not be effective for some repositories. For instance, the
Procedural (Class *) set of methods only mutates Python classes. This strategy is fruitless for the
minority of SWE-smith repositories that do not define any classes. The Procedural (Op Break Chains)
method randomly removes operations and operands from expressions with two or more operations
(e.g. a + b+ ¢ — a + b) — such expressions are not always present in SWE-smith repositories.

The collective yield rate across SWE-smith’s bug generation strategies is significantly higher than
SWE-bench’s collection strategy.

The yield rate also varies with respect to the repository it is being applied to. We provide a summary
of yield rates by repository in Table[T2] We generally observe that lower test coverage correlates with
a lower yield rate.

Dataset characterizations. In Table we provide statistics about the validated task instances
produced by different bug generation strategies. Our work’s LM-based strategies rewrite one function
in one file. Procedural modifications will also only change one file, but depending on the strategy,
14 functions or classes may be changed. Combining multiple patches from the same file always
produces a patch with 2+ functions edited. Combining across modules produces a patch with 2+ files
edited. The targeted nature of each of the bug creation strategies is reflected in the typical number of
functions and files that the bugs produced by each strategy edits.
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Table 11: Yield rates for different bug generation strategies covered in Section [B| We show the
number of repositories that each strategy was run on, the number of bug candidates generated by each
strategy, and the number of instances, or the number of candidates that were validated to have 1+
Fail to Pass test. The yield rate for

Strategy \ #Repos # Candidates # Instances Yield Rate
Combine (file) 124 6020 5865 97.43%
Combine (module) 65 4396 4227 96.16%
LM (Modify) 108 31950 17887 55.98%
LM (Rewrite) 128 11908 4173 35.04%
PR Mirroring 108 6934 2344 33.8%
Procedural (Class Rm Base) 103 1401 463 33.05%
Procedural (Class Rm Funcs) 103 2506 1180 47.09%
Procedural (Class Shuffle Funcs) 103 2504 47 1.88%
Procedural (Ctrl Invert If) 105 4695 2321 49.44%
Procedural (Ctrl Shuffie) 104 9055 4015 44.34%
Procedural (Op Break Chains) 71 747 225 30.12%
Procedural (Op Change Const) 77 723 257 35.55%
Procedural (Op Change) 81 1507 450 29.86%
Procedural (Op Swap) 87 2141 483 22.56%
Procedural (Remove Assign) 121 5470 2661 48.65%
Procedural (Remove Cond) 120 5288 2311 43.7%
Procedural (Remove Loop) 110 1945 860 44.22%
Procedural (Remove Wrapper) 80 884 368 41.63%
All 129 100074 50137 50.1%

Table 12: Yield rates for different repositories represented in SWE-smith.

Yield Rate | # of Repositories

0-25% 10
25-50% 31
50-75% 60
75-100% 27

In Figure [T4 we show the distributions for different attributes of SWE-smith compared to other
SWE-bench style datasets. Compared to prior works, there is a much higher proportion of task
instances with more than one Fail-to-Pass test. For any one repository, we find that SWE-smith
task instances collectively cause failures for a much higher percentage of the testing suit than other
datasets; a potential benefit of this is that training on SWE-smith based trajectories may expose
models to a much broader set of functionalities in a codebase. The number of lines and files edited by
SWE-smith task instances is highly similar to the trend lines for SWE-bench Verified.

We note that unlike other datasets, the trend line of SWE-smith task instances is “adjustable". In
other words, the Figure[T4] distributions are a capture of the task instances provided in this release of
SWE-smith. However, because of SWE-smith’s flexible bug creation techniques, the distribution can
be “shaped" if needed. For instance, generating more task instances using the bug patch combination
method would shift all three curves in Figure We make this point to highlight the fact that
the attributes of SWE-bench task instances are, in a sense, constrained by real world software
development behavior. On the other hand, SWE-smith can be used to break tests and code that
may not be reflected at all in any existing pull request. In this sense, we argue that LMs trained on
SWE-smith have better “exposure" to a codebase compared to exclusively training on pull requests.

Continuation of scaling execution environments. The validation and evaluation procedures for
SWE-smith deviate slightly from SWE-bench’s harnesses. The main reasons for these differences can
largely be attributed to the granularity of installation specifications. In SWE-bench, each task instance
corresponds to a unique base commit, with additional version and environment_setup_commit
keys needed as indirection for mapping an instance to the correct set of installation and testing
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Table 13: Statistics for attributes of a SWE-smith task instance across different bug generation
strategies, reported as median (IQR), where IQR is the inter-quartile range (25th—75th percentile).

Strategy \ # Instances # F2P A Lines A Functions A Files
Combine 10092 15 (5-48) 19 (12-36) 2(2-3) 1(1-2)
LM 22060 4(1-17) 6 (3-15) 1(1-1)  1(1-1)
PR Mirroring 2344 3(1-14) 20 (8-55) 202-4)  1(1-2)
Procedural 15641 7 (2-32) 7 (5-15) 1(1-1) 1(1-1)
Fail to Pass Tests Lines Edited Files Edited
1.01 1 1 i p————
]
0.81
0.61 ;H///
[] SWE-smith
0.41 SWE-bench Verified
[ SWE-bench
0.2 1 [ SWE-bench Multimodal
[] SWE-gym
00075 10 15 20 25 30 0 20 40 60 8 100 0 2 4 6 8 10

Figure 14: Comparison of cumulative distributions for Fail-to-Pass tests along with the lines and files
edited by the gold patch across SWE-smith and four SWE-bench style datasets.

instructions. Across time, the continuous evolution of a repository and its dependencies make for an
incredibly high degree of variability in how a repository should be installed correctly. To solve this
variability, the community has resorted to creating an image per task instance, as done in Chowdhury
et al. [9]]. Therefore, for 2294 SWE-bench task instances, there are 2294 unique Docker images, each
at a size of at least several gigabytes (~ 5-6 GBs).

On the other hand, the simplicity and scalability of SWE-smith’s design allows one to support many
task instances with comparatively much fewer Docker images. As mentioned above, installation and
testing procedures are (repository, commit) specific. Therefore, when bugs are generated from each
(repository, commit), all bugs can be reproduced and tested successfully from the same Docker image.
In other words, if I generate 100 bugs for a repository at some commit, instead of 100 Docker images,
only a single Docker image is required to run inference on any of the 100 task instances.

This design is what enables SWE-smith to be significantly more space-efficient than SWE-bench.
Based on the publicly released images, for SWE-bench’s 2294 task instances, 1.2 TBs of storage are
required to download all Docker images locally. for SWE-bench Multimodal’s 517 task instances,
1.2 TBs are required. The higher per-instance Docker image size for SWE-bench Multimodal is
due to how JavaScript dependency management tools (e.g. npm) require more storage compared
to equivalent Python infrastructure (e.g. pypi). Pan et al. [31] states that each image for the 2438
instances an average of 2.6GB, totaling 6 TB of storage total. Such a storage requirement can be a
significant barrier for academic practitioners.

On the other hand, with more than 20x the number of bugs, SWE-smith requires only 125 Docker
images total, corresponding to the number of unique (repository, commit) pairs (in this work, for
each repository, we only determine installation and test specifications for one commit). The 125
images require a total of 290.54 GBs. In summary, compared to SWE-bench’s task collection strategy,
SWE-smith’s design makes it easier to not only create task instances, but also train on them as well.

D.2 Case Study: SWE-bench & SWE-smith

To better understand the differences between the SWE-bench and SWE-smith collection strategies,
we perform SWE-smith collection on the pallets/flask GitHub repository, one of the 12 test split
repositories from the original SWE-bench benchmark. We review the steps covered in Section [2.1]
applied to pallets/flask in detail. First, we defined the installation and testing specifications
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for the pallets/flask repository at commit bc09840. Next, we apply the LM modification bug
generation strategy to this version of the repository, generating 267 unique bugs.

We observe several differences. First, the SWE-smith collection strategy yields a much higher number
of bugs outright. From SWE-bench, 11 task instances are from the pallets/flask repository.
The task instances were originally filtered from 2434 pull requests (PRs), with 107 satisfying SWE-
bench’s filtering criteria of (1) being linked to one or more issues and (2) featuring 1+ new tests. Out
of these 107, the 11 (0.45% of 2434) task instances represent the proportion of PRs that execution
environments could be successfully constructed for. On the other hand, running the function-level
rewriting strategy for bug generation originally yielded 402 candidates, of which 267 were determined
to be valid task instances.

Second, SWE-smith requires significantly less human effort while only incurring minor costs. Col-
lecting the 11 pallets/flask task instances (steps include scraping PRs, determining repository
versions across time, defining version-specific installation/test specifications, running execution-based
validation multiple times) took an estimated 38 hours worth of human labor. On the contrary, defining
installation and testing specifications for the latest commit of pallets/flasks took 10 minutes.
The subsequent function-level rewriting strategy for bugs took 23 minutes to run, incurring a total
cost of just $2.47 (~$0.00613 per instance). The final execution-based validation step that filters out
402 — 267 = 135 unqualified bug candidates ran in 14 minutes. Since both the bug and problem
statement generation strategies are repository agnostic, no additional human intervention is necessary
for these steps. Head to head, per instance for the pallets/flask repository, SWE-bench style
collection requires 38 x 60/11 = 207.27 minutes compared to 0.176 minutes (~ 10.6 seconds) and
$0.00613 in API costs using SWE-smith.

Third, collectively, SWE-smith task instances break a significantly larger proportion of existing tests
in a codebase. We define “bug coverage" as the proportion of tests broken by 1+ instance across
all task instances. For the SWE-bench split of pallets/flask, there are 207 unique tests across
all 11 instances. Of these 207 tests, 15 are broken by 1+ instance, corresponding to a bug coverage
rate of 7.25%. For the SWE-smith split of pallets/flask, there are 474 unique tests across 267
instances. The larger amount of tests is due to increased test coverage in the pallets/flask
repository as of Nov. 28, 2024 (when SWE-smith was collected) compared to June 2023 (when
SWE-bench was collected). Of these 474 tests, 422 are broken by 1+ instance, a bug coverage rate of
89.03%. We attribute the significant difference to a consistent tendency in real world open source
software development workflows, that is, the minority of tests are introduced to capture existing,
errant behavior in the repository. The significant majority of tests are committed alongside working
code, ensuring that already correct behavior is upheld. Well-maintained repositories will typically
not merge commits that cause such tests to fail. This results in a large number of tests where few to
no commits correspond to those tests’ failures.

Finally, SWE-smith does not yield instances appropriate for evaluation. The SWE-smith pipeline as
presented does not produce hidden tests, a crucial difference that makes SWE-bench more suitable
for evaluation. Consequently, when expert trajectories are generated, the Fail-to-Pass tests are present
in the repository at inference time. Furthermore, our issue generation strategy does not include
checks for known problems such as underspecified text descriptions or solution leakage [9]]. Simple
amendments could make SWE-smith task instances suitable for evaluation, such as deleting Fail-to-
Pass test functions or files along with a validation procedure around the ambiguity and leakage of
the issue text. Finally, thorough analyses of how faithful SWE-smith task instances are to real world
issues and PRs would be necessary to justify synthetic bugs for evaluation.

E Difficulty Rating

We train a model that labels a task with one of three difficulty labels: < 15 minutes (easy), 15 minutes
- 1 hour (medium), and 1+ hour (hard). This model allows us to quantify the difficulty of individual
task instances and, in aggregate, the difficulty of entire datasets.

To train this model, we use 1699 annotations from Chowdhury et al. [9]. In their work towards
curating SWE-bench Verified, a subset of 1699 SWE-bench task instances were labeled with four
difficulty levels: < 15 min, 15 min - 1 hr, 1-4 hrs, and 4+ hrs. Generally, three annotators were
assigned to each instance, and the difficulty annotations were ensembled by taking the majority
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Figure 15: Distribution of task instance difficulty ( / /hard) for existing SWE-bench style

datasets (left 5 bars) and SWE-smith (right 5 bars), assessed by our difficulty rating model. The
average difficulty score for each dataset is listed above each bar. For SWE-smith, per bug strategy,
we sample 1000 task instances with LM generated issue text.

choice for a sample, or the median if there is no majority. The distribution of annotated difficulties,
from easiest to hardest, is 24.5%, 53.5%, 19.4%, and 2.8%.

Because there are very few samples in the 4+ hr category, we reclassify the 1-4 hr and 4+ hr instances
into a single 1+ hr category. Next, we create corresponding train and test datasets at a 80/20%
split, randomly shuffling the instances while ensuring the train and test distributions do not deviate
significantly from the original. An instance’s problem statement and solution patch are provided
as input, and one of the three difficulty labels serves as the target output. We perform LoRA fine-
tuning [13]] on a Qwen 2.5 32B Instruct model using the Unsloth [10] library. The model achieves an
accuracy of 75.3% on the test set. All errant predictions are off by one; in other words, the model
never predicted < 15 min when the label was 1+ hr, and vise versa.

Using this model, we can grade the difficulty of a SWE-smith instance once the bug patch and
corresponding issue text have been created. To provide a succinct summary of difficulty for a dataset
of SWE-bench style task instances, we propose a “difficulty score" metric. Each label corresponds to
a numeric difficulty score of 1, 5, and 9, from easiest to hardest. The difficulty score is therefore the
average difficulty score across all task instances.

Figure [I5] summarizes our findings for difficulties across different SWE-bench style datasets. We
provide a more thorough rundown of task instances per difficulty level in Table We find that
different SWE-smith bug generation methods yield different levels of difficulty. LM Modify are
consistently rated to be easy - from several manual spot checks, we notice that while the prompt for
LM Modify provides several examples of types of bugs and does not name specific issues to create,
the large majority of bugs created by this strategy are simple variable assignment mistakes (e.g. a=a;
b=b is changed to a=b; b=a). An open-ended prompt like ours does not actually yield high diversity
in terms of mistakes created. Procedural modifications are, as expected, the next easiest, as the types
of bugs created by this strategy are finite. PR Mirrors and LM Rewrites yield much harder tasks,

Table 14: The score is averaged over all task instances, where easy/med/hard corresponds to 1/5/9.
For SWE-smith, we sample 1000 task instances per bug strategy.

Dataset | #Instances Score easy med hard
SWE-bench 2294 5.014 438 1408 446

Lite 300 3.893 93 197 10

Verified 500 3.960 173 284 43
SWE-bench Multimodal 510 6.036 55 265 186
SWE-gym 2438  5.625 288 1456 664

Lite 230 3.890 67 156 4
SWE-smith (LM Modify) 1000 3.304 441 542 17
SWE-smith (LM Rewrite) 1000 5.272 68 796 136
SWE-smith (Procedural) 1000  3.596 374 603 23
SWE-smith (PR Mirror) 1000 4.876 206 619 175
SWE-smith (Combine) 1000 5.720 52 716 232
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confirmed not only by our bug rating model, but also the lower average resolve rate on these tasks by
our expert model (SWE-agent + Claude 3.7 Sonnet). Finally, aggregating smaller functions together
is a simple but effective strategy for creating bugs that are rated as more complex. This effect aligns
with our original expectations; generally, bugs that require editing more functions and files tend to be
rated as more difficult. SWE-smith can be used to create task instances with a range of difficulties.

F Experiments

In this section, we provide additional details about the configurations and parameters used to generate
trajectories with an expert model and run inference on a fine-tuned model. We then provide additional
ablations and analyses about the SWE-smith dataset and the agents trained on SWE-smith.

F.1 Training Details

Rejection sampling fine-tuning. Our fine-tuning setup heavily inherits from Pan et al. [31]]’s work.
We perform full parameter fine tuning using the torchtune [32] library, with learning rate 5e-5,
maximum 3 epochs, and max context length of 32768. Training was carried on Modal on
2-8 NVIDIA H100 80G GPUs. As discussed in Section [3} the procedure for rejection sampling
fine-tuning (RFT) is as follows. We first generate expert demonstrations/trajectories using SWE-agent
and a “strong" model (e.g. Claude 3.7 Sonnet, GPT 40) on SWE-smith task instances. Of these, we
then only train a student model on the trajectories corresponding to resolved instances.

Task Instance Prompt provided to SWE-agent

<uploaded_files>

{{working_dir}}

</uploaded_files>

I’ve uploaded a python code repository in the directory {{working_dir}}. Consider the
following PR description:

<pr_description>
{{problem_statement} }
</pr_description>

Can you help me implement the necessary changes to the repository so that the requirements
specified in the <pr_description> are met? I’ve already taken care of all changes to any of
the test files described in the <pr_description>. This means you DON’T have to modify the
testing logic or any of the tests in any way! Your task is to make the minimal changes to
non-tests files in the {{working_dir}} directory to ensure the <pr_description> is satisfied.
Follow these steps to resolve the issue:

1. As afirst step, it might be a good idea to find and read code relevant to the <pr_description>
2. Create a script to reproduce the error and execute it with ‘python <filename.py> " using
the bash tool, to confirm the error

3. Edit the source code of the repo to resolve the issue

4. Rerun your reproduce script and confirm that the error is fixed!

5. Think about edgecases and make sure your fix handles them as well Your thinking should
be thorough and so it’s fine if it’s very long.

. J

SWE-agent configuration. We use two different configurations, one for generating trajectories with
an expert model, and a separate one for running inference on the fine-tuned Qwen, student models.
The configurations are generally quite similar, with minor differences around how LMs’ responses
are elicited, the parsing mechanism for an LM response, constraints around message sizes, and the
system prompt.

We will first review the information common to both configurations. The prompt template informing
an agent of the task’s nature and problem statement is included in Figure [FI} This prompt is very
similar to the original SWE-agent prompt used in Yang et al. [49]]. The prompt templates for showing
environment feedback are identical as well. If there is execution output, the text is simply preceded
by OBSERVATION: [output]. If there is no output (e.g rm -r succeeds silently), then the agent is
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informed “Your command ran successfully and did not produce any output". The agent computer
interface (ACI) provided is also identical; SWE-agent provides LM with access to three general tools:

* bash: Execute a bash command in terminal.

* str_replace_editor: A tool for viewing, creating, and editing files.

e submit: A special keyword for the LM to indicate the task is completed or if it is unable to
proceed further with the task.

We briefly review the distinctions. First, tool invocation works differently for expert versus student
models. For the Claude and GPT series models that are used as experts, we use function calling for
models to invoke the aforementioned tools. On the other hand, the student model is asked to generate
a response with XML tags to delineate the thought and action. Therefore, when fine-tuning on expert
trajectories, a key processing step is to convert the expert trajectories’ function calling format into the
XML style response — fine-tuning directly on the expert trajectories does not work.

We note that we use these particular settings because as of the publication of this paper, this tool
setting reflects the absolute state-of-the-art performance achieved with an open source agent system
(SWE-agent) and any existing LM (Claude 3.7 Sonnet). It is certainly possible to explore more tool
designs and experiment with different formatting calls, as many existing prior works, notably Yang
et al. [49]], have performed. However, given the focus of our work, we do not bother with repeating
such a "hyperparameter sweep" across configurations for the agent system, as this effort is expensive
and has already been performed to suggest that the configuration we are using is ideal for expert level
performance.

For generating trajectories with expert models, we run with a maximum of 75 steps and a cost limit of
$2.00. A run terminates automatically when either of these limits are reached or the context window
of the expert model is exceeded. The overwhelming majority of automatic terminations are due to the
75 maximum steps limit.

For running inference with student models, we run with a maximum of 75 steps or a cost limiﬂ
of $2.00, where the run similarly terminates when either the steps, cost or context window limit is
reached. For the student model, per LM inference call, we truncate the message history to only keep
the 5 most recent tool outputs. While we occasionally sample trajectories with the expert model set at
various temperatures, for the student model, the temperature is fixed at 0.0.

F.2 Evaluation Datasets

SWE-bench. SWE-bench is a widely used benchmark that evaluates Al systems on their ability
to resolve GitHub issues [18]. Given a codebase along with a description of a bug or feature, the
Al system is asked to modify the codebase in such a way that the issue presented in the descrip-
tion is resolved. SWE-bench consists of 2294 such task instances, collected from real world pull
requests (PRs) and issues in 12 GitHub repositories that are predominantly Python. As discussed in
Section [3] the Lite and Verified subsets are curated from the main SWE-bench repository with the
goal of making evaluation either more efficent or more reliable. Since evaluation on the entirety of
SWE-bench is fairly costly and does not have as many comparable references, we do not evaluate
SWE-agent-LM-32B on the entire SWE-bench test set.

SWE-bench Multimodal. SWE-bench Multimodal applies SWE-bench collection strategy to 12
additional predominantly JavaScript and TypeScript GitHub repositories, where task instances are
associated with issues that have visual asset(s) in them [50]. The evaluation dataset consists of 510
task instances. While the original work evaluates vision language models (VLMs) specifically, we do
not evaluate SWE-agent-LM-32B which, as it is based on Qwen 2.5 Coder Instruct, does not have
the ability to process images as inputs.

SWE-bench Multilingual. SWE-bench Multilingual is an evaluation dataset consisting of 300 task
instances that we introduce with this work. A single author carried out SWE-bench’s collection
strategy for 42 additional GitHub repositories, covering the following 9 programming languages:
JavaScript, TypeScript, C, C++, Go, Java, PHP, Ruby, and Rust. These repositories span a wide range
of application domains, including web frameworks, data storage and processing tools, core utilities,
and widely used libraries. A brief summary of the dataset is presented in Table[T5]

3We include the cost limit in addition the step limit to provide realistic behavior with respect to handling
long context. To calculate a cost value for our model, we use the gpt-4o cost function as of April, 2025.
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Table 15: Number of task instances per repository and language in the SWE-bench Multilingual
evaluation set. The entire dataset includes 300 task instances covering 9 languages.

jqlang/jq 9
redis/redis 12
micropython/micropython 5 apache/druid 5 rubocop/rubocop 16
valkey-io/valkey 4 reactivex/rxjava 1 jekyll/jekyll 5
nlohmann/json 1 apache/lucene 9 faker-ruby/faker 2
fmtlib/fmt 11 projectlombok/lombok 17 fastlane/fastlane 7
C/Cit 1 google/ gson 9 ﬂuent/ﬂhuentd 12
javaparser/javaparser 2 jordansissel/fpm 2
prometheus/prometheus 8
caddyserver/caddy 14 Java 43 Ruby a4
gin-gonic/gin 8 babel/babel 5 tokio-rs/axum 7
hashicorp/terraform 5 mrdoob/three.js 3 nushell/nushell 5
gohugoio/hugo 7 vuejs/core 5 sharkdp/bat 8
preactjs/preact 17 burntsushi/ripgrep 2
Go 42 . . . .
axios/axios 6 uutils/coreutils 5
briannesbitt/carbon 10 immutable-js/immutable-js 2 tokio-rs/tokio 9
laravel/framework 13 facebook/docusaurus 5 astral-sh/ruff 7
phpoffice/phpspreadsheet 10 JS/TS 43 Rust 43
php-cs-fixer/php-cs-fixer 10
PHP 43

Like SWE-bench Verified, we curate the dataset by excluding task instances deemed by a team of
three authors to have ambiguous or underspecified issue text. Each task instance edits (meaning
additions and removals) on average 48 lines of code. Similar to SWE-bench and SWE-smith, the
median number of Fail-to-Pass tests is one.

We introduce SWE-bench Multilingual to:

1. Provide a benchmark to evaluate model and agent performance across a variety of program-
ming languages and application domains. Existing agent systems often rely on Python-
specific tooling, effectively overfitting to the original SWE-bench [50]. Although SWE-
bench Multimodal addresses this to some degree, its focus on visual inputs is a confounding
factor for text-only evaluation of software engineering capabilities.

2. Remain fully compatible with SWE-bench, so current users can adopt it without changing
infrastructure.

3. Keep the dataset small enough to run quickly. While concurrent work like Zan et al. [55]]
provides more task instances in multiple languages, we purposely constrain the number of
task instances so that the dataset is easy to run quickly.

In §F.4] we briefly discuss how performance by existing state of the art methods for SWE-bench is
markedly worse on SWE-bench Multilingual, then offer some clear directions for potential next steps
to build better agentic coding models that would involve extending SWE-smith.

F.3 Trajectory Dataset Breakdown

We provide a thorough review of the dataset of SWE-agent trajectories released with this work in
Table The majority are generated with claude-3-7-sonnet-20250219. To compare with prior
work, a minority were generated with claude-3-5-sonnet-20240620 and gpt-40-2024-08-06.
As mentioned in Section[d] to guard against the easy data bias phenomenon, we impose a per-instance
cap of 3, meaning for any task instance, we include at most 3 trajectories successfully resolving that
task instance in our fine-tuning dataset. From the pool of trajectories reflected in Table[I6] we curate
a set of 5000 trajectories that we then use to train SWE-agent-LM-32B.

Tables[17) and [I8]show what repositories and bug types are represented in the final training dataset. In
total, 123 repositories are represented, with at least 10 trajectories from 91 repositories. Trajectories
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Table 16: Breakdown of trajectories sampled from SWE-smith. Trajectories were generated from
subsets of SWE-smith that were either for the purpose of ablations or performance. All trajectories
were generated with a maximum of 75 steps and a $2 cost limit.

Purpose Bug Gen. Issue Gen. | #Instances Temp. # Traj.
. claude-3-7-sommet-202502t9
Ablation LM (Modify) LM 1000 0 605
(Bug Type) LM (Rewrite) LM 1000 0 507
Procedural LM 1000 0 745
PR Mirrors LM 1000 0 557
Ablation PR Mirrors Fixed 600 0 259
(Issue Type) PR Mirrors F2P Test 600 0 390
PR Mirrors Original 600 0 328
PR Mirrors LM 600 0 319
Ablation Procedural LM 1000 0 721
(Repositories) Procedural LM 1000 0 709
Procedural LM 1000 0 723
Procedural LM 1000 0 707
Final Dataset LM (Rewrite) LM 3574 0 1003
Curation PR Mirrors LM 1049 0 349
. claude-3-5-sommet-20250219
Compare with prior work  All LM \ 800 0 535
. gpt-4o-2024-08006
Compare with prior work  All LM \ 200 0 89

Table 17: Bug types represented in fi- Table 18: Top ten repositories by number of trajectories

nal training dataset. represented in final dataset for main result.
Bug Type | Count Repository Count | Repository Count
Combine (Flle) 123 getmoto/moto 378 sqlfluff/sqlfluff 122
Combine (Module) 7 pandas-dev/pandas 320 pylint-dev/astroid 110
LM (MOdlfy) 11 conan-io/conan 243 pydicom/pydicom 103
LM (RCWI‘itﬁ) 1532 pydantic/pydantic 209 tobymao/sglglot 101
Procedural 1495 iterative/dvc 181 pygments/pygments 99
PR Mirror 1848 dask/dask 139 scanny/python-pptx 98

are on average 58 turns long, meaning an LM typically takes 29 actions for a given demonstration
trajectory. We visualize this distribution in Figure[16]

F.4 Training Analyses

We provide additional experiments and discussions around training SWE-agent-LM-32B.

Pass@k trend line. To calculate the Pass@1 score discussed in our main result, we ran SWE-agent
with SWE-agent-LM-32B six times. In Figure[T7] we observe increasing performance at higher values
of k, a phenomenon that reflects observations in prior works across LMs for software engineering,
code generation, web navigation, and theorem proving. While we do not explore work around
inference time scaling and training a separate verifier model to select the best solution candidate
generated by multiple roll-outs, as done in Pan et al. and Jain et al. [16], SWE-agent-LM-32B
is fully compatible with the generate-then-select pipelines explored by such works. Given its strong
Pass@1 performance, SWE-agent-LM-32B would likely be quite competitive for Best@k results as
well. As mentioned before, all trajectories generated in the course of SWE-smith have been released
publicly, which the community might find useful for training better verifiers.
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Figure 16: Distribution of number of turns for trajectories represented in the final dataset.

Rejection sampling fine-tuning ablation. To confirm that rejection sampling fine-tuning leads to
better performance on the downstream task, we compare against a setting where we randomly sample
n training points with no filtering criteria, atn = [100, 200, 400, 800, 1600] and fine-tune
the same student model (Qwen 2.5 Coder Instruct 32B. We then run SWE-agent with each student
model on the SWE-bench Verified dataset three times, with the “% Resolved" corresponding to the
Pass@1 score. We show results in Figure[I8] which confirms that fine-tuning only on trajectories
corresponding to successfully resolved tasks is better than randomly sampling trajectories.

SWE-bench Multilingual performance. To assess how well SWE-agent-LM-32B and existing
models generalize to non-Python coding domains, we evaluate the performance of our model, Qwen
2.5 Coder Instruct 32B, and Claude 3.7 Sonnet with SWE-agent on our new dataset, which we
introduced in Section[F2} Out of 300 task instances, we found that Claude 3.7 Sonnet achieved a
43% Pass @1 resolve rate, which is significantly better than SWE-agent-LM-32B (8.4%) and Qwen
2.5 Coder Instruct (6.5%). SWE-agent-LM-32B does not demonstrate a significant improvement
over the baseline model. Through several spot checks of different trajectories, we came to a working
hypothesis that while the rejection sampling fine-tuning process had improved its ability to carry out
multi-turn interactions in this task setting, there were instances where code edits reflected syntax
closer to Python despite code and files viewed in previous steps clearly not being written in Python.

While the result for SWE-agent-LM-32B SWE-bench Multilingual is clearly subpar, we are excited
by such a finding, as it motivates future work on top of SWE-smith. To elaborate, we expect that the
path to open agent coding models capable of generalizing to many repositories and languages will
be paved by more data and better training techniques, both of which SWE-smith is very capable of
facilitating. First, regarding data, although we wrote SWE-smith to be Python centric, the collection
methodology and bug generation techniques (especially LM based methods) should be readily
transferable to other repositories. Second, the negative result on SWE-bench Multilingual provides a
clear impetus for exploring whether better training techniques could lead to models that are trained
on one code domain (e.g., Python), but can generalize to many languages and repositories.

55.0 54.8 50
’ 534 Rejection Sampling
52.51 51.5 40+ .
. = No Filter 334
) ] 30.1
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Figure 17: SWE-agent-LM-32B Pass@k curve Figure 18: We confirm that rejection sampling
on SWE-bench Verified. We observe higher % fine-tuning leads to better performance than ran-
resolved when considering more runs. dom sampling of trajectories for training.
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strongly on the prescribed step limit. mitted before a given step limit.

F.5 Agent Behavioral Studies

F.5.1 Turn counts and cost

While agents are frequently quoted with a singular cost-per-instance number, this can be very
misleading in the case of SWE-agent-LM-32B. Because most of the failed instances fail due to
termination by the cost or turn count limit, the average cost and turn counts depend strongly on these
limits (see Fig. [T9).

We can also chart the number of resolved instances vs step limits. To avoid reevaluating the agent
with multiple step limits, we use one run with step limit 75 and then assume that a successful agent
run that terminates after step n would have failed when restricted by a limit smaller than n. This
chart corroborates the point made in section[3} SWE-agent-LM-32B has a higher resolution rate for
very low step limits.

F.5.2 Analysis of agent action space

Reduction to base commands. In addition to the dedicated tools provided to the agent as
part of the agent computer interface (Section [F.I), the agent can execute arbitrary bash com-
mands. This makes quantitative analyses of the agent action space challenging. For exam-
ple, the agent might issue commands like PYTHONPATH=/testbed/repo cd /testbed/repo &&
python3 reproduce.py. We have found the following procedure to determine a base command
effective to meaningfully describe the action:

1. Strip any environment variable manipulation from the beginning of the command.
2. When multiple commands are chained with && or semicolons, only consider the last com-
mand.

3. Remove all arguments. Because some commands have subcommands (e.g., git checkout),
we apply several basic heuristics to determine whether to keep the first or the first two words.

Repetitive actions. We determine the longest repetitive sequence of actions by determining the
longest sequence of identical base commands within the agent actions. Note that this means that e.g.,
str_replace_editor view actions that target different files are considered to be repetitive actions

as far as this analysis is concerned.

F.5.3 Failure mode analysis
Categorizing the failure mode proceeds as shown in Figure

1. Error conditions: If the agent terminates due to an error (environment errors, inability of
the LM to correctly format its messages, etc.) or because it exceeded its maximum context
window, we return the error or context category.

2. Early termination: If the agent was terminated because of a step or cost limit, we return
one of the stuck ... subcategories. Note that the SWE-agent still attempts to extract a
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Figure 21: Categorizing failure modes

submission (list of changes/patch). We determine the subcategory based on which part of
the workflow agentic loop was terminated:

(a) If no source (i.e., non-test) file was modiﬁe(ﬂ and no attempt at testing was made, we
return stuck at localization. If test commands were run (i.e., python, pytest, ..., or
similar commands), we return stuck at reproduction.

(b) If source files were modified, we check whether the changes include changes to all
source files that are modified in the gold patch. If not, we return incorrect localization
(stuck), else incorrect edit (stuck).

3. Successful submission: If the agent terminated and submitted a solution naturally, we
return incorrect localization or incorrect edit, depending on whether the changes from the
submitted patch included changes to all files from the SWE-bench gold patch.

F.5.4 Mitigating repetitive actions

As described in section [f.2] SWE-agent-LM-32B frequently shows highly repetitive actions for
unresolved instances. In light of this, it seems promising to investigate whether agent scaffolding
interventions can be used to mitigate the problem and increase the success rates.

We make the following modification to the agent scaffold:

* We add warning messages to the observation (command output) if a base command is
repeated four (str_replace_editor view) or six (any other base command) times. The
warning message advises to try different commands, and in particular suggest to locate
relevant context using find or grep.

 If the warning messages do not break the string of repetitive base commands and the
repetition length reaches 6 (str_replace_editor view) or 8 (any other base command),
every following action is resampled up to 10 times, stopping at the first base command that
is distinct from the previous ones. To further increase the likelihood of breaking the cycle,
we inject assistant messages or raise the temperature if the repetition length reaches 7 or 9.

*We exclude added files because solving SWE-bench instances always requires changes to existing files.
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Figure 22: Scaffold interventions can drastically reduce the number of repetitive actions.

This effectively reduces the number of repetitive actions (see Fig.[22). However, the overall number
of resolved instances drops slightly to 192 (38.4%). Variations of the above strategies yield similar
outcomes: while repetition is suppressed, success rates do not improve substantially. This may
suggest that repetitive actions are better understood as symptoms of the model’s difficulty in solving
an instance (such as when the instance is out-of-distribution or particularly challenging) rather than
constituting intrinsic failure modes.

G Miscellaneous

Teaser figure description. We briefly describe how the left hand graph of Figure[T] which depicts
scaling of task instance collection for the SWE-smith vs. SWE-bench, was created. For SWE-smith,
we simply collected the number of task instances for each repository. For SWE-bench, we ran the
SWE-bench task instance candidate collection script on all 128 repositories, which first crawls all
PRs from a given repository. Then, each PR that edits at least one or more Python files and changes
at least one or more testing related files is converted into a candidate task instance. Finally, based on
the average task instance yield rate reported in Jimenez et al. [[18]], we estimate the number of viable
task instances to be 20% of the candidates. We then determine the number of task instances for n
repositories at intervals of 5 repositories ranging from 5 to 250, where the repositories are sorted by
number of stars. In other words, the first five repositories we account for in the figure are the five
with the fewest number of stars out of the 128 repositories used.

Extended related works. We discuss additional related works briefly, primarily about similar
work towards synthesizing trajectories for training LM agents, but for the domain of web tasks.
To improve the interactive capabilities of open source LMs [7]], prior works have also explored
trajectory generation techniques for web benchmarks and settings [45, 51, 159]]. For web navigation,
existing strategies rely on (1) performing random walks which are then labeled retroactively with
instructions [43| 25]], (2) using online web tutorials as a source of indirect supervision for generating
synthetic trajectories [30], or (3) collecting human demonstrations [34}47]]. These procedures do not
translate well to the software engineering setting; random sequences of command line interactions
usually do not achieve meaningful effects on a codebase. Our cursory efforts around replaying
trajectories synthesized from online code edit sequences (e.g. GitHub commit histories) were
unsuccessful due to the limited information available, which primarily capture file-level changes
without reflecting the underlying skills, decision-making, or the broader context of a software
development process.

Our exploration of using SWE-agent to automatically determine installation and testing specifications
for a repository is heavily influenced by two research directions - automatic execution environment
construction using LMs [6, |11} 137]], and generating unit tests using LMs [26]. Although relatively
much less than SWE-bench style collection, SWE-smith still requires minimal amounts of human
labor (around 8 minutes total per repository). As we expand SWE-smith to more repositories and
languages, we are continuing to consider how to completely automate the environment construction
process end to end.
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Societal Impacts. While SWE-smith introduces powerful capabilities for generating software
engineering training data at scale, we are mindful of its potential societal impacts and have taken
steps to mitigate associated risks. For example, although automated bug generation could in principle
be misused to introduce vulnerabilities, our system is explicitly designed to operate in isolated,
sandboxed environments. We do not create or submit any artifacts to real-world repositories, ensuring
that our methods do not interfere with ongoing development or introduce instability into open-source
projects. All bug generation techniques are well documented, and we release data only after rigorous
validation, including filtering for test-breaking changes and confirming reproducibility. We also
address fairness and privacy concerns by targeting a diverse set of repositories and avoiding the
collection or use of contributor metadata. While systems trained on SWE-smith may produce incorrect
outputs even when functioning as intended, we encourage human-in-the-loop workflows and provide
infrastructure for auditability and monitoring. On the positive side, SWE-smith significantly lowers
the barrier for building open-source software engineering agents, enabling broader participation in
research and innovation. It supports advances in program repair, debugging, and education, and
facilitates the study of agent behavior in realistic settings—ultimately helping make software systems
more reliable and accessible.
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