
Proceedings of Machine Learning Research – nnn:1–12, 2025 Full Paper – MIDL 2025

Enhancing Contrastive Learning for Retinal Imaging via
Adjusted Augmentation Scales

Cheng, Zijie1 zijie.cheng.23@ucl.ac.uk
1 UCL Department of Medical Physics & Biomedical Engineering, United Kingdom

Li, Boxuan1 b.li.22@ucl.ac.uk
Altmann, Andre1,2 a.altmann@ucl.ac.uk
2 UCL Hawkes Institute, United Kingdom

Keane, Pearse3 p.keane@ucl.ac.uk
2 UCL Institute of Ophthalmology, United Kingdom

Zhou, Yukun2,3 yukun.zhou.19@ucl.ac.uk

Editors: Accepted for publication at MIDL 2025

Abstract
Contrastive learning, a typical self-supervised learning strategy, operates on bringing similar
data together while pushing dissimilar data apart in latent space. This approach extracts
robust and discriminative representations, thus being widely used in natural computer vi-
sion tasks, such as object classification. However, unlike natural images, medical images
(e.g., retinal images) tend to share substantial similarities in imaging area and anatomical
tissues, leading to a denser distribution in latent space. As a result, the default use of strong
augmentations in contrastive learning potentially exacerbates this intensive distribution in
retinal images, making it difficult to distinguish between genuinely similar and dissimilar
data, and therefore hindering model pre-training convergence. In this paper, we hypothe-
sise that weaker augmentations are better suited to contrastive learning for medical image
applications, and we investigate model performance under various augmentation strate-
gies. Our study includes six publicly available retinal datasets covering multiple clinically
relevant tasks. We assess the models’ performance and generalizability via extensive exper-
iments. The model pre-trained with weak augmentation outperforms the one pre-trained
with strong augmentation, achieving approximately a 6% increase in AUPR (P<0.001)
and a 12.5% increase in sensitivity (P<0.001) on MESSIDOR-2. Similar improvements are
observed across other datasets. Our findings suggest that optimizing the scale of augmen-
tation is critical for enhancing the efficacy of contrastive learning in medical imaging. The
model weights and relevant code are available at: https://github.com/ziijiecheng/Enhance-
contrastive-SSL-for-Retinal-Imaging.
Keywords: contrastive learning, augmentation scales, data distribution, retinal imaging

1. Introduction

Contrastive learning is a machine learning paradigm that pulls similar data points (e.g.,
images rotated from the same image) closer and pushes dissimilar ones (e.g., images ro-
tated from different images) farther apart in the latent space without relying on explicit
labels (Lê Khác et al., 2020; Jaiswal et al., 2020). Such an approach trains the model
to learn generalizable features. Although pre-trained only on unlabeled data, the models
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Figure 1: Figures (a) and (b) illustrate the distribution of distances between positive pairs
and negative pairs in both natural and medical image domains. Figure (c) presents the
project pipeline: unlabeled data is used to pre-train contrastive learning models while inves-
tigating various augmentation strategies. The blue dots and yellow dots indicate augmented
images from different original images. The goal of this approach is to enhance feature clus-
tering and improve the accuracy of retinal disease classification.

have demonstrated comparable or even better performance compared to supervised learning-
based methods (Misra and Maaten, 2019; Hendrycks et al., 2019). In natural image domain,
contrastive learning has achieved promising results in diverse tasks such as object detection
(Xie et al., 2021), image classification (Zeng and Xie, 2020), and video analysis (Singh et al.,
2021). Compared to generative learning, contrastive learning has shown better effectiveness
in various applications (Oquab et al., 2024; Caron et al., 2021; Liu et al., 2020). However,
whether this observation extends to medical images remains underexplored.

Recent research has started comparing contrastive learning and generative learning in
medical artificial intelligence (AI). For instance, RETFound (Zhou et al., 2023), a foundation
model for retinal images, employed a generative learning strategy named the Masked Au-
toencoder (He et al., 2021) for model development and demonstrated superior performance
compared to contrastive learning methods in retinal disease classification. Understanding
the reasons behind this inconsistency and developing a simple yet efficient solution to im-
prove contrastive learning for medical imaging is crucial.

The suboptimal performance of contrastive learning in medical imaging is likely due to
inherent differences between the distributions of natural and medical images (Wen et al.,
2021). Natural images are colorful with varying pixel intensities, while medical images are
usually grayscale and structurally similar, especially within the same organ or tissue type
(Legras et al., 2018; Durston et al., 2001). This characteristic results in a denser distribution
of medical images within the latent space compared to natural images (Zhou et al., 2021). We
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hypothesize that such a dense distribution degrades performance when applying contrastive
learning methods to medical images. As shown in Figures 1(a) and 1(b), natural images
under the default strong augmentations in contrastive learning are sparsely distributed in
latent space, while different medical images tend to overlap heavily. The pretext task of
contrastive learning aims to distinguish between positive pairs (augmented views of the
same image) and negative pairs (augmented views of different images). In the context of
medical imaging, the significant overlap of augmented images in the latent space renders this
pretext task highly challenging, thereby hindering model converge in contrastive learning.
Due to the unique characteristics of medical images, previous studies have explored specific
augmentation methods for different medical modalities (Goceri, 2023; van der Sluijs et al.,
2023; Kang et al., 2022).

In this work, we propose a simple yet effective solution to enhance contrastive learning
performance by reducing augmentation scales. The project pipeline is illustrated in Figure
1(c). We use Distillation with No Labels (DINO) (Caron et al., 2021) as a study example of
contrastive learning strategies, and validated our solution on clinical applications, including
glaucoma and diabetic retinopathy diagnosis, using both internal and external evaluations.
Our approach not only enhances feature clustering but also demonstrates improved diag-
nostic performance compared to models using default strong augmentations.

2. Methods

2.1. Problem Definition

For contrastive learning, given a set of unlabeled retinal images D = {xi}Ni=1, we create
positive pairs P+ by randomly selecting an image xi ∈ D and apply twice augmentation
Φt,s respectively to get augmented data x1i and x2i , where t indicates the augmentation type
and s the scale range. While for negative pairs, we sample two images xi and xj ∈ D (with
i ̸= j) and apply the augmentation to each image, forming the negative pair P− = (x1i , x

2
j ).

We then use the feature encoder from model f to project these images in latent space, such
as En(x1i ). The distance between positive pairs and negative pairs in latent space can be
measured by Dis(·):

Dis(P+) =
∥∥En(x1i )− En(x2i )

∥∥
2
=

√√√√ d∑
k=1

(
En(x1i )k − En(x2i )k

)2
, (1)

Dis(P−) =
∥∥En(x1i )− En(x2j )

∥∥
2
=

√√√√ d∑
k=1

(
En(x1i )k − En(x2j )k

)2
, (2)

where En(·) maps an image into a latent space (i.e., an embedding) with d as the dimension
of the latent representation. The index k ranges from 1 to d, with En(x1i )k denoting the
k-th component of the embedding vector En(x1i ).

The general training objective of contrastive learning is to train the model f to maximize
the distance between negative pairs and to minimize that for positive pairs,

f = argmax
(
Dis(P−)− Dis(P+)

)
. (3)
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When Dis(P+) approximates Dis(P−), it is challenging to train the model f to converge
well. This issue is prominent in medical imaging due to less variation compared to natural
images. For example, retinal images depict the anatomical tissue of retina, often showing
similar structure and orientation (Patton et al., 2006), as shown in Figure 1(b). With
strong augmentations Φstrong (e.g., cropping the images into small patches) following the
default augmentation settings in DINO, Dis(P−) decrease while Dis(P+) increases, which
brings further challenges in achieving objects of equation 3 and may result in suboptimal
model pre-training with contrastive learning, showing the poor performance in classifying
the positive and negative pairs.

Such suboptimal model performance extends to downstream applications, where models
are fine-tuned with labeled data Dl = {xi, yi}Li=1 for diverse tasks like disease diagnosis,
where x represents the data and y indicates the label. To improve the model’s capability in
clinically meaningful applications, our strategy involves enhancing the contrastive learning
performance in classifying P+ and P− by specifically decreasing Dis(P+) while increasing
Dis(P−).

2.2. Scattering Data Distribution with Weak Augmentations

To achieve such a goal for retinal images, a straightforward strategy is to scale down the
augmentation. An extreme case is to remove the augmentation so that Dis(P+) achieves
0 and Dis(P−) stays as a high value. However, pre-training without any augmentation
hardly trains the model to learn generalizable and diverse features. Hence, we propose to
scale down the augmentation, termed Φweak, to ease the challenge of training the model
f to converge while also avoiding it being too weak for the model to learn generalizable
features. Additionally, we investigate the effects of several augmentations that mimic the
retinal image artefacts, including random bias field and Gaussian blur. We combine it with
Φweak to form Φweak+med.

3. EXPERIMENT

3.1. Data

The pre-training data are from Moorfields Eye Hospital (Wagner et al., 2022; Zhou et al.,
2023) with 1.4 million color fundus images, a retinal image modality. These images were
collected from a retrospective cohort study linking ophthalmic data of 353,157 patients, who
attended the hospital between 2008 and 2018. All images are preprocessed and resized to
224 × 224 by an automated retinal image analysis tool AutoMorph (Zhou et al., 2022).

We evaluate the efficacy of different augmentation strategies using clinically meaningful
tasks, including diabetic retinopathy (DR) diagnosis, glaucoma detection, and multi-class
retinal disease classification. For DR diagnosis, we include MESSIDOR-2 (Decencière et al.,
2014), IDRiD (Porwal et al., 2018), and APTOS2019 (APTOS, 2019). The labels for DR are
based on the International Clinical DR Severity Scale, covering five stages from no DR to
proliferative DR. For glaucoma diagnosis, we use the PAPILA dataset (Kovalyk et al., 2022),
which has three categorical labels: non-glaucoma, early glaucoma (suspected glaucoma), and
advanced glaucoma. For multi-class disease classification tasks, we use two datasets, JSIEC
(Cen et al., 2021) containing 1,000 images with 39 categories of common retinal diseases and
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Table 1: Data summary for the datasets used for disease diagnosis. Each dataset is split
into training, validation, and testing sets.

Dataset Country Categories Training Validation Testing

Diabetic retinopathy

MESSIDOR-2 France 5 972 246 526
IDRiD India 5 329 84 103

APTOS2019 India 5 2048 514 1100

Glaucoma

PAPILA Spain 3 312 79 98

Multi-class disease

JSIEC China 39 534 150 316
Retina NR 4 336 84 181

conditions, and Retina dataset (jr2ngb, 2023) with labels for normal, glaucoma, cataract,
and retinal disease. Data splitting details are shown in Table 1.

3.2. Pre-training details

DINO (Caron et al., 2021), a representative and commonly used contrastive learning strat-
egy, was used in the experiment. We first initialized the model with ImageNet weights and
then pre-trained it using 1.4 million color fundus images from Moorfields Eye Hospital. The
data preprocessing, data quality control, model architecture, and hyperparameters (except
for those related to augmentations) were standardized to ensure a fair comparison. The
model was pre-trained using an NVIDIA A100 (80G). The details of Φstrong, Φweak, and
Φweak+med are listed in Table 2. Φstrong follows the default augmentation settings in DINO,
which was well-tuned on natural images. Local crop is a small, zoomed-in region of an im-
age. Global Crop is a large region of an image. Color jittering involves random adjustments
to image brightness and contrast. Gaussian blur is a smoothing effect created by applying a
Gaussian filter to reduce detail and noise. Gaussian noise consists of random intensity vari-
ations that follow a Gaussian distribution. Random bias field is a smooth, spatially varying
intensity variation across an image. The Φmed introduced into Φweak is implemented from
Torchio, a Python library for medical image processing (Pérez-García et al., 2021).

We then compared these models by adapting them to downstream tasks of disease di-
agnosis. We evaluated the model performance with the Area Under the Receiver Operating
Characteristic curve (AUROC), the Area Under the Precision-Recall curve (AUPR), and
sensitivity. Each experiment is run five times with random seeds to obtain performance
statistics.

3.3. Experiment Result

We first plotted the distribution of distances between positive pairs and distances between
negative pairs in different augmentation strategies. The model pre-trained with Φweak bet-
ter distinguished these pairs, as shown in Figure 2(a). We also observed the clustering
performance of the models, that is, how positive and negative pairs were distributed, across
different augmentation strategies through the t-SNE map (Maaten and Hinton, 2008). We

5



Zijie Boxuan Andre Pearse Yukun

Table 2: Various settings of augmentation types and scales. Augmentations not listed are
consistent with the default strong augmentations, well-tuned on natural images. For local
and global crops, the range (e.g., (0.05, 0.4)) represents the cropping scales relative to the
original image. The symbol p denotes the probability of applying a particular transformation,
which is defaulted as 1 unless specified. × indicates that the transformation is not applied.

Local crop Global crop Color jitter Blur Noise Bias field

Φstrong (0.05, 0.4) (0.4, 1.0) bright:0.4
contrast:0.4

× × ×

Φweak (0.2, 0.5) (0.5, 1.0) bright:0.2
contrast:0.2

× × ×

Φ weak
+med

(0.2, 0.5) (0.5, 1.0) bright:0.2
contrast:0.2

std:0.1
p:0.5

std:0.1
p:0.5

scale:0.1
p:0.5

repeatedly augmented each image to create image groups, where positive pairs consisted of
images within the same group, and negative pairs were images from different groups. Then,
we projected these images into latent space and found that the features of negative pairs
have a distinct distribution under the weak augmentation shown in Figure 2(b). We also
used the Silhouette score (Shahapure and Nicholas, 2020) to quantify the clustering quality
of DINO pre-trained under different augmentation strategies. DINO pre-trained with Φweak

achieved the highest score of 0.201, while those pre-trained with Φstrong and Φweak+med

achieved scores of 0.117 and 0.130, respectively.
In the internal evaluation presented in Table 3, DINO with Φweak outperformed the

other augmentation strategies on most retinal disease classification tasks. Specifically,
on MESSIDOR-2, PAPILA, JSIEC, and Retina, the model employing Φweak consistently
demonstrated higher AUROC, AUPR, and sensitivity compared with Φstrong. Notably, on
JSIEC, the model pre-trained with Φweak achieved a 10% increase in AUPR and a 23.7%
increase in sensitivity compared to Φstrong (P<0.001). However, on IDRiD, although the
model achieved higher AUROC and AUPR under Φweak than under Φstrong, Φstrong con-
ferred a slight advantage of approximately 1.1% in sensitivity. Introducing the medical
augmentation Φmed generally diminished the model’s performance. For example, on IDRiD
and JSIEC, combining Φweak with Φmed (Φweak+med) reduced performance, particularly
sensitivity, by 6.4% and 12.5% compared to Φweak, respectively. These tasks often show
low sensitivity, as seen in Diabetic Retinopathy classification with five classes, a common
challenge in this application (Islam et al., 2022; Long et al., 2024).

As shown in Table 4, the external evaluation indicated that Φweak performed better than
Φstrong and Φweak+med in most tasks. For instance, when the model fine-tuned on IDRiD
was externally evaluated on APTOS2019 and MESSIDOR-2, the model pre-trained with
Φweak outperformed Φstrong by 0.4% and 1.7%, respectively.

4. Discussion and Conclusion

In this study, we aimed to improve the contrastive learning performance in the medical image
domain. We proposed a hypothesis that the dense distribution of medical images might cause
the suboptimal performance of contrastive learning, and validated it in our experiments.
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Figure 2: We extract features using the DINO teacher model (encoder), pre-trained re-
spectively with Φstrong, Φweak and Φweak+med. First, we calculate the Euclidean distances
between positive and negative pairs and compare their distance distributions in Figure (a).
We also use a t-SNE map to visualize feature clustering in latent space in Figure (b), where
different colors represent augmented views from different images. In figure (b), vits repre-
sents small ViT.

Our findings suggest that simply reducing augmentation scales to an appropriate level can
improve the clustering performance and therefore enhance model performance in downstream
tasks. Additionally, when incorporating medical-specific augmentation Φmed to Φweak, the
collective augmentation could again decrease Dis(P−), while increase Dis(P+) (Figure 2),
generating adverse effects on model performance. These offer key guidance into the model
pre-training with contrastive learning for medical images.

Although bringing insights, we acknowledge several limitations in this work that should
be studied in future work. First, the performance under Φweak sometimes only has a slight
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Table 3: Model comparison on disease diagnosis with internal evaluation. The middle
three columns show model performance under varied data augmentation strategies, with the
highest value in each row highlighted in bold. For each task, the model was fine-tuned using
five random seeds (affecting training data shuffling) and evaluated on the test set, yielding
five replicas. Statistical significance was determined via a repeated-measures analysis of
variance (ANOVA), with random seed treated as a within-subjects factor. The resulting P
values quantify the significance of performance differences between Φweak and Φstrong.

Φstrong Φweak Φweak+med P value
MESSIDOR-2
AUROC .838 (.835, .840) .848 (.846, .851) .823 (.817, .829) < .001
AUPR .523 (.516, .530) .582 (.575, .589) .523 (.498, .547) < .001
Sensitivity .154 (.146, .162) .279 (.255, .303) .247 (.220, .274) < .001

APTOS2019
AUROC .933 (.932, .933) .933 (.933, .934) .924 (.924, .925) .004
AUPR .667 (.665, .670) .665 (.661, .668) .637 (.635, .639) .236
Sensitivity .469 (.466, .472) .528 (.509, .547) .482 (.474, .491) .003

IDRiD
AUROC .747 (.736, .758) .790 (.782, .798) .726 (.720, .732) < .001
AUPR .461 (.445, .476) .498 (.486, .509) .432 (.419, .446) < .001
Sensitivity .366 (.343, .390) .355 (.340, .369) .291 (.266, .316) .369

PAPILA
AUROC .791 (.782, .800) .816 (.804, .829) .792 (.785, .800) .003
AUPR .637 (.630, .643) .671 (.653, .688) .628 (.619, .638) .018
Sensitivity .238 (.205, .271) .295 (.264, .327) .312 (.282, .341) .096

JSIEC
AUROC .960 (.958, .962) .977 (.975, .979) .968 (.967, .969) < .001
AUPR .651 (.637, .664) .760 (.750, .769) .707 (.695, .720) < .001
Sensitivity .331 (.316, .345) .568 (.557, .578) .443 (.416, .470) < .001

Retina
AUROC .781 (.776, .787) .807 (.801, .813) .814 (.807, .820) < .001
AUPR .594 (.585, .604) .632 (.620, .643) .626 (.616, .635) .002
Sensitivity .326 (.321, .332) .416 (.396, .436) .375 (.352, .399) < .001

advantage compared to that under Φstrong in both internal and external evaluation. This is
likely caused by nearly saturated performance after pretraining on large-scale nature images.
Some techniques, such as methods for automatically adjusting augmentation scales will be
studied to achieve optimised performance. Specifically, for positive pairs that are too far
apart in latent space and negative pairs that are too close, the loss function will assign greater
weights to them during model pre-training. Second, we only validated our hypothesis and
solution on DINO; more contrastive learning strategies, such as DINOv2 (Oquab et al.,
2024), could be investigated. Third, some quantitative metrics describing the clustering
performance have not been investigated, which will be proposed in future work to guide the
augmentation scaling. This work pioneered the optimization of contrastive learning in the
medical domain and encouraged tailored model training settings for medical images.
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Table 4: This table presents the external evaluation results on diabetic retinopathy datasets
based on AUROC. For each dataset pair, the highest mean value among the different aug-
mentation strategies is highlighted in bold. For each task in interval evaluation, we generate
five replicas using different random seeds. For each replica, the model weights corresponding
to the best performance on the validation set are saved for subsequent external performance
assessment. Statistical significance was determined via a repeated-measures analysis of vari-
ance (ANOVA), with random seed treated as a within-subjects factor. The resulting P
values quantify the significance of performance differences between Φweak and Φstrong.

Fine-tune data APTOS2019 IDRiD MESSIDOR-2
Test data IDRiD MESSIDOR-2 APTOS2019 MESSIDOR-2 APTOS2019 IDRiD
Φstrong .785 ± .006 .767 ± .001 .740 ± .011 .744 ± .008 .804 ± .007 .743 ± .010
Φweak .790 ± .005 .761 ± .002 .744 ± .012 .761 ± .007 .798 ± .009 .746 ± .007
Φweak+med .752 ± .004 .692 ± .003 .732 ± .011 .723 ± .008 .708 ± .018 .738 ± .009
P value .125 <.001 .179 <.001 .211 .316
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