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Abstract

We present VGGT-SLAM, a dense RGB SLAM system constructed by incre-
mentally and globally aligning submaps created from the feed-forward scene
reconstruction approach VGGT using only uncalibrated monocular cameras. While
related works align submaps using similarity transforms (i.e., translation, rotation,
and scale), we show that such approaches are inadequate in the case of uncal-
ibrated cameras. In particular, we revisit the idea of reconstruction ambiguity,
where given a set of uncalibrated cameras with no assumption on the camera
motion or scene structure, the scene can only be reconstructed up to a 15-degrees-
of-freedom projective transformation of the true geometry. This inspires us to
recover a consistent scene reconstruction across submaps by optimizing over
the SL(4) manifold, thus estimating 15-degrees-of-freedom homography trans-
forms between sequential submaps while accounting for potential loop closure
constraints. As verified by extensive experiments, we demonstrate that VGGT-
SLAM achieves improved map quality using long video sequences that are in-
feasible for VGGT due to its high GPU requirements. Our code is available at
https://github.com/MIT-SPARK/VGGT-SLAM.

1 Introduction

One of the most fundamental tasks in computer vision is that of simultaneous localization and
mapping (SLAM) where given multiple monocular (or stereo) images, the task is to generate a 3D
reconstruction of the scene and estimate the 6-degrees-of-freedom (DOF) pose of the cameras. Most
approaches for this have traditionally leveraged classical multi-view geometry constraints [47, 25, 80,
81], data association [38, 37], and backend optimization such as bundle adjustment [52, 53, 57, 1,
58, 59]. Recently, a new paradigm of using simpler, feed-forward networks, which produce point
clouds from uncalibrated input images, has gained increasing popularity. In this thrust, the seminal
work DUSt3R [73] takes in a pair of images and estimates dense point clouds of both images in
the reference frame of the first camera, thus creating a dense scene reconstruction and allowing the
camera poses estimated easily with a 3-point RANSAC solver [48, 40].

To extend feed-forward reconstruction to multiple images, VGGT (Visual Geometry Grounded
Transformer) [71] takes in an arbitrary number of images, and in addition to estimating dense point
clouds of each camera frame, also estimates depth maps, feature tracks, and camera poses and
intrinsics. However, VGGT is limited in the number of images that can be processed by GPU
memory. For example, in the case of an NVIDIA GeForce RTX 4090 with 24 GB, this is limited to
approximately 60 images, making larger reconstructions requiring hundreds or thousands of images
infeasible.
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Figure 1: VGGT-SLAM alignment of 6 submaps created from VGGT using Sim(3) alignment (top) and SL(4)
alignment (bottom). Here, Sim(3) is insufficient to align submaps due to a projective ambiguity, motivating our
SL(4)-based SLAM. Experiments performed on a segment of the Clio [39] apartment and cubicle scenes.

One may suspect that a simple, trivial solution would be to create multiple submaps with VGGT
where each submap contains at least one overlapping image, and solve for the scale parameter between
submaps (as the reconstruction does not capture metric scale), with VGGT’s estimated poses being
used to align rotation and translation (i.e., estimating a Sim(3) transformation between submaps).
While we demonstrate Sim(3) optimization shows impressive reconstructions in many cases, we
empirically observe that the feed-forward nature of VGGT with uncalibrated cameras introduces a
projective ambiguity, which in addition to the Sim(3) DOF includes shear, stretch, and perspective
DOF, especially when the disparity between images becomes small. This ambiguity cannot be fully
resolved through a similarity transformation alone.

Unveiling why a similarity transformation is sometimes insufficient for this recent transformer-based
scene reconstruction method causes us to return to classical computer vision for answers, specifically
the notion of projective ambiguity. To rectify a projective reconstruction to a metric reconstruction
requires computing a 4 × 4 homography matrix [26] which can be mapped to the Special Linear,
SL(4), Lie group. Since this is a Lie group, we can formulate the submap alignment problem as a
factor graph optimized on the SL(4) manifold to globally align an arbitrary number of submaps given
both estimates of relative homographies between sequential submaps and added constraints from
detected loop closures.

Contributions Firstly, we present the first SLAM system that leverages the feed-forward scene re-
construction capabilities of VGGT [71], extending it to large-scale scenes that cannot be reconstructed
from a single inference of VGGT. Our system operates entirely with monocular RGB cameras and
does not require known camera intrinsics or consistent calibration across frames. Importantly, it
achieves this without any additional training.

Secondly, while Sim(3) optimization is often sufficient, we identify and analyze scenarios where
projective ambiguity arises, as presented in Fig. 1. In these cases, conventional similarity transforms
do not fully resolve scale and alignment issues. We highlight this limitation and demonstrate how
incorporating projective constraints addresses the problem.

Finally, we propose the first factor graph formulation that operates directly on the SL(4) manifold to
address projective ambiguity. Even in practical scenarios, where projective ambiguity is less dominant,
we show that SL(4)-based optimization achieves performance competitive with or superior to other
state-of-the-art learning-based SLAM approaches, offering a principled framework for handling cases
where similarity transformations are insufficient.
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2 Related Work

Classical Scene Reconstruction Classical scene reconstruction methods typically rely on geometric
features to estimate camera poses and reconstruct 3D scenes from multi-view images [45, 5, 19, 11,
56] using [32, 75] bundle adjustment [58, 50], by performing sparse feature extraction, matching, and
robust pose estimation by optimizing for SE(3) transformations. Several works have also performed
dense SLAM [30, 76, 41, 77], and [6] provides a survey on SLAM. Multiple works have also
performed classical projective scene reconstruction using uncalibrated cameras [68, 27]. Recently,
Sim-Sync [78] introduced a certifiably optimal algorithm that jointly estimates camera poses and
per-image scaling factors that leverage pretrained monocular depth predictions.

Feed-forward Scene Reconstruction The seminal work DUSt3R [73] has spawned multiple
followup works in feed-forward scene reconstruction. DUSt3R takes in a pair of images and for
each image, outputs a dense point map in the reference frame of the first camera. From the point
maps, the camera focal lengths can be estimated using the Weiszfeld algorithm [51] and poses can be
recovered using multiple methods such as a 3-point RANSAC [48, 40]. MASt3R follows a similar
design but also outputs descriptors that can be used to generate pairwise correspondences between the
two frames. MASt3R-SFM [15] demonstrates global optimization of multiple images using MASt3R
but computation scales quickly with the number of frames.

To extend the idea of DUSt3R to multiple frames, Spann3R [70] leverages a learned memory
module and Cut3R [72] uses a recurrent state model. Both can incrementally reconstruct a scene
using multiple images, but are each limited to short sequences. Recently, Pow3R [29] extends the
DUSt3R framework to optionally take in any estimates of any combination of camera intrinsics,
poses, and depth (which may be sparse or dense) and demonstrates substantial improvement in
scene reconstruction and pose estimation given the added inputs. Splatt3R [62] extends the DUSt3R
idea to Gaussian Splatting [31] by directly outputting the Gaussian Splatting parameters given two
views, and PreF3R [8] extends this to multiple views using a similar memory framework as Spann3R.
Reloc3r [14] modifies the DUSt3R framework to directly output relative camera poses and uses
motion averaging to recover absolute poses with respect to a map database.

Most similar to ours is MASt3R-SLAM [46]. MASt3R-SLAM leverages MASt3R to construct an
impressive real time dense monocular SLAM system that does not require known calibration. Their
pipeline also includes efficient optimization over Sim(3) poses and loop closures. Since MASt3R is
limited to two input frames at a time, here, we desire to build on top of the more powerful VGGT
architecture for a SLAM system which can leverage broader information of the scene by taking in an
arbitrary number of frames for feed-forward reconstruction (bounded by computational limits) and
provides direct estimates of camera poses. However, as mentioned, fusing submaps from VGGT goes
beyond a traditional point cloud registration problem as alignment cannot be effectively performed
with only a similarity transformation. Unlike MASt3R-SLAM, as will be discussed in Sec. 4.2, we
do not need to estimate correspondences between frames.

An alternative paradigm, scene coordinate regression, with works such as ACE [3] and DSAC* [4],
estimates world points from images with respect to a global scene frame by using a scene specific
trained network.

Optimization over the Special Linear group To the best of our knowledge, we are the first work
to create a factor graph optimization for point cloud alignment on the SL(4) manifold. Prior works
use optimization on the SL(3) manifold (corresponding to the 8-DOF homography matrix commonly
used in image alignment) for aligning multiple images for panoramic stitching [22, 61, 43, 42, 44, 36]
and dense SLAM [35]. The 15-DOF homography matrix is used for classical tasks such as auto-
calibration [23], and good practices for estimating homography are extensively studied in [24].

3 Review: VGGT

Here, we provide the relevant preliminaries of VGGT [71]. VGGT takes as input an image set
I = {M1, · · · ,Mw̄}, which consists of w̄ images, tokenizes them with a fine-tuned DINO [49]
backbone, and then applies Alternating-Attention (alternating between applying global and frame-
wise attention). The output tokens can then be passed to a camera head to estimate intrinsics and
camera poses (defined with respect to the first frame), or to Dense Prediction Transformer (DPT)
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heads [54], which outputs dense depth maps for each image, a dense point map (where the points of
each camera are defined with respect to the first camera), and dense features for point tracking, with
confidence estimates provided for each.

In this paper, we use the dense depth maps D = {D1, · · · ,Dw̄} and confidence score maps C =
{C1, · · · ,Cw̄} (as they are fully dense, the width and height of corresponding components in M, D,
and C are the same). We refer to the outputs from each I as submap S, which will correspond to a
node in pose graph optimization for VGGT-SLAM. We do not run the 3D point DPT head as it was
observed in Wang et al. [71] that more accurate point clouds can be achieved by inverse projecting D
using projection matrices from the camera head, giving us a dense point cloud which is defined with
respect to the coordinate frame of the first camera in I. We denote this point cloud as XS . To filter
unreliable points, we prune points whose associated confidence values in the confidence maps are
less than τconf of the average confidence across C.

4 VGGT-SLAM

Here we describe the design of our VGGT-SLAM system. In Sec. 4.1 we determine how to generate
a list of images that will be passed to VGGT to produce a local submap, S. In Sec. 4.2, we provide
a discussion of projective ambiguity and show how we can align two overlapping submaps by
estimating a relative 15-DOF homography matrix between sequential submaps, and in Sec. 4.3, we
describe the process of adding loop closure constraints between non-sequential submaps. Finally,
in Sec. 4.4 we show how we can globally optimize all submap alignments into a consistent map by
optimizing on the SL(4) manifold.

4.1 Incremental submap-based keyframe selection and generation

First, we begin by describing how to incrementally construct submaps and organize keyframes within
each submap from sequentially incoming images. For this, we construct an image set Ilatest. As
is typical in visual SLAM [57, 46, 64], we select an image as a keyframe if disparity (which we
estimate using Lucas-Kanade [38]) with respect to the previous keyframe is larger than a user-defined
threshold τdisparity. Even though VGGT demonstrates monocular depth capabilities [71] from learned
priors, utilizing images with sufficient disparity improves relative depth estimation performance as it
adds multi-view information and additionally reduces the number of images to process.

If sufficiently high disparity is estimated, the current image is designated a keyframe and added
to a list of images, Ilatest, until the size of the list reaches a set limit w. In addition to Ilatest,
each submap’s associated image set is constructed by concatenating two additional sets of images.
The first set includes a single image chosen as the last non-loop-closure image from the previous
submap, denoted as Mprior. Up to wloop images to be used for loop closures (discussed in Sec. 4.3)
may also be appended at the end of the collection, forming the final image set for the submap as
Ilatest ← {Mprior}∪Ilatest ∪Iloop. This image set is then passed to VGGT to generate the submap,
Slatest.

4.2 Local submap alignment addressing projective ambiguity

Given two overlapping submaps Si and Sj generated as described in Sec. 4.1, which have point
clouds XSi and XSj in their respective local submap frames, our objective is to solve for a transfor-
mation, Hi

j ∈ R4×4 that aligns the two submaps such that for any noise-free corresponding points
XSi

a , XSj

b ∈ R3, the following relation holds:

XSi
a = Hi

jXSj

b , (1)

where for simplicity, we overload notation such that XS is in homogeneous coordinates when
multiplied by the 4× 4 homography matrix. Under a typical 3D point cloud alignment problem, for
example from LIDAR SLAM [33], H would represent a translation and rotation in SE(3). If the point
clouds additionally differ in scale, then H would be on Sim(3), the group of similarity transformations.
However, here we do not have typical point clouds as XS is constructed by uncalibrated cameras.
Thus, we recall the Projective Reconstruction Theorem [26, Chapter 10.3], which in summary
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states that if correspondences between two images from uncalibrated cameras uniquely determine
the fundamental matrix, then the correspondences may be used to reconstruct the corresponding
3D points up to a 15-DOF homography transformation. This transform is the same for any such
corresponding points, except those on the line connecting the camera centers as these points cannot be
reconstructed uniquely. Relevant to our setup, the Projective Reconstruction Theorem also applies to
a reconstruction with more than two cameras [26]. Thus, in the most general case, the reconstruction
computed using a set of uncalibrated cameras differs from a metrically correct reconstruction by
a projective transformation (i.e., homography) H. The matrix H has 15 DOF and can be mapped
uniquely to the special linear group, SL(4), by normalizing with the determinant. The SL(4) group
consists of all real-valued 4 × 4 matrices with unit determinant. Note this is not the same as the
more common 8 DOF homography matrix commonly used in planar computer vision tasks such
as image warping, which belongs to SL(3). The reconstruction can be transformed to an affine
reconstruction (i.e., parallel lines are preserved) when scene priors are available, for example if points
are known to lie on parallel lines. If further priors are known, such as lines in the scene are orthogonal,
then the reconstruction can be converted to a metric reconstruction (differing by only a similarity
transform to the true Euclidean reconstruction). VGGT is thus able to leverage learned scene priors
to potentially estimate metric reconstruction, but as we have shown in Fig. 1, in the most general case
when estimates of scene priors are unreliable, the reconstruction differs by a projective ambiguity,
requiring a 15-DOF homography matrix to rectify. We will now estimate such a homography.

By our construction of the submaps that they share a same image, we have an atypical advantage in
solving for H as we have a dense set of correspondences without needing to estimate associations.

As is well known by the direct reconstruction method [26], the optimal homography in (1) can be
solved in closed form as a solution to the following homogeneous linear system:

Akh = 0 (2)

with h ∈ R16 containing the flattened parameters of the homography and Ak contains constraints for
a particular pair of 3D points. A minimum solution requires 5 points (i.e., k ∈ {1 : 5}), and to build
in robustness to incorrect depth measurements from VGGT, we solve (2) using RANSAC [18] with a
5-point solver. As the homography matrix is estimated up to scale, we scale by the fourth root of the
determinant such that the determinant is unity and the resulting matrix belongs to SL(4).

Transformation of camera poses via homography Using a homography between reference
frames i and j, Hi

j , the camera poses can be corrected using the following [26]: Pi = PjHi
j

−1
, where

P ∈ R3×4 is the camera matrix created from the poses and intrinsic estimates from VGGT. We can
then decompose P to recover the camera pose.

4.3 Loop closures

Our procedure for creating loop closures for VGGT-SLAM consists of two steps: (i) performing
image retrieval (i.e., setting Iloop in Sec. 4.1), and (ii) estimating relative homographies, which
are then added to the factor graph as loop closure constraints (Sec. 4.4). First, for image retrieval,
when constructing a submap, we compute and store an image descriptor for each keyframe using
SALAD [28]. Then, once Ilatest reaches its size threshold w, we search over the image descriptors
in the previous submaps Si ∀i ∈ {1 : lastest − τinterval} to fetch a set of frames of size wloop that
have the highest similarity (using the L2 norm) to any of the keyframes in Ilatest, and also exceed a
user-defined similarity threshold τdesc to reduce false positive matches. These frames make up Iloop,
which is added to the list of keyframes for the current submap, and then all frames are sent to VGGT
as described in Sec. 4.1.

Next, given the estimated submap, Slatest, from VGGT, we estimate the relative homographies
between the loop closure frames in Slatest and the submaps, Si, retrieved during the image retrieval
process described above. As in Sec. 4.2, we again have the benefit of not requiring an estimate of
correspondences to compute homographies for loop closures; thus, we can directly use (2) between
the frames in Iloop and their respective identical frames in the submap where they originated. This
then provides wloop loop closure constraints between Slatest and the corresponding submaps.
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Note that a potential alternative is to get the descriptor using the output tokens from VGGT’s fine-
tuned DINO backbone. This alleviates using a separate descriptor module and storing the physical
images. However, this requires storing larger features in memory compared to the relatively small
SALAD features, and the system memory needed to store the images in our base approach is relatively
low.

4.4 Backend: Nonlinear factor graph optimization on the SL(4) manifold

Given all relative homographies Hi
j between submaps Si and Sj , our goal is to compute the absolute

homographies Hi that transform all submaps into a common global reconstruction. To achieve this,
we formulate a nonlinear factor graph optimization problem2 based on Maximum A Posteriori (MAP)
estimation [2, 17, 20]. Specifically, we estimate the absolute homographies by minimizing the
following cost function under Gaussian noise assumptions on the relative homographies:

Ĥ = argmin
H∈SL(4)

∑
(i,j)∈L

∥∥∥Log (H−1
i Hj

(
Hi

j

)−1
)∥∥∥2

ΩH
ij

, (3)

where Log(·) is the mapping function that transforms a group element to a (vectorized) element of
the corresponding Lie algebra, L denotes an index set of constraints that includes odometry and loop
closures, and we set ΩH

ij ∈ R15×15 to the identity matrix.

To solve (3), we iteratively compute state increments by solving a linearized least squares problem.
To this end, we define ξ ∈ R15 as the tangent-space parameterization of SL(4), the mapping function
Exp : R15 → SL(4), which satisfies Log

(
Exp (ξ)

)
= ξ and Exp (ξ) = exp(ξ∧) = H. In

particular, ξ∧ is a Lie algebra element of sl(4), computed by summing the k-th component of ξ with
its k-th corresponding generator Gk ∀k : {1 : 15} (i.e., ξ∧ =

∑15
k=1 ξk Gk) [16]. More details can

be found in Appendix A.

Next, defining the measurement function as h
(
ξi, ξj

)
= Log

(
H−1

i Hj

)
, the incremental update of

each pose can be approximated using Taylor’s expansion [13] as follows:

h
(
ξi ⊕ δi, ξj ⊕ δj

)
≃ h

(
ξi, ξj

)
⊕ {Jiδi + Jjδj} , ξ ⊕ δ = HExp (δ) (4)

where Ji = −AdH−1
i Hj

and Jj = I15×15. Here, AdH is the adjoint map, defined as AdH =

B−1H⊗H−⊺B [16], where B = [vec (G1) vec (G2) · · · vec (G15)] ∈ R16×15 in the case of the
SL(4) manifold [9], and⊗ denotes the Kronecker product, which forms a block matrix by multiplying
each element of the first matrix with the entire second matrix.

Finally, we can formulate the linearized residuals and the resulting local problem at the linearization
point Hi

j as follows:

D̂ = argmin
δ∈D

∑
(i,j)∈L

∥eij + Jiδi + Jjδj∥2ΩH
ij
, eij = Log

(
H−1

i Hj

(
Hi

j

)−1
)
. (5)

To solve (5), we use the Levenberg-Marquardt optimizer [55], and at each iteration, the poses are
updated on the Lie group as H← HExp(δ̂) [63].

5 Experiments

We follow similar experiments as MASt3R-SLAM to evaluate camera pose estimation and dense
reconstruction in Sec. 5.2 and Sec. 5.3 respectively, demonstrate qualitative results in Sec. 5.5, and
finally perform ablations in Sec. 5.6.

2In our case, this is an extension of pose graph optimization, where we estimate absolute poses from pairwise
pose measurements.
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5.1 Experimental setup

We evaluate VGGT-SLAM on standard RGB SLAM benchmarks to assess both camera pose es-
timation accuracy and dense mapping quality. For evaluation of pose estimation, we employ the
7-Scenes [60] and TUM RGB-D [65] datasets, and report root mean square error (RMSE) of the
absolute trajectory error (ATE) using evo [21]. Since 7-Scenes [60] provides scene ground truth, this
dataset is also used to evaluate dense mapping quality in terms of accuracy, completion, and Chamfer
distance [46].

As baseline approaches, we primarily compare VGGT-SLAM with DROID-SLAM [67] and MASt3R-
SLAM [46] as the state-of-the-art learning-based SLAM approaches in uncalibrated scenarios (and
Spann3R [70] for dense evaluation). We use reported numbers from MASt3R-SLAM [46] for
baselines, except for the uncalibrated version of DROID-SLAM. Although DROID-SLAM requires
camera intrinsics, we also evaluate it in an uncalibrated setting by estimating intrinsics with an
automatic calibration pipeline [69], as is suggested by Murai et al. [46]. While our approach operates
without camera calibration, we also include comparison with state-of-the-art methods [7, 34, 79, 66,
12, 82] provided with camera intrinsics. Due to potential randomness in our approach caused by
RANSAC, we report the average performance over five runs, which have a low spread (small standard
deviation) as shown in Sec. 5.6.

We refer to a simpler Sim(3) version of VGGT-SLAM as Ours (Sim(3)), for which we follow similar
structure as our SL(4) pipeline except we align relative rotation and translation between submaps
using pose estimates from VGGT and estimate a scale correction by comparing the estimated point
clouds of the overlapping images. Loop closures and relative factors are added to the factor graph as
SE(3) factors.

We use an NVIDIA GeForce RTX 4090 GPU with AMD Ryzen Threadripper 7960X CPU. For
parameters, we set wloop = 1, τdisparity = 50 pixels, τinterval = 2, τdesc = 0.8, and τconf = 25%. We also
use 300 RANSAC iterations with a threshold of 0.01. We show evaluations of both the SL(4) and
Sim(3) version of VGGT-SLAM with different submap sizes (i.e., different values for w).

5.2 Pose estimation evaluation

As shown in Tables 1 and 2, VGGT-SLAM performs comparable to the top performing uncalibrated
baselines on 7-Scenes and TUM RGB-D. On 7-Scenes for instance, VGGT-SLAM has approximately
the same average APE as the top performing baseline MASt3R-SLAM. On the TUM dataset, the
SL(4) version of VGGT-SLAM performs the best overall with an average error of 0.053 m. This
demonstrates that we are able to extend VGGT to multiple sequences while introducing a new
category of SLAM system by optimizing submap alignment as SL(4) factors. Here, we observe
that our Sim(3) version also performs well, as these scenes are generally cases where VGGT is able
to leverage strong priors for metric reconstruction. Thus, while we have shown cases where SL(4)
is needed (Fig. 1), the addition of higher degrees of freedom with our novel SLAM formulation
maintains competitive performance, while improving some more challenging cases.

One particular scene where our method underperforms is on the TUM floor scene. This highlights
a challenge of estimating homography, which is the presence of degeneracy in the case of a planar
scene. The floor scene contains several images that only view the flat floor leading to non-unique
solutions for the homography matrix, which causes the overall reconstruction to diverge. Building
robustness for the planar case is an important component for SL(4) SLAM, which we leave as an
exciting direction for future work. The TUM 360 scene is particularly challenging for smaller
submap sizes (although handled well with w = 32) because smaller submaps are more likely to
encounter approximately pure rotation in this scene, which can have reduced depth accuracy and
hence a higher outlier ratio when running 5-point RANSAC to estimate homography.
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Table 1: Root mean square error (RMSE) of absolute trajectory error (ATE) on 7-Scenes [60] (unit: m). The
gray rows indicate the results using the calibrated camera intrinsics and the * symbol indicates that the baseline
is evaluated in the uncalibrated mode. Green is best and light green is second best.

Method Sequence Avg
chess fire heads office pumpkin kitchen stairs

C
al

ib
. NICER-SLAM [82] 0.033 0.069 0.042 0.108 0.200 0.039 0.108 0.086

DROID-SLAM [67] 0.036 0.027 0.025 0.066 0.127 0.040 0.026 0.049
MASt3R-SLAM [46] 0.053 0.025 0.015 0.097 0.088 0.041 0.011 0.047

U
nc

al
ib

. DROID-SLAM* [67] 0.047 0.038 0.034 0.136 0.166 0.080 0.044 0.078
MASt3R-SLAM* [46] 0.063 0.046 0.029 0.103 0.114 0.074 0.032 0.066
Ours (Sim(3), w = 32) 0.037 0.026 0.018 0.104 0.133 0.061 0.093 0.067
Ours (SL(4), w = 32) 0.036 0.028 0.018 0.103 0.133 0.058 0.093 0.067

Table 2: Root mean square error (RMSE) of absolute trajectory error (ATE) on TUM RGB-D [65] (unit: m). The
gray rows indicate the results using the calibrated camera intrinsics and the * symbol indicates that the baseline
is evaluated in the uncalibrated mode. Green is best and light green is second best.

Method Sequence Avg
360 desk desk2 floor plant room rpy teddy xyz

C
al

ib
.

ORB-SLAM3 [7] × 0.017 0.210 × 0.034 × × × 0.009 N/A
DeepV2D [66] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064 0.375
DeepFactors [12] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233
DPV-SLAM [34] 0.112 0.018 0.029 0.057 0.021 0.330 0.030 0.084 0.010 0.076
DPV-SLAM++ [34] 0.132 0.018 0.029 0.050 0.022 0.096 0.032 0.098 0.010 0.054
GO-SLAM [79] 0.089 0.016 0.028 0.025 0.026 0.052 0.019 0.048 0.010 0.035
DROID-SLAM [67] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012 0.038
MASt3R-SLAM [46] 0.049 0.016 0.024 0.025 0.020 0.061 0.027 0.041 0.009 0.030

U
nc

al
ib

. DROID-SLAM* [67] 0.202 0.032 0.091 0.064 0.045 0.918 0.056 0.045 0.012 0.158
MASt3R-SLAM* [46] 0.070 0.035 0.055 0.056 0.035 0.118 0.041 0.114 0.020 0.060
Ours (Sim(3), w = 32) 0.123 0.040 0.055 0.254 0.022 0.088 0.041 0.032 0.016 0.074
Ours (SL(4), w = 32) 0.071 0.025 0.040 0.141 0.023 0.102 0.030 0.034 0.014 0.053

5.3 Dense reconstruction evaluation Table 3: Root mean square error (RMSE) reconstruction
evaluation on 7-Scenes [60] (unit: m). @n indicates a
keyframe every n images.

Method 7-Scenes

ATE↓ Acc.↓ Complet.↓ Chamfer↓

C
al

ib
. DROID-SLAM [67] 0.049 0.141 0.048 0.094

MASt3R-SLAM [46] 0.047 0.089 0.085 0.087
Spann3R @20 [70] N/A 0.069 0.047 0.058
Spann3R @2 [70] N/A 0.124 0.043 0.084

U
nc

al
ib

. MASt3R-SLAM* [46] 0.066 0.068 0.045 0.056
Ours (Sim(3), w = 32) 0.067 0.052 0.062 0.057
Ours (SL(4), w = 32) 0.067 0.052 0.058 0.055

Following the protocol of MASt3R-SLAM, we
provide dense reconstruction performance on
7-Scenes; see Table 3. Here, we observe that
while performance is comparable across meth-
ods, VGGT-SLAM achieves the best performing
accuracy and Chamfer distance, demonstrating
the high accuracy of our dense point cloud re-
construction.

5.4 Timing Analysis

In Table 4 we show approximate timing results comparing the primary components of the Sim(3) and
SL(4) versions of VGGT-SLAM. As expected, the total time used to run optical flow and determine
keyframes for all frames in the submap (keyframe detection), the total time to run SALAD and
perform image retrieval for all frames in the submap (loop closure detection), and the time to run the
VGGT model (VGGT inference) is identical up to random variations. The time to optimize the factor
graph using GTSAM (backend optimization) is very fast, taking only about half a millisecond for
both variants, since the factor graph in VGGT-SLAM is relatively small compared to factor graphs
used in typical real time visual odometry problems [56]. The primary runtime difference between the
Sim(3) and SL(4) variants is the time to compute relative edge constraints (relative transformation
estimation) since the 5-point RANSAC estimation takes about 17 ms longer than the time to compute
the Sim(3) transformation. However, this increase is comparatively small, only about 2.5 percent of
the time needed to run VGGT.

Memory needed to run VGGT for VGGT-SLAM is independent of the total number of images in the
scene since VGGT is run with fixed size submaps. An analysis of memory usage for running VGGT
with varying numbers of images can be found in [10].
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Table 4: Runtime comparison between Sim(3) and SL(4) versions of VGGT-SLAM on the office_loop
sequence with window size w = 16 (unit: msec). Runtime is averaged over five runs.

Stage VGGT-SLAM w/ Sim(3) VGGT-SLAM w/ SL(4)

Keyframe detection 176 ms 176 ms
VGGT inference 662 ms 662 ms
Loop closure detection 105 ms 105 ms
Relative transformation estimation 11 ms 28 ms
Backend optimization 0.4 ms 0.5 ms

5.5 Qualitative results

We present qualitative results to illustrate the mapping fidelity of VGGT-SLAM using SL(4) opti-
mization. In Fig. 2, we show an example reconstruction from the office scene in 7-Scenes and from a
longer 55 meter trajectory that loops inside an office corridor. In addition to the dense reconstruction,
we also show all mapped camera poses, where different colors indicate the submap associated with
each image. In particular, the office corridor loop clearly shows 22 different submaps which have
been joined into a globally consistent map with a loop closure at the end of the trajectory.

Figure 2: Reconstruction and pose estimates from VGGT-SLAM on the office scene from 7-Scenes showing 8
submaps and from a custom scene showing a 55 meter loop around an office corridor with 22 submaps. Both use
w = 16. Different image colors indicate the submap associated with each image.

In Fig. 1, we show two select examples where using only Sim(3) is unable to align overlapping
submaps while our SL(4) alignment strategy is able to rectify the projective ambiguity between
submaps. Thus, while we have shown that Sim(3) generally achieves accurate performance across
our quantitative experiments, in the general case where a feed-forward reconstruction method like
VGGT is unable to estimate a metric reconstruction (for reasons discussed in Sec. 4.2) due to the
computational limits, our introduction of an SL(4)-based SLAM system shows promise in leveraging
the potential of a high accuracy, dense, learning-based SLAM system. For Fig. 1, τdisparity is set to 0
to highlight the impact of projective ambiguity, which degrades the performance of Sim(3) alignment
and affects overall map quality.

5.6 Ablations

In Fig. 3 we provide multiple ablation studies which show the following for three different submap
sizes (w = 8, 16, 32): (a) improved pose accuracy of VGGT-SLAM when loop closures are leveraged
along with showing a tight statistical spread of results from averaging 5 runs from our experiments,
(b) that loop closures generally lead to increasing reduction in pose error as the number of submaps
increases since there are an increased number of loop closures, (c) the effect of different values of
τconf , which as expected, larger values lead to higher accuracy on dense reconstruction and lower
completion, with our default value of 25% showing an appropriate balance.

6 Limitations

We have presented a new type of SLAM system that addresses the issue of projective ambiguity from
an underlying feed-forward scene reconstruction method (in our case, VGGT). As creating a factor
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(a) (b) (c)

Figure 3: Ablation studies: (a) Effect of loop closure (LC) on absolute trajectory error (ATE) across different
window sizes, w, in TUM [65], where ** annotations indicate measurements with 10−3 < p-value ≤ 10−2 after
a paired t-test. (b) Reduction in ATE achieved by incorporating loop closure in TUM, highlighting that as the
number of submaps increases, our SL(4)-based optimization leads to greater reductions in ATE. (c) Performance
changes with respect to the confidence threshold τconf in ATE, accuracy, completion, and Chamfer distance
under varying window sizes in 7-Scenes [60].

graph that optimizes on the SL(4) manifold is a new paradigm for the SLAM problem, it leaves much
ground for further improvements. In particular, the estimation of the full 15-DOF homography matrix
is degenerate in the case of planar points, which can lead to unstable solutions as we have observed in
the planar floor scene of the TUM dataset. Our current implementation of homography using points
from VGGT is also vulnerable to outliers. While we use a 5-point RANSAC to reduce this issue, the
presence of a high outlier ratios or adversarial outliers (which are present due to local consistency of
points in VGGT) can cause incorrect homography estimates as discussed in Sec. 5.2. The ray-based
matching in MASt3R-SLAM provides robustness to errors in depth measurements, and a similar
method can potentially be adapted for homography estimation. Additionally, 15 DOF give rise to
added opportunity of scene drift. While our addition of loop closures substantially corrects drift,
an inaccurate relative homography estimate or long time between loop closures can cause not just
drift in scale, rotation, and translation seen in classical SLAM, but also in scene perspective, which
opens up an interesting area of research into further optimization into SL(4)-based SLAM. Finally,
lens distortion is not rectified by the homography matrix since a projective transformation preserves
straight lines, and thus images are assumed to be undistorted when running VGGT-SLAM.

7 Conclusion

In this study, we have leveraged VGGT, a feed-forward reconstruction model, to incrementally
construct a dense map from uncalibrated monocular cameras, proposing a novel SLAM framework
called VGGT-SLAM, which locally and globally (through loop closures) aligns submaps from VGGT.
By exploring VGGT’s geometric understanding through the lens of classical multi-view computer
vision, we have shown that in the general case, these submaps must be aligned with a projective
transformation, and in doing so we have created the first factor graph SLAM system optimized on the
SL(4) manifold. In future work we will further investigate conditions under which Sim(3) optimiza-
tion suffices and investigate techniques to actively employ both Sim(3) and SL(4) optimization in a
unified system to enable a more robust SLAM system for real-time performance.
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A Tangent space of SL(4)

Here, we provide the explicit 15 generators, Gk ∀k : {1 : 15}, of SL(4), which allow us to relate the
Lie algebra sl(4) to the Lie group SL(4).

The tangent space of SL(4) consists of all 4 × 4 real matrices with zero trace. Thus, there are 15
generators, Gk, where 12 of them are defined as Eab for a ̸= b where 1 is in the (a, b) entry and
0, elsewhere. The remaining three generators are B1 = diag(1,−1, 0, 0), B2 = diag(0, 1,−1, 0),
B3 = diag(0, 0, 1,−1). Explicitly, the generators are as follows:

G1 = E01 =

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , G2 = E02 =

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , G3 = E03 =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

G4 = E10 =

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , G5 = E12 =

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , G6 = E13 =

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

G7 = E20 =

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 , G8 = E21 =

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , G9 = E23 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

G10 = E30 =

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , G11 = E31 =

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 , G12 = E32 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 ,

G13 = B1 =

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , G14 = B2 =

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 , G15 = B3 =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 .

Thus, as briefly explained in Sec. 4.4, the relation between the Lie algebra, ξ∧ ∈ sl(4), and the Lie
group H ∈ SL(4) is given by:

H = exp (ξ∧) = exp

(
15∑
k=1

ξk Gk

)
. (6)

B Extra Quantitative Results

We provide addition results of evaluating on the 7-Scenes [60] and TUM RGB-D [65] datasets where
we experiment with different submap sizes (Appendix B.1) and show the number of submaps and
loop closures per scene (Appendix B.2).

B.1 Evaluation with different submap sizes

Here we show results for the 7-Scenes and TUM RGB-D datasets in Tables 5 and 6 with different
submap sizes (w = 8, 16, 32). For 7-Scenes, we also include results for w = 1. Recall that w is the
size of new images in the submap, so in the case of w = 1, each submap has one new image, one
image from the prior submap, and up to one extra image from loop closures. For small submap size
of w = 1, the backend becomes numerically unstable for some TUM scenes (consistently floor and
360) preventing an estimated alignment, and thus we do not include the w = 1 for TUM. This is due
to reasons discussed in Sec. 6. Particularly, for the floor scene there are a large portion of images
which only view a planar scene which makes the estimation of the full 15-DOF homography matrix
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degenerate, and for the 360 scene, using a small submap size such as w = 1 is likely to encounter a
pure rotation which can result in less accurate depth measurements from VGGT and hence reduced
accuracy in our estimate of relative homography.

Table 5: Root mean square error (RMSE) of absolute trajectory error (ATE) on 7-Scenes [60] (unit: m).
The * symbol indicates that the baseline is evaluated in the uncalibrated mode, all VGGT-SLAM configurations
are evaluated in uncalibrated mode. Green is best and light green is second best.

Method Sequence Avg
chess fire heads office pumpkin kitchen stairs

U
nc

al
ib

.

DROID-SLAM* [67] 0.047 0.038 0.034 0.136 0.166 0.080 0.044 0.078
MASt3R-SLAM* [46] 0.063 0.046 0.029 0.103 0.114 0.074 0.032 0.066
Ours (Sim(3), w = 1) 0.047 0.025 0.032 0.113 0.138 0.050 0.083 0.070
Ours (Sim(3), w = 8) 0.039 0.027 0.020 0.108 0.144 0.053 0.080 0.067
Ours (Sim(3), w = 16) 0.037 0.027 0.021 0.107 0.135 0.051 0.093 0.067
Ours (Sim(3), w = 32) 0.037 0.026 0.018 0.104 0.133 0.061 0.093 0.067
Ours (SL(4), w = 1) 0.089 0.046 0.072 0.119 0.147 0.055 0.100 0.090
Ours (SL(4), w = 8) 0.041 0.060 0.043 0.106 0.206 0.054 0.078 0.084
Ours (SL(4), w = 16) 0.036 0.065 0.037 0.107 0.139 0.050 0.093 0.075
Ours (SL(4), w = 32) 0.036 0.028 0.018 0.103 0.133 0.058 0.093 0.067

Table 6: Root mean square error (RMSE) of absolute trajectory error (ATE) on TUM RGB-D [65] (unit: m).
The * symbol indicates that the baseline is evaluated in the uncalibrated mode, all VGGT-SLAM configurations
are evaluated in uncalibrated mode. Green is best and light green is second best.

Method Sequence Avg
360 desk desk2 floor plant room rpy teddy xyz

U
nc

al
ib

.

DROID-SLAM* [67] 0.202 0.032 0.091 0.064 0.045 0.918 0.056 0.045 0.012 0.158
MASt3R-SLAM* [46] 0.070 0.035 0.055 0.056 0.035 0.118 0.041 0.114 0.020 0.060
Ours (Sim(3), w = 8) 0.070 0.026 0.030 0.048 0.026 0.081 0.024 0.035 0.015 0.040
Ours (Sim(3), w = 16) 0.112 0.045 0.123 0.261 0.022 0.137 0.044 0.044 0.016 0.089
Ours (Sim(3), w = 32) 0.123 0.040 0.055 0.254 0.022 0.088 0.041 0.032 0.016 0.074
Ours (SL(4), w = 8) 0.179 0.046 0.095 0.210 0.033 0.272 0.038 0.130 0.031 0.115
Ours (SL(4), w = 16) 0.147 0.032 0.087 0.158 0.027 0.150 0.037 0.069 0.035 0.083
Ours (SL(4), w = 32) 0.071 0.025 0.040 0.141 0.023 0.102 0.030 0.034 0.014 0.053

Table 7: Dense reconstruction evaluation on 7-Scenes [60] (unit: m).

Method 7-Scenes

ATE↓ Acc.↓ Complet.↓ Chamfer↓

U
nc

al
ib

.

MASt3R-SLAM* [46] 0.066 0.068 0.045 0.056
Ours (Sim(3), w = 1) 0.070 0.066 0.051 0.059
Ours (Sim(3), w = 8) 0.067 0.054 0.056 0.055
Ours (Sim(3), w = 16) 0.067 0.054 0.058 0.056
Ours (Sim(3), w = 32) 0.067 0.052 0.062 0.057
Ours (SL(4), w = 1) 0.090 0.080 0.068 0.074
Ours (SL(4), w = 8) 0.084 0.067 0.065 0.066
Ours (SL(4), w = 16) 0.075 0.061 0.063 0.060
Ours (SL(4), w = 32) 0.067 0.052 0.058 0.055

B.2 Number of submaps per scene

As a reference, in Tables 8 and 9 we show the number of total submaps in each scene for 7-Scenes
and TUM RGB-D for different values of experimented submap size, w, and also show the number of
loop closures in each scene.

B.3 Evaluation of Focal length Consistency

To provide quantitative results showing that VGGT can produce an estimate of the scene which differs
by more than a similarity transformation to the true scene, in this section we show inconsistencies
in estimates of camera intrinsics from VGGT. Here, a single camera is used per scene and different
scenes can use different cameras. We observe that even though the true intrinsics of the camera
should be approximately constant within a scene, VGGT has a varying estimate of the instrincs both
inside a submap and across different submaps. This provides further demonstration that the VGGT
reconstruction of a submap can differ from the true scene by more than a similarity transformation

15



Table 8: Window size w and corresponding submap and loop closure counts when wloop = 1, shown as
“# of submaps (# of loops)”.

Window size, w Sequences in 7-Scenes [65]

chess fire heads office pumpkin kitchen stairs

1 29 (11) 50 (46) 62 (49) 58 (55) 43 (37) 43 (38) 14 (12)
8 4 (0) 7 (4) 8 (3) 8 (4) 6 (0) 6 (2) 2 (0)

16 2 (0) 4 (1) 4 (2) 4 (2) 3 (0) 3 (1) 1 (0)
32 1 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 1 (0)

Table 9: Window size w and corresponding submap and loop closure counts when wloop = 1, shown as
“# of submaps (# of loops)”.

Window size, w Sequences in TUM-RGB-D [65]

360 desk desk2 floor plant room rpy teddy xyz

1 168 (151) 54 (42) 98 (84) 99 (87) 102 (92) 186 (162) 95 (89) 146 (125) 56 (54)
8 21 (4) 7 (4) 13 (7) 13 (3) 13 (5) 24 (7) 12 (10) 19 (9) 7 (5)
16 11 (2) 4 (2) 7 (4) 7 (2) 7 (2) 12 (4) 6 (4) 10 (4) 4 (2)
32 6 (1) 2 (0) 4 (2) 4 (1) 4 (2) 6 (2) 3 (1) 5 (2) 2 (0)

and contain affine and projective degrees of freedom which can be resolved using the homography
alignment. In Table 10 we summarize the standard deviation, range, and average of all focal length
estimates for four scenes. We observe that for both the office loop scene and 7-Scenes, our Sim(3)
variant of VGGT-SLAM performs comparable to the SL(4) variant while SL(4) performs significantly
better than Sim(3) on the Tabletop and Bollards scene. Consistent with this observation, in Table 10,
we notice that the later two have much larger intrinsic error (larger standard deviation and larger
range) than the former two.
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Figure 4: VGGT estimates of the focal length (fx) of every keyframe in the office loop scene from Fig. 2 for all
22 submaps.
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Figure 5: VGGT estimates of the focal length (fx) of every keyframe in the tabletop scene from Fig. 7 for all 6
submaps.
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Table 10: Statistics of VGGT Focal length (fx) estimates. All values in pixels.

Scene Std Dev Range Average

Office Loop (Fig. 2) 7.3 36.9 429.0
7-Scenes 9.0 59.7 435.1
Tabletop (Fig. 7) 37.1 122.8 669.1
Bollards (Fig. 8) 51.8 177.3 738.9

C Extra Qualitative Results

C.1 Extra examples of SL(4) versus Sim(3)

While we have mentioned that the Sim(3) version of VGGT-SLAM often provides high quality
reconstructions, here we provide additional examples of cases where Sim(3) is not sufficient and
SL(4) is necessary to achieve consistent alignment across submaps.

Figure 6: Example on a tabletop scene showing Sim(3) is unable to align the submaps while SL(4) is able to
correct for projective ambiguity. Here w = 32 and τdisparity = 50.
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Figure 7: Example on a tabletop scene showing Sim(3) is unable to align the submaps while SL(4) is able to
correct for projective ambiguity. The true scene only has one banana, but the Sim(3) reconstruction shows a
hallucination of two caused by misalignment. Camera pose estimates are colored by submap. Here w = 16 and
τdisparity = 50.

Figure 8: Example on an outdoor scene with yellow bollards surrounding tanks showing Sim(3) is unable to
align the submaps while SL(4) is able to correct for projective ambiguity. The true scene has single bollards
spaced around the tanks while the Sim(3) scene hallucinates clusters of bollards due to misalignment. Here
w = 16 and τdisparity = 25.
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C.2 7-Scenes Qualitative Results

Here we provide additional visualizations of scene reconstructions from the 7-Scenes dataset experi-
ments for VGGT-SLAM with SL(4). We use the default parameters from Sec. 5.

Figure 9: Visualization of reconstruction on 7-Scenes fire scene with 2 submaps. Camera pose estimates are
colored by submap.

Figure 10: Visualization of reconstruction on 7-Scenes heads scene with 2 submaps. Camera pose estimates
are colored by submap. Part of the scene in cropped for visual clarity.
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C.3 TUM RGB-D Qualitative Results

Here we provide additional visualizations of scene reconstructions from the TUM RGB-D dataset
experiments for VGGT-SLAM with SL(4). We use the default parameters from Sec. 5.

Figure 11: Visualization of reconstruction on TUM room scene with 6 submaps. Camera pose estimates are
colored by submap. Part of the scene in cropped for visual clarity.

Figure 12: Visualization of reconstruction on TUM 360 scene with 6 submaps. Camera pose estimates are
colored by submap. Part of the scene in cropped for visual clarity.
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Figure 13: Visualization of reconstruction on TUM xyz scene with 2 submaps. Camera pose estimates are
colored by submap.
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C.4 Additional Outdoor Qualitative Results

While our method is primarily tested on indoor scenes, here we provide an additional example of
VGGT-SLAM on an outdoor scene from the TartanAir dataset [74]. Here w = 16, τdisparity = 50, and
τconf = 50.

Figure 14: Visualization of reconstruction on TartanAir (scene Neighborhood Easy, P005, left camera) with 8
submaps. Camera pose estimates are colored by submap.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper includes the claims in both the abstract and in a contributions section
of the introduction, which reflect the scope of the paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide both a limitations section and further discussion of limitations in
our experimental analysis.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Our paper does not include new theorems. All equations are numbered with
citations provided when they are applied from prior work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All parameters are mentioned in the paper and we benchmark using publicly
available datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use public datasets for all baseline experiments and major results and will
include our code as a zip file in the supplementary following the code submission guidelines.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We mention all parameters used in our experiments with justification for the
major parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we provide error bars and show the statistical significance of our main
experimental results with an added study in our ablations section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention that the experiments are performed on an NVIDIA GeForce RTX
4090 GPU with AMD Ryzen Threadripper 7960X CPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have followed all guidelines in the NeurIPS Code of Ethics and our
experiments do not include any human subjects and our experiments use common open
source SLAM benchmark datasets.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As a SLAM system, our paper does not have significant societal impacts.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method does not require training and use open source weights and datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide citation to all use of prior datasets and the foundation model that
our SLAM system use and follow the terms of use of each.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include our code in the supplementary and include relevant licenses with
the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use human subjects in our paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use human subjects in our paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development does not involve the use of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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