LARO: LEARNING TO ACCELERATE TWO-STAGE ADAPTIVE ROBUST OPTIMIZATION WITH RELAXATION GUARANTEES

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

022

024

025

026

027

028

029

031

032

033

034

037 038

039

040

041

042

043

044

045

046

047

048

051

ABSTRACT

Two-stage Adaptive Robust Optimization (ARO) with discrete and polyhedral uncertainty sets incorporates "wait-and-see" decisions to reduce conservatism but remains intractable due to its multi-level structure and mixed-integer recourse. This paper introduces LARO, a learning-accelerated two-phase decomposition framework that scales ARO efficiently without embedding neural networks (NNs) into optimization models. The framework operates in two phases: a Relaxed Master Problem (RMP) that identifies candidate here-and-now decisions through a penalized selection mechanism, where pre-computed severity scores bias scenario choice toward adversarial cases, and a verification phase that ensures restricted worst-case consistency. By decoupling the NN from the RMP, we eliminate solvercompatible embeddings, reduce computational overhead, and enable the use of more expressive neural architectures for recourse evaluation in the adversarial step. We establish finite convergence, with the number of iterations bounded by the size of the discrete uncertainty set, and show that the penalized RMP preserves valid lower bound (LB) while improving iteration efficiency by prioritizing impactful scenarios. Experiments on robust knapsack and unit commitment (UC) problems in power grids demonstrate the scalability of the framework, achieving runtime speedups of up to $10^3 \times$ for knapsack instances and $10^2 \times$ for a 24-bus power network compared to classical column-and-constraint generation. The solve spped is achieved while maintaining optimality gaps typically below 7% for knapsack instances and 2% on the UC problems. This work delivers a severity-aware, learning-accelerated CCG that is both scalable and certifiable, advancing robust decision-making under uncertainty.

1 Introduction

Robust Optimization (RO) is a fundamental framework for decision-making under data uncertainty, ensuring solutions remain feasible across a defined uncertainty set Bertsimas et al. (2011); Ben-Tal et al. (2009). Unlike deterministic or stochastic optimization, RO prioritizes reliability, making it valuable in finance, supply chains, and power systems. However, its conservatism in accounting for all uncertainties can reduce flexibility and increase costs.

Adaptive Robust Optimization (ARO), as formalized in Ben-Tal et al. (2004); Yanıkoğlu et al. (2019), extends the RO framework by incorporating *adaptive* decisions to mitigate excessive conservatism. ARO partitions decisions into "here-and-now" (\mathbf{x}) and "wait-and-see" ($\mathbf{y}_{\boldsymbol{\xi}}$), where the latter responds non-anticipatively to uncertainty realizations $\boldsymbol{\xi} \in \Xi$. This adaptivity reduces the conservatism of static RO methods. We consider the following general ARO problem:

$$\min_{\boldsymbol{x} \in X} \max_{\boldsymbol{\xi} \in \Xi} \min_{\boldsymbol{y}_{\boldsymbol{\xi}} \in Y(\boldsymbol{x}, \boldsymbol{\xi})} \quad \boldsymbol{c}^{\top} \boldsymbol{x} + \boldsymbol{d}^{\top} \boldsymbol{y}_{\boldsymbol{\xi}}$$
s.t.
$$\boldsymbol{T}(\boldsymbol{\xi}) \, \boldsymbol{x} + \boldsymbol{W} \, \boldsymbol{y}_{\boldsymbol{\xi}} \leq h(\boldsymbol{\xi}).$$
 (1)

The objective function in equation 1 minimizes the worst-case total cost over a fixed polyhedral uncertainty set Ξ ; the recourse $y_{\mathcal{E}}$ adapts to $\boldsymbol{\xi}$ while remaining feasible.

Despite its theoretical appeal, the scalability of ARO presented in Equation 1 is fundamentally limited by its nested min-max-min structure. Ensuring that adaptive decisions y_{ξ} are feasible for every possible realization of uncertainty $\xi \in \Xi$ creates a semi-infinite optimization problem. Analytically reformulating these infinite constraints as an adversarial problem introduces bilinear terms between decision variables and uncertain parameters. This results in a nonconvex and often non-differentiable second-stage value function, which invalidates the assumptions of classical convex decomposition algorithms like Benders' method Ben-Tal et al. (2009); Bertsimas et al. (2011).

The presence of mixed-integer variables compounds this difficulty, creating formidable mixed-integer nonconvex programs, a class of problems known to be NP-hard even in much static robust optimization with polyhedral uncertainty sets Bertsimas & Sim (2003). A common assumption in this paper, also utilized by Bertsimas & Kim (2024) and Dumouchelle et al. (2023) discretizes the uncertainty set Ξ , but the core issue still remains. It merely transforms the problem into a large-scale deterministic equivalent where the bilinear linkages persist, coupling decisions across numerous scenarios. Consequently, despite relaxing optimality guarantees, scalable ARO methods remain elusive; this work addresses that gap.

1.1 RELATED LITERATURE

Researchers have proposed methods to mitigate the issues associated with the computational complexity and infinite-dimensional nature of ARO. The traditional methods generally fall into two broad categories: restricting the wait-and-see decision thereby creating decision rules (Ben-Tal et al. (2004); Chen & Zhang (2009); Georghiou et al. (2021); Kuhn et al. (2011); Subramanyam et al. (2020) and decomposition-based algorithms Bertsimas et al. (2012), Zeng & Zhao (2013)). Restricting decision rules limits the flexibility of the wait-and-see (recourse) variables to often a lower-dimensional function class—affine or piecewise-affine policies Bertsimas & Goyal (2012). This can transform the ARO problem into a robust or convex optimization problem, reducing its complexity. However, such overly simplistic policy classes may lead to suboptimal or even infeasible solutions. Techniques such as Benders Decomposition Thiele et al. (2009) and Column-and-Constraint Generation (CCG) Zeng & Zhao (2013) aim for exact or near-optimal solutions by iteratively refining the set of constraints or variables. However, iteratively refining the feasible region and/or adding scenarios can lead to a large number of subproblems, making these methods intractable for large-scale applications. Moreover, in complex ARO problems (with mixed-integer recourse), the iterative process may require many iterations to reach near-optimal solutions.

More recently, machine learning (ML) techniques have emerged as a powerful alternative for tackling ARO problems in real-world scenarios Julien et al. (2024); Brenner et al. (2024); Goerigk & Kurtz (2025). Bertsimas & Kim (2024) pioneered an ML-based framework that accelerates the solution process for ARO. Their insight is to view the ARO problem's solution structure as a strategy that could be predicted by a trained ML model. Their method involves training a set of ARO instances using traditional CCG methods and learning the optimal strategies for including here-and-now decisions, worst-case scenarios, and wait-and-see actions. On new ARO instances, the trained model returns a policy orders of magnitude faster than classical iterative solvers. An issue with ML methods is that while they can drastically reduce online solution times, they generally provide approximate solutions; rigorous worst-case guarantees can be difficult to establish without additional theoretical structures. Building on ML-based approaches, Dumouchelle et al. (2023) neuralizes CCG by replacing the worst-case uncertainty selection with a learned surrogate of second-stage objective. The surrogate is embedded as a piecewise-linear model in the MP, compatible with MILP solvers Fischetti & Jo (2017); Serra et al. (2018), yielding substantial speedups. Achieving reliable performance, however, requires careful neural architectural choices which are readily embeddable as an MILP.

Embedding neural networks (NNs) into MILPs is impractical, as it requires introducing binary activation variables for each neuron and additional linking constraints (e.g., big-M) at every layer. Thus the MILP model size increases at least linearly with the neuron count and, in practice, the branch-and-bound search explodes as the network deepens Fischetti & Jo (2017); Serra et al. (2018). Big-M constraints are easy to formulate but require tight pre-activation bounds; loose bounds yield weak relaxations and large search trees. For large neural architectures like transformers, the resulting MILP can blow up in memory and time, undermining the speedups the surrogate was meant to provide Tong et al. (2024).

1.2 Contributions

 In this paper, we introduce a novel penalized two-phase decomposition strategy for addressing the Master Problem (MP) within the CCG framework for ARO. Specifically, the algorithm circumvents the need to embed the neural networks as mixed-integer linear constraints by splitting the MP into a penalized relaxed phase-1 candidate selection for an uncertainty and a phase-2 NN-based worst-case candidate verification. Building on this, the primary contributions of our work are as follows:

Decoupled NN Architecture: Proposing separation of NN inference from the core optimization problem, enabling the use of sophisticated NNs (including those with advanced activation functions) without introducing MILP encoding overhead. This architectural decoupling ensures scalability and faster solutions for high-dimensional ARO problems.

Stabilized Phase-1 selection The MP's phase-1 biases the uncertainty selection towards possible worst-case scenarios. This is done through a severity score obtained from penalty calculated for each scenario based on the problem instance. The penalized relaxation stabilizes candidate selection, accelerating convergence by steering the CCG loop toward near worst-case realizations.

Certifiable Lower Bounds: Establishes strict lower objective bounds through scenario generation, overcoming a key limitation of existing ML-based ARO approaches that lack formal guarantees.

Performance Gains: The proposed framework achieves $10-10^2 \times$ faster convergence than state-of-the-art methods on average across real and synthetic robust optimization problems. The overall algorithm terminates in finitely many iterations (at most the number of candidate scenarios).

The paper is organized as follows: Section 2 introduces key preliminaries. Section 3 presents the two-phase decomposition framework for MP, including its ML architecture and integration with CCG. Section 4 covers the NN training process. Section 5 evaluates the framework on two-stage robust knapsack and power grid unit commitment problems, comparing runtime and solution quality against benchmarks. Finally, Section 6 presents key insights and future directions.

2 Preliminaries

In this study, we adopt a general robust optimization framework where the uncertainties are defined as discrete sets $\widehat{\Xi}$. We reformulate 1 into an extended ARO form as shown in Lefebvre et al. (2023):

$$\min_{\boldsymbol{x}\in X,\,\theta,\,\boldsymbol{y}_{\varepsilon}}\theta\tag{2a}$$

s.t.
$$c^{\top}x + d^{\top}y_{\xi} \le \theta$$
, $\forall \xi \in \widehat{\Xi}$ (2b)

$$T(\boldsymbol{\xi})\boldsymbol{x} + \boldsymbol{W}\boldsymbol{y}_{\boldsymbol{\xi}} \le h(\boldsymbol{\xi}), \qquad \forall \boldsymbol{\xi} \in \widehat{\Xi}$$
 (2c)

$$y_{\xi} \in Y(x, \xi),$$
 $\forall \xi \in \widehat{\Xi}.$ (2d)

The extended ARO formulation reduces the $\min - \max - \min$ problem into a single-level \min problem by enumerating uncertainties in $\widehat{\Xi}$. However, this enumeration can introduce a large number of variables y_{ξ} and constraints (2b)–(2c), increasing computational complexity. In the next section, we discuss algorithms designed to mitigate this challenge.

2.1 COLUMN-AND-CONSTRAINT GENERATION (CCG)

The CCG algorithm is a prominent iterative method for tackling medium-scale two-stage ARO problems Zhao & Zeng (2012). It addresses the computational complexity arising from enumeration in (2) by iteratively constructing constraints and variables within a master-adversarial framework. Rather than considering all scenarios, the CCG algorithm focuses on the most critical scenarios in the MP at each iteration, $t \in \mathbb{N}$, using a smaller discrete restricted uncertainty set $\Xi_t \subseteq \hat{\Xi}$. The MP at iteration t computes the solution (x_t, θ_t) and is formulated as follows:

$$\mathcal{P} := \min_{\boldsymbol{x} \in X, \, \theta, \, \boldsymbol{y}_{\boldsymbol{\xi}}} \quad \theta \tag{3a}$$

s.t.
$$c^{\top}x + d^{\top}y_{\xi} \leqslant \theta$$
 $\forall \xi \in \Xi_t$ (3b)

$$T(\boldsymbol{\xi})\boldsymbol{x} + \boldsymbol{W}\boldsymbol{y}_{\boldsymbol{\xi}} \leqslant h(\boldsymbol{\xi})$$
 $\forall \boldsymbol{\xi} \in \Xi_t$ (3c)
 $\boldsymbol{y}_{\boldsymbol{\xi}} \in Y(\boldsymbol{x}, \boldsymbol{\xi})$ $\forall \boldsymbol{\xi} \in \Xi_t$ (3d)

Until a convergence criterion is met, injection of newer uncertainties in the MP takes place by solving the AP which takes in as input the fixed MP solution x_t , defined as,

 $Q(\boldsymbol{x}_t) := \max_{\boldsymbol{\xi} \in \hat{\Xi}} \min_{\boldsymbol{y}_{\boldsymbol{\xi}} \in Y(\boldsymbol{x}, \boldsymbol{\xi})} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} + \boldsymbol{d}^{\top} \boldsymbol{y}_{\boldsymbol{\xi}} : \boldsymbol{W} \boldsymbol{y}_{\boldsymbol{\xi}} \leqslant \boldsymbol{h}(\boldsymbol{\xi}) - \boldsymbol{T}(\boldsymbol{\xi}) \boldsymbol{x}^{\boldsymbol{t}} \right\}.$ (4)

The solution to this problem provides ξ^t and the value of the AP as Q_t (in Appendix B Algorithm 3).

2.2 Computational challenges of CCG

The iterative structure of CCG, while theoretically sound, suffers from significant computational bottlenecks in large-scale problems or those with integer recourse variables Zhao & Zeng (2012). Even with polyhedral uncertainty and convex second-stage decisions, the AP must be solved as an MILP in each iteration due to bilinear complementarity constraints Zeng & Zhao (2013) or heuristically for bilinear objectives Bertsimas et al. (2012), resulting in intractable representations.

In the MP, every iteration appends a new constraint and variable (for each $\xi \in \Xi_t$) leading to longer solve times especially for integer decisions. Even if individual MP/AP solves are tractable, the total runtime scales with the number of iterations and is thus prohibitive for large problems.

3 ML APPROXIMATION OF CCG

For fixed decisions \hat{x} and uncertainty $\hat{\xi}$, the innermost min is the following value-function problem,

$$V(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{\xi}}) := \min_{\boldsymbol{y}} \{ \boldsymbol{c}^{\top} \widehat{\boldsymbol{x}} + \boldsymbol{d}^{\top} \boldsymbol{y} : \boldsymbol{W} \boldsymbol{y} \leqslant h(\widehat{\boldsymbol{\xi}}) - \boldsymbol{T}(\widehat{\boldsymbol{\xi}}) \widehat{\boldsymbol{x}} \}, \quad \boldsymbol{\xi}^t \ \leftarrow \ \arg\max_{\boldsymbol{\xi}_i \in \widehat{\boldsymbol{\Xi}}} \ V(\boldsymbol{x}^t, \boldsymbol{\xi}_i).$$

 During the t^{th} CCG iteration, if $V(x_t, \xi_i)$ is available for all $\xi_i \in \hat{\Xi}$ either exactly or via function approximation, the adversarial problem in Equation (4) simplifies to enumerating $\hat{\Xi}$ to identify the worst-case uncertainty. The selected ξ^t is then appended to the MP set Ξ_t for the next CCG iteration.

In this work, we approximate the AP's $V(\hat{x}, \hat{\xi})$, value of the inner min problem by NN model similar to Dumouchelle et al. (2023). While being an approximate solution, this method avoids bi-linearity and integer-valued variables in AP, replacing it with forward passes through the NN with weights Θ . By training the NN on the representative set of here-and-now decisions and uncertainty $(\hat{x}, \hat{\xi})$ from previously recorded data \mathcal{D} , the NN model learns a mapping from input to the value of $V(\hat{x}, \hat{\xi})$.

$$\boldsymbol{\xi}^t \leftarrow \arg\max_{\boldsymbol{\xi} \in \widehat{\Xi}} V_{\Theta}(\boldsymbol{x}^t, \boldsymbol{\xi}) \tag{5}$$

As new uncertainties are introduced at each iteration t, expanding the uncertainty set Ξ_t , the MP correspondingly increases in size. This growth poses computational challenges, particularly when integer variables or a large number of second-stage decision variables are involved, leading to potential solution intractability. To overcome these issues, we propose a two-phase *selection* and *verification* scheme that decomposes the MP and solves it iteratively.

3.1 MP: Two-Phase Decomposition

The MP is broken into two key components: a phase-1 penalized Relaxed Master Problem (RMP) that selects a candidate worst-case scenario driven by severity score and a verification step that determines if it is truly the most damaging. If not, a no-good cutting plane is added to refine the MP's feasible region. This selection-verification cycle repeats until the MP solution aligns with the most likely worst-case scenario. Below, we first detail *Candidate Selection*, followed by *Candidate Verification*.

3.1.1 MP PHASE-1: SELECTION PHASE (SEVERITY-WEIGHTED)

In the selection phase, the MP is relaxed by omitting the complicating constraints (3b)-(3c). Phase-1 selects a single *active* scenario from the current candidate set Ξ_t and a corresponding pair (x, y) that

is feasible for that scenario, while gently steering the choice toward *severe* scenarios. We solve the following one–hot selection model (the active uncertainty equals exactly one candidate):

$$\mathcal{P}_1 := \min_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\xi}_a, \boldsymbol{z}} \quad \boldsymbol{c}^{\top} \boldsymbol{x} + \boldsymbol{d}^{\top} \boldsymbol{y} - \lambda \cdot \sum_{i=1}^{|\Xi_t|} S_{\phi}(\boldsymbol{\xi}_i) z_i, \tag{6a}$$

s.t.
$$T(\boldsymbol{\xi}_a) \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y} \leqslant \boldsymbol{h}(\boldsymbol{\xi}_a),$$
 (6b)

$$\xi_a = \sum_{i=1}^{|\Xi_t|} z_i \, \xi_i, \qquad \sum_{i=1}^{|\Xi_t|} z_i = 1,$$
(6c)

$$\boldsymbol{\xi}_{a}^{\ell} \leqslant \boldsymbol{\xi}_{a} \leqslant \boldsymbol{\xi}_{a}^{u},\tag{6d}$$

$$z_i \in \{0, 1\}, \quad i = 1, \dots, |\Xi_t|.$$
 (6e)

Here, z is a one–hot vector that selects the active candidate, $\boldsymbol{\xi}_a$ denotes the selected uncertainty, and $S_{\phi}(\boldsymbol{\xi}) \in [0,1]$ is a fixed severity score that depends on \boldsymbol{xi} and the problem instance parameters. We learn a separate regressor $S_{\phi}(\boldsymbol{\xi}) \in [0,1]$ with weights ϕ on the same training corpus as the second-stage NN V_{Θ} , but with the decision x marginalized. This makes S_{ϕ} instance–uncertainty dependent while being policy-agnostic, since it aggregates $Q(x,\boldsymbol{\xi})$ over a design pool of first-stage decisions. The severity penalty $-\lambda \cdot \sum_i S_{\phi}(\boldsymbol{\xi}_i) z_i$ biases the objective towards worst-case scenarios. Also, instead of having constraint blocks for each $\boldsymbol{\xi}$, only one constraint equation 6b for $\boldsymbol{\xi}_a$ is used reducing the problem size.

We set $\lambda=\lambda_{\mathrm{mult}}\cdot R$ where $\lambda_{\mathrm{mult}}\geq 0$ is a user-defined multiplier and R is a data-driven reference scale (e.g., a robust inter-quantile spread $R=q_{95\%}-q_{5\%}$ of the raw severity targets or predictions). The full recipe of targets, features, and calibration details of the severity score and R appears in Appendix E. In experiments we sweep λ_{mult} on a grid to find the best value.

Proposition 1 (Lower Bound). Let (x^*, z^*) solve \mathcal{P}_1 in (6) with $\lambda > 0$ to optimality, and i^* satisfy $z_{i^*}^* = 1$. If $\mathrm{Opt}(\mathcal{P})$ is an optimal value of \mathcal{P} in (3), then:

$$\operatorname{Opt}(\mathcal{P}_1 \mid \lambda = 0, \boldsymbol{z} = \boldsymbol{z}^*) = \min_{\boldsymbol{x}, \boldsymbol{y}} \left\{ \boldsymbol{c}^\top \boldsymbol{x} + \boldsymbol{d}^\top \boldsymbol{y} \mid \boldsymbol{T}(\boldsymbol{\xi}_{i^*}) \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y} \le \boldsymbol{h}(\boldsymbol{\xi}_{i^*}) \right\} \leqslant \operatorname{Opt}(\mathcal{P}). \quad (7)$$

Proof sketch. See Appendix A for a full proof.

Crucially, Proposition 1 certifies the lower bound only after setting $\lambda=0$ (removing the scenario-weighting penalty); accordingly, \mathcal{P}_1 serves solely to select a worst-case scenario i^* , not to certify the bound itself.

3.1.2 MP Phase-2: Verification Phase

A candidate worst-case uncertainty for MP, denoted by ξ_a^* , is identified from \mathcal{P}_1 along with x^* . Phase-1 may select a severe but non-worst scenario in Ξ_t . We therefore enforce a verification step to confirm its validity. The verification is done using the following:

$$\mathcal{P}_2(\boldsymbol{x}^*) \; := \; \max_{\boldsymbol{\xi} \in \Xi_t} \; \min_{\boldsymbol{y} \in Y(\boldsymbol{x}^*, \boldsymbol{\xi})} \Big\{ \boldsymbol{c}^\top \boldsymbol{x}^* + \boldsymbol{d}^\top \boldsymbol{y} \; \; \boldsymbol{W} \boldsymbol{y} \leqslant h(\boldsymbol{\xi}) - \boldsymbol{T}(\boldsymbol{\xi}) \boldsymbol{x}^* \Big\},$$

where x^* is the Phase-1 decision. This verification problem searches for an uncertainty $\hat{\xi} \in \Xi_t$ that maximizes the worst-case cost associated with x^* . If $\hat{\xi} = \xi_a^*$, then the candidate uncertainty is confirmed as the worst-case scenario for the current iteration. Otherwise, if $\xi \neq \xi_a^*$, a new constraint (e.g., $z_i = 0$ corresponding to the rejected scenario) is added to \mathcal{P}_1 and it is resolved, effectively acting as a *cutting-plane* that excludes the suboptimal candidate and tightens the LB.

Phase-2 Approximation: Note $\mathcal{P}_2(\boldsymbol{x}^*)$ solves a similar problem as compared to $Q(\boldsymbol{x}^t)$ albeit on a smaller set of MP uncertainties for a fixed \boldsymbol{x}^* from selection phase \mathcal{P}_1 . Thus, the NN model used in the second-stage of CCG is also applied as an approximation in the MP phase-2 denoted as $\mathcal{P}_2^{\text{approx}}$.

3.2 ML-ACCELERATED CCG

The proposed ML-Accelerated CCG framework integrates NN approximations into both the MP and AP replacing costly NN-embedded mixed-integer solves. Algorithm 2 outlines the full procedure, which iteratively refines lower and upper bound (UB) until convergence.

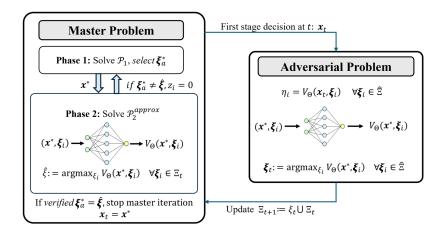


Figure 1: Overview of the proposed Machine Learning-Accelerated CCG algorithm.

Convergence. After phase-1 selection and phase-2 verification, we fix the selected scenario $\boldsymbol{\xi}_t^{\text{in}}$ and solve the corresponding single-scenario problem *exactly* (with the unpenalized objective) to obtain the MP's certified LB. We then evaluate the global worst-case for x_t over $\widehat{\Xi}$, yielding the certified UB. Since the severity penalty only biases Phase-1 selection and never enters these certificates, the gap UB - LB decreases monotonically and, with a finite scenario pool, the algorithm terminates once UB - LB $\leq \varepsilon$, where ε is the tolerance.

To verify the approximation quality of the phase-2 and AP in the ML-Accelerated CCG by an NN, we consider "Accelerated-CCG" where both phase-2 and AP are solved exactly using the optimal solution to the value-function problem. Due to the exact phase-2 and AP solves, Accelerated CCG serves as the benchmark for comparing against the ML-accelerated variant. This framework, showed in Algorithm 5 is critical for enabling and benchmarking ML approximations while addressing the computational challenges of traditional CCG.

4 NEURAL NETWORK TRAINING

4.1 Data Generation for Training

To train a neural network surrogate for the second-stage cost function, we first generate a representative set of problem instances and uncertainty realizations. Specifically:

Instance Parameters: We generate k problem instances $I_i, \forall i \in (1, ..., k)$ by sampling parameters, such as cost vectors c, d and constraint matrices T, W. As explained in Appendix C and D, sampling distributions are chosen to reflect realistic instances for training.

Uncertainty Set via Norm Ball: Let $\bar{\xi}$ represent the nominal (forecasted) uncertainty, with each sampled ξ drawn from a norm ball centered at $\bar{\xi}$, $\xi \in \{\bar{\xi} + \delta : \|\delta\| \le \rho\}$, where $\|\cdot\|$ is a chosen norm (e.g., ℓ_2 or ℓ_∞), and ρ specifies the uncertainty radius. To discretize the uncertainty set:

$$\hat{\Xi} = \{\bar{\xi} + \delta_i : ||\delta_i|| \leqslant \rho, \ i = 1, \dots, n\},\$$

where δ_i is sampled uniformly over the ball.

4.2 Label Computation via Exact Solves

Each input from the generated data (ξ, I) is used to solve an exact optimization problem:

$$Q(\boldsymbol{x}_t, \boldsymbol{\xi}) := \min_{\boldsymbol{x}, \boldsymbol{y}} \left\{ \boldsymbol{c}^\top \boldsymbol{x} + \boldsymbol{d}^\top \boldsymbol{y}, \quad \boldsymbol{T}(\boldsymbol{\xi}) \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y} \leqslant \boldsymbol{h}(\boldsymbol{\xi}) \right\}, \tag{8}$$

using a solver. In the above formulation, first-stage decisions x is a variable. The solution to (8) provides the fixed objective value V^* and \hat{x} for ξ and I. This is an expensive task since the NN training requires large number of input data but the solves can be done in an offline distributed manner. Each training instance is stored as $((\hat{x}, \xi, I), V^*)$ in the dataset \mathcal{D} with $k \times N$ total rows.

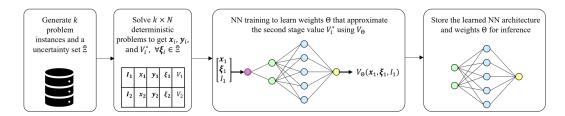


Figure 2: Data generation and training for NN: Training data is generated offline by solving a deterministic program over a tabular combination of instances and uncertainties. The NN model is then trained on the dataset \mathcal{D} for inference in the ML-Accelerated CCG.

4.3 NN TRAINING AND INFERENCE

A feed-forward NN $V_{\Theta}(\hat{x}, \xi, I)$, is used to approximate V^* . The input layer concatenates \hat{x}, ξ , and I in one long vector and the output layer predicts a single cost value V^* .

$$\mathcal{L}(\Theta) = \frac{1}{|\mathcal{D}|} \sum_{(\hat{\boldsymbol{x}}, \boldsymbol{\xi}) \in \mathcal{D}} \left(V^* - V_{\Theta}(\hat{\boldsymbol{x}}, \hat{\boldsymbol{\xi}}, I) \right)^2. \tag{9}$$

More advanced architectures, like convolutional or attention-based models, can be used for structured data (see Sec. D.2). After training, the NN model $V_{\Theta}(x, \xi, I)$ is used for inference in the ML-accelerated CCG algorithm. Since inference is performed with fixed instance parameters, we simplify the notation to $V_{\Theta}(x, \xi)$.

5 COMPUTATIONAL RESULTS

We evaluate the performance of the proposed ML-accelerated CCG framework against the traditional CCG algorithm, focusing on runtime reduction and solution quality. All optimization and instance testing were performed on a personal laptop with a 2.90 GHz Intel® Core™ i7 CPU and 16 GB of memory. Mixed-Integer Linear Programming problems were solved using Gurobi 11.0, with implementations in Julia via the JuMP package Lubin et al. (2023). NN training and evaluation were conducted on an NVIDIA A30 GPU with 50 GB of memory, using PyTorch 2.4 in Python 3.10.

Next, define "Optimality Gap" quantifies the relative error between the proposed and baseline methods:

$$\mbox{Optimality Gap} = \frac{O_{\mbox{\footnotesize proposed}} - O_{\mbox{\footnotesize baseline}}}{O_{\mbox{\footnotesize baseline}}} \times 100.$$

Here, $O_{\rm proposed}$ is the objective value from the proposed accelerated/ML-accelerated CCG framework, while $O_{\rm baseline}$ is the exact classical CCG solution with respect to the $\widehat{\Xi}$ set. A smaller gap indicates a closer alignment with the true robust optimal solution. We also empirically note that the proposed method never violates the LB property from the exact solves, which would otherwise result in over-conservative results.

5.1 CASE STUDY: TWO-STAGE ROBUST KNAPSACK

We adopt and test the two-stage robust knapsack problem instances with objective uncertainty from Arslan & Detienne (2022) for Uncorrelated (UN), Weakly Correlated (WC), Almost Strongly Correlated (ASC), and Strongly Correlated (SC) knapsack sizes of 20 to 80 items. The discrete uncertainty set for inference for all the knapsack sizes is taken from Dumouchelle et al. (2023). Since the proposed ML-Accelerated CCG introduces the λ_{mult} as a tunable hyperparameter in the penalty term, we perform a grid search to select the value that yields the best trade-off between optimality gap and runtime. For the robust knapsack case study, the NN second-stage models used is presented in Appendix Table 3, the best performance was achieved with $\lambda_{mult} = 3000.0$ (Appendix E.3), which we fix in all reported experiments.

We evaluate the full two-stage robust knapsack problem, comparing ML-Accelerated CCG and Accelerated CCG against the exact baseline. Figure 3 shows optimality gaps for the robust knapsack,

with a few key observations:

- (i) Accuracy: The median optimality gap for each knapsack size remains within 7% for I=20,30 and within 3% for the sizes greater than 30, while optimality gaps greater than 10% range are rare and reflect trade-offs from NN approximation. Table 2 shows solutions with 0-2% optimality gap showing that most of the solutions are tight and closer to the exact objective values.
- (ii) LB guarantee: We empirically check that all gaps are non-negative, confirming the proposed method preserves the LB, suggesting the algorithm never produces overly conservative results,
- (iii) <u>Reference Performance</u>: Solving phase-2 exactly, rather than using NN-approximated value functions, results in near-zero gaps, confirming the tightness of our two-phase decomposition and the benefit in using larger and better NNs, and
- (iv) <u>Fast Solves</u>: The ML-Accelerated CCG achieves orders-of-magnitude faster solve times across all instance sizes, reducing runtimes compared to classical CCG's exact baseline, as shown in Table 1.

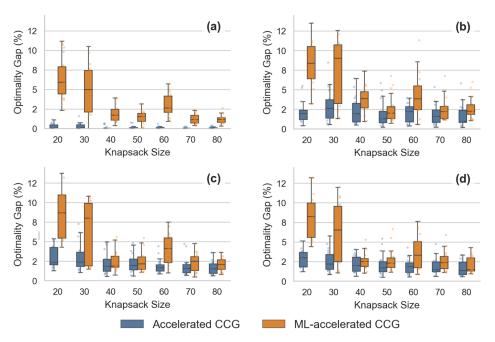


Figure 3: Optimal Gap distribution of the proposed ML-accelerated CCG (orange) and Accelerated CCG (blue) compared to exact CCG solves across problem scales (knapsack item counts N=20 to 80 and correlation types (a) UN, (b) WC, (c) ASC, (d) SC

Table 1: Mean Execution Times (seconds) by Category and Knapsack Size (*I*).

	UN		WC		ASC		SC					
I	Exact	ACC.	ML.									
20	575.8	222.6	0.14	1632.9	174.9	0.18	887.9	118.5	0.17	1311.2	166.9	0.22
30	545.0	237.9	0.20	2397.2	218.3	0.25	2046.3	154.7	0.22	2737.4	212.3	0.22
40	843.3	324.3	0.31	2788.6	265.6	0.36	2914.2	180.2	0.38	3319.7	206.6	0.39
50	575.8	307.5	0.35	3417.6	240.3	0.43	2987.8	241.9	0.37	1909.7	199.0	0.35
60	1055.4	316.5	0.44	3327.0	172.9	0.53	3413.7	120.2	0.45	2640.4	140.5	0.44
70	951.2	381.3	0.54	2932.0	283.9	0.60	3561.2	272.5	0.42	3553.7	253.3	0.51
80	982.0	442.6	0.54	1962.8	363.6	0.58	2651.0	319.8	0.48	2670.9	288.7	0.51

Exact: Exact baseline, ACC.: Accelerated CCG, ML.: ML-accelerated CCG

5.2 Case Study: Two-Stage Robust Unit Commitment

We consider the two-stage robust unit commitment (UC) problem with a linearized second-stage and polyhedral demand uncertainty, using the IEEE 6-bus Wu et al. (2009) and 24-bus Ordoudis et al.

(2016) systems as defined in Lorca & Sun (2014); Bertsimas et al. (2012). As a critical problem in power grid operations, UC determines generator schedules while accounting for uncertainty to ensure system reliability and cost efficiency. Solving the CCG algorithm over 24 hours for each generator introduces significant combinatorial complexity, particularly in the 24-bus system with 12 generators, resulting in $3\times12\times24=864$ binary variables and $12\times24\times|\Xi_t|$ continuous variables.

Since decisions for buses (generators and demands) influence one another, the NN model must capture complex, long-range interdependencies within the power grid network. To address this, we propose leveraging a Graph Attention Network (GAT) Veličković et al. (2017) with global attention, where each bus is treated as a node and edges represent transmission line susceptances. The detailed formulation and GAT architecture are presented in Appendix D.

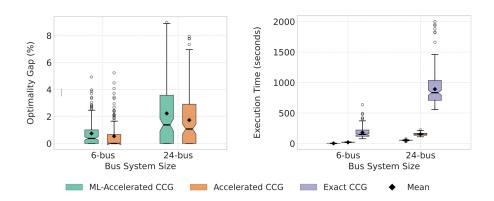


Figure 4: Comparison of solution quality and runtime across methods. The figure shows performance of the proposed ML-Accelerated CCG, the Accelerated CCG against classical CCG baseline. Both solution accuracy and computational time are reported, highlighting that the ML-Accelerated CCG achieves near-identical solution quality while substantially reducing runtime.

In Figure 4, results from 150 instances show that both proposed models achieve optimality gaps within 5% for the 6-bus system and 8.5% for the 24-bus system, with a median gap of 2%. Despite the increased dimensionality of the UC formulation, the method provides significant computational savings over CCG, as shown in Table 6. For the 6-bus system, ML-Accelerated CCG achieves up to a 93× speed-up, while for the larger 24-bus system, it still delivers a 16× speed-up, compared to the traditional CCG. Notably, these gains come with a median optimality gap near 2%, and large number of instances with 0% optimality gap as showed in Table 5 demonstrating that even at larger scales, ML-Accelerated CCG maintains tight LBs (due to relaxations) alongside substantial computational efficiency. As with the knapsack study, we tune the λ_{mult} via grid search to calibrate the bias in phase-1 selection. The best values were found to be $\lambda_{\text{mult}} = 5000$ for the 6-bus UC system and $\lambda_{\text{mult}} = 7500$ for the 24-bus UC system and we will use these values throughout the results.

6 Conclusions

We introduced LARO, a learning-accelerated two-phase decomposition framework for two-stage Adaptive Robust Optimization (ARO). By employing a neural-network-based value function approximation, our novel ML-accelerated CCG approach decouples the network from direct solver embeddings, enabling large-scale, mixed-integer ARO while providing finite convergence and stronger LBs than state-of-the-art methods. Numerical experiments on robust knapsack and power grid unit commitment problems reveal substantial speedups—up to $10^3 \times$ for knapsack instances and $16 \times$ for a 24-bus system—compared to the baseline CCG, with median optimality gaps under 3%. Overall, our proposed method successfully *balances* the competing demands of *robustness* and *computational scalability*, offering an efficient and flexible alternative for two-stage ARO problems. Future work will explore different types of uncertainty sets, approximate value-function problems with mixed-integer non-convex feasible regions, and develop advanced neural architectures for very large-scale applications.

REFERENCES

- Ayşe N Arslan and Boris Detienne. Decomposition-based approaches for a class of two-stage robust binary optimization problems. *INFORMS journal on computing*, 34(2):857–871, 2022.
- Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Nemirovski. Adjustable robust solutions of uncertain linear programs. *Math. programming*, 99(2):351–376, 2004.
- Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. *Robust Optimization*. Princeton University Press, Princeton, NJ, 2009. doi: 10.1515/9781400831050.
- Dimitris Bertsimas and Vineet Goyal. On the power and limitations of affine policies in two-stage adaptive optimization. *Mathematical programming*, 134(2):491–531, 2012.
- Dimitris Bertsimas and Cheol Woo Kim. A machine learning approach to two-stage adaptive robust optimization. *European Journal of Operational Research*, 2024.
- Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network flows. *Mathematical programming*, 98(1):49–71, 2003.
- Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and applications of robust optimization. *SIAM review*, 53(3):464–501, 2011.
- Dimitris Bertsimas, Eugene Litvinov, Xu Andy Sun, Jinye Zhao, and Tongxin Zheng. Adaptive robust optimization for the security constrained unit commitment problem. *IEEE transactions on power systems*, 28(1):52–63, 2012.
- Aron Brenner, Rahman Khorramfar, Jennifer Sun, and Saurabh Amin. A deep generative learning approach for two-stage adaptive robust optimization. *arXiv preprint arXiv:2409.03731*, 2024.
- Xin Chen and Yuhan Zhang. Uncertain linear programs: Extended affinely adjustable robust counterparts. *Operations Research*, 57(6):1469–1482, 2009.
- Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. Neur2ro: neural two-stage robust optimization. *arXiv preprint arXiv:2310.04345*, 2023.
- Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.
- Matteo Fischetti and Jason Jo. Deep neural networks as 0-1 mixed integer linear programs: A feasibility study. *arXiv preprint arXiv:1712.06174*, 2017.
- Angelos Georghiou, Angelos Tsoukalas, and Wolfram Wiesemann. On the optimality of affine decision rules in robust and distributionally robust optimization. *Available at Optimization Online*, 2021.
- Marc Goerigk and Jannis Kurtz. Data-driven prediction of relevant scenarios for robust combinatorial optimization. *Computers & Operations Research*, 174:106886, 2025.
- Esther Julien, Krzysztof Postek, and Ş İlker Birbil. Machine learning for k-adaptability in two-stage robust optimization. *INFORMS Journal on Computing*, 2024.
- Daniel Kuhn, Wolfram Wiesemann, and Angelos Georghiou. Primal and dual linear decision rules in stochastic and robust optimization. *Mathematical Programming*, 130:177–209, 2011.
- Henri Lefebvre, Martin Schmidt, and Johannes Thürauf. Using column generation in column-and-constraint generation for adjustable robust optimization. *Optimization Online. Accessed*, 16, 2023.
- Alvaro Lorca and Xu Andy Sun. Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. *IEEE Transactions on Power Systems*, 30 (4):1702–1713, 2014.

- Miles Lubin, Oscar Dowson, Joaquim Dias Garcia, Joey Huchette, Benoît Legat, and Juan Pablo
 Vielma. JuMP 1.0: Recent improvements to a modeling language for mathematical optimization.
 Math. Prog. Computation, 15(3):581–589, 2023.
 - Christos Ordoudis, Pierre Pinson, Juan Miguel Morales González, and Marco Zugno. An updated version of the IEEE RTS 24-bus system for electricity market and power system operation studies. 2016.
 - Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear regions of deep neural networks. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 4558–4566. PMLR, 10–15 Jul 2018.
 - Anirudh Subramanyam, Chrysanthos E Gounaris, and Wolfram Wiesemann. K-adaptability in two-stage mixed-integer robust optimization. *Mathematical Programming Computation*, 12:193–224, 2020.
 - Aurélie Thiele, Tara Terry, and Marina Epelman. Robust linear optimization with recourse. *Rapport technique*, pp. 4–37, 2009.
 - Jiatai Tong, Junyang Cai, and Thiago Serra. Optimization over trained neural networks: Taking a relaxing walk. In *International Conference on the Integration of Constraint Programming*, *Artificial Intelligence, and Operations Research*, pp. 221–233. Springer, 2024.
 - Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. *arXiv preprint:1710.10903*, 2017.
 - Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph convolutional networks. In *International conference on machine learning*, pp. 6861–6871. PMLR, 2019.
 - Hongyu Wu, Xiaohong Guan, Qiaozhu Zhai, Feng Gao, and Yuanchao Yang. Security-constrained generation scheduling with feasible energy delivery. In *IEEE Power & Energy Society General Meeting*, pp. 1–6. IEEE, 2009.
 - Ihsan Yanıkoğlu, Bram L Gorissen, and Dick den Hertog. A survey of adjustable robust optimization. *European Journal of Operational Research*, 277(3):799–813, 2019.
 - Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In *International conference on machine learning*, pp. 7134–7143. PMLR, 2019.
 - Bo Zeng and Long Zhao. Solving two-stage robust optimization problems using a column-and-constraint generation method. *Operations Research Letters*, 41(5):457–461, 2013.
 - Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: a comprehensive review. *Computational Social Networks*, 6(1):1–23, 2019.
 - Long Zhao and Bo Zeng. An exact algorithm for two-stage robust optimization with mixed integer recourse problems, 2012.

APPENDIX

A PROOF OF PROPOSITION 1

Proof sketch. Let \mathcal{P} and \mathcal{P}_1 be the MP and the relaxed MP, respectively, as defined in equation 3 and equation 6.

 $MP \mathcal{P}$.

$$\begin{split} \mathcal{P} \colon & & \min_{\boldsymbol{x} \in X, \, \theta, \, \{\boldsymbol{y_{\xi}}\}_{\boldsymbol{\xi} \in \Xi_t}} \boldsymbol{\theta} \\ & \text{s.t.} & & \boldsymbol{c}^{\top} \boldsymbol{x} + \boldsymbol{d}^{\top} \boldsymbol{y_{\xi}} \leq \boldsymbol{\theta}, \, \forall \boldsymbol{\xi} \in \Xi_t, \\ & & \boldsymbol{T(\xi)} \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y_{\xi}} \leq h(\boldsymbol{\xi}), \, \forall \boldsymbol{\xi} \in \Xi_t, \\ & & \boldsymbol{y_{\xi}} \in Y(\boldsymbol{x}, \boldsymbol{\xi}), \, \forall \boldsymbol{\xi} \in \Xi_t. \end{split}$$

Relaxed MP \mathcal{P}_1 : The lower bound is evaluated without the penalty term effectively at $\lambda=0$ after the phase-1 and 2 iterations are complete for a fixed z^* , thus the penalty term disappears from the Relaxed MP objective during LB calculation.

$$\begin{aligned} \mathcal{P}_1 \colon & & \min_{\boldsymbol{x},\,\boldsymbol{y},\,\boldsymbol{\xi}_a,\,\boldsymbol{z}} \boldsymbol{c}^\top \boldsymbol{x} + \boldsymbol{d}^\top \boldsymbol{y} \\ & \text{s.t.} & & \boldsymbol{T}(\boldsymbol{\xi}) \boldsymbol{x} + \boldsymbol{W} \boldsymbol{y} \leq h(\boldsymbol{\xi}_a), \\ & \boldsymbol{\xi}_a = \sum_{i=1}^{|\Xi_t|} z_i \boldsymbol{\xi}_i, & \sum_{i=1}^{|\Xi_t|} z_i = 1, \\ & \boldsymbol{\xi}_a^\ell \leq \boldsymbol{\xi}_a \leq \boldsymbol{\xi}_a^u, & z_i \in \{0,1\}. \end{aligned}$$

Step 1 (feasible sets). \mathcal{P} enforces constraints for all $\boldsymbol{\xi} \in \Xi_t$; \mathcal{P}_1 enforces them for one selected $\boldsymbol{\xi}_a$. Hence $\operatorname{Feas}(\mathcal{P}) \subseteq \operatorname{Feas}(\mathcal{P}_1)$.

Step 2 (construct a feasible point for \mathcal{P}_1). Let $(\boldsymbol{x}^*, \theta^*, \{\boldsymbol{y}_{\boldsymbol{\xi}}^*\})$ be optimal for \mathcal{P} . Pick $\bar{\boldsymbol{\xi}} \in \Xi_t$ attaining $\max_{\boldsymbol{\xi}} \{\boldsymbol{c}^{\top} \boldsymbol{x}^* + \boldsymbol{d}^{\top} \boldsymbol{y}_{\boldsymbol{\xi}}^*\}$ and set $\boldsymbol{x} = \boldsymbol{x}^*, \, \boldsymbol{y} = \boldsymbol{y}_{\bar{\boldsymbol{\xi}}}^*, \, \boldsymbol{\xi}_a = \bar{\boldsymbol{\xi}}$, and $z_i = \mathbb{1}\{\boldsymbol{\xi}_i = \bar{\boldsymbol{\xi}}\}$. Then $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\xi}_a, \boldsymbol{z})$ is feasible for \mathcal{P}_1 .

Step 3 (objectives).

$$\boldsymbol{c}^{\top}\boldsymbol{x} + \boldsymbol{d}^{\top}\boldsymbol{y} = \boldsymbol{c}^{\top}\boldsymbol{x}^* + \boldsymbol{d}^{\top}\boldsymbol{y}_{\tilde{\boldsymbol{\xi}}}^* \leq \boldsymbol{\theta}^* = \mathrm{Opt}(\mathcal{P}),$$

so minimizing over $\operatorname{Feas}(\mathcal{P}_1)$ gives $\operatorname{Opt}(\mathcal{P}_1 \mid \lambda = 0, z = z^*) \leq \operatorname{Opt}(\mathcal{P})$.

B ALGORITHM

The traditional CCG algorithm described in Section 2.1 is presented as in Algorithm 3:

```
648
            Algorithm 1 MP with Two Phase Decomposition
649
            Require: Candidate scenario set \Xi_t = \{\xi_i\}_{i=1}^{N_t};
650
                          NN adversary V_{\Theta}(x, \boldsymbol{\xi});
651
                          severity scores S(\boldsymbol{\xi}) \in [0,1];
652
                          penalty scale R;
653
                          multiplier \lambda_{\text{mult}} \geq 0;
654
                          weight \lambda \leftarrow \lambda_{\text{mult}} \cdot R.
655
              1: Phase 1: Candidate Selection
656
              2: Solve \mathcal{P}_1 in equation 6 to obtain candidate (\boldsymbol{x}^*, \boldsymbol{\xi}_a^*, \theta^*)
                   Phase 2 (Verification)
657
              3: repeat
658
                        Evaluate \eta_i \leftarrow V_{\Theta}(\bar{x}, \boldsymbol{\xi}_i) for all \boldsymbol{\xi}_i \in \Xi_t and set j^* \in \arg \max_i \eta_i, \widehat{\boldsymbol{\xi}} \leftarrow \boldsymbol{\xi}_{j^*}.
659
              4:
                        if \boldsymbol{\xi}_a^* = \widehat{\boldsymbol{\xi}} then
660
              5:
661
              6:
                             break
                                                                                       ▶ Selection consistent with restricted worst-case
              7:
                        else
662
              8:
                              if |\Xi_t| > 1 then
663
              9:
                                   Add no-good cut forbidding the previous pick: set z_k = 0 for k with \bar{z}_k = 1.
664
             10:
                                   Re-solve Phase 1.
             11:
666
             12:
                                   Skip the cut to retain feasibility of \sum_i z_i = 1.
667
             13:
                                   break
668
             14.
                              end if
669
             15:
                        end if
670
             16: until consistent
671
                   Exact LB certification (unpenalized)
                                                                                         672
             17: Solve the exact single-scenario problem at the verified \hat{\xi}:
673
                                             LB_t = \min_{x,u} \mathbf{c}^\top x + \mathbf{d}^\top y s.t. \mathbf{T}(\widehat{\mathbf{\xi}}) x + \mathbf{W} y \leq \mathbf{h}(\widehat{\mathbf{\xi}}),
674
675
                   and let (x_t, y_t) be an optimizer. Set \xi_t \leftarrow \hat{\xi}.
676
             18: Return (x_t, \boldsymbol{\xi}_t, LB_t).
677
678
679
            Algorithm 2 ML-Accelerated CCG
680
             Require: Data (c, d, T(\xi), W, h(\xi)), full scenario set \widehat{\Xi}, NN adversary V_{\Theta}(x, \xi), tolerance \varepsilon > 0,
681
                   penalty scale R, multiplier \lambda_{\text{mult}} \geq 0, severity score S_{\phi}
682
              1: Initialize t \leftarrow 0, choose warm-start subset \Xi_0 \subseteq \widehat{\Xi}, set UB \leftarrow +\infty, LB \leftarrow -\infty
683
                                                                                     ⊳ weight for Phase–1 bias; not used in certificates
              2: Set \lambda \leftarrow \lambda_{\text{mult}} \cdot R
684
              3: while UB - LB > \varepsilon do
685
                        Step 1: Master Problem
686
              5:
                            Call Algorithm 1
687
              6:
                            Receive (x_t, \boldsymbol{\xi}_t^{\text{in}}, LB_t)
                                                                                 \triangleright LB_t from exact, unpenalized single-scenario solve
688
              7:
                            LB \leftarrow \max\{LB, LB_t\}
689
              8:
                        Step 2: Adversarial Problem
690
                            Compute \eta(\boldsymbol{\xi}) = V_{\Theta}(x_t, \boldsymbol{\xi}) values \forall \widehat{\Xi}
              9:
691
             10:
                            \boldsymbol{\xi}_t^{\star} \leftarrow \arg\max_{\boldsymbol{\xi} \in \widehat{\Xi}} \eta(\boldsymbol{\xi});
692
                            Compute Q(x_t, \boldsymbol{\xi}_t^{\star}) via exact solve; UB_t \leftarrow Q(x_t, \boldsymbol{\xi}_t^{\star})
             11:
693
                            UB \leftarrow \min\{UB, UB_t\}
             12:
694
                        Step 3: Scenario set update
             13:
                            if \xi_t^{\star} \notin \Xi_t then \Xi_{t+1} \leftarrow \Xi_t \cup \{\xi_t^{\star}\} else \Xi_{t+1} \leftarrow \Xi_t
695
             14:
             15:
                            t \leftarrow t + 1
696
             16: end while
697
             17: Finalize: \theta \leftarrow \text{LB}; \bar{x} \leftarrow x_t
698
             18: return (\theta, \bar{x})
699
```

```
702
           Algorithm 3 CCG algorithm
703
            Require: (c, d, T(\xi), W, h(\xi)) where \xi \in \widehat{\Xi}
704
             1: Initialize t \leftarrow 0, \Xi^t \subset \widehat{\Xi}, UB \leftarrow \infty, LB \leftarrow -\infty
705
             2: while LB \leq UB do
706
                      Solve MP equation 3, obtain (x^t, \theta^t)
707
                      LB \leftarrow \theta^t
             4:
708
                      Solve AP equation 4, obtain (\boldsymbol{\xi}^t, Q^t)
             5:
709
                      UB \leftarrow \min(UB, Q^t); \ \Xi^t \leftarrow \{\boldsymbol{\xi}^t\} \cup \Xi^t
710
                      t \leftarrow t + 1
             7:
711
             8: end while
712
             9: return x_t, \theta_t
713
714
715
           Algorithm 4 MP: Two-Phase Decomposition (Exact Phase-2)
716
            Require: candidate value set V_{\Theta}, master set \Xi_t, iteration index t
717
                 Phase 1: Candidate Selection
718
             1: Solve \mathcal{P}_1 to select a candidate (\boldsymbol{x}^*, \boldsymbol{\xi}_a^*)
719
                 Phase 2: Candidate Verification (exact)
720
             2: Solve Q(x^*) over \Xi_t to obtain \hat{\xi}
721
             3: if \boldsymbol{\xi}_a^* = \widehat{\boldsymbol{\xi}} then
722
                      return (\boldsymbol{x}^*, \, \boldsymbol{\xi}_a^*, \, Q(\boldsymbol{x}^*))
723
             5: else
                      Add cut to \mathcal{P}_1: set z_{k^*} \leftarrow 0 where k^* = \{ k \mid z_k = 1 \}
             6:
724
             7:
                      restart Phase 1
725
             8: end if
726
727
             9: Finalize: \theta^* \leftarrow Q(\boldsymbol{x}^*)
728
            10: return (x^*, \xi_a^*, \theta^*)
729
730
731
           Algorithm 5 Accelerated CCG
732
            Require: instance (c, d, T(\xi), W, h(\xi)), uncertainty set \widehat{\Xi}
733
            Ensure: optimal solution (\bar{\theta}, \bar{x})
734
             1: initialize: t \leftarrow 0, \Xi_0 \leftarrow \varnothing, UB \leftarrow +\infty, LB \leftarrow -\infty
735
             2: while LB < UB do
736
                      Step 1 (MP via Two-Phase): apply Algorithm 4 with exact Phase-2
             3:
737
                          obtain (x^*, \xi_a^*, \theta^*) and set LB \leftarrow \theta^*
             4:
738
739
                      Step 2 (AP, exact): solve Q(x^*) over \widehat{\Xi}, obtaining worst-case \xi^{(t)} and value Q^{(t)}
             5:
740
                          UB \leftarrow \min(UB, Q^{(t)})
             6:
741
                      Step 3 (master set update): \Xi_{t+1} \leftarrow \Xi_t \cup \{\xi^{(t)}\}; \quad t \leftarrow t+1
742
             7:
             8: end while
743
             9: finalize: \bar{\theta} \leftarrow LB, \bar{x} \leftarrow x^*
744
            10: return (\bar{\theta}, \bar{x})
745
```

C TWO-STAGE ROBUST KNAPSACK PROBLEM

C.1 MATHEMATICAL FORMULATION

A two-stage robust knapsack problem is considered with a set of N items from which some items $i \in N$ are selected for production. The profit of the items has an uncertain degradation, due to which second-stage decisions of producing as is, repairing, or outsourcing the items have to be made. The complete formulation is:

$$Z := \min_{\boldsymbol{x} \in \{0,1\}^N} \max_{\boldsymbol{\xi} \in \Xi} \min_{\substack{\boldsymbol{y} \in \{0,1\}^N, \\ \boldsymbol{r} \in \{0,1\}^N}} \sum_{i=1}^N \left[(f_i - \overline{p}_i) x_i + (\hat{p}_i \boldsymbol{\xi}_i - f_i) y_i - \hat{p}_i \boldsymbol{\xi}_i r_i \right]$$
(10a)

s.t.
$$\sum_{i=1}^{N} (c_i y_i + t_i r_i) \leqslant C,$$
 (10b)

$$r_i \leqslant y_i \leqslant x_i, \quad \forall i = 1, \dots, N,$$
 (10c)

where $\Xi = \left\{ \boldsymbol{\xi} \in [0,1]^N : \sum_{i=1}^N \boldsymbol{\xi}_i \leqslant \Gamma \right\}$ describes the uncertainty set. In equation 10a, the first-stage decision \boldsymbol{x} selects items to produce. The inner (minimization) problem determines the optimal second-stage responses after uncertainty $\boldsymbol{\xi}$ is realized: producing an item as is, $(y_i = 1)$ generates a profit that depends on the degradation $(\bar{p}_i - \boldsymbol{\xi}_i \hat{p}_i)$, whereas repairing it $(r_i = 1)$ recovers the full profit at the expense of extra resource t_i . Or the item can be outsourced for a profit of $(\bar{p}_i - f_i)$.

The capacity constraint equation 10b limits the overall resource usage, and the logical constraint equation 10c guarantees that an item is only kept if produced, and can only be repaired if it is kept. The formulation captures the adversarial nature of the problem by considering the worst-case degradation over the uncertainty set Ξ .

C.2 Instance Generation

The problem instances for a specific instance size N of uncorrelated knapsack are generated through the Algorithm 6. All uniform distributions are denoted by $\mathcal{U}(a,b)$, representing values drawn uniformly from the interval [a,b]. In Algorithm 6, we begin by specifying an instance size N and initializing global parameters: the cost UB R, the base capacity H, a capacity scaling factor h chosen from $\{40,80\}$, a degradation factor δ from $\{0.1,0.5,1\}$, and a knapsack budget Γ from $\{0.1\times N,0.2\times N,0.3\times N\}$. For each item i, we generate its cost c_i from a uniform distribution on [1,R], then compute the total adjusted capacity C as $h\times H+\sum_{i=1}^N c_i$. We sample the nominal price \overline{p}_i from [1,R], the adjusted price \hat{p}_i from the interval $\left[\frac{\overline{p}_i(1-\delta)}{2},\frac{\overline{p}_i(1+\delta)}{2}\right]$, the fixed cost f_i from $[1,1\overline{p}_i,1.5\overline{p}_i]$, and the processing time t_i from $[1,c_i]$. The resulting instance is $\left(c,\overline{p},\hat{p},f,t,C\right)$, which serves as input for learning the value function of the robust knapsack problem.

C.3 UNCERTAINTY GENERATION FOR THE KNAPSACK PROBLEM

In Algorithm 7, a random generator is seeded to ensure reproducibility, and each scenario vector is sampled from the Dirichlet distribution with unit parameters, reflecting a base probability distribution that sums to one. The vector is then scaled by the budget Γ to produce a nonnegative vector whose components sum to Γ . Repeating this process for M scenarios yields a diverse set of uncertainty vectors, each representing a valid realization under the knapsack's budget constraint.

We generate a set \mathcal{I} of size $|\mathcal{I}|=250$ and, for each instance in \mathcal{I} , a set of 50 uncertainties, yielding a total of 7,500 unique uncertainty realizations. We then vary Γ across 11 discrete values to construct feasible first-stage decisions. The resulting dataset, denoted by \mathcal{D} , thus has cardinality $|\mathcal{D}|=250\times50\times11=137,500$ for each instance size.

Require: Instance size N1: Initialize instance parameters 2: $R \leftarrow 1000$ ⊳ cost UB

3: $H \leftarrow 100$ ▷ capacity parameter 4: $h \leftarrow \text{uniformly at random from } \{40, 80\}$ 5: $\delta \leftarrow$ uniformly at random from $\{0.1, 0.5, 1\}$

6: $\Gamma \leftarrow$ uniformly at random from $\{0.1N, 0.2N, 0.3N\}$ 7: **for** each item $i \in \{1, \dots, N\}$ **do**

Algorithm 6 Knapsack Instance Generation Algorithm (Training)

8: $c_i \sim \mathcal{U}(1,R)$

9: end for

810

811

812

813

814

815

816

817

818

819

820

821 822

823

824 825 826

827

828 829 830

831

832

833

834

835

836

837

838

839

840 841 842

843

863

10: $C \leftarrow h \cdot H + \sum_{i=1}^{N} c_i$ 11: **for** each item $i \in \{1, \dots, N\}$ **do**

 $\overline{p}_i \sim \mathcal{U}(1,R)$ 12: $\hat{p}_{i} \sim \mathcal{U}\left(\frac{\overline{p}_{i}(1-\delta)}{2}, \frac{\overline{p}_{i}(1+\delta)}{2}\right)$ $f_{i} \sim \mathcal{U}(1.1\,\overline{p}_{i}, \, 1.5\,\overline{p}_{i})$ $t_{i} \sim \mathcal{U}(1, c_{i})$

15:

16: **end for**

17: **return** $I := (\boldsymbol{c}, \overline{\boldsymbol{p}}, \hat{\boldsymbol{p}}, \boldsymbol{f}, \boldsymbol{t}, C)$

Algorithm 7 Uncertainty Generation via Dirichlet Distribution (Training)

Require: number of scenarios M, uncertainty budget Γ , instance size N, random seed

Ensure: set $\{\boldsymbol{\xi}^{(1)},\ldots,\boldsymbol{\xi}^{(M)}\}$ with $\sum_{i=1}^N \boldsymbol{\xi}_i^{(k)} = \Gamma$ and $\boldsymbol{\xi}_i^{(k)} \geq 0$

1: initialize RNG with seed

2: **for** $k \leftarrow 1$ to M **do**

sample $s^{(k)} \sim \text{Dirichlet}(\alpha)$ where $\alpha = \mathbf{1}_N$

scale: $\boldsymbol{\xi}^{(k)} \leftarrow \Gamma \cdot s^{(k)}$ 4:

store $\boldsymbol{\xi}^{(k)}$ in output set

6: end for

7: **return** $\{\xi^{(k)}\}_{k=1}^{M}$

Table 2: Percentage of near-optimal solutions ≤ 2% optimality gap) by Category and Knapsack Size out of 18 instances per cell

	UN		WC		ASC		SC	
I	ACC.	ML	ACC.	ML	ACC.	ML	ACC.	ML
20	18 (100.0%)	6 (33.3%)	14 (77.8%)	1 (5.6%)	12 (66.7%)	1 (5.6%)	14 (77.8%)	2 (11.1%)
30	18 (100.0%)	9 (50.0%)	15 (83.3%)	6 (33.3%)	15 (83.3%)	6 (33.3%)	17 (94.4%)	7 (38.9%)
40	18 (100.0%)	18 (100.0%)	16 (88.9%)	14 (77.8%)	18 (100.0%)	16 (88.9%)	18 (100.0%)	17 (94.4%)
50	18 (100.0%)	18 (100.0%)	17 (94.4%)	15 (83.3%)	18 (100.0%)	17 (94.4%)	17 (94.4%)	16 (88.9%)
60	18 (100.0%)	16 (88.9%)	18 (100.0%)	12 (66.7%)	18 (100.0%)	11 (61.1%)	18 (100.0%)	12 (66.7%)
70	18 (100.0%)	18 (100.0%)	17 (94.4%)	17 (94.4%)	18 (100.0%)	18 (100.0%)	18 (100.0%)	17 (94.4%)
80	18 (100.0%)	18 (100.0%)	17 (94.4%)	16 (88.9%)	18 (100.0%)	18 (100.0%)	18 (100.0%)	18 (100.0%)

ACC.: Accelerated CCG, ML: ML-accelerated CCG

Instance size	NN Structure	ReLU Neurons	Training MAPE (%)	Epochs
20	1 linear + 4 ReLU	140, 110, 32, 8	88.2	300
30	1 linear + 5 ReLU	155, 128, 64, 16, 8	91.6	300
40	1 linear + 5 ReLU	340, 128, 110, 32, 8	87.5	300
50	1 linear + 5 ReLU	500, 256, 128, 32, 8	90.3	400
60	1 linear + 5 ReLU	410, 256, 128, 64, 12	89.1	400
70	1 linear + 6 ReLU	540, 256, 256, 128, 64, 16	92.0	400
80	1 linear + 6 ReLU	610, 400, 256, 128, 64, 16	90.7	500

Table 3: Neural network hyperparameters and training performance (MAPE) for knapsack instance sizes.

```
Algorithm 8 Data Generation for NN Training of the Knapsack Problem
Require: number of instances |\mathcal{I}|, instance size N, uncertainties per variant M
        Initialize: empty database \mathcal{D}
        Base Instance Generation
  1: for k \leftarrow 1 to |\mathcal{I}| do
              generate base instance \mathcal{I}_k using Algorithm 6
              store parameters (\boldsymbol{c}^k, \overline{\boldsymbol{p}}^k, \widehat{\boldsymbol{p}}^k, f^k, t^k, C^k, \Gamma_k)
  4: end for
       Instance Variation
  5: for each \mathcal{I}_k \in \{\mathcal{I}_1, \dots, \mathcal{I}_{|\mathcal{I}|}\} do
              generate 11 budget variants \{\mathcal{I}_k^1,\ldots,\mathcal{I}_k^{11}\} with
               \Gamma_k^m \leftarrow (0.75 + 0.025(m-1)) \Gamma_k \quad (m = 1, \dots, 11)
              generate M uncertainty vectors \{\boldsymbol{\xi}_k^1,\ldots,\boldsymbol{\xi}_k^M\} using Algorithm 7
  7:
  8: end for
        Solution Computation
  9: for each variant \mathcal{I}_k^m do
              for each oldsymbol{\xi}_k^i \in \{oldsymbol{\xi}_k^1, \dots, oldsymbol{\xi}_k^M\} do
10:
                     solve Formulation 10 with (\Gamma_k^m, \, \pmb{\xi}_k^i)
11:
                    \begin{array}{l} \operatorname{record}\left(\boldsymbol{x}_{k}^{mi},\,\boldsymbol{y}_{k}^{mi},\,\boldsymbol{r}_{k}^{mi},\,Z_{k}^{mi},\,t_{k}^{mi}\right) \\ \mathcal{D} \leftarrow \mathcal{D} \cup \left\{\left(\boldsymbol{x}_{k}^{mi},\,\boldsymbol{y}_{k}^{mi},\,r_{k}^{mi},\,Z_{k}^{mi},\,t_{k}^{mi}\right)\right\} \end{array}
12:
13:
              end for
14:
15: end for
16: return \mathcal{D}
```

D TWO-STAGE ROBUST UC

Consider a T-period network-constrained unit commitment (UC) problem with a set of M buses, and a set of N generators distributed among these buses. For each bus $m \in \{1, \ldots, M\}$, let \mathbb{N}_m denote the set of generators connected to bus m. The time horizon is discretized into T time periods, indexed by $t \in \{1, \ldots, T\}$.

Each generator $i \in \mathbb{N}_m$ has an associated set of parameters:

- S_i^m and W_i^m : start-up and shut-down costs,
- G_i^m and H_i^m : minimum up-time and minimum down-time requirements,
- L_i^m and U_i^m : minimum and maximum power output when switched on,
- V_i^m and B_i^m : ramp-up and ramp-down rate limits,
- \overline{V}_i^m and \overline{B}_i^m : start-up and shut-down ramp rate limits.

We denote by $y_{i,t}^m$ a binary variable that is equal to 1 if generator i at bus m is on during period t and 0 otherwise. We use $u_{i,t}^m$ and $v_{i,t}^m$ to indicate start-up and shut-down events, respectively, of generator i at bus m in period t. The variable $x_{i,t}^m$ represents the power output of generator i at bus m and time t.

Let \mathbb{A} be the set of transmission lines, where each line $(i,j) \in \mathbb{A}$ connects two buses i and j and has a capacity $C_{i,j}$. We model power flows using a DC power flow approximation. Accordingly, we introduce voltage angle variables $\omega_{m,t}$ at each bus m and time t, and let $B_{i,j}$ denote the susceptance of line (i,j). The power flow on the line (i,j) at time t is denoted by $f_{(i,j),t}$.

Demand at each bus m and time t is given by $\boldsymbol{\xi}_t^m$, which is subject to uncertainty. Let $\widehat{\Xi}$ denote the uncertainty set of possible demand realizations $\{\boldsymbol{\xi}_t^m\}$. We then formulate a two-stage robust optimization problem in which the first-stage chooses the unit commitment decisions $\{y_{i,t}^m, u_{i,t}^m, v_{i,t}^m\}$, and the second-stage, after observing the demand realization in $\widehat{\Xi}$, determines the dispatch decisions $\{x_{i,t}^m, f_{(i,j),t}, \omega_{m,t}\}$ to minimize operating costs while satisfying all network constraints.

The resulting two-stage robust UC model is formulated as follows.

$$\min_{\boldsymbol{y},\boldsymbol{u},\boldsymbol{v}} \quad \sum_{t=1}^{T} \sum_{m=1}^{M} \sum_{i \in \mathbb{N}_{m}} \left(S_{i}^{m} u_{i,t}^{m} + W_{i}^{m} v_{i,t}^{m} \right) + \max_{\boldsymbol{\xi} \in \widehat{\Xi}} \min_{(\boldsymbol{x},\boldsymbol{\omega},\boldsymbol{\Omega}) \in \mathcal{X}(\boldsymbol{y},\boldsymbol{\xi})} \sum_{t=1}^{T} \sum_{m=1}^{M} \sum_{i \in \mathbb{N}_{m}} \Omega_{i,t}^{m} \quad (11a)$$

s.t.

$$-y_{i,t-1}^m + y_{i,t}^m - y_{i,k}^m \leq 0, \quad 1 \leq k - (t-1) \leq G_i^m, \quad \forall m, \ \forall i \in \mathbb{N}_m, \ \forall t,$$
 (11b)

$$y_{i,t-1}^m - y_{i,t}^m + y_{i,k}^m \leq 1, \quad 1 \leq k - (t-1) \leq H_i^m, \quad \forall m, \ \forall i \in \mathbb{N}_m, \ \forall t,$$
 (11c)

$$-y_{i,t-1}^m + y_{i,t}^m - u_{i,t}^m \leqslant 0, \quad \forall m, \ \forall i \in \mathbb{N}_m, \ \forall t,$$

$$\tag{11d}$$

$$y_{i,t-1}^m - y_{i,t}^m - v_{i,t}^m \leqslant 0, \quad \forall m, \, \forall i \in \mathbb{N}_m, \, \forall t.$$

Define the second-stage feasible set $\mathcal{X}(y, \xi)$ for a given (y, ξ) as:

$$\mathcal{X}(\boldsymbol{y},\boldsymbol{\xi}) = \left\{ (\boldsymbol{x},\boldsymbol{\omega},\boldsymbol{\Omega}) : L_i^m y_{i,t}^m \leqslant x_{i,t}^m \leqslant U_i^m y_{i,t}^m, \forall m, \forall i \in \mathbb{N}_m, \forall t, \right.$$
(11f)

$$x_{i,t}^{m} - x_{i,t-1}^{m} \leqslant (2 - y_{i,t-1}^{m} - y_{i,t}^{m}) \overline{V}_{i}^{m} + (1 + y_{i,t-1}^{m} - y_{i,t}^{m}) V_{i}^{m}, \quad \forall m, i, t,$$
(11g)

$$x_{i,t-1}^m - x_{i,t}^m \leqslant (2 - y_{i,t-1}^m - y_{i,t}^m) \overline{B}_i^m + (1 - y_{i,t-1}^m + y_{i,t}^m) B_i^m, \quad \forall m, i, t,$$
(11h)

$$f_{(i,j),t} = B_{i,j} \left(\omega_{i,t} - \omega_{i,t} \right), \quad \forall (i,j) \in \mathbb{A}, \ \forall t,$$
 (11i)

$$-C_{i,j} \leqslant f_{(i,j),t} \leqslant C_{i,j}, \quad \forall (i,j) \in \mathbb{A}, \ \forall t,$$

$$\tag{11j}$$

$$\sum_{i \in \mathbb{N}_m} x_{i,t}^m - d_t^m = \sum_{j:(m,j) \in \mathbb{A}} f_{(m,j),t}, \quad \forall m, \ \forall t,$$
 (11k)

```
972

973 \omega_{\text{slack},t} = 0, \quad \forall t, \}. \tag{111}
```

D.1 DATA GENERATION

974 975

976

977

978

979 980

981

982

983

984

985

986 987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003 1004 1005

1007

1008 1009 The NN training for the UC problem takes as input the instance values $I_i := (S_i^m, W_i^m, G_i^m, H_i^m, L_i^m, U_i^m, V_i^m, B_i^m, \hat{V}_i^m, \hat{B}_i^m)$, uncertainty set ξ_i , and the first-stage decisions as bus features and the susceptance matrix B. The data generation process is defined as follows.

Instance and Uncertainty Generation

In this method, 150 instance data for the Unit Commitment (UC) problem for 6-bus and 24-bus system are generated by applying perturbations within the radius of a norm ball (see Algorithms 9, 10). The radius is selected as a percentage of the total sum of the normalized nominal values. Similarly the we create 1000 and 2500 uncertainties for 6-bus and 24-bus system respectively by using the nominal data is obtained from Ordoudis et al. (2016) and Wu et al. (2009).

Algorithm 9 UC Instance Generation

```
Require: nominal vector I_{\text{nom}} \in \mathbb{R}^n_{>0}, perturbation factor p \in [0, 1], number of instances |\mathcal{I}|,
         bounds I_{\min}, I_{\max} \in \mathbb{R}^n_{>0}
  1: \boldsymbol{v} \leftarrow \boldsymbol{I}_{\text{nom}} / \|\boldsymbol{I}_{\text{nom}}\|_1
                                                                                                                                                                                               ▷ normalize
  2: S \leftarrow \|\boldsymbol{I}_{\text{nom}}\|_1
                                                                                                                                                                                               ⊳ total scale
  3: \Delta \leftarrow p \cdot S
                                                                                                                                                                   ▶ L1 perturbation budget
  4: \mathcal{I}_{\mathrm{sim}} \leftarrow \emptyset

    output set

  5: for i \leftarrow 1 to |\mathcal{I}| do
                 sample r \sim \text{Uniform}(-1,1)^n
                 m{r} \leftarrow m{r}/\|m{r}\|_1
  7:
                                                                                                                                                                                     ⊳ direction in L1
                 r_{\text{pert}} \leftarrow \Delta \cdot r
  8:

    ⊳ scale to budget

                egin{aligned} oldsymbol{v}_{	ext{pert}} \leftarrow oldsymbol{v} + oldsymbol{r}_{	ext{pert}} \ oldsymbol{I}^{(i)} \leftarrow S \cdot oldsymbol{v}_{	ext{pert}} \end{aligned}
  9:
                                                                                                                                                             > perturb normalized vector
10:

⊳ denormalize

                 oldsymbol{I}^{(i)} \leftarrow 	ext{clip}ig(oldsymbol{I}^{(i)}, \, oldsymbol{I}_{	ext{min}}, \, oldsymbol{I}_{	ext{max}}ig)

    box constraints

                 \mathcal{I}_{\text{sim}} \leftarrow \mathcal{I}_{\text{sim}} \cup \{ \boldsymbol{I}^{(i)} \}
12:
13: end for
14: return \mathcal{I}_{\mathrm{sim}}
```

Algorithm 10 Demand Uncertainty Generation

Require: nominal demands per bus $\{\xi_b \in \mathbb{R}^T\}_{b \in \mathbb{B}}$, norm radius $\alpha > 0$, number of scenarios $N_{\text{samples}} \in \mathbb{N}$

```
Ensure: scenario set \widehat{\Xi} = \{\Xi^{(k)}\}_{k=1}^{N_{\mathrm{samples}}}, where \Xi^{(k)} = \{\boldsymbol{\xi}_b^{(k)}\}_{b\in\mathbb{B}} and \boldsymbol{\xi}_b^{(k)} \in \mathbb{R}_{\geq 0}^T
1010
1011
                    1: \widehat{\Xi} \leftarrow \emptyset
1012
                    2: for k \leftarrow 1 to N_{\text{samples}} do
1013
                                  \Xi^{(k)} \leftarrow \varnothing
                    3:
1014
                                  for each b \in \mathbb{B} do
                    4:
1015
                    5:
                                          oldsymbol{v} \leftarrow oldsymbol{\xi}_b
                                                                                                                                           \triangleright nominal demand (length T, e.g., T=24)
                                           r \leftarrow \alpha \| \boldsymbol{v} \|_2

    bus-specific perturbation radius

1016
                    6:
                                          sample oldsymbol{z} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I}_T); \quad oldsymbol{z} \leftarrow oldsymbol{z}/\|oldsymbol{z}\|_2
                    7:
1017
                                          sample \rho \sim \text{Uniform}(0, r)
                    8:
1018
                                          \boldsymbol{\delta} \leftarrow \rho \, \boldsymbol{z}
                    9:
1019
                                         oldsymbol{\xi}_b^{(k)} \leftarrow \max(oldsymbol{0}, oldsymbol{v} + oldsymbol{\delta}) \ \Xi^{(k)} \leftarrow \Xi^{(k)} \cup \{oldsymbol{\xi}_b^{(k)}\}
                  10:
                                                                                                                                                  ▷ clip at zero to enforce nonnegativity
1020
1021
                  11:
                                   end for
                  12:
                                  \widehat{\Xi} \leftarrow \widehat{\Xi} \cup \{\Xi^{(k)}\}
                  13:
1023
                  14: end for
1024
                  15: return \Xi
1025
```

D.2 GRAPH ATTENTION ARCHITECTURE

We employ a Graph Attention Network (GAT) model that combines bus features h_i for i^{th} bus with eigenvalue-based Positional Encodings (PEs) illustrated in the Figure 5. The eigenvalue PEs described in Dwivedi et al. (2021); You et al. (2019) are obtained by the eigen decomposition of the susceptance matrix B, and the first k eigenvector-based PEs are transformed via a small two-layer MLP to match the input dimensionality of the node features. The node features and transformed PEs are then summed element-wise and passed through three consecutive GAT layers.

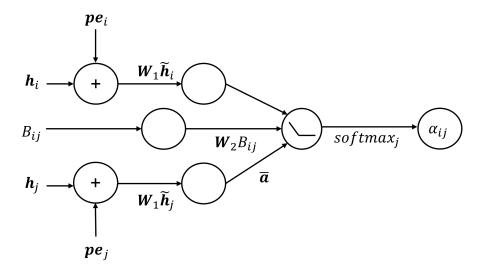


Figure 5: An illustration of the GAT model's attention $\alpha_{i,j}$ between two buses (nodes) i and j. The input feature vector h_i is element-wise added to pe_i . The softmax score $\alpha_{i,j}$ is calculated by concatenating $W_1\tilde{h}_i$ and $W_1\tilde{h}_j$ along with the susceptance transformation $W_2B_{i,j}$.

Each GAT layer leverages multi-head attention as described in Veličković et al. (2017) but we concatenate a trainable transformation of the susceptance values between the transformed bus feature vectors. We update the attention calculations as follows:

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\bar{\boldsymbol{a}}^T[\boldsymbol{W_1}\tilde{\boldsymbol{h}}_i|\boldsymbol{W}_2B_{i,m}|\boldsymbol{W_1}\tilde{\boldsymbol{h}}_j]\right)\right)}{\sum_{m \in \{1,...,M\}} \exp\left(\text{LeakyReLU}\left(\bar{\boldsymbol{a}}^T[\boldsymbol{W_1}\tilde{\boldsymbol{h}}_i|\boldsymbol{W}_2B_{i,m}|\boldsymbol{W_1}\tilde{\boldsymbol{h}}_m]\right)\right)}$$

The attention score for the bus i is calculated for every other bus in the grid $m \in \{1, \dots, M\}$, also denoted in the denominator of the attention softmax score formula. This leads to global attention being calculated instead of local attention as usually done in GCNs Zhang et al. (2019); Wu et al. (2019).

We use global attention to determine the long range dependencies between buses along with residual connections and layer normalization to stabilize training across layers. After the GAT layers, the node embeddings are aggregated (via mean pooling) and fed into a final MLP regressor, which outputs a single scalar approximating the value of the second-stage objective. Table 4 summarizes the main hyperparameters used in our experiments.

The feature vector $h_{\rm in}$ only depends on the generator property, demand, and first-stage decison made only on that bus, and thus the feature vector size is invariant to the size of the power-grid. Due to the fixed input vector size and mean pooling operation the GAT architecture thus is also invariant to the size of the power grid and can adapt to any bus system. The training and validation error of the 24-bus system for each epoch is presented in the Figure 6

Hyperparameter	Value
$h_{\rm in}$ (Input feature dimension)	58
$\tilde{\boldsymbol{h}}$ (Hidden dimension)	128
h_{out} (Output dimension)	1
num attention heads	4
MLP (Susceptance)	4
α (LeakyReLU slope)	0.1
dropout	0.15
norm	LayerNorm
k (Eigen PE dimension)	24
mlp_hidden	128
residual	True
concat_heads	True
epochs	2500
batch size	512
train:test split	90:10

Table 4: Key hyperparameters of the GAT model.

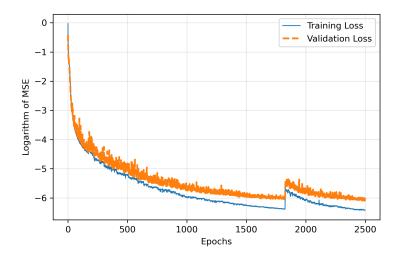


Figure 6: Training vs. validation MSE loss curve (log scale) of GAT NN for the 24-bus system.

Case	6-bus	24-bus
ML-Accelerated CCG vs. CCG	64	51
Accelerated CCG vs. CCG	92	82

Table 5: Number of UC problem instances with exact solutions ($\approx 0\%$ optimality gap) out of 150 total testing instances.

System size	Method	Min. (s)	Max. (s)	Mean (s)
6-Bus	ML-Accelerated CCG	1.33	2.64	1.93
	Accelerated CCG	15.55	25.11	20.96
	CCG	78.67	637.39	181.09
24-Bus	ML-Accelerated CCG	32.82	76.77	52.80
	Accelerated CCG	110.15	223.90	153.19
	CCG	555.49	1999.31	892.87

Table 6: Computation time (seconds) comparison of ML-accelerated CCG, Accelerated CCG, and CCG for the 6-bus and 24-bus UC problem.

E SEVERITY SCORE AND PENALTY SCALING

We describe the recipes used in our experiments to (i) compute an *instance-uncertainty* severity score $S(\xi;I) \in [0,1]$ that biases Phase-1 selection, and (ii) set the penalty weight $\lambda = \lambda_{\text{mult}} \cdot R$ by a percentile spread. Both are computed **offline** from data and are kept **fixed** during each master solve. Importantly, $S(\xi;I)$ depends only on the instance parameters I and the uncertainty ξ —not on decision variables—so adding the penalty in Phase-1 does not alter feasibility or certificates.

Note: For brevity in the main text we often drop the instance argument of the problem and write $S(\xi)$ and $V_{\Theta}(x, \xi)$; however, all learned quantities are conditioned on the instance, i.e., $S(\xi; I)$ and $V_{\Theta}(x, \xi; I)$, with I provided as part of the feature vector to V_{Θ} .

E.1 SEVERITY SCORE FROM RECOURSE LOSS

For each training instance I and each uncertainty ξ , we define a *raw recourse-loss target* by marginalizing the decision over a small, fixed reference pool $\mathcal{X}_{ref}(I)$:

$$v(I, \pmb{\xi}) \; := \; \frac{1}{|\mathcal{X}_{\mathrm{ref}}(I)|} \sum_{x \in \mathcal{X}_{\mathrm{ref}}(I)} Q\big(x, \pmb{\xi}; I\big), \qquad \text{where } Q(\cdot, \cdot; I) \text{ is the exact second-stage value.}$$

We then calibrate $v(I, \cdot)$ to [0, 1] per instance using train-fold empirical $5^{\rm th}$ and $95^{\rm th}$ percentiles over uncertainties:

$$S(\xi; I) := \operatorname{clip}\left(\frac{v(I, \xi) - q_{5\%}(I)}{\max\{q_{95\%}(I) - q_{5\%}(I), \epsilon\}}, 0, 1\right), \quad \epsilon = 10^{-8}, \tag{13}$$

where $q_{\alpha}(\boldsymbol{\omega})$ denotes the α -quantile of $\{v(I,\boldsymbol{\xi}): \boldsymbol{\xi} \in \widehat{\Xi}^{\text{train}}\}$. This yields a monotone, outlier-robust normalization that preserves the ranking of uncertainties for each instance. The resulting $S(\cdot;I)$ is used only in the Phase-1 objective bias; all certificates (LB/UB) are computed with the unpenalized objective.

E.2 PENALTY WEIGHT VIA PERCENTILE SPREAD (SINGLE RECIPE)

We set the weight as $\lambda = \lambda_{\text{mult}} \cdot R$ with a user multiplier $\lambda_{\text{mult}} \geq 0$ and a *single* data-driven scale R taken as a percentile difference over the *entire* training corpus $\mathcal{D}_{\text{train}}$ of instance–uncertainty pairs:

$$R := q_{95\%} (\{v(I, \boldsymbol{\xi}) : (I, \boldsymbol{\xi}) \in \mathcal{D}_{\text{train}}\}) - q_{5\%} (\{v(I, \boldsymbol{\xi}) : (I, \boldsymbol{\xi}) \in \mathcal{D}_{\text{train}}\}), \qquad \lambda = \lambda_{\text{mult}} \cdot R.$$

$$(14)$$

Here $v(I, \xi)$ is defined by equation 12, computed on the train fold only. This choice makes λ scale-free and comparable across instance families and sizes; we sweep λ_{mult} on a small grid in experiments and report the best setting in the main text, with full grids in the appendix.

Implementation details. In our experiments, the severity score $S(\boldsymbol{\xi};I)$ is produced by a *three-layer* feed-forward neural network (MLP with hidden widths $64 \to 64$, ReLU activations, and a final sigmoid), trained on the recourse-loss targets $v(I,\boldsymbol{\xi})$ from equation 12 with squared loss, early stopping, and weight decay; the network output is then calibrated to [0,1] via equation 13. For the penalty weight, we use $\lambda = \lambda_{\text{mult}} \cdot R$ with R equal to the *percentile spread* in equation 14; to stabilize this estimate we employ a simple *ensemble quantile estimator* (bootstrap aggregation of the 5^{th} and 95^{th} percentiles, reporting the median spread across resamples). The best value of λ_{mult} is obtained using a grid search.

E.3 GRID SEARCH FOR THE λ -MULTIPLIER

We tune the Lagrangian bias via a simple grid search over λ_{mult} and report the average optimality gap (lower is better) aggregated across all knapsack instances. As shown in Fig. 7, the curve is shallow around its minimum, indicating robustness to small deviations. We fix $\lambda_{\text{mult}} = 3000$ for the knapsack experiments. For UC, separate sweeps per system yield $\lambda_{\text{mult}} = 5000$ (6-bus) and $\lambda_{\text{mult}} = 7500$ (24-bus).

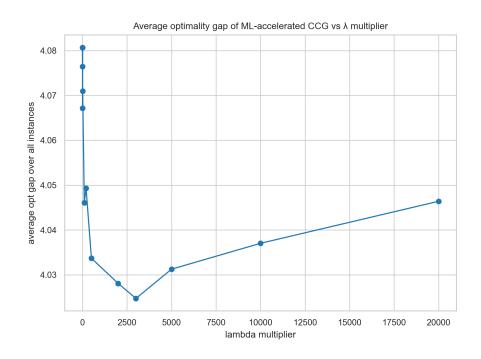


Figure 7: Average optimality gap of ML-Accelerated CCG vs. λ_{mult} across all knapsack instances. The minimum occurs near λ_{mult} =3000, which we use in the main results.