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ABSTRACT

Two-stage Adaptive Robust Optimization (ARO) with discrete and polyhedral
uncertainty sets incorporates “wait-and-see” decisions to reduce conservatism but
remains intractable due to its multi-level structure and mixed-integer recourse.
This paper introduces LARO, a learning-accelerated two-phase decomposition
framework that scales ARO efficiently without embedding neural networks (NNs)
into optimization models. The framework operates in two phases: a Relaxed
Master Problem (RMP) that identifies candidate here-and-now decisions through a
penalized selection mechanism, where pre-computed severity scores bias scenario
choice toward adversarial cases, and a verification phase that ensures restricted
worst-case consistency. By decoupling the NN from the RMP, we eliminate solver-
compatible embeddings, reduce computational overhead, and enable the use of
more expressive neural architectures for recourse evaluation in the adversarial step.
We establish finite convergence, with the number of iterations bounded by the size
of the discrete uncertainty set, and show that the penalized RMP preserves valid
lower bound (LB) while improving iteration efficiency by prioritizing impactful
scenarios. Experiments on robust knapsack and unit commitment (UC) problems
in power grids demonstrate the scalability of the framework, achieving runtime
speedups of up to 103× for knapsack instances and 102× for a 24-bus power
network compared to classical column-and-constraint generation. The solve spped
is achieved while maintaining optimality gaps typically below 7% for knapsack
instances and 2% on the UC problems. This work delivers a severity-aware,
learning-accelerated CCG that is both scalable and certifiable, advancing robust
decision-making under uncertainty.

1 INTRODUCTION

Robust Optimization (RO) is a fundamental framework for decision-making under data uncertainty,
ensuring solutions remain feasible across a defined uncertainty set Bertsimas et al. (2011); Ben-Tal
et al. (2009). Unlike deterministic or stochastic optimization, RO prioritizes reliability, making it
valuable in finance, supply chains, and power systems. However, its conservatism in accounting for
all uncertainties can reduce flexibility and increase costs.

Adaptive Robust Optimization (ARO), as formalized in Ben-Tal et al. (2004); Yanıkoğlu et al. (2019),
extends the RO framework by incorporating adaptive decisions to mitigate excessive conservatism.
ARO partitions decisions into “here-and-now” (x) and “wait-and-see” (yξ), where the latter responds
non-anticipatively to uncertainty realizations ξ ∈ Ξ. This adaptivity reduces the conservatism of
static RO methods. We consider the following general ARO problem:

min
x∈X

max
ξ∈Ξ

min
yξ∈Y (x,ξ)

c⊤x+ d⊤yξ

s.t. T (ξ)x+W yξ ≤ h(ξ).
(1)

The objective function in equation 1 minimizes the worst-case total cost over a fixed polyhedral
uncertainty set Ξ; the recourse yξ adapts to ξ while remaining feasible.
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Despite its theoretical appeal, the scalability of ARO presented in Equation 1 is fundamentally limited
by its nested min-max-min structure. Ensuring that adaptive decisions yξ are feasible for every
possible realization of uncertainty ξ ∈ Ξ creates a semi-infinite optimization problem. Analytically
reformulating these infinite constraints as an adversarial problem introduces bilinear terms between
decision variables and uncertain parameters. This results in a nonconvex and often non-differentiable
second-stage value function, which invalidates the assumptions of classical convex decomposition
algorithms like Benders’ method Ben-Tal et al. (2009); Bertsimas et al. (2011).

The presence of mixed-integer variables compounds this difficulty, creating formidable mixed-
integer nonconvex programs, a class of problems known to be NP-hard even in much static robust
optimization with polyhedral uncertainty sets Bertsimas & Sim (2003). A common assumption in
this paper, also utilized by Bertsimas & Kim (2024) and Dumouchelle et al. (2023) discretizes the
uncertainty set Ξ, but the core issue still remains. It merely transforms the problem into a large-scale
deterministic equivalent where the bilinear linkages persist, coupling decisions across numerous
scenarios. Consequently, despite relaxing optimality guarantees, scalable ARO methods remain
elusive; this work addresses that gap.

1.1 RELATED LITERATURE

Researchers have proposed methods to mitigate the issues associated with the computational com-
plexity and infinite-dimensional nature of ARO. The traditional methods generally fall into two broad
categories: restricting the wait-and-see decision thereby creating decision rules (Ben-Tal et al. (2004);
Chen & Zhang (2009); Georghiou et al. (2021); Kuhn et al. (2011); Subramanyam et al. (2020) and
decomposition-based algorithms Bertsimas et al. (2012), Zeng & Zhao (2013)). Restricting decision
rules limits the flexibility of the wait-and-see (recourse) variables to often a lower-dimensional
function class— affine or piecewise-affine policies Bertsimas & Goyal (2012). This can transform the
ARO problem into a robust or convex optimization problem, reducing its complexity. However, such
overly simplistic policy classes may lead to suboptimal or even infeasible solutions . Techniques such
as Benders Decomposition Thiele et al. (2009) and Column-and-Constraint Generation (CCG) Zeng
& Zhao (2013) aim for exact or near-optimal solutions by iteratively refining the set of constraints or
variables. However, iteratively refining the feasible region and/or adding scenarios can lead to a large
number of subproblems, making these methods intractable for large-scale applications. Moreover,
in complex ARO problems (with mixed-integer recourse), the iterative process may require many
iterations to reach near-optimal solutions.

More recently, machine learning (ML) techniques have emerged as a powerful alternative for tackling
ARO problems in real-world scenarios Julien et al. (2024); Brenner et al. (2024); Goerigk & Kurtz
(2025). Bertsimas & Kim (2024) pioneered an ML-based framework that accelerates the solution
process for ARO. Their insight is to view the ARO problem’s solution structure as a strategy that could
be predicted by a trained ML model. Their method involves training a set of ARO instances using
traditional CCG methods and learning the optimal strategies for including here-and-now decisions,
worst-case scenarios, and wait-and-see actions. On new ARO instances, the trained model returns a
policy orders of magnitude faster than classical iterative solvers. An issue with ML methods is that
while they can drastically reduce online solution times, they generally provide approximate solutions;
rigorous worst-case guarantees can be difficult to establish without additional theoretical structures.
Building on ML-based approaches, Dumouchelle et al. (2023) neuralizes CCG by replacing the
worst-case uncertainty selection with a learned surrogate of second-stage objective. The surrogate
is embedded as a piecewise-linear model in the MP, compatible with MILP solvers Fischetti & Jo
(2017); Serra et al. (2018), yielding substantial speedups. Achieving reliable performance, however,
requires careful neural architectural choices which are readily embeddable as an MILP.

Embedding neural networks (NNs) into MILPs is impractical, as it requires introducing binary
activation variables for each neuron and additional linking constraints (e.g., big-M) at every layer.
Thus the MILP model size increases at least linearly with the neuron count and, in practice, the
branch-and-bound search explodes as the network deepens Fischetti & Jo (2017); Serra et al. (2018).
Big-M constraints are easy to formulate but require tight pre-activation bounds; loose bounds yield
weak relaxations and large search trees. For large neural architectures like transformers, the resulting
MILP can blow up in memory and time, undermining the speedups the surrogate was meant to
provide Tong et al. (2024).
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1.2 CONTRIBUTIONS

In this paper, we introduce a novel penalized two-phase decomposition strategy for addressing the
Master Problem (MP) within the CCG framework for ARO. Specifically, the algorithm circumvents
the need to embed the neural networks as mixed-integer linear constraints by splitting the MP into a
penalized relaxed phase-1 candidate selection for an uncertainty and a phase-2 NN-based worst-case
candidate verification. Building on this, the primary contributions of our work are as follows:

Decoupled NN Architecture: Proposing separation of NN inference from the core optimization
problem, enabling the use of sophisticated NNs (including those with advanced activation functions)
without introducing MILP encoding overhead. This architectural decoupling ensures scalability and
faster solutions for high-dimensional ARO problems.

Stabilized Phase-1 selection The MP’s phase-1 biases the uncertainty selection towards possible
worst-case scenarios. This is done through a severity score obtained from penalty calculated for
each scenario based on the problem instance. The penalized relaxation stabilizes candidate selection,
accelerating convergence by steering the CCG loop toward near worst-case realizations.

Certifiable Lower Bounds: Establishes strict lower objective bounds through scenario generation,
overcoming a key limitation of existing ML-based ARO approaches that lack formal guarantees.

Performance Gains: The proposed framework achieves 10–102× faster convergence than state-
of-the-art methods on average across real and synthetic robust optimization problems. The overall
algorithm terminates in finitely many iterations (at most the number of candidate scenarios).

The paper is organized as follows: Section 2 introduces key preliminaries. Section 3 presents the
two-phase decomposition framework for MP, including its ML architecture and integration with CCG.
Section 4 covers the NN training process. Section 5 evaluates the framework on two-stage robust
knapsack and power grid unit commitment problems, comparing runtime and solution quality against
benchmarks. Finally, Section 6 presents key insights and future directions.

2 PRELIMINARIES

In this study, we adopt a general robust optimization framework where the uncertainties are defined
as discrete sets Ξ̂. We reformulate 1 into an extended ARO form as shown in Lefebvre et al. (2023):

min
x∈X, θ,yξ

θ (2a)

s.t. c⊤x+ d⊤yξ ≤ θ, ∀ξ ∈ Ξ̂ (2b)

T (ξ)x+Wyξ ≤ h(ξ), ∀ξ ∈ Ξ̂ (2c)

yξ ∈ Y (x, ξ), ∀ξ ∈ Ξ̂. (2d)

The extended ARO formulation reduces the min−max−min problem into a single-level min

problem by enumerating uncertainties in Ξ̂. However, this enumeration can introduce a large number
of variables yξ and constraints (2b)–(2c), increasing computational complexity. In the next section,
we discuss algorithms designed to mitigate this challenge.

2.1 COLUMN-AND-CONSTRAINT GENERATION (CCG)

The CCG algorithm is a prominent iterative method for tackling medium-scale two-stage ARO
problems Zhao & Zeng (2012). It addresses the computational complexity arising from enumeration
in (2) by iteratively constructing constraints and variables within a master-adversarial framework.
Rather than considering all scenarios, the CCG algorithm focuses on the most critical scenarios in the
MP at each iteration, t ∈ N, using a smaller discrete restricted uncertainty set Ξt ⊆ Ξ̂. The MP at
iteration t computes the solution (xt, θt) and is formulated as follows:

P := min
x∈X, θ,yξ

θ (3a)

s.t. c⊤x+ d⊤yξ ⩽ θ ∀ξ ∈ Ξt (3b)

3
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T (ξ)x+Wyξ ⩽ h(ξ) ∀ξ ∈ Ξt (3c)
yξ ∈ Y (x, ξ) ∀ξ ∈ Ξt (3d)

Until a convergence criterion is met, injection of newer uncertainties in the MP takes place by solving
the AP which takes in as input the fixed MP solution xt, defined as,

Q(xt) := max
ξ∈Ξ̂

min
yξ∈Y (x,ξ)

{
c⊤x+ d⊤yξ : Wyξ ⩽ h(ξ)− T (ξ)xt

}
. (4)

The solution to this problem provides ξt and the value of the AP as Qt (in Appendix B Algorithm 3).

2.2 COMPUTATIONAL CHALLENGES OF CCG

The iterative structure of CCG, while theoretically sound, suffers from significant computational
bottlenecks in large-scale problems or those with integer recourse variables Zhao & Zeng (2012).
Even with polyhedral uncertainty and convex second-stage decisions, the AP must be solved as
an MILP in each iteration due to bilinear complementarity constraints Zeng & Zhao (2013) or
heuristically for bilinear objectives Bertsimas et al. (2012), resulting in intractable representations.

In the MP, every iteration appends a new constraint and variable (for each ξ ∈ Ξt) leading to longer
solve times especially for integer decisions. Even if individual MP/AP solves are tractable, the total
runtime scales with the number of iterations and is thus prohibitive for large problems.

3 ML APPROXIMATION OF CCG

For fixed decisions x̂ and uncertainty ξ̂, the innermost min is the following value-function problem,

V (x̂, ξ̂) := min
y
{c⊤x̂+ d⊤y : Wy ⩽ h(ξ̂)− T (ξ̂)x̂}, ξt ← argmax

ξi∈Ξ̂
V
(
xt, ξi

)
.

During the tth CCG iteration, if V (xt, ξi) is available for all ξi ∈ Ξ̂ either exactly or via function
approximation, the adversarial problem in Equation (4) simplifies to enumerating Ξ̂ to identify the
worst-case uncertainty. The selected ξt is then appended to the MP set Ξt for the next CCG iteration.

In this work, we approximate the AP’s V (x̂, ξ̂), value of the inner min problem by NN model similar
to Dumouchelle et al. (2023). While being an approximate solution, this method avoids bi-linearity
and integer-valued variables in AP, replacing it with forward passes through the NN with weights Θ.
By training the NN on the representative set of here-and-now decisions and uncertainty (x̂, ξ̂) from
previously recorded data D, the NN model learns a mapping from input to the value of V (x̂, ξ̂).

ξt ← argmax
ξ∈Ξ̂

VΘ(x
t, ξ) (5)

As new uncertainties are introduced at each iteration t, expanding the uncertainty set Ξt, the MP
correspondingly increases in size. This growth poses computational challenges, particularly when
integer variables or a large number of second-stage decision variables are involved, leading to
potential solution intractability. To overcome these issues, we propose a two-phase selection and
verification scheme that decomposes the MP and solves it iteratively.

3.1 MP: TWO-PHASE DECOMPOSITION

The MP is broken into two key components: a phase-1 penalized Relaxed Master Problem (RMP) that
selects a candidate worst-case scenario driven by severity score and a verification step that determines
if it is truly the most damaging. If not, a no-good cutting plane is added to refine the MP’s feasible
region. This selection-verification cycle repeats until the MP solution aligns with the most likely
worst-case scenario. Below, we first detail Candidate Selection, followed by Candidate Verification.

3.1.1 MP PHASE-1: SELECTION PHASE (SEVERITY-WEIGHTED)

In the selection phase, the MP is relaxed by omitting the complicating constraints (3b)-(3c). Phase-1
selects a single active scenario from the current candidate set Ξt and a corresponding pair (x,y) that
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is feasible for that scenario, while gently steering the choice toward severe scenarios. We solve the
following one–hot selection model (the active uncertainty equals exactly one candidate):

P1 := min
x,y, ξa, z

c⊤x+ d⊤y − λ ·
|Ξt|∑
i=1

Sϕ(ξi) zi, (6a)

s.t. T (ξa)x+W y ⩽ h(ξa), (6b)

ξa =

|Ξt|∑
i=1

zi ξi,

|Ξt|∑
i=1

zi = 1, (6c)

ξℓa ⩽ ξa ⩽ ξua , (6d)
zi ∈ {0, 1}, i = 1, . . . , |Ξt|. (6e)

Here, z is a one–hot vector that selects the active candidate, ξa denotes the selected uncertainty, and
Sϕ(ξ) ∈ [0, 1] is a fixed severity score that depends on xi and the problem instance parameters.
We learn a separate regressor Sϕ(ξ) ∈ [0, 1] with weights ϕ on the same training corpus as the
second-stage NN VΘ, but with the decision x marginalized. This makes Sϕ instance–uncertainty
dependent while being policy-agnostic, since it aggregates Q(x, ξ) over a design pool of first-stage
decisions. The severity penalty −λ ·

∑
i Sϕ(ξi)zi biases the objective towards worst-case scenarios.

Also, instead of having constraint blocks for each ξ, only one constraint equation 6b for ξa is used
reducing the problem size.

We set λ = λmult ·R where λmult ≥ 0 is a user-defined multiplier and R is a data-driven reference
scale (e.g., a robust inter-quantile spread R = q95% − q5% of the raw severity targets or predictions).
The full recipe of targets, features, and calibration details of the severity score and R appears in
Appendix E. In experiments we sweep λmult on a grid to find the best value.
Proposition 1 (Lower Bound). Let (x∗, z∗) solve P1 in (6) with λ > 0 to optimality, and i∗ satisfy
z∗i∗ = 1. If Opt(P) is an optimal value of P in (3), then:

Opt
(
P1 | λ = 0, z = z∗) = min

x,y

{
c⊤x+ d⊤y

∣∣T (ξi∗)x+Wy ≤ h(ξi∗)
}
⩽ Opt(P). (7)

Proof sketch. See Appendix A for a full proof.

Crucially, Proposition 1 certifies the lower bound only after setting λ = 0 (removing the scenario-
weighting penalty); accordingly, P1 serves solely to select a worst-case scenario i∗, not to certify the
bound itself.

3.1.2 MP PHASE-2: VERIFICATION PHASE

A candidate worst-case uncertainty for MP, denoted by ξ∗a, is identified from P1 along with x∗.
Phase-1 may select a severe but non-worst scenario in Ξt. We therefore enforce a verification step to
confirm its validity. The verification is done using the following:

P2(x
∗) := max

ξ∈Ξt

min
y∈Y (x∗,ξ)

{
c⊤x∗ + d⊤y Wy ⩽ h(ξ)− T (ξ)x∗

}
,

where x∗ is the Phase-1 decision. This verification problem searches for an uncertainty ξ̂ ∈ Ξt

that maximizes the worst-case cost associated with x∗. If ξ̂ = ξ∗a, then the candidate uncertainty is
confirmed as the worst-case scenario for the current iteration. Otherwise, if ξ ̸= ξ∗a, a new constraint
(e.g., zi = 0 corresponding to the rejected scenario) is added to P1 and it is resolved, effectively
acting as a cutting-plane that excludes the suboptimal candidate and tightens the LB.

Phase-2 Approximation: Note P2(x
∗) solves a similar problem as compared to Q(xt) albeit on a

smaller set of MP uncertainties for a fixed x∗ from selection phase P1. Thus, the NN model used in
the second-stage of CCG is also applied as an approximation in the MP phase-2 denoted as Papprox

2 .

3.2 ML-ACCELERATED CCG

The proposed ML-Accelerated CCG framework integrates NN approximations into both the MP and
AP replacing costly NN-embedded mixed-integer solves. Algorithm 2 outlines the full procedure,
which iteratively refines lower and upper bound (UB) until convergence.
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Figure 1: Overview of the proposed Machine Learning-Accelerated CCG algorithm.

Convergence. After phase-1 selection and phase-2 verification, we fix the selected scenario ξint and
solve the corresponding single–scenario problem exactly (with the unpenalized objective) to obtain
the MP’s certified LB. We then evaluate the global worst-case for xt over Ξ̂, yielding the certified UB.
Since the severity penalty only biases Phase–1 selection and never enters these certificates, the gap
UB− LB decreases monotonically and, with a finite scenario pool, the algorithm terminates once
UB− LB ≤ ε, where ε is the tolerance.

To verify the approximation quality of the phase-2 and AP in the ML-Accelerated CCG by an NN,
we consider “Accelerated-CCG” where both phase-2 and AP are solved exactly using the optimal
solution to the value-function problem. Due to the exact phase-2 and AP solves, Accelerated CCG
serves as the benchmark for comparing against the ML-accelerated variant. This framework, showed
in Algorithm 5 is critical for enabling and benchmarking ML approximations while addressing the
computational challenges of traditional CCG.

4 NEURAL NETWORK TRAINING

4.1 DATA GENERATION FOR TRAINING

To train a neural network surrogate for the second-stage cost function, we first generate a representative
set of problem instances and uncertainty realizations. Specifically:

Instance Parameters: We generate k problem instances Ii,∀i ∈ (1, . . . , k) by sampling parameters,
such as cost vectors c,d and constraint matrices T ,W . As explained in Appendix C and D, sampling
distributions are chosen to reflect realistic instances for training.

Uncertainty Set via Norm Ball: Let ξ̄ represent the nominal (forecasted) uncertainty, with each
sampled ξ drawn from a norm ball centered at ξ̄, ξ ∈

{
ξ̄ + δ : ∥δ∥ ⩽ ρ

}
, where ∥ · ∥ is a chosen

norm (e.g., ℓ2 or ℓ∞), and ρ specifies the uncertainty radius. To discretize the uncertainty set:

Ξ̂ =
{
ξ̄ + δi : ∥δi∥ ⩽ ρ, i = 1, . . . , n

}
,

where δi is sampled uniformly over the ball.

4.2 LABEL COMPUTATION VIA EXACT SOLVES

Each input from the generated data (ξ, I) is used to solve an exact optimization problem:

Q(xt, ξ) := min
x,y

{
c⊤x+ d⊤y, T (ξ)x+Wy ⩽ h(ξ)

}
, (8)

using a solver. In the above formulation, first-stage decisions x is a variable. The solution to (8)
provides the fixed objective value V ∗ and x̂ for ξ and I . This is an expensive task since the NN
training requires large number of input data but the solves can be done in an offline distributed manner.
Each training instance is stored as

(
(x̂, ξ, I), V ∗) in the dataset D with k ×N total rows.

6
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Figure 2: Data generation and training for NN: Training data is generated offline by solving a
deterministic program over a tabular combination of instances and uncertainties. The NN model is
then trained on the dataset D for inference in the ML-Accelerated CCG.

4.3 NN TRAINING AND INFERENCE

A feed-forward NN VΘ(x̂, ξ, I), is used to approximate V ∗. The input layer concatenates x̂, ξ, and
I in one long vector and the output layer predicts a single cost value V ∗.

L(Θ) =
1

|D|
∑

(x̂,ξ)∈D

(
V ∗ − VΘ(x̂, ξ̂, I)

)2

. (9)

More advanced architectures, like convolutional or attention-based models, can be used for structured
data (see Sec. D.2). After training, the NN model VΘ(x, ξ, I) is used for inference in the ML-
accelerated CCG algorithm. Since inference is performed with fixed instance parameters, we simplify
the notation to VΘ(x, ξ).

5 COMPUTATIONAL RESULTS

We evaluate the performance of the proposed ML-accelerated CCG framework against the traditional
CCG algorithm, focusing on runtime reduction and solution quality. All optimization and instance
testing were performed on a personal laptop with a 2.90 GHz Intel® Core™ i7 CPU and 16 GB
of memory. Mixed-Integer Linear Programming problems were solved using Gurobi 11.0, with
implementations in Julia via the JuMP package Lubin et al. (2023). NN training and evaluation were
conducted on an NVIDIA A30 GPU with 50 GB of memory, using PyTorch 2.4 in Python 3.10.

Next, define “Optimality Gap” quantifies the relative error between the proposed and baseline
methods:

Optimality Gap =
Oproposed −Obaseline

Obaseline
× 100.

Here, Oproposed is the objective value from the proposed accelerated/ML-accelerated CCG framework,
while Obaseline is the exact classical CCG solution with respect to the Ξ̂ set. A smaller gap indicates a
closer alignment with the true robust optimal solution. We also empirically note that the proposed
method never violates the LB property from the exact solves, which would otherwise result in
over-conservative results.

5.1 CASE STUDY: TWO-STAGE ROBUST KNAPSACK

We adopt and test the two-stage robust knapsack problem instances with objective uncertainty
from Arslan & Detienne (2022) for Uncorrelated (UN), Weakly Correlated (WC), Almost Strongly
Correlated (ASC), and Strongly Correlated (SC) knapsack sizes of 20 to 80 items. The discrete
uncertainty set for inference for all the knapsack sizes is taken from Dumouchelle et al. (2023). Since
the proposed ML-Accelerated CCG introduces the λmult as a tunable hyperparameter in the penalty
term, we perform a grid search to select the value that yields the best trade-off between optimality
gap and runtime. For the robust knapsack case study, the NN second-stage models used is presented
in Appendix Table 3, the best performance was achieved with λmult = 3000.0 (Appendix E.3), which
we fix in all reported experiments.

We evaluate the full two-stage robust knapsack problem, comparing ML-Accelerated CCG and
Accelerated CCG against the exact baseline. Figure 3 shows optimality gaps for the robust knapsack,

7
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with a few key observations:
(i) Accuracy: The median optimality gap for each knapsack size remains within 7% for I = 20, 30

and within 3% for the sizes greater than 30, while optimality gaps greater than 10% range are rare
and reflect trade-offs from NN approximation. Table 2 shows solutions with 0− 2% optimality gap
showing that most of the solutions are tight and closer to the exact objective values.
(ii) LB guarantee: We empirically check that all gaps are non-negative, confirming the proposed
method preserves the LB, suggesting the algorithm never produces overly conservative results,
(iii) Reference Performance: Solving phase-2 exactly, rather than using NN-approximated value
functions, results in near-zero gaps, confirming the tightness of our two-phase decomposition and the
benefit in using larger and better NNs, and
(iv) Fast Solves: The ML-Accelerated CCG achieves orders-of-magnitude faster solve times across
all instance sizes, reducing runtimes compared to classical CCG’s exact baseline, as shown in Table 1.

Figure 3: Optimal Gap distribution of the proposed ML-accelerated CCG (orange) and Accelerated
CCG (blue) compared to exact CCG solves across problem scales (knapsack item counts N = 20 to
80 and correlation types (a) UN, (b) WC, (c) ASC, (d) SC

Table 1: Mean Execution Times (seconds) by Category and Knapsack Size (I).
UN WC ASC SC

I Exact ACC. ML. Exact ACC. ML. Exact ACC. ML. Exact ACC. ML.

20 575.8 222.6 0.14 1632.9 174.9 0.18 887.9 118.5 0.17 1311.2 166.9 0.22
30 545.0 237.9 0.20 2397.2 218.3 0.25 2046.3 154.7 0.22 2737.4 212.3 0.22
40 843.3 324.3 0.31 2788.6 265.6 0.36 2914.2 180.2 0.38 3319.7 206.6 0.39
50 575.8 307.5 0.35 3417.6 240.3 0.43 2987.8 241.9 0.37 1909.7 199.0 0.35
60 1055.4 316.5 0.44 3327.0 172.9 0.53 3413.7 120.2 0.45 2640.4 140.5 0.44
70 951.2 381.3 0.54 2932.0 283.9 0.60 3561.2 272.5 0.42 3553.7 253.3 0.51
80 982.0 442.6 0.54 1962.8 363.6 0.58 2651.0 319.8 0.48 2670.9 288.7 0.51

Exact: Exact baseline, ACC.: Accelerated CCG, ML.: ML-accelerated CCG

5.2 CASE STUDY: TWO-STAGE ROBUST UNIT COMMITMENT

We consider the two-stage robust unit commitment (UC) problem with a linearized second-stage and
polyhedral demand uncertainty, using the IEEE 6-bus Wu et al. (2009) and 24-bus Ordoudis et al.
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(2016) systems as defined in Lorca & Sun (2014); Bertsimas et al. (2012). As a critical problem in
power grid operations, UC determines generator schedules while accounting for uncertainty to ensure
system reliability and cost efficiency. Solving the CCG algorithm over 24 hours for each generator
introduces significant combinatorial complexity, particularly in the 24-bus system with 12 generators,
resulting in 3× 12× 24 = 864 binary variables and 12× 24× |Ξt| continuous variables.

Since decisions for buses (generators and demands) influence one another, the NN model must
capture complex, long-range interdependencies within the power grid network. To address this, we
propose leveraging a Graph Attention Network (GAT) Veličković et al. (2017) with global attention,
where each bus is treated as a node and edges represent transmission line susceptances. The detailed
formulation and GAT architecture are presented in Appendix D.

Figure 4: Comparison of solution quality and runtime across methods. The figure shows performance
of the proposed ML-Accelerated CCG, the Accelerated CCG against classical CCG baseline. Both
solution accuracy and computational time are reported, highlighting that the ML-Accelerated CCG
achieves near-identical solution quality while substantially reducing runtime.

In Figure 4, results from 150 instances show that both proposed models achieve optimality gaps
within 5% for the 6-bus system and 8.5% for the 24-bus system, with a median gap of 2%. Despite
the increased dimensionality of the UC formulation, the method provides significant computational
savings over CCG, as shown in Table 6. For the 6-bus system, ML-Accelerated CCG achieves up to a
93× speed-up, while for the larger 24-bus system, it still delivers a 16× speed-up, compared to the
traditional CCG. Notably, these gains come with a median optimality gap near 2%, and large number
of instances with 0% optimality gap as showed in Table 5 demonstrating that even at larger scales,
ML-Accelerated CCG maintains tight LBs (due to relaxations) alongside substantial computational
efficiency. As with the knapsack study, we tune the λmult via grid search to calibrate the bias in
phase-1 selection. The best values were found to be λmult = 5000 for the 6-bus UC system and
λmult = 7500 for the 24-bus UC system and we will use these values throughout the results.

6 CONCLUSIONS

We introduced LARO, a learning-accelerated two-phase decomposition framework for two-stage
Adaptive Robust Optimization (ARO). By employing a neural-network-based value function ap-
proximation, our novel ML-accelerated CCG approach decouples the network from direct solver
embeddings, enabling large-scale, mixed-integer ARO while providing finite convergence and stronger
LBs than state-of-the-art methods. Numerical experiments on robust knapsack and power grid unit
commitment problems reveal substantial speedups—up to 103× for knapsack instances and 16× for
a 24-bus system—compared to the baseline CCG, with median optimality gaps under 3%. Overall,
our proposed method successfully balances the competing demands of robustness and computational
scalability, offering an efficient and flexible alternative for two-stage ARO problems. Future work
will explore different types of uncertainty sets, approximate value-function problems with mixed-
integer non-convex feasible regions, and develop advanced neural architectures for very large-scale
applications.
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APPENDIX

A PROOF OF PROPOSITION 1

Proof sketch. Let P and P1 be the MP and the relaxed MP, respectively, as defined in equation 3 and
equation 6.

MP P .

P : min
x∈X, θ, {yξ}ξ∈Ξt

θ

s.t. c⊤x+ d⊤yξ ≤ θ, ∀ξ ∈ Ξt,

T (ξ)x+Wyξ ≤ h(ξ), ∀ξ ∈ Ξt,

yξ ∈ Y (x, ξ), ∀ξ ∈ Ξt.

Relaxed MP P1.: The lower bound is evaluated without the penalty term effectively at λ = 0 after
the phase-1 and 2 iterations are complete for a fixed z⋆, thus the penalty term disappears from the
Relaxed MP objective during LB calculation.

P1 : min
x,y, ξa, z

c⊤x+ d⊤y

s.t. T (ξ)x+Wy ≤ h(ξa),

ξa =

|Ξt|∑
i=1

ziξi,

|Ξt|∑
i=1

zi = 1,

ξℓa ≤ ξa ≤ ξua , zi ∈ {0, 1}.

Step 1 (feasible sets). P enforces constraints for all ξ ∈ Ξt; P1 enforces them for one selected ξa.
Hence Feas(P) ⊆ Feas(P1).

Step 2 (construct a feasible point for P1). Let (x∗, θ∗, {y∗
ξ}) be optimal for P . Pick ξ̄ ∈ Ξt

attaining maxξ{c⊤x∗ + d⊤y∗
ξ} and set x = x∗, y = y∗

ξ̄
, ξa = ξ̄, and zi = 1{ξi = ξ̄}. Then

(x,y, ξa, z) is feasible for P1.

Step 3 (objectives).
c⊤x+ d⊤y = c⊤x∗ + d⊤y∗

ξ̄ ≤ θ∗ = Opt(P),

so minimizing over Feas(P1) gives Opt(P1 | λ = 0, z = z∗) ≤ Opt(P).

B ALGORITHM

The traditional CCG algorithm described in Section 2.1 is presented as in Algorithm 3:

12
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Algorithm 1 MP with Two Phase Decomposition

Require: Candidate scenario set Ξt = {ξi}Nt
i=1;

NN adversary VΘ(x, ξ);
severity scores S(ξ) ∈ [0, 1];
penalty scale R;
multiplier λmult ≥ 0;
weight λ← λmult ·R.

1: Phase 1: Candidate Selection
2: Solve P̃1 in equation 6 to obtain candidate (x∗, ξ∗a, θ

∗)
Phase 2 (Verification)

3: repeat
4: Evaluate ηi ← VΘ(x̄, ξi) for all ξi ∈ Ξt and set j⋆ ∈ argmaxi ηi, ξ̂ ← ξj⋆ .
5: if ξ∗a = ξ̂ then
6: break ▷ Selection consistent with restricted worst-case
7: else
8: if |Ξt| > 1 then
9: Add no-good cut forbidding the previous pick: set zk = 0 for k with z̄k = 1.

10: Re-solve Phase 1.
11: else
12: Skip the cut to retain feasibility of

∑
i zi = 1.

13: break
14: end if
15: end if
16: until consistent

Exact LB certification (unpenalized) ▷ Severity penalty never appears in certificates
17: Solve the exact single-scenario problem at the verified ξ̂:

LBt = min
x,y

c⊤x+ d⊤y s.t. T (ξ̂)x+W y ≤ h(ξ̂),

and let (xt, yt) be an optimizer. Set ξt ← ξ̂.
18: Return (xt, ξt,LBt).

Algorithm 2 ML-Accelerated CCG

Require: Data (c,d,T (ξ),W ,h(ξ)), full scenario set Ξ̂, NN adversary VΘ(x, ξ), tolerance ε > 0,
penalty scale R, multiplier λmult ≥ 0, severity score Sϕ

1: Initialize t← 0, choose warm-start subset Ξ0 ⊆ Ξ̂, set UB← +∞, LB← −∞
2: Set λ← λmult ·R ▷ weight for Phase–1 bias; not used in certificates
3: while UB− LB > ε do
4: Step 1: Master Problem
5: Call Algorithm 1
6: Receive (xt, ξ

in
t ,LBt) ▷ LBt from exact, unpenalized single-scenario solve

7: LB← max{LB, LBt}
8: Step 2: Adversarial Problem
9: Compute η(ξ) = VΘ(xt, ξ) values ∀ Ξ̂

10: ξ⋆t ← argmaxξ∈Ξ̂ η(ξ);
11: Compute Q(xt, ξ

⋆
t ) via exact solve; UBt ← Q(xt, ξ

⋆
t )

12: UB← min{UB, UBt}
13: Step 3: Scenario set update
14: if ξ⋆t /∈ Ξt then Ξt+1 ← Ξt ∪ {ξ⋆t } else Ξt+1 ← Ξt

15: t← t+ 1
16: end while
17: Finalize: θ̄ ← LB; x̄← xt

18: return (θ̄, x̄)
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Algorithm 3 CCG algorithm

Require: (c,d,T (ξ),W , h(ξ)) where ξ ∈ Ξ̂

1: Initialize t← 0, Ξt ⊂ Ξ̂, UB ←∞, LB ← −∞
2: while LB ≤ UB do
3: Solve MP equation 3, obtain (xt, θt)
4: LB ← θt

5: Solve AP equation 4, obtain (ξt, Qt)
6: UB ← min(UB, Qt); Ξt ← {ξt} ∪ Ξt

7: t← t+ 1
8: end while
9: return xt, θt

Algorithm 4 MP: Two-Phase Decomposition (Exact Phase-2)
Require: candidate value set VΘ, master set Ξt, iteration index t

Phase 1: Candidate Selection
1: Solve P1 to select a candidate (x∗, ξ∗a)

Phase 2: Candidate Verification (exact)
2: Solve Q(x∗) over Ξt to obtain ξ̂

3: if ξ∗a = ξ̂ then
4: return (x∗, ξ∗a, Q(x∗))
5: else
6: Add cut to P1: set zk∗ ← 0 where k∗ = { k | zk = 1 }
7: restart Phase 1
8: end if

9: Finalize: θ∗ ← Q(x∗)
10: return (x∗, ξ∗a, θ

∗)

Algorithm 5 Accelerated CCG

Require: instance (c,d,T (ξ),W , h(ξ)), uncertainty set Ξ̂
Ensure: optimal solution (θ̄, x̄)

1: initialize: t← 0, Ξ0 ← ∅, UB ← +∞, LB ← −∞
2: while LB < UB do
3: Step 1 (MP via Two-Phase): apply Algorithm 4 with exact Phase-2
4: obtain (x∗, ξ∗a, θ

∗) and set LB ← θ∗

5: Step 2 (AP, exact): solve Q(x∗) over Ξ̂, obtaining worst-case ξ(t) and value Q(t)

6: UB ← min(UB, Q(t))

7: Step 3 (master set update): Ξt+1 ← Ξt ∪ {ξ(t)}; t← t+ 1
8: end while
9: finalize: θ̄ ← LB, x̄← x∗

10: return (θ̄, x̄)
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C TWO-STAGE ROBUST KNAPSACK PROBLEM

C.1 MATHEMATICAL FORMULATION

A two-stage robust knapsack problem is considered with a set of N items from which some items
i ∈ N are selected for production. The profit of the items has an uncertain degradation, due to which
second-stage decisions of producing as is, repairing, or outsourcing the items have to be made. The
complete formulation is:

Z := min
x∈{0,1}N

max
ξ∈Ξ

min
y∈{0,1}N ,

r∈{0,1}N

N∑
i=1

[
(fi − pi)xi +

(
p̂i ξi − fi

)
yi − p̂i ξi ri

]
(10a)

s.t.
N∑
i=1

(
ci yi + ti ri

)
⩽ C, (10b)

ri ⩽ yi ⩽ xi, ∀ i = 1, . . . , N, (10c)

where Ξ =
{
ξ ∈ [0, 1]N :

∑N
i=1 ξi ⩽ Γ

}
describes the uncertainty set. In equation 10a, the

first-stage decision x selects items to produce. The inner (minimization) problem determines the
optimal second-stage responses after uncertainty ξ is realized: producing an item as is, (yi = 1)
generates a profit that depends on the degradation (p̄i − ξip̂i), whereas repairing it (ri = 1) recovers
the full profit at the expense of extra resource ti. Or the item can be outsourced for a profit of (p̄i−fi).

The capacity constraint equation 10b limits the overall resource usage, and the logical constraint
equation 10c guarantees that an item is only kept if produced, and can only be repaired if it is
kept. The formulation captures the adversarial nature of the problem by considering the worst-case
degradation over the uncertainty set Ξ.

C.2 INSTANCE GENERATION

The problem instances for a specific instance size N of uncorrelated knapsack are generated through
the Algorithm 6. All uniform distributions are denoted by U(a, b), representing values drawn
uniformly from the interval [a, b]. In Algorithm 6, we begin by specifying an instance size N and
initializing global parameters: the cost UB R, the base capacity H , a capacity scaling factor h
chosen from {40, 80}, a degradation factor δ from {0.1, 0.5, 1}, and a knapsack budget Γ from
{0.1×N, 0.2×N, 0.3×N}. For each item i, we generate its cost ci from a uniform distribution
on [1, R], then compute the total adjusted capacity C as h×H +

∑N
i=1 ci. We sample the nominal

price pi from [1, R], the adjusted price p̂i from the interval
[pi(1−δ)

2 , pi(1+δ)
2

]
, the fixed cost fi from

[1.1 pi, 1.5 pi], and the processing time ti from [1, ci]. The resulting instance is
(
c,p, p̂,f , t, C

)
,

which serves as input for learning the value function of the robust knapsack problem.

C.3 UNCERTAINTY GENERATION FOR THE KNAPSACK PROBLEM

In Algorithm 7, a random generator is seeded to ensure reproducibility, and each scenario vector is
sampled from the Dirichlet distribution with unit parameters, reflecting a base probability distribution
that sums to one. The vector is then scaled by the budget Γ to produce a nonnegative vector whose
components sum to Γ. Repeating this process for M scenarios yields a diverse set of uncertainty
vectors, each representing a valid realization under the knapsack’s budget constraint.

We generate a set I of size |I| = 250 and, for each instance in I, a set of 50 uncertainties,
yielding a total of 7,500 unique uncertainty realizations. We then vary Γ across 11 discrete values
to construct feasible first-stage decisions. The resulting dataset, denoted by D, thus has cardinality
|D| = 250× 50× 11 = 137,500 for each instance size.
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Algorithm 6 Knapsack Instance Generation Algorithm (Training)
Require: Instance size N

1: Initialize instance parameters
2: R← 1000 ▷ cost UB
3: H ← 100 ▷ capacity parameter
4: h← uniformly at random from {40, 80}
5: δ ← uniformly at random from {0.1, 0.5, 1}
6: Γ← uniformly at random from {0.1N, 0.2N, 0.3N}
7: for each item i ∈ {1, . . . , N} do
8: ci ∼ U(1, R)
9: end for

10: C ← h ·H +
∑N

i=1 ci
11: for each item i ∈ {1, . . . , N} do
12: pi ∼ U(1, R)

13: p̂i ∼ U
(

pi(1−δ)
2 , pi(1+δ)

2

)
14: fi ∼ U(1.1 pi, 1.5 pi)
15: ti ∼ U(1, ci)
16: end for
17: return I := (c,p, p̂,f , t, C)

Algorithm 7 Uncertainty Generation via Dirichlet Distribution (Training)
Require: number of scenarios M , uncertainty budget Γ, instance size N , random seed
Ensure: set {ξ(1), . . . , ξ(M)} with

∑N
i=1 ξ

(k)
i = Γ and ξ

(k)
i ≥ 0

1: initialize RNG with seed
2: for k ← 1 to M do
3: sample s(k) ∼ Dirichlet(α) where α = 1N

4: scale: ξ(k) ← Γ · s(k)
5: store ξ(k) in output set
6: end for
7: return {ξ(k)}Mk=1

Table 2: Percentage of near-optimal solutions ≤ 2% optimality gap) by Category and Knapsack Size
out of 18 instances per cell

UN WC ASC SC

I ACC. ML ACC. ML ACC. ML ACC. ML

20 18 (100.0%) 6 (33.3%) 14 (77.8%) 1 (5.6%) 12 (66.7%) 1 (5.6%) 14 (77.8%) 2 (11.1%)
30 18 (100.0%) 9 (50.0%) 15 (83.3%) 6 (33.3%) 15 (83.3%) 6 (33.3%) 17 (94.4%) 7 (38.9%)
40 18 (100.0%) 18 (100.0%) 16 (88.9%) 14 (77.8%) 18 (100.0%) 16 (88.9%) 18 (100.0%) 17 (94.4%)
50 18 (100.0%) 18 (100.0%) 17 (94.4%) 15 (83.3%) 18 (100.0%) 17 (94.4%) 17 (94.4%) 16 (88.9%)
60 18 (100.0%) 16 (88.9%) 18 (100.0%) 12 (66.7%) 18 (100.0%) 11 (61.1%) 18 (100.0%) 12 (66.7%)
70 18 (100.0%) 18 (100.0%) 17 (94.4%) 17 (94.4%) 18 (100.0%) 18 (100.0%) 18 (100.0%) 17 (94.4%)
80 18 (100.0%) 18 (100.0%) 17 (94.4%) 16 (88.9%) 18 (100.0%) 18 (100.0%) 18 (100.0%) 18 (100.0%)

ACC.: Accelerated CCG, ML: ML-accelerated CCG

Instance size NN Structure ReLU Neurons Training MAPE (%) Epochs
20 1 linear + 4 ReLU 140, 110, 32, 8 88.2 300
30 1 linear + 5 ReLU 155, 128, 64, 16, 8 91.6 300
40 1 linear + 5 ReLU 340, 128, 110, 32, 8 87.5 300
50 1 linear + 5 ReLU 500, 256, 128, 32, 8 90.3 400
60 1 linear + 5 ReLU 410, 256, 128, 64, 12 89.1 400
70 1 linear + 6 ReLU 540, 256, 256, 128, 64, 16 92.0 400
80 1 linear + 6 ReLU 610, 400, 256, 128, 64, 16 90.7 500

Table 3: Neural network hyperparameters and training performance (MAPE) for knapsack instance
sizes.
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Algorithm 8 Data Generation for NN Training of the Knapsack Problem
Require: number of instances |I|, instance size N , uncertainties per variant M

Initialize: empty database D
Base Instance Generation

1: for k ← 1 to |I| do
2: generate base instance Ik using Algorithm 6
3: store parameters (ck,pk, p̂k,fk, tk, Ck,Γk)
4: end for

Instance Variation
5: for each Ik ∈ {I1, . . . , I|I|} do
6: generate 11 budget variants {I1k , . . . , I11k } with

Γm
k ←

(
0.75 + 0.025(m− 1)

)
Γk (m = 1, . . . , 11)

7: generate M uncertainty vectors {ξ1k, . . . , ξMk } using Algorithm 7
8: end for

Solution Computation
9: for each variant Imk do

10: for each ξik ∈ {ξ1k, . . . , ξMk } do
11: solve Formulation 10 with (Γm

k , ξik)
12: record

(
xmi
k , ymi

k , rmi
k , Zmi

k , tmi
k

)
13: D ← D ∪

{
(xmi

k , ymi
k , rmi

k , Zmi
k , tmi

k )
}

14: end for
15: end for
16: return D
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D TWO-STAGE ROBUST UC

Consider a T -period network-constrained unit commitment (UC) problem with a set of M buses,
and a set of N generators distributed among these buses. For each bus m ∈ {1, . . . ,M}, let Nm

denote the set of generators connected to bus m. The time horizon is discretized into T time periods,
indexed by t ∈ {1, . . . , T}.
Each generator i ∈ Nm has an associated set of parameters:

• Sm
i and Wm

i : start-up and shut-down costs,
• Gm

i and Hm
i : minimum up-time and minimum down-time requirements,

• Lm
i and Um

i : minimum and maximum power output when switched on,
• V m

i and Bm
i : ramp-up and ramp-down rate limits,

• V
m

i and B
m

i : start-up and shut-down ramp rate limits.

We denote by ymi,t a binary variable that is equal to 1 if generator i at bus m is on during period t and
0 otherwise. We use um

i,t and vmi,t to indicate start-up and shut-down events, respectively, of generator
i at bus m in period t. The variable xm

i,t represents the power output of generator i at bus m and time
t.

Let A be the set of transmission lines, where each line (i, j) ∈ A connects two buses i and j and
has a capacity Ci,j . We model power flows using a DC power flow approximation. Accordingly, we
introduce voltage angle variables ωm,t at each bus m and time t, and let Bi,j denote the susceptance
of line (i, j). The power flow on the line (i, j) at time t is denoted by f(i,j),t.

Demand at each bus m and time t is given by ξmt , which is subject to uncertainty. Let Ξ̂ denote
the uncertainty set of possible demand realizations {ξmt }. We then formulate a two-stage robust
optimization problem in which the first-stage chooses the unit commitment decisions {ymi,t, um

i,t, v
m
i,t},

and the second-stage, after observing the demand realization in Ξ̂, determines the dispatch decisions
{xm

i,t, f(i,j),t, ωm,t} to minimize operating costs while satisfying all network constraints.

The resulting two-stage robust UC model is formulated as follows.

min
y,u,v

T∑
t=1

M∑
m=1

∑
i∈Nm

(
Sm
i um

i,t +Wm
i vmi,t

)
+ max

ξ∈Ξ̂
min

(x,ω,Ω)∈X (y,ξ)

T∑
t=1

M∑
m=1

∑
i∈Nm

Ωm
i,t (11a)

s.t.
− ymi,t−1 + ymi,t − ymi,k ⩽ 0, 1 ⩽ k − (t− 1) ⩽ Gm

i , ∀m, ∀i ∈ Nm, ∀t, (11b)

ymi,t−1 − ymi,t + ymi,k ⩽ 1, 1 ⩽ k − (t− 1) ⩽ Hm
i , ∀m, ∀i ∈ Nm, ∀t, (11c)

− ymi,t−1 + ymi,t − um
i,t ⩽ 0, ∀m, ∀i ∈ Nm, ∀t, (11d)

ymi,t−1 − ymi,t − vmi,t ⩽ 0, ∀m, ∀i ∈ Nm, ∀t. (11e)

Define the second-stage feasible set X (y, ξ) for a given (y, ξ) as:

X (y, ξ) =
{
(x,ω,Ω) : Lm

i ymi,t ⩽ xm
i,t ⩽ Um

i ymi,t, ∀m, ∀i ∈ Nm, ∀t, (11f)

xm
i,t − xm

i,t−1 ⩽ (2− ymi,t−1 − ymi,t)V
m

i + (1 + ymi,t−1 − ymi,t)V
m
i , ∀m, i, t,

(11g)

xm
i,t−1 − xm

i,t ⩽ (2− ymi,t−1 − ymi,t)B
m

i + (1− ymi,t−1 + ymi,t)B
m
i , ∀m, i, t,

(11h)

f(i,j),t = Bi,j

(
ωi,t − ωj,t

)
, ∀(i, j) ∈ A, ∀t, (11i)

− Ci,j ⩽ f(i,j),t ⩽ Ci,j , ∀(i, j) ∈ A, ∀t, (11j)∑
i∈Nm

xm
i,t − dmt =

∑
j:(m,j)∈A

f(m,j),t, ∀m, ∀t, (11k)
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ωslack,t = 0, ∀t,
}
. (11l)

D.1 DATA GENERATION

The NN training for the UC problem takes as input the instance values Ii :=

(Sm
i ,Wm

i , Gm
i , Hm

i , Lm
i , Um

i , V m
i , Bm

i , V̂ m
i , B̂m

i ), uncertainty set ξi, and the first-stage decisions
as bus features and the susceptance matrix B. The data generation process is defined as follows.

Instance and Uncertainty Generation

In this method, 150 instance data for the Unit Commitment (UC) problem for 6-bus and 24-bus
system are generated by applying perturbations within the radius of a norm ball (see Algorithms
9, 10). The radius is selected as a percentage of the total sum of the normalized nominal values.
Similarly the we create 1000 and 2500 uncertainties for 6-bus and 24-bus system respectively by
using the nominal data is obtained from Ordoudis et al. (2016) and Wu et al. (2009).

Algorithm 9 UC Instance Generation
Require: nominal vector Inom ∈ Rn

≥0, perturbation factor p ∈ [0, 1], number of instances |I|,
bounds Imin, Imax ∈ Rn

≥0

1: v ← Inom/∥Inom∥1 ▷ normalize
2: S ← ∥Inom∥1 ▷ total scale
3: ∆← p · S ▷ L1 perturbation budget
4: Isim ← ∅ ▷ output set
5: for i← 1 to |I| do
6: sample r ∼ Uniform(−1, 1)n
7: r ← r/∥r∥1 ▷ direction in L1
8: rpert ← ∆ · r ▷ scale to budget
9: vpert ← v + rpert ▷ perturb normalized vector

10: I(i) ← S · vpert ▷ denormalize
11: I(i) ← clip

(
I(i), Imin, Imax

)
▷ box constraints

12: Isim ← Isim ∪ {I(i)}
13: end for
14: return Isim

Algorithm 10 Demand Uncertainty Generation
Require: nominal demands per bus {ξb ∈ RT }b∈B, norm radius α > 0, number of scenarios

Nsamples ∈ N
Ensure: scenario set Ξ̂ = {Ξ(k)}Nsamples

k=1 , where Ξ(k) = {ξ(k)b }b∈B and ξ
(k)
b ∈ RT

≥0

1: Ξ̂← ∅
2: for k ← 1 to Nsamples do
3: Ξ(k) ← ∅
4: for each b ∈ B do
5: v ← ξb ▷ nominal demand (length T , e.g., T=24)
6: r ← α ∥v∥2 ▷ bus-specific perturbation radius
7: sample z ∼ N (0, IT ); z ← z/∥z∥2
8: sample ρ ∼ Uniform(0, r)
9: δ ← ρ z

10: ξ
(k)
b ← max(0, v + δ) ▷ clip at zero to enforce nonnegativity

11: Ξ(k) ← Ξ(k) ∪ {ξ(k)b }
12: end for
13: Ξ̂← Ξ̂ ∪ {Ξ(k)}
14: end for
15: return Ξ̂
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D.2 GRAPH ATTENTION ARCHITECTURE

We employ a Graph Attention Network (GAT) model that combines bus features hi for ith bus
with eigenvalue-based Positional Encodings (PEs) illustrated in the Figure 5. The eigenvalue PEs
described in Dwivedi et al. (2021); You et al. (2019) are obtained by the eigen decomposition of the
susceptance matrix B, and the first k eigenvector-based PEs are transformed via a small two-layer
MLP to match the input dimensionality of the node features. The node features and transformed PEs
are then summed element-wise and passed through three consecutive GAT layers.

Figure 5: An illustration of the GAT model’s attention αi,j between two buses (nodes) i and j.
The input feature vector hi is element-wise added to pei. The softmax score αi,j is calculated by
concatenating W1h̃i and W1h̃j along with the susceptance transformation W2Bi,j .

Each GAT layer leverages multi-head attention as described in Veličković et al. (2017) but we
concatenate a trainable transformation of the susceptance values between the transfomed bus feature
vectors. We update the attention calculations as follows:

αij =
exp

(
LeakyReLU

(
āT [W1h̃i|W2Bi,m|W1h̃j ]

))
∑

m∈{1,...,M} exp
(

LeakyReLU
(
āT [W1h̃i|W2Bi,m|W1h̃m]

))

The attention score for the bus i is calculated for every other bus in the grid m ∈ {1, . . . ,M}, also
denoted in the denominator of the attention softmax score formula. This leads to global attention
being calculated instead of local attention as usually done in GCNs Zhang et al. (2019); Wu et al.
(2019).

We use global attention to determine the long range dependencies between buses along with residual
connections and layer normalization to stabilize training across layers. After the GAT layers, the node
embeddings are aggregated (via mean pooling) and fed into a final MLP regressor, which outputs a
single scalar approximating the value of the second-stage objective. Table 4 summarizes the main
hyperparameters used in our experiments.

The feature vector hin only depends on the generator property, demand, and first-stage decison made
only on that bus, and thus the feature vector size is invariant to the size of the power-grid. Due to
the fixed input vector size and mean pooling operation the GAT architecture thus is also invariant to
the size of the power grid and can adapt to any bus system. The training and validation error of the
24-bus system for each epoch is presented in the Figure 6
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Hyperparameter Value
hin (Input feature dimension) 58
h̃ (Hidden dimension) 128
hout (Output dimension) 1
num attention heads 4
MLP (Susceptance) 4
α (LeakyReLU slope) 0.1
dropout 0.15
norm LayerNorm
k (Eigen PE dimension) 24
mlp hidden 128
residual True
concat heads True
epochs 2500
batch size 512
train:test split 90:10

Table 4: Key hyperparameters of the GAT model.

Figure 6: Training vs. validation MSE loss curve (log scale) of GAT NN for the 24-bus system.

Case 6-bus 24-bus
ML-Accelerated CCG vs. CCG 64 51
Accelerated CCG vs. CCG 92 82

Table 5: Number of UC problem instances with exact solutions (≈ 0% optimality gap) out of 150
total testing instances.

System size Method Min. (s) Max. (s) Mean (s)
6-Bus ML-Accelerated CCG 1.33 2.64 1.93

Accelerated CCG 15.55 25.11 20.96
CCG 78.67 637.39 181.09

24-Bus ML-Accelerated CCG 32.82 76.77 52.80
Accelerated CCG 110.15 223.90 153.19

CCG 555.49 1999.31 892.87

Table 6: Computation time (seconds) comparison of ML-accelerated CCG, Accelerated CCG, and
CCG for the 6-bus and 24-bus UC problem.
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E SEVERITY SCORE AND PENALTY SCALING

We describe the recipes used in our experiments to (i) compute an instance–uncertainty severity
score S(ξ; I) ∈ [0, 1] that biases Phase-1 selection, and (ii) set the penalty weight λ = λmult · R
by a percentile spread. Both are computed offline from data and are kept fixed during each master
solve. Importantly, S(ξ; I) depends only on the instance parameters I and the uncertainty ξ—not on
decision variables—so adding the penalty in Phase-1 does not alter feasibility or certificates.

Note: For brevity in the main text we often drop the instance argument of the problem and write
S(ξ) and VΘ(x, ξ); however, all learned quantities are conditioned on the instance, i.e., S(ξ; I) and
VΘ(x, ξ; I), with I provided as part of the feature vector to VΘ.

E.1 SEVERITY SCORE FROM RECOURSE LOSS

For each training instance I and each uncertainty ξ, we define a raw recourse-loss target by marginal-
izing the decision over a small, fixed reference pool Xref(I):

v(I, ξ) :=
1

|Xref(I)|
∑

x∈Xref (I)

Q
(
x, ξ; I

)
, where Q(·, ·; I) is the exact second-stage value.

(12)
We then calibrate v(I, ·) to [0, 1] per instance using train-fold empirical 5th and 95th percentiles over
uncertainties:

S(ξ; I) := clip

(
v(I, ξ)− q5%(I)

max{ q95%(I)− q5%(I), ϵ }
, 0, 1

)
, ϵ = 10−8, (13)

where qα(ω) denotes the α-quantile of { v(I, ξ) : ξ ∈ Ξ̂train }. This yields a monotone, outlier-robust
normalization that preserves the ranking of uncertainties for each instance. The resulting S(·; I) is
used only in the Phase-1 objective bias; all certificates (LB/UB) are computed with the unpenalized
objective.

E.2 PENALTY WEIGHT VIA PERCENTILE SPREAD (SINGLE RECIPE)

We set the weight as λ = λmult ·R with a user multiplier λmult ≥ 0 and a single data-driven scale R
taken as a percentile difference over the entire training corpus Dtrain of instance–uncertainty pairs:

R := q95%
(
{ v(I, ξ) : (I, ξ) ∈ Dtrain}

)
− q5%

(
{ v(I, ξ) : (I, ξ) ∈ Dtrain}

)
, λ = λmult·R.

(14)
Here v(I, ξ) is defined by equation 12, computed on the train fold only. This choice makes λ
scale-free and comparable across instance families and sizes; we sweep λmult on a small grid in
experiments and report the best setting in the main text, with full grids in the appendix.

Implementation details. In our experiments, the severity score S(ξ; I) is produced by a three-
layer feed-forward neural network (MLP with hidden widths 64→ 64, ReLU activations, and a
final sigmoid), trained on the recourse-loss targets v(I, ξ) from equation 12 with squared loss, early
stopping, and weight decay; the network output is then calibrated to [0, 1] via equation 13. For the
penalty weight, we use λ = λmult ·R with R equal to the percentile spread in equation 14; to stabilize
this estimate we employ a simple ensemble quantile estimator (bootstrap aggregation of the 5th and
95th percentiles, reporting the median spread across resamples). The best value of λmult is obtained
using a grid search.

E.3 GRID SEARCH FOR THE λ-MULTIPLIER

We tune the Lagrangian bias via a simple grid search over λmult and report the average optimality
gap (lower is better) aggregated across all knapsack instances. As shown in Fig. 7, the curve is
shallow around its minimum, indicating robustness to small deviations. We fix λmult = 3000 for
the knapsack experiments. For UC, separate sweeps per system yield λmult = 5000 (6-bus) and
λmult=7500 (24-bus).
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Figure 7: Average optimality gap of ML-Accelerated CCG vs. λmult across all knapsack instances.
The minimum occurs near λmult=3000, which we use in the main results.
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