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ABSTRACT

Two-stage Adaptive Robust Optimization (ARO) with discrete and polyhedral
uncertainty sets incorporates “wait-and-see” decisions to reduce conservatism but
remains intractable due to its multi-level structure and mixed-integer recourse.
This paper introduces LARO, a learning-accelerated two-phase decomposition
framework that scales ARO efficiently without embedding neural networks (NNs)
into optimization models. The framework operates in two phases: a Relaxed
Master Problem (RMP) that identifies candidate here-and-now decisions through a
penalized selection mechanism, where pre-computed severity scores bias scenario
choice toward adversarial cases, and a verification phase that ensures restricted
worst-case consistency. By decoupling the NN from the RMP, we eliminate solver-
compatible embeddings, reduce computational overhead, and enable the use of
more expressive neural architectures for recourse evaluation in the adversarial step.

We establish finite convergence, with the number of iterations bounded by the size
of the discrete uncertainty set, and show that the penalized RMP preserves valid
lower bound (LB) while improving iteration efficiency by prioritizing impactful
scenarios. Experiments on robust knapsack and unit commitment (UC) problems
in power grids demonstrate the scalability of the framework, achieving runtime
speedups of up to 103x for knapsack instances and 102 x for a 24-bus power
network compared to classical column-and-constraint generation. The solve spped
is achieved while maintaining optimality gaps typically below 7% for knapsack
instances and 2% on the UC problems. This work delivers a severity-aware,
learning-accelerated CCG that is both scalable and certifiable, advancing robust
decision-making under uncertainty.

1 INTRODUCTION

Robust Optimization (RO) is a fundamental framework for decision-making under data uncertainty,
ensuring solutions remain feasible across a defined uncertainty setBertsimas et al.|(2011)); Ben-Tal
et al.| (2009). Unlike deterministic or stochastic optimization, RO prioritizes reliability, making it
valuable in finance, supply chains, and power systems. However, its conservatism in accounting for
all uncertainties can reduce flexibility and increase costs.

Adaptive Robust Optimization (ARO), as formalized in Ben-Tal et al.|(2004); Yanikoglu et al.| (2019),
extends the RO framework by incorporating adaptive decisions to mitigate excessive conservatism.
ARO partitions decisions into “here-and-now” (x) and “wait-and-see” (y¢), where the latter responds
non-anticipatively to uncertainty realizations £ € =. This adaptivity reduces the conservatism of
static RO methods. We consider the following general ARO problem:

min max min c'x+ dTyg
2zEX EE€E ye€Y(x,€) (1)
s.t. T(&)z+ Wye <h(§).

The objective function in equation [T] minimizes the worst-case total cost over a fixed polyhedral
uncertainty set =; the recourse y¢ adapts to £ while remaining feasible.
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Despite its theoretical appeal, the scalability of ARO presented in Equation|[I]is fundamentally limited
by its nested min-max-min structure. Ensuring that adaptive decisions y, are feasible for every
possible realization of uncertainty £ € = creates a semi-infinite optimization problem. Analytically
reformulating these infinite constraints as an adversarial problem introduces bilinear terms between
decision variables and uncertain parameters. This results in a nonconvex and often non-differentiable
second-stage value function, which invalidates the assumptions of classical convex decomposition
algorithms like Benders’ method Ben-Tal et al.|(2009); Bertsimas et al.[ (201 1)).

The presence of mixed-integer variables compounds this difficulty, creating formidable mixed-
integer nonconvex programs, a class of problems known to be NP-hard even in much static robust
optimization with polyhedral uncertainty sets Bertsimas & Sim|(2003). A common assumption in
this paper, also utilized by Bertsimas & Kim|(2024) and Dumouchelle et al.| (2023) discretizes the
uncertainty set =, but the core issue still remains. It merely transforms the problem into a large-scale
deterministic equivalent where the bilinear linkages persist, coupling decisions across numerous
scenarios. Consequently, despite relaxing optimality guarantees, scalable ARO methods remain
elusive; this work addresses that gap.

1.1 RELATED LITERATURE

Researchers have proposed methods to mitigate the issues associated with the computational com-
plexity and infinite-dimensional nature of ARO. The traditional methods generally fall into two broad
categories: restricting the wait-and-see decision thereby creating decision rules (Ben-Tal et al.[(2004));
Chen & Zhang|(2009); \Georghiou et al.| (2021)); [Kuhn et al.| (2011)); [Subramanyam et al.| (2020) and
decomposition-based algorithms Bertsimas et al.[(2012),Zeng & Zhao|(2013)). Restricting decision
rules limits the flexibility of the wait-and-see (recourse) variables to often a lower-dimensional
function class— affine or piecewise-affine policies Bertsimas & Goyal|(2012)). This can transform the
ARO problem into a robust or convex optimization problem, reducing its complexity. However, such
overly simplistic policy classes may lead to suboptimal or even infeasible solutions . Techniques such
as Benders Decomposition Thiele et al.|(2009) and Column-and-Constraint Generation (CCG) [Zeng
& Zhao| (2013) aim for exact or near-optimal solutions by iteratively refining the set of constraints or
variables. However, iteratively refining the feasible region and/or adding scenarios can lead to a large
number of subproblems, making these methods intractable for large-scale applications. Moreover,
in complex ARO problems (with mixed-integer recourse), the iterative process may require many
iterations to reach near-optimal solutions.

More recently, machine learning (ML) techniques have emerged as a powerful alternative for tackling
ARO problems in real-world scenarios Julien et al.|(2024); [Brenner et al.| (2024); |Goerigk & Kurtz
(2025). Bertsimas & Kim| (2024) pioneered an ML-based framework that accelerates the solution
process for ARO. Their insight is to view the ARO problem’s solution structure as a strategy that could
be predicted by a trained ML model. Their method involves training a set of ARO instances using
traditional CCG methods and learning the optimal strategies for including here-and-now decisions,
worst-case scenarios, and wait-and-see actions. On new ARO instances, the trained model returns a
policy orders of magnitude faster than classical iterative solvers. An issue with ML methods is that
while they can drastically reduce online solution times, they generally provide approximate solutions;
rigorous worst-case guarantees can be difficult to establish without additional theoretical structures.
Building on ML-based approaches, |[Dumouchelle et al.| (2023) neuralizes CCG by replacing the
worst-case uncertainty selection with a learned surrogate of second-stage objective. The surrogate
is embedded as a piecewise-linear model in the MP, compatible with MILP solvers [Fischetti & Jo
(2017); Serra et al.| (2018), yielding substantial speedups. Achieving reliable performance, however,
requires careful neural architectural choices which are readily embeddable as an MILP.

Embedding neural networks (NNs) into MILPs is impractical, as it requires introducing binary
activation variables for each neuron and additional linking constraints (e.g., big-M) at every layer.
Thus the MILP model size increases at least linearly with the neuron count and, in practice, the
branch-and-bound search explodes as the network deepens [Fischetti & Jo| (2017); |Serra et al.| (2018)).
Big-M constraints are easy to formulate but require tight pre-activation bounds; loose bounds yield
weak relaxations and large search trees. For large neural architectures like transformers, the resulting
MILP can blow up in memory and time, undermining the speedups the surrogate was meant to
provide [Tong et al.|(2024).
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1.2 CONTRIBUTIONS

In this paper, we introduce a novel penalized two-phase decomposition strategy for addressing the
Master Problem (MP) within the CCG framework for ARO. Specifically, the algorithm circumvents
the need to embed the neural networks as mixed-integer linear constraints by splitting the MP into a
penalized relaxed phase-1 candidate selection for an uncertainty and a phase-2 NN-based worst-case
candidate verification. Building on this, the primary contributions of our work are as follows:

Decoupled NN Architecture: Proposing separation of NN inference from the core optimization
problem, enabling the use of sophisticated NNs (including those with advanced activation functions)
without introducing MILP encoding overhead. This architectural decoupling ensures scalability and
faster solutions for high-dimensional ARO problems.

Stabilized Phase-1 selection The MP’s phase-1 biases the uncertainty selection towards possible
worst-case scenarios. This is done through a severity score obtained from penalty calculated for
each scenario based on the problem instance. The penalized relaxation stabilizes candidate selection,
accelerating convergence by steering the CCG loop toward near worst-case realizations.

Certifiable Lower Bounds: Establishes strict lower objective bounds through scenario generation,
overcoming a key limitation of existing ML-based ARO approaches that lack formal guarantees.

Performance Gains: The proposed framework achieves 10-102x faster convergence than state-
of-the-art methods on average across real and synthetic robust optimization problems. The overall
algorithm terminates in finitely many iterations (at most the number of candidate scenarios).

The paper is organized as follows: Section [2]introduces key preliminaries. Section [3| presents the
two-phase decomposition framework for MP, including its ML architecture and integration with CCG.
Section [ covers the NN training process. Section [5]evaluates the framework on two-stage robust
knapsack and power grid unit commitment problems, comparing runtime and solution quality against
benchmarks. Finally, Section [6] presents key insights and future directions.

2 PRELIMINARIES

In this study, we adopt a general robust optimization framework where the uncertainties are defined
as discrete sets =. We reformulate |1 I into an extended ARO form as shown in|Lefebvre et al.| (2023)):

wer)?’ig’ ve 0 (2a)
st. ¢’z +dye <0, VEEE (2b)

T (£)x + Wye < h(§), VE € E (20)

ye € Y(x,€), VE € E. (2d)

The extended ARO formulation reduces the min — max — min problem into a single-level min
problem by enumerating uncertainties in E. However, this enumeration can introduce a large number
of variables y¢ and constraints (2b)—(2c), increasing computational complexity. In the next section,
we discuss algorithms designed to mitigate this challenge.

2.1 COLUMN-AND-CONSTRAINT GENERATION (CCG)

The CCG algorithm is a prominent iterative method for tackling medium-scale two-stage ARO
problems Zhao & Zeng| (2012). It addresses the computational complexity arising from enumeration
in (2) by iteratively constructing constraints and variables within a master-adversarial framework.
Rather than considering all scenarios, the CCG algorithm focuses on the most critical scenarios in the
MP at each iteration, ¢t € N, using a smaller discrete restricted uncertainty set =; C =. The MP at
iteration ¢ computes the solution (x;, 6;) and is formulated as follows:

P:= min 0 (3a)
xzeX, 0, ye

st. c'xt+dlys <0 VE € 5, (3b)
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T(&)x+ Wye < h(§) V€ € 5, (3¢)
Yye € Y(x,§) VE € &y (3d)

Until a convergence criterion is met, injection of newer uncertainties in the MP takes place by solving
the AP which takes in as input the fixed MP solution x;, defined as,

— : T T . _ t
Q(xy) = r;leaax ygerglfl(rclc,g) {c z+d ye : Wy: <h() -T(&)=x } )

The solution to this problem provides &! and the value of the AP as 0; (in Appendix [B| Algorithm .

2.2 COMPUTATIONAL CHALLENGES OF CCG

The iterative structure of CCG, while theoretically sound, suffers from significant computational
bottlenecks in large-scale problems or those with integer recourse variables [Zhao & Zeng| (2012)).
Even with polyhedral uncertainty and convex second-stage decisions, the AP must be solved as
an MILP in each iteration due to bilinear complementarity constraints |[Zeng & Zhao| (2013) or
heuristically for bilinear objectives Bertsimas et al.|(2012), resulting in intractable representations.

In the MP, every iteration appends a new constraint and variable (for each £ € =) leading to longer
solve times especially for integer decisions. Even if individual MP/AP solves are tractable, the total
runtime scales with the number of iterations and is thus prohibitive for large problems.

3 ML APPROXIMATION OF CCG

For fixed decisions & and uncertainty é , the innermost min is the following value-function problem,

V(z, €)= II%}II{CTSE-I- dTy : Wy < h() - Tz}, & « argmax V(x', &;).
&€=

During the ¢ CCG iteration, if V (z, £;) is available for all £; € = either exactly or via function

approximation, the adversarial problem in Equation (4} simplifies to enumerating = to identify the
worst-case uncertainty. The selected £? is then appended to the MP set Z; for the next CCG iteration.

In this work, we approximate the AP’s V (&, &), value of the inner min problem by NN model similar
to|Dumouchelle et al.| (2023)). While being an approximate solution, this method avoids bi-linearity
and integer-valued variables in AP, replacing it with forward passes through the NN with weights O.

~

By training the NN on the representative set of here-and-now decisions and uncertainty (I, £) from
previously recorded data D, the NN model learns a mapping from input to the value of V(Z, £).

¢ argmax Vo (2", §) ®)
¢es
As new uncertainties are introduced at each iteration ¢, expanding the uncertainty set =;, the MP
correspondingly increases in size. This growth poses computational challenges, particularly when
integer variables or a large number of second-stage decision variables are involved, leading to
potential solution intractability. To overcome these issues, we propose a two-phase selection and
verification scheme that decomposes the MP and solves it iteratively.

3.1 MP: TWO-PHASE DECOMPOSITION

The MP is broken into two key components: a phase-1 penalized Relaxed Master Problem (RMP) that
selects a candidate worst-case scenario driven by severity score and a verification step that determines
if it is truly the most damaging. If not, a no-good cutting plane is added to refine the MP’s feasible
region. This selection-verification cycle repeats until the MP solution aligns with the most likely
worst-case scenario. Below, we first detail Candidate Selection, followed by Candidate Verification.

3.1.1 MP PHASE-1: SELECTION PHASE (SEVERITY-WEIGHTED)

In the selection phase, the MP is relaxed by omitting the complicating constraints (3b)-(3c). Phase-1
selects a single active scenario from the current candidate set Z; and a corresponding pair (x, y) that
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is feasible for that scenario, while gently steering the choice toward severe scenarios. We solve the
following one—hot selection model (the active uncertainty equals exactly one candidate):

=

Py = wzrlmsriz clz+d'y — A~;S¢(£i)zi, (6a)
st. T(€)xz+Wy < h(&a), (6b)
Ee |E¢|
bo = Y 2k, Dz =1, (6¢)
i=1 i=1
€ < & < & (6d)
zi €{0,1}, i=1,...,]2]. (6e)

Here, z is a one-hot vector that selects the active candidate, &, denotes the selected uncertainty, and
Sy(€) € [0,1] is a fixed severity score that depends on «¢ and the problem instance parameters.
We learn a separate regressor Sy (£) € [0, 1] with weights ¢ on the same training corpus as the
second-stage NN Vg, but with the decision « marginalized. This makes Sy instance—uncertainty
dependent while being policy-agnostic, since it aggregates Q(x, &) over a design pool of first-stage
decisions. The severity penalty —\ - > . S, (&;)z; biases the objective towards worst-case scenarios.
Also, instead of having constraint blocks for each &, only one constraint equation [ob| for £, is used
reducing the problem size.

We set A\ = Apuie - R where A1t > 0 is a user-defined multiplier and R is a data-driven reference
scale (e.g., a robust inter-quantile spread R = qg59, — g5 of the raw severity targets or predictions).
The full recipe of targets, features, and calibration details of the severity score and R appears in
Appendix [E| In experiments we sweep Ayl on a grid to find the best value.

Proposition 1 (Lower Bound). Let (x*, 2*) solve Py in (@) with A > 0 to optimality, and i* satisfy
z% = 1. If Opt(P) is an optimal value of P in (3, then:

Opt(P1|A=0,z=2") = min {c"e+d y|T(& )x+ Wy <h(&:)} <Opt(P). (1)

Proof sketch. See Appendix [A]for a full proof.

Crucially, Proposition [T| certifies the lower bound only after setting A = 0 (removing the scenario-
weighting penalty); accordingly, P; serves solely to select a worst-case scenario ¢*, not to certify the
bound itself.

3.1.2 MP PHASE-2: VERIFICATION PHASE

A candidate worst-case uncertainty for MP, denoted by &7, is identified from P; along with x*.
Phase-1 may select a severe but non-worst scenario in =;. We therefore enforce a verification step to
confirm its validity. The verification is done using the following:

Po(x*) := max min {CTLB*-i-dT Wy < h(€)-T a:*},
2 (") max  min y Wy <h(§) —T(§)

where x* is the Phase-1 decision. This verification problem searches for an uncertainty £ € =,
that maximizes the worst-case cost associated with *. If é = &, then the candidate uncertainty is
confirmed as the worst-case scenario for the current iteration. Otherwise, if £ # £, a new constraint
(e.g., z; = 0 corresponding to the rejected scenario) is added to P; and it is resolved, effectively
acting as a cutting-plane that excludes the suboptimal candidate and tightens the LB.

Phase-2 Approximation: Note P (x*) solves a similar problem as compared to Q (") albeit on a
smaller set of MP uncertainties for a fixed * from selection phase P;. Thus, the NN model used in
the second-stage of CCG is also applied as an approximation in the MP phase-2 denoted as P5™"*.

3.2 ML-ACCELERATED CCG

The proposed ML-Accelerated CCG framework integrates NN approximations into both the MP and
AP replacing costly NN-embedded mixed-integer solves. Algorithm [2]outlines the full procedure,
which iteratively refines lower and upper bound (UB) until convergence.
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If verified §; = §, stop master iteration
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Update Z;4q:= & U &,

Figure 1: Overview of the proposed Machine Learning-Accelerated CCG algorithm.

Convergence. After phase-1 selection and phase-2 verification, we fix the selected scenario £I* and
solve the corresponding single—scenario problem exactly (with the unpenalized objective) to obtain
the MP’s certified LB. We then evaluate the global worst-case for x; over E, yielding the certified UB.
Since the severity penalty only biases Phase—1 selection and never enters these certificates, the gap
UB — LB decreases monotonically and, with a finite scenario pool, the algorithm terminates once
UB — LB < ¢, where ¢ is the tolerance.

To verify the approximation quality of the phase-2 and AP in the ML-Accelerated CCG by an NN,
we consider “Accelerated-CCG” where both phase-2 and AP are solved exactly using the optimal
solution to the value-function problem. Due to the exact phase-2 and AP solves, Accelerated CCG
serves as the benchmark for comparing against the ML-accelerated variant. This framework, showed
in Algorithm [3]is critical for enabling and benchmarking ML approximations while addressing the
computational challenges of traditional CCG.

4 NEURAL NETWORK TRAINING

4.1 DATA GENERATION FOR TRAINING

To train a neural network surrogate for the second-stage cost function, we first generate a representative
set of problem instances and uncertainty realizations. Specifically:

Instance Parameters: We generate k problem instances I;, Vi € (1,..., k) by sampling parameters,
such as cost vectors ¢, d and constraint matrices T', W. As explained in Appendix [C|and[D] sampling
distributions are chosen to reflect realistic instances for training.

Uncertainty Set via Norm Ball: Let £ represent the nominal (forecasted) uncertainty, with each
sampled & drawn from a norm ball centered at £, £ € {£ + 6 : ||6]| < p}, where || - || is a chosen
norm (e.g., /2 or {,), and p specifies the uncertainty radius. To discretize the uncertainty set:

where 9; is sampled uniformly over the ball.

4.2 LABEL COMPUTATION VIA EXACT SOLVES

Each input from the generated data (&, I) is used to solve an exact optimization problem:
Q@ &) ==min{cTa+dTy, TEz+Wy<h©)}. ®)

using a solver. In the above formulation, first-stage decisions x is a variable. The solution to (8]
provides the fixed objective value V* and & for £ and I. This is an expensive task since the NN
training requires large number of input data but the solves can be done in an offline distributed manner.
Each training instance is stored as ((ﬁ:, &), V*) in the dataset D with k£ x N total rows.
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Generate k Solve k X N NN training to learn weights © that approximate Store the learned NN architecture
problem deterministic the second stage value V;" using Vg and weights O for inference
instances and a problems to get x;, ¥;,
uncertainty set £ and V', V§ €E
X1
In| xaf ya &1 V1 il Vo (x1,§1,11)
1
Iz| X2 y2| &2 V2

Figure 2: Data generation and training for NN: Training data is generated offline by solving a
deterministic program over a tabular combination of instances and uncertainties. The NN model is
then trained on the dataset D for inference in the ML-Accelerated CCG.

w

4.3 NN TRAINING AND INFERENCE

A feed-forward NN Vg (&, &€, I), is used to approximate V*. The input layer concatenates &, &, and
I in one long vector and the output layer predicts a single cost value V*.

£O) =7 3 (V' -Ve(@én) . ©

(z,6)eD

More advanced architectures, like convolutional or attention-based models, can be used for structured
data (see Sec. . After training, the NN model Vg (x, &, T) is used for inference in the ML-
accelerated CCG algorithm. Since inference is performed with fixed instance parameters, we simplify
the notation to Vg (z, £).

5 COMPUTATIONAL RESULTS

We evaluate the performance of the proposed ML-accelerated CCG framework against the traditional
CCG algorithm, focusing on runtime reduction and solution quality. All optimization and instance
testing were performed on a personal laptop with a 2.90 GHz Intel® Core™ i7 CPU and 16 GB
of memory. Mixed-Integer Linear Programming problems were solved using Gurobi 11.0, with
implementations in Julia via the JuMP package Lubin et al.|(2023). NN training and evaluation were
conducted on an NVIDIA A30 GPU with 50 GB of memory, using PyTorch 2.4 in Python 3.10.

Next, define “Optimality Gap” quantifies the relative error between the proposed and baseline

methods: o o
proposed baseline % 100.

Optimality Gap = 0
baseline

Here, Oproposcd is the objective value from the proposed accelerated/ML-accelerated CCG framework,

while Opgyseline 1S the exact classical CCG solution with respect to the = set. A smaller gap indicates a
closer alignment with the true robust optimal solution. We also empirically note that the proposed
method never violates the LB property from the exact solves, which would otherwise result in
over-conservative results.

5.1 CASE STUDY: TWO-STAGE ROBUST KNAPSACK

We adopt and test the two-stage robust knapsack problem instances with objective uncertainty
from |Arslan & Detienne| (2022)) for Uncorrelated (UN), Weakly Correlated (WC), Almost Strongly
Correlated (ASC), and Strongly Correlated (SC) knapsack sizes of 20 to 80 items. The discrete
uncertainty set for inference for all the knapsack sizes is taken from [Dumouchelle et al.|(2023)). Since
the proposed ML-Accelerated CCG introduces the \,,,;: as a tunable hyperparameter in the penalty
term, we perform a grid search to select the value that yields the best trade-off between optimality
gap and runtime. For the robust knapsack case study, the NN second-stage models used is presented
in Appendix Table[3] the best performance was achieved with Ay = 3000.0 (Appendix [E.3), which
we fix in all reported experiments.

We evaluate the full two-stage robust knapsack problem, comparing ML-Accelerated CCG and
Accelerated CCG against the exact baseline. Figure|3|shows optimality gaps for the robust knapsack,
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with a few key observations:

(i) Accuracy: The median optimality gap for each knapsack size remains within 7% for I = 20, 30
and within 3% for the sizes greater than 30, while optimality gaps greater than 10% range are rare
and reflect trade-offs from NN approximation. Table shows solutions with 0 — 2% optimality gap
showing that most of the solutions are tight and closer to the exact objective values.

(ii) LB guarantee: We empirically check that all gaps are non-negative, confirming the proposed
method preserves the LB, suggesting the algorithm never produces overly conservative results,

(iii) Reference Performance: Solving phase-2 exactly, rather than using NN-approximated value
functions, results in near-zero gaps, confirming the tightness of our two-phase decomposition and the
benefit in using larger and better NNs, and

(iv) Fast Solves: The ML-Accelerated CCG achieves orders-of-magnitude faster solve times across
all instance sizes, reducing runtimes compared to classical CCG’s exact baseline, as shown in Tablem

(@) (b)

-
N
-
N

a 10 a 10
3 3
28 > 8
£ £ s
5 . . i B 5 g ﬁ ﬂ H
o o @@l I T 7 . .% 0 '
20 30 40 50 60 70 80 20 30 40 50 60 70 80
Knapsack Size Knapsack Size
—12 (c) —~ 12 (d)
X X
a 10 a 10
3 3
> 8 > 8
T T
E S E
o wdak o Fédug
0
20 30 40 50 60 70 80 20 30 40 50 60 70 80
Knapsack Size Knapsack Size

I Accelerated CCG [ ML-accelerated CCG

Figure 3: Optimal Gap distribution of the proposed ML-accelerated CCG (orange) and Accelerated
CCG (blue) compared to exact CCG solves across problem scales (knapsack item counts N = 20 to
80 and correlation types (a) UN, (b) WC, (¢) ASC, (d) SC

Table 1: Mean Execution Times (seconds) by Category and Knapsack Size (I).
\ UN \ wWC \ ASC | sc
I | Exact ACC. ML. | Exact ACC. ML. | Exact ACC. ML. | Exact ACC. ML.

20 | 5758 2226 0.14 | 16329 1749 0.18 | 8879 1185 0.17 | 1311.2 1669 0.22
30 | 545.0 2379 020 | 23972 2183 025 | 2046.3 1547 022 | 27374 2123 0.22
40 | 8433 3243 0.31 | 2788.6 2656 036 | 29142 180.2 0.38 | 3319.7 206.6 0.39
50 | 5758 3075 035 | 3417.6 2403 043 | 2987.8 2419 0.37 | 1909.7 199.0 0.35
60 | 10554 3165 044 | 3327.0 1729 053 | 3413.7 1202 045 | 26404 1405 044
70 | 9512 3813 0.54 | 2932.0 2839 0.60 | 3561.2 2725 042 | 35537 2533 0.51
80 | 982.0 4426 054 | 1962.8 363.6 0.58 | 2651.0 319.8 048 | 26709 288.7 0.51

Exact: Exact baseline, ACC.: Accelerated CCG, ML.: ML-accelerated CCG

5.2 CASE STUDY: TWO-STAGE ROBUST UNIT COMMITMENT

We consider the two-stage robust unit commitment (UC) problem with a linearized second-stage and

polyhedral demand uncertainty, using the IEEE 6-bus (2009) and 24-bus [Ordoudis et al.
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(2016)) systems as defined in|Lorca & Sun|(2014); Bertsimas et al.|(2012)). As a critical problem in
power grid operations, UC determines generator schedules while accounting for uncertainty to ensure
system reliability and cost efficiency. Solving the CCG algorithm over 24 hours for each generator
introduces significant combinatorial complexity, particularly in the 24-bus system with 12 generators,
resulting in 3 x 12 x 24 = 864 binary variables and 12 x 24 x |=;| continuous variables.

Since decisions for buses (generators and demands) influence one another, the NN model must
capture complex, long-range interdependencies within the power grid network. To address this, we
propose leveraging a Graph Attention Network (GAT) Velickovic et al.|(2017) with global attention,
where each bus is treated as a node and edges represent transmission line susceptances. The detailed
formulation and GAT architecture are presented in Appendix

2000 8
8 8 % ]
3 o c °
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g 6 a
(G} . ° o
> ° £ 1000
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E g s o
2 5 5 500 9
© o
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0 0 ——— —
6-bus 24-bus 6-bus 24-bus
Bus System Size Bus System Size
ML-Accelerated CCG Accelerated CCG Exact CCG 4 Mean

Figure 4: Comparison of solution quality and runtime across methods. The figure shows performance
of the proposed ML-Accelerated CCG, the Accelerated CCG against classical CCG baseline. Both
solution accuracy and computational time are reported, highlighting that the ML-Accelerated CCG
achieves near-identical solution quality while substantially reducing runtime.

In Figure [ results from 150 instances show that both proposed models achieve optimality gaps
within 5% for the 6-bus system and 8.5% for the 24-bus system, with a median gap of 2%. Despite
the increased dimensionality of the UC formulation, the method provides significant computational
savings over CCG, as shown in Table[6] For the 6-bus system, ML-Accelerated CCG achieves up to a
93x speed-up, while for the larger 24-bus system, it still delivers a 16x speed-up, compared to the
traditional CCG. Notably, these gains come with a median optimality gap near 2%, and large number
of instances with 0% optimality gap as showed in Table [5|demonstrating that even at larger scales,
ML-Accelerated CCG maintains tight LBs (due to relaxations) alongside substantial computational
efficiency. As with the knapsack study, we tune the Apy via grid search to calibrate the bias in
phase-1 selection. The best values were found to be Apy = 5000 for the 6-bus UC system and
Amutt = 7500 for the 24-bus UC system and we will use these values throughout the results.

6 CONCLUSIONS

We introduced LARO, a learning-accelerated two-phase decomposition framework for two-stage
Adaptive Robust Optimization (ARO). By employing a neural-network-based value function ap-
proximation, our novel ML-accelerated CCG approach decouples the network from direct solver
embeddings, enabling large-scale, mixed-integer ARO while providing finite convergence and stronger
LBs than state-of-the-art methods. Numerical experiments on robust knapsack and power grid unit
commitment problems reveal substantial speedups—up to 102 x for knapsack instances and 16 x for
a 24-bus system—compared to the baseline CCG, with median optimality gaps under 3%. Overall,
our proposed method successfully balances the competing demands of robustness and computational
scalability, offering an efficient and flexible alternative for two-stage ARO problems. Future work
will explore different types of uncertainty sets, approximate value-function problems with mixed-
integer non-convex feasible regions, and develop advanced neural architectures for very large-scale
applications.
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APPENDIX

A PROOF OF PROPOSITION 1]

Proof sketch. Let P and P; be the MP and the relaxed MP, respectively, as defined in equation [3|and
equation [6]

MP P.

P: min 0
z€X, 0, {ysteez,
st. c¢'x+d ys <0, VEE€E,
T(&)x + Wye < h(§), V€ € Ey,
ye €Y(x,§), VE € Er.
Relaxed MP P;.: The lower bound is evaluated without the penalty term effectively at A = 0 after

the phase-1 and 2 iterations are complete for a fixed z*, thus the penalty term disappears from the
Relaxed MP objective during LB calculation.

Pi: min ¢ xz+d'y

z,y,€q, 2
st. T(&)x+ Wy < h(&,),

I=h =

f-Stae Sa-t
i=1 i=1
£€§fa§€§a z; € {0,1}.

Step 1 (feasible sets). P enforces constraints for all £ € =;; P; enforces them for one selected &,,.
Hence Feas(P) C Feas(P1).

Step 2 (construct a feasible point for P;). Let (z*, 0", {y;}) be optimal for P. Pick £ €z,
attaining maxe{c'@* + d'y;} and setx = z*, y = yi €o = €, and z; = 1{&; = €}. Then
(z,y,&,, ) is feasible for P;.

Step 3 (objectives).
cle+d'y=c'z"+ dTy;E < 0" = Opt(P),
so minimizing over Feas(P;) gives Opt(P; | A =0,z = z*) < Opt(P). O

B ALGORITHM

The traditional CCG algorithm described in Section [2.1]is presented as in Algorithm 3}

12
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Algorithm 1 MP with Two Phase Decomposition

Require: Candidate scenario set Z; = {£;}';

N =

18:

NN adversary Vg(z, £);
severity scores S(&) € [0, 1];
penalty scale R;
multiplier A1 > 0;
weight A < At - R.
Phase 1: Candidate Selection
Solve P; in equationl%]to obtain candidate (x*, &%, 0*)
Phase 2 (Verification)
repeat
Evaluate n; < Vi (Z,&;) for all §; € Z; and set j* € argmax; n;, & < &;+.
if £ = £ then
break > Selection consistent with restricted worst-case
else
if |Z| > 1 then
Add no-good cut forbidding the previous pick: set z; = 0 for k with z, = 1.
Re-solve Phase 1.
else
Skip the cut to retain feasibility of . z; = 1.
break
end if
end if

: until consistent

Exact LB certification (unpenalized) > Severity penalty never appears in certificates

: Solve the exact single-scenario problem at the verified &:

~ ~

LB; = min ¢'z+d'y st T(€)z+ Wy<h(€),

and let (x¢,y:) be an optimizer. Set & €.
Return (,It, gt, LBt)

Algorithm 2 ML-Accelerated CCG

Require: Data (¢, d, T'(&), W, h(£)), full scenario set =, NN adversary Vo(z, €), tolerance € > 0,

1:
2:
3:

A A

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

penalty scale R, multiplier Ay > 0, severity score Sy

~

Initialize ¢ < 0, choose warm-start subset =¢ C =, set UB < +o00, LB < —c0
Set A < At - R > weight for Phase—1 bias; not used in certificates
while UB — LB > ¢ do
Step 1: Master Problem
Call Algorithm
Receive (x4, Ein, LB;) > LB, from exact, unpenalized single-scenario solve
LB + max{LB, LB;}
Step 2: Adversarial Problem R
Compute n(€) = Vo (x4, &) values V =
& < argmax, = 7(§);
Compute Q(x, &) via exact solve;  UBy + Q(z¢, &)
UB « min{UB, UB;}
Step 3: Scenario set update
if 6: ¢ Et then Et+1 — Et U {5:} else Et+1 — Et
t—t+1
end while
Finalize: 0 <— LB; Z < z;
return (0, z)
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Algorithm 3 CCG algorithm

Require: (c,d, T(&), W, h(€)) where & € =
1: Tnitialize t <~ 0, =t C =, UB <« oo, LB + —00
2: while LB < UB do
3:  Solve MP equation 3] obtain (2, 6%)

4 LB+ ¢

5 Solve AP equation[4] obtain (¢!, Q*)

6: UB + min(UB, Q"); E'+ {¢'}UE!
7: t—t+1

8: end while

9:

return x;, 6;

Algorithm 4 MP: Two-Phase Decomposition (Exact Phase-2)

Require: candidate value set Vig, master set =;, iteration index ¢

Phase 1: Candidate Selection
1: Solve P; to select a candidate (x*, &)

Phase 2: Candidate Veriﬁcati(ln (exact)

Solve Q(x*) over Z; to obtain &

if £ = £ then
return (2", £, Q"))

else
Add cut to P;: set zp» + Owhere k* ={k |z, =1}
restart Phase 1

end if

°

Finalize: 0* < Q(z*)
10: return (z*, &, 0*)

Algorithm 5 Accelerated CCG

Require: instance (¢, d, T'(£), W, h(€)), uncertainty set =
Ensure: optimal solution (0, &)
1: initialize: t <+ 0,Z¢ < &, UB < +00, LB < —c©
2: while LB < UB do
3: Step 1 (MP via Two-Phase): apply Algorithm [4] with exact Phase-2
4 obtain (x*, &}, 6*) and set LB «+ 0*

Step 2 (AP, exact): solve Q(x*) over g, obtaining worst-case £*) and value Q(*)
UB < min(UB, QW)

AN

Step 3 (master set update): =;, 1 < =; U {é(t)}; t—t+1
end while
finalize: 0 <— LB, <+ x*
return (0, )

@Y *A

14
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C TwoO-STAGE ROBUST KNAPSACK PROBLEM

C.1 MATHEMATICAL FORMULATION

A two-stage robust knapsack problem is considered with a set of N items from which some items
i € N are selected for production. The profit of the items has an uncertain degradation, due to which
second-stage decisions of producing as is, repairing, or outsourcing the items have to be made. The
complete formulation is:

N

Z:= min max min [ s — D)z + (B & — fi)yi — Ps ”,i] 10a
zc{0,1}V  €€E  yefo0,1}V, ; (fi =) (p 3 f)y pi € (10a)

re{0,1}V
N
st Y (ciyi+tim) <C, (10b)
i=1
mgylixl, VZ:L,N, (100)

where = = {5 € [0, 1]V : vazl & < F} describes the uncertainty set. In equation (10a} the

first-stage decision x selects items to produce. The inner (minimization) problem determines the
optimal second-stage responses after uncertainty & is realized: producing an item as is, (y; = 1)
generates a profit that depends on the degradation (p; — &;p;), whereas repairing it (r; = 1) recovers
the full profit at the expense of extra resource ¢;. Or the item can be outsourced for a profit of (p; — f).

The capacity constraint equation [I0b] limits the overall resource usage, and the logical constraint
equation guarantees that an item is only kept if produced, and can only be repaired if it is
kept. The formulation captures the adversarial nature of the problem by considering the worst-case
degradation over the uncertainty set =.

C.2 INSTANCE GENERATION

The problem instances for a specific instance size N of uncorrelated knapsack are generated through
the Algorithm @ All uniform distributions are denoted by U(a,b), representing values drawn
uniformly from the interval [a, b]. In Algorithm@ we begin by specifying an instance size N and
initializing global parameters: the cost UB R, the base capacity H, a capacity scaling factor h
chosen from {40, 80}, a degradation factor § from {0.1,0.5,1}, and a knapsack budget I" from
{0.1 x N,0.2 x N,0.3 x N}. For each item 7, we generate its cost ¢; from a uniform distribution

on [1, R}, then compute the total adjusted capacity C as h x H + Zivzl ¢;. We sample the nominal
price p; from [1, R], the adjusted price p; from the interval [M, w] , the fixed cost f; from
[1.1p;,1.5p;], and the processing time ¢; from [1, ¢;]. The resulting instance is (qﬁ, p, f,t, C),
which serves as input for learning the value function of the robust knapsack problem.

C.3 UNCERTAINTY GENERATION FOR THE KNAPSACK PROBLEM

In Algorithm [/} a random generator is seeded to ensure reproducibility, and each scenario vector is
sampled from the Dirichlet distribution with unit parameters, reflecting a base probability distribution
that sums to one. The vector is then scaled by the budget I" to produce a nonnegative vector whose
components sum to I'. Repeating this process for M scenarios yields a diverse set of uncertainty
vectors, each representing a valid realization under the knapsack’s budget constraint.

We generate a set Z of size [Z| = 250 and, for each instance in Z, a set of 50 uncertainties,
yielding a total of 7,500 unique uncertainty realizations. We then vary I" across 11 discrete values
to construct feasible first-stage decisions. The resulting dataset, denoted by D, thus has cardinality
|D| = 250 x 50 x 11 = 137,500 for each instance size.
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Algorithm 6 Knapsack Instance Generation Algorithm (Training)

Require: Instance size N

1: Initialize instance parameters

2: R <+ 1000 > cost UB
3: H < 100 > capacity parameter
4: h < uniformly at random from {40, 80}

5: 0 < uniformly at random from {0.1,0.5,1}

6: I' «+ uniformly at random from {0.1N,0.2N,0.3N }

7: for eachitemsi € {1,..., N} do

8: C; ~ Z/I(l, R)

9: end for

10: Ch-H+YN e
11: for eachitemi € {1,..., N} do
122 P, ~U1,R)
. 5 p;(1-9) P;(149)
13 P~ U(B B

14: fi~U1p;, 1.57;)
15: ti NL{(l,cl)

16: end for

17: return [ := (¢, p,p, f,t,C)

Algorithm 7 Uncertainty Generation via Dirichlet Distribution (Training)

Require: number of scenarios M, uncertainty budget I, instance size [V, random seed
Ensure: set {£1), ... ¢} with Zf\il fl(k) =T and Sgk) >0

1: initialize RNG with seed

2: for k < 1to M do

3 sample s(¥) ~ Dirichlet(a) where v = 1

4:  scale: €% T . 5(k)
5
6
7

store £%) in output set
: end for
: return {1

Table 2: Percentage of near-optimal solutions < 2% optimality gap) by Category and Knapsack Size
out of 18 instances per cell

\ UN \ wC \ ASC \ sc

I | ACC ML | ACC. ML | ACC. ML | ACC. ML

20 | 18 (100.0%) 6 (33.3%) 14 (77.8%) 1(5.6%) 12 (66.7%) 1 (5.6%) 14 (77.8%) 2 (11.1%)

30 | 18 (100.0%) 9 (50.0%) 15 (83.3%) 6 (33.3%) 15 (83.3%) 6 (33.3%) 17 (94.4%) 7 (38.9%)

40 | 18 (100.0%) 18 (100.0%) 16 (88.9%) 14 (77.8%) | 18 (100.0%) 16 (88.9%) 18 (100.0%) 17 (94.4%)

50 | 18 (100.0%) 18 (100.0%) 17 (94.4%) 15 (83.3%) | 18 (100.0%) 17 (94.4%) 17 (94.4%) 16 (88.9%)

60 | 18 (100.0%) 16 (88.9%) 18 (100.0%) 12 (66.7%) | 18 (100.0%) 11 (61.1%) 18 (100.0%) 12 (66.7%)

70 | 18 (100.0%) 18 (100.0%) 17 (94.4%) 17 (94.4%) | 18 (100.0%) 18 (100.0%) | 18 (100.0%) 17 (94.4%)

80 | 18 (100.0%) 18 (100.0%) 17 (94.4%) 16 (88.9%) | 18 (100.0%) 18 (100.0%) | 18 (100.0%) 18 (100.0%)

ACC.: Accelerated CCG, ML: ML-accelerated CCG
Instance size NN Structure ReLU Neurons Training MAPE (%) Epochs

20 1 linear + 4 ReLU 140, 110, 32, 8 88.2 300
30 1 linear + 5 ReLU 155, 128, 64, 16, 8 91.6 300
40 1 linear + 5 ReLU 340, 128, 110, 32, 8 87.5 300
50 1 linear + 5 ReLU 500, 256, 128, 32, 8 90.3 400
60 1 linear + 5 ReLU 410, 256, 128, 64, 12 89.1 400
70 1 linear + 6 ReLU 540, 256, 256, 128, 64, 16 92.0 400
80 1 linear + 6 ReLU 610, 400, 256, 128, 64, 16 90.7 500

Table 3: Neural network hyperparameters and training performance (MAPE) for knapsack instance
sizes.
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Algorithm 8 Data Generation for NN Training of the Knapsack Problem

Require: number of instances |Z|, instance size N, uncertainties per variant M

10:
11:
12:
13:
14:
15:
16:

Initialize: empty database D

Base Instance Generation

for k + 1to|Z| do
generate base instance 7, using Algorithm
store parameters (c*, p*, p*, £, t*, C*, T})

end for

Instance Variation

for each Zj, € {7y, ..., Zi7} do

generate 11 budget variants {Z, ..., Z}'} with

Iy« (0.75+0.025(m — 1)) T (m=1,...,11)

generate M uncertainty vectors {£1,. .., &M} using Algorithm
end for

Solution Computation
for each variant 77" do
for each &i € {¢&},...,¢M} do
solve Formulation 10| with (I'}", &1)
record (&}, yt, vt Zm )
D« DU {(x, yit, v, 2 1)}
end for
end for
return D
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D Two-STAGE RoOBUST UC

Consider a T'-period network-constrained unit commitment (UC) problem with a set of M buses,
and a set of N generators distributed among these buses. For each bus m € {1,..., M}, let N,
denote the set of generators connected to bus m. The time horizon is discretized into 7" time periods,
indexedby t € {1,...,T}.

Each generator ¢ € N,,, has an associated set of parameters:

» S and W/™: start-up and shut-down costs,

e (7" and H™: minimum up-time and minimum down-time requirements,
e L7 and U;™: minimum and maximum power output when switched on,
e V. and B;": ramp-up and ramp-down rate limits,

« V" and B}": start-up and shut-down ramp rate limits.

We denote by y;"; a binary variable that is equal to 1 if generator ¢ at bus m is on during period ¢ and
0 otherwise. We use u;"; and v;"; to indicate start-up and shut-down events, respectively, of generator
i at bus m in period ¢. The variable x7"; represents the power output of generator ¢ at bus m and time
t.

Let A be the set of transmission lines, where each line (¢, ) € A connects two buses ¢ and j and
has a capacity C; ;. We model power flows using a DC power flow approximation. Accordingly, we
introduce voltage angle variables w,, ; at each bus m and time ¢, and let B; ; denote the susceptance
of line (i, j). The power flow on the line (i, j) at time ¢ is denoted by f(; jy ;.

~

Demand at each bus m and time ¢ is given by &;", which is subject to uncertainty. Let = denote

the uncertainty set of possible demand realizations {£}"}. We then formulate a two-stage robust

optimization problem in which the first-stage chooses the unit commitment decisions {y:"t, uiy, Vi b

and the second-stage, after observing the demand realization in =, determines the dispatch decisions
{a:?ft, J(i.5),t»Wm,¢ } to minimize operating costs while satisfying all network constraints.

The resulting two-stage robust UC model is formulated as follows.

T M T M
;niﬂ, Z Z Z (STl + Wi ol) + max min Z Z Z 27 (la)

g 2)ex
t=1 m=1icN,, g (@w. DeX(wl) = = 5

S.t.
— ylm,t_l —|—yﬁ—y§7k <0, 1<k—-(t-1)<G", Vm,VieN,,Vt, (11b)
Yt — ity < 1, 1<k—(t—1)<H", Vm,VieN,, vt (11c)
— yzm,t_l —|—y:’f5 —u?ft < 0, Vm, VieN,, Vi, (11d)
Y -y — o < 0, Vm, Vi€ Ny, Vt. (11e)

Define the second-stage feasible set X'(y, &) for a given (y, £) as:

X(y.&) = {(@w, @) L'yn <oy < UMyL, Vm, Vi Ny, W (11f)
(11g)
el =l < -yl ) B+ (=gl +ul) BRY, Ym, i t,
(11h)
fape = Bij(wie —wje), V(i,5) € A, Vi, (111)
- Cij < fape < Cij, V(i,j) € AV, (11j)
Salh —dt = > fampe  Ym, VE (11k)

€N, ji(m,j)€A
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Wikt =0,V . (11

D.1 DATA GENERATION

The NN training for the UC problem takes as input the instance values I; :=
(S;r,wih G HM LT U™, Vi BV B™), uncertainty set &€;, and the first-stage decisions
as bus features and the susceptance matrix B. The data generation process is defined as follows.

Instance and Uncertainty Generation

In this method, 150 instance data for the Unit Commitment (UC) problem for 6-bus and 24-bus
system are generated by applying perturbations within the radius of a norm ball (see Algorithms
Ol [I0). The radius is selected as a percentage of the total sum of the normalized nominal values.
Similarly the we create 1000 and 2500 uncertainties for 6-bus and 24-bus system respectively by
using the nominal data is obtained from|Ordoudis et al.| (2016) and Wu et al.| (2009).

Algorithm 9 UC Instance Generation

Require: nominal vector Inom € RE, perturbation factor p € [0, 1], number of instances |Z|,
bounds Iy, Imax € RY

1: v Liom/|[ Tnomll1 > normalize
2: S« || Inoml|1 > total scale
33 A+p-S > L1 perturbation budget
4: Tyim — O > output set
5: fori < 1to |Z| do

6: sample 7 ~ Uniform(—1, 1)

7 r /|| > direction in L1
8: Tpert < AT > scale to budget
9: Upert <= U + Tpert > perturb normalized vector
10: I0) S vy > denormalize
11: ID « clip(ID, Iyin, Iax) > box constraints
12: Isim — Isim U {I(l)}
13: end for
14: return Zg,,

Algorithm 10 Demand Uncertainty Generation

Require: nominal demands per bus {£, € R”},cp, norm radius o > 0, number of scenarios
Nsamples eN
Ensure: scenario set = = {Z0)} et where 2() — (¢}, 5 and ¢F) € RZ,
1: é — J
2: for k < 1 to Ngamples dO
3: =k — &

4: for eachb € B do

5: v+ & > nominal demand (length 7', e.g., T'=24)
6: r+ av||s > bus-specific perturbation radius
7: sample z ~ N'(0,I7); =z < z/|z|2

8: sample p ~ Uniform(0, r)

9: dpz

10: Elgk) + max(0, v + §) > clip at zero to enforce nonnegativity
1: 2k 2k U (M)
12: end for
13:  E« ZU{EW}
14: end for _

15: return =
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D.2 GRAPH ATTENTION ARCHITECTURE

We employ a Graph Attention Network (GAT) model that combines bus features h; for i!" bus
with eigenvalue-based Positional Encodings (PEs) illustrated in the Figure[5] The eigenvalue PEs
described in|Dwivedi et al.[(2021);|You et al.[(2019) are obtained by the eigen decomposition of the
susceptance matrix B, and the first k eigenvector-based PEs are transformed via a small two-layer
MLP to match the input dimensionality of the node features. The node features and transformed PEs
are then summed element-wise and passed through three consecutive GAT layers.

pe;

aij
softmax; Q

Figure 5: An illustration of the GAT model’s attention «; ; between two buses (nodes) ¢ and j.
The input feature vector h; is element-wise added to pe;. The softmax score ¢ ; is calculated by

concatenating Wy h; and W, i:lj along with the susceptance transformation W5 B; ;.

Each GAT layer leverages multi-head attention as described in [Velickovi¢ et al.| (2017) but we
concatenate a trainable transformation of the susceptance values between the transfomed bus feature
vectors. We update the attention calculations as follows:

exp (LeakyReLU (ELT [W1hi|WaB; | Wi ilj]) )

Q5 =

S e t,.r) @0 (LeakyReLU (a7 [Wihi| W3 B | Wikin) ) )

The attention score for the bus i is calculated for every other bus in the grid m € {1,..., M}, also
denoted in the denominator of the attention softmax score formula. This leads to global attention
being calculated instead of local attention as usually done in GCNs [Zhang et al.|(2019); Wu et al.
(2019).

We use global attention to determine the long range dependencies between buses along with residual
connections and layer normalization to stabilize training across layers. After the GAT layers, the node
embeddings are aggregated (via mean pooling) and fed into a final MLP regressor, which outputs a
single scalar approximating the value of the second-stage objective. Table 4{ summarizes the main
hyperparameters used in our experiments.

The feature vector h;, only depends on the generator property, demand, and first-stage decison made
only on that bus, and thus the feature vector size is invariant to the size of the power-grid. Due to
the fixed input vector size and mean pooling operation the GAT architecture thus is also invariant to
the size of the power grid and can adapt to any bus system. The training and validation error of the
24-bus system for each epoch is presented in the Figure 6]
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Hyperparameter \ Value
hi, (Input feature dimension) 58
h (Hidden dimension) 128
hoye (Output dimension) 1
num attention heads 4
MLP (Susceptance) 4

« (LeakyReLU slope) 0.1
dropout 0.15
norm LayerNorm
k (Eigen PE dimension) 24
mlp_hidden 128
residual True
concat_heads True
epochs 2500
batch size 512
train:test split 90:10

Table 4: Key hyperparameters of the GAT model.

—— Training Loss
\ Validation Loss

Logarithm of MSE

6. B —

500 1000 1500 2000 2500
Epochs

o

Figure 6: Training vs. validation MSE loss curve (log scale) of GAT NN for the 24-bus system.

Case 6-bus 24-bus
ML-Accelerated CCG vs. CCG 64 51
Accelerated CCG vs. CCG 92 82

Table 5: Number of UC problem instances with exact solutions (=~ 0% optimality gap) out of 150
total testing instances.

System size Method Min. (s) Max. (s) Mean (s)
6-Bus ML-Accelerated CCG 1.33 2.64 1.93
Accelerated CCG 15.55 25.11 20.96

CCG 78.67 637.39 181.09

24-Bus ML-Accelerated CCG 32.82 76.77 52.80

Accelerated CCG 110.15 223.90 153.19
CCG 555.49  1999.31 892.87

Table 6: Computation time (seconds) comparison of ML-accelerated CCG, Accelerated CCG, and
CCQG for the 6-bus and 24-bus UC problem.
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E SEVERITY SCORE AND PENALTY SCALING

We describe the recipes used in our experiments to (i) compute an instance—uncertainty severity
score S(&;I) € [0,1] that biases Phase-1 selection, and (ii) set the penalty weight A = A1t - R
by a percentile spread. Both are computed offline from data and are kept fixed during each master
solve. Importantly, S(&; I') depends only on the instance parameters I and the uncertainty £&—not on
decision variables—so adding the penalty in Phase-1 does not alter feasibility or certificates.

Note: For brevity in the main text we often drop the instance argument of the problem and write
S (&) and Vg (z, £); however, all learned quantities are conditioned on the instance, i.e., S(&; I) and
Vo(z, &; I), with I provided as part of the feature vector to V.

E.1 SEVERITY SCORE FROM RECOURSE LOSS

For each training instance I and each uncertainty &, we define a raw recourse-loss target by marginal-
izing the decision over a small, fixed reference pool Xye(1):
1 .
o(l,8) = Z Q(z,&1), where Q(-, -; I) is the exact second-stage value.
|Xref (I )| cx
T ref(l)
(12)
We then calibrate v(I, -) to [0, 1] per instance using train-fold empirical 5th and 95th percentiles over
uncertainties:

S(&1) = cnp< o(1,€) — a5 (1)

max{ qo59 (1) — g% (1), € }’

0, 1) ., e=1078, (13)

where g, (w) denotes the a-quantile of { v(I, &) : € € Ztrain }_ This yields a monotone, outlier-robust
normalization that preserves the ranking of uncertainties for each instance. The resulting S(-; I) is
used only in the Phase-1 objective bias; all certificates (LB/UB) are computed with the unpenalized
objective.

E.2 PENALTY WEIGHT VIA PERCENTILE SPREAD (SINGLE RECIPE)

We set the weight as A = Ap1¢ - R with a user multiplier A\p,11 > 0 and a single data-driven scale R
taken as a percentile difference over the entire training corpus Dy, ,i, Of instance—uncertainty pairs:

R = QQ5%<{ U(I7 £) : (I7 5) € Dtrain}) - q5%({ U(I7£) : (Ivﬁ) S Dtrain}>7 /\ = Amult'R-

(14)
Here v(1, &) is defined by equation computed on the train fold only. This choice makes A
scale-free and comparable across instance families and sizes; we sweep Ayt on a small grid in
experiments and report the best setting in the main text, with full grids in the appendix.

Implementation details. In our experiments, the severity score S(&; 1) is produced by a three-
layer feed-forward neural network (MLP with hidden widths 64 — 64, ReLU activations, and a
final sigmoid), trained on the recourse-loss targets v (I, £) from equation 12| with squared loss, early
stopping, and weight decay; the network output is then calibrated to [0, 1] via equation For the
penalty weight, we use A = Apui¢ - R with R equal to the percentile spread in equation [14 to stabilize
this estimate we employ a simple ensemble quantile estimator (bootstrap aggregation of the 5" and
95t percentiles, reporting the median spread across resamples). The best value of ), is obtained
using a grid search.

E.3 GRID SEARCH FOR THE A-MULTIPLIER

We tune the Lagrangian bias via a simple grid search over A\, and report the average optimality
gap (lower is better) aggregated across all knapsack instances. As shown in Fig. [/| the curve is
shallow around its minimum, indicating robustness to small deviations. We fix Ay, = 3000 for
the knapsack experiments. For UC, separate sweeps per system yield Apue = 5000 (6-bus) and
Amue="7500 (24-bus).
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Average optimality gap of ML-accelerated CCG vs A multiplier
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Figure 7: Average optimality gap of ML-Accelerated CCG vs. Ay across all knapsack instances.
The minimum occurs near Ay, =3000, which we use in the main results.

23



	Introduction
	Related Literature
	Contributions

	Preliminaries
	Column-and-Constraint Generation (CCG)
	Computational challenges of CCG

	ML Approximation of CCG
	MP: Two-Phase Decomposition
	MP Phase-1: Selection Phase (severity-weighted)
	MP Phase-2: Verification Phase

	ML-accelerated CCG

	Neural Network Training
	Data Generation for Training
	Label Computation via Exact Solves
	NN Training and Inference

	Computational Results
	Case Study: Two-Stage Robust Knapsack
	Case Study: Two-Stage Robust Unit Commitment

	Conclusions
	Proof of Proposition 1
	Algorithm
	Two-Stage Robust Knapsack Problem
	Mathematical formulation
	Instance Generation
	Uncertainty Generation for the Knapsack Problem

	Two-Stage Robust UC
	Data Generation
	Graph Attention Architecture

	Severity Score and Penalty Scaling
	Severity score from recourse loss
	Penalty weight via percentile spread (single recipe)
	Grid Search for the lambda-Multiplier


