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ABSTRACT

What can an agent learn in a stochastic Multi-Armed Bandit (MAB) problem from
a dataset that contains just a single sample for each arm? Surprisingly, in this work,
we demonstrate that even in such a data-starved setting it may still be possible
to find a policy competitive with the optimal one. This paves the way to reliable
decision-making in settings where critical decisions must be made by relying only
on a handful of samples. Our analysis reveals that stochastic policies can be
substantially better than deterministic ones for offline decision-making. Focusing
on offline multi-armed bandits, we design an algorithm called Trust Region of
Uncertainty for Stochastic policy enhancemenT (TRUST) which is quite different
from the predominant value-based lower confidence bound approach. Its design
is enabled by localization laws, critical radii, and relative pessimism. We prove
that its sample complexity is comparable to that of LCB on minimax problems
while being substantially lower on problems with very few samples. Finally, we
consider an application to offline reinforcement learning in the special case where
the logging policies are known.

1 INTRODUCTION

In several important problems, critical decisions must be made with just very few samples of pre-
collected experience. For example, collecting samples in robotic manipulation may be slow and costly,
and the ability to learn from very few interactions is highly desirable (Hester & Stone, 2013; Liu et al.,
2021). Likewise, in clinical trials and in personalized medical decisions, reliable decisions must be
made by relying on very small datasets (Liu et al., 2017). Sample efficiency is also key in personalized
education (Bassen et al., 2020; Ruan et al., 2023). However, to achieve good performance, the state-
of-the-art algorithms may require millions of samples (Fu et al., 2020). These empirical findings
seem to be supported by the existing theories: the sample complexity bounds, even minimax optimal
ones, can be large in practice due to the large constants and the warmup factors (Ménard et al., 2021;
Li et al., 2022; Azar et al., 2017; Zanette et al., 2019).

In this work, we study whether it is possible to make reliable decisions with only a few samples.
We focus on an offline Multi-Armed Bandit (MAB) problem, which is a foundation model for
decision-making (Lattimore & Szepesvári, 2020). In online MAB, an agent repeatedly chooses an
arm from a set of arms, each providing a stochastic reward. Offline MAB is a variant where the agent
cannot interact with the environment to gather new information and instead, it must make decisions
based on a pre-collected dataset without playing additional exploratory actions, aiming at identifying
the arm with the highest expected reward (Audibert et al., 2010; Garivier & Kaufmann, 2016; Russo,
2016; Ameko et al., 2020).

The standard approach to the problem is the Lower Confidence Bound (LCB) algorithm (Rashidinejad
et al., 2021), a pessimistic variant of UCB (Auer et al., 2002) that involves selecting the arm with the
highest lower bound on its performance. LCB encodes a principle called pessimism under uncertainty,
which is the foundation principle for most algorithms for offline bandits and reinforcement learning
(RL) (Jin et al., 2020; Zanette et al., 2020; Xie et al., 2021; Yin & Wang, 2021; Kumar et al.,
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2020; Kostrikov et al., 2021). Unfortunately, the available methods that implement the principle of
pessimism under uncertainty can fail in a data-starved regime because they rely on confidence intervals
that are too loose when just a few samples are available. For example, even on a simple MAB instance
with ten thousand arms, the best-known (Rashidinejad et al., 2021) performance bound for the LCB
algorithm requires 24 samples per arm in order to provide meaningful guarantees, see Section 2.
In more complex situations, such as in the sequential setting with function approximation, such a
problem can become more severe due to the higher metric entropy of the function approximation
class and the compounding of errors through time steps.

These considerations suggest that there is a “barrier of entry” to decision-making, both theoretically
and practically: one needs to have a substantial number of samples in order to make reliable decisions
even for settings as simple as offline MAB where the guarantees are tighter. Given the above technical
reasons, and the lack of good algorithms and guarantees for data-starved decision problems, it is
unclear whether it is even possible to find good decision rules with just a handful of samples.

In this paper, we make a substantial contribution towards lowering such barriers of entry. We discover
that a carefully-designed algorithm tied to an advanced statistical analysis can substantially improve
the sample complexity, both theoretically and practically, and enable reliable decision-making with
just a handful of samples. More precisely, we focus on the offline MAB setting where we show that
even if the dataset contains just a single sample in every arm, it may still be possible to compete with
the optimal policy. This is remarkable, because with just one sample per arm—for example from
a Bernoulli distribution—it is impossible to estimate the expected payoff of any of the arms! Our
discovery is enabled by several key insights:

• We search over stochastic policies, which can yield better performance for offline-decision
making;

• We use a localized notion of metric entropy to carefully control the size of the stochastic
policy class that we search over;

• We implement a concept called relative pessimism to obtain sharper guarantees.

These considerations lead us to design a trust region policy optimization algorithm called Trust Region
of Uncertainty for Stochastic policy enhancemenT (TRUST), one that offers superior theoretical as
well as empirical performance compared to LCB in a data-scarce situation.

Moreover, we apply the algorithm to selected reinforcement learning problems from (Fu et al., 2020)
in the special case where information about the logging policies is available. We do so by a simple
reduction from reinforcement learning to bandits, by mapping policies and returns in the former to
actions and rewards in the latter, thereby disregarding the sequential aspect of the problem. Although
we rely on the information of the logging policies being available, the empirical study shows that our
algorithm compares well with a strong deep reinforcement learning baseline (i.e, CQL from (Kumar
et al., 2020)), without being sensitive to partial observability, sparse rewards, and hyper-parameters.

2 DATA-STARVED MULTI-ARMED BANDITS

In this section, we describe the MAB setting and give an example of a “data-starved” MAB instance
where prior methods (such as LCB) can fail. We informally say that an offline MAB is “data-starved”
if its dataset contains only very few samples in each arm.

Notation. We let [n] = {1, 2, ..., n} for a positive integer n. We let ∥·∥2 denote the Euclidean norm
for vectors and the operator norm for matrices. We hide constants and logarithmic factors in the Õ(·)
notation. We let Bd

p(s) = {x ∈ Rd : ∥x∥p ≤ s} for any s ≥ 0 and p ≥ 1. a ≲ b (a ≳ b) means
a ≤ Cb (a ≥ Cb) for some numerical constant C. a ≃ b means that both a ≲ b and b ≲ a hold.

Multi-armed bandits. We consider the case where there are d arms in a set A = {a1, ..., ad}
with expected reward r(ai), i ∈ [d]. We assume access to an offline dataset D = {(xi, ri)}i∈[N ] of
action-reward tuples, where the experienced actions {xi}i∈[N ] are i.i.d. from a distribution µ. Each
experienced reward is a random variable with expectation E[ri] = r(xi) and independent Gaussian
noises ζi := r(xi) − E[ri]. For i ∈ [d], we denote the number of pulls to arm ai in D by N(ai)
or Ni, while the variance of the noise for arm ai is denoted by σ2

i . We denote the optimal arm
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as a∗ ∈ argmaxa∈A[r(a)] and the single policy concentrability as C∗ = 1/µ(a∗) where µ is the
distribution that generated the dataset. Without loss of generality, we assume the optimal arm is
unique. We also write r = (r1, r2, ..., rd)

⊤. Without loss of generality, we assume there is at least
one sample for each arm (such arm can otherwise be removed).

Lower confidence bound algorithm. One simple but effective method for the offline MAB prob-
lem is the Lower Confidence Bound (LCB) algorithm, which is inspired by its online counterpart
(UCB) (Auer et al., 2002). Like UCB, LCB computes the empirical mean r̂i associated to the reward
of each arm i along with its half confidence width bi. They are defined as

r̂i :=
1

N(ai)

∑
k:xk=ai

xk, bi :=

√
2σ2

i

N(ai)
log

(
2d

δ

)
. (1)

This definition ensures that each confidence interval brackets the corresponding expected reward with
probability 1− δ:

r̂i − bi ≤ r (ai) ≤ r̂i + bi ∀i ∈ [d]. (2)
The width of the confidence level depends on the noise level σi, which can be exploited by variance-
aware methods (Zhang et al., 2021; Min et al., 2021; Yin et al., 2022; Dai et al., 2022). When the
true noise level is not accessible, we can replace it with the empirical standard deviation or with a
high-probability upper bound. For example, when the reward for each arm is restricted to be within
[0, 1], a simpler upper bound is σ2

i ≤ 1/4.

Unlike UCB, the half-width of the confidence intervals for LCB is not added, but subtracted, from
the empirical mean, resulting in the lower bound li = r̂i − bi. The action identified by LCB is then
the one that maximizes the resulting lower bound, thereby incorporating the principle of pessimism
under uncertainty (Jin et al., 2020; Kumar et al., 2020). Specifically, given the dataset D, LCB selects
the arm using the following rule:

âLCB := argmax
ai∈A

li, (3)

(Rashidinejad et al., 2021) analyzed the LCB strategy. Below we provide a modified version of their
theorem.
Theorem 2.1 (LCB Performance). Suppose the noise of arm ai is sub-Gaussian with proxy variance
σ2
i . Let δ ∈ (0, 1/2). Then, we have

1. (Comparison with any arm) With probability at least 1− δ, for any comparator policy ai ∈ A, it
holds that r(ai)− r(âLCB) ≤

√
8σ2

i log(2d/δ)/N(ai).

2. (Comparison with the optimal arm) Assume σi = 1 for any i ∈ [d] and N ≥ 8C∗ log (1/δ) . Then,
with probability at least 1− 2δ, one has r(a∗)− r(âLCB) ≤

√
4C∗ log(2d/δ)/N.

The statement of this theorem is slightly different from that in (Rashidinejad et al., 2021), in the sense
that their suboptimality is over ED[r (a

∗)−r (âLCB)] instead of a high-probability one. (Rashidinejad
et al., 2021) proved the minimax optimality of the algorithm when the single policy concentrability
C∗ ≥ 2 and the sample size N ≥ Õ(C∗).

A data-starved MAB problem and failure of LCB. In order to highlight the limitation of a strategy
such as LCB, let us describe a specific data-starved MAB instance, specifically one with d = 10000
arms, equally partitioned into a set of good arms (i.e., Ag) and a set of bad arms (i.e., Ab). Each
good arm returns a reward following the uniform distribution over [0.5, 1.5], while each bad arm
returns a reward which follows N (0, 1/4).

Assume that we are given a dataset that contains only one sample per each arm. Instantiating the LCB
confidence interval in equation 2 with σi ≤ 1/2 and δ = 0.1, one obtains r̂i−2.5 ≤ r(ai) ≤ r̂i+2.5.
Such bound is uninformative, because the lower bound for the true reward mean is less than the
reward value of the worst arm. The performance bound for LCB confirms this intuition, because
Theorem 2.1 requires at least N(ai) ≥ ⌈8 ∗ log(1/0.05)⌉ = 24 samples in each arm to provide any
guarantee with probability at least 0.9 (here C∗ = d).

Can stochastic policies help? At a first glance, extracting a good decision-making strategy for the
problem discussed in Section 2 seems like a hopeless endeavor, because it is information-theoretically
impossible to reliably estimate the expected payoff of any of the arms with just a single sample on
each. In order to proceed, the key idea is to enlarge the search space to contain stochastic policies.
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Definition 2.2 (Stochastic Policies). A stochastic policy over a MAB is a probability distribution
w ∈ Rd, wi ≥ 0,

∑d
i=1 wi = 1.

To exemplify how stochastic policies can help, consider the behavioral cloning policy, which mimics
the policy that generated the dataset for the offline MAB in Section 2. Such policy is stochastic, and
it plays all arms uniformly at random, thereby achieving a score around 0.5 with high probability.
The value of the behavioral cloning policy can be readily estimated using the Hoeffding bound (e.g.,
Proposition 2.5 in (Wainwright, 2019)): with probability at least 1 − δ = 0.9, (here d = 10000 is
the number of arms and σ = 1/2 is the true standard deviation), the value of behavioral cloning
policy is greater or equal than 1/2−

√
2σ2 log (2/δ) /d ≈ 0.488. Such value is higher than the one

guaranteed for LCB by Theorem 2.1. Intuitively, a stochastic policy that selects multiple arms can
be evaluated more accurately because it averages the rewards experienced over different arms. This
consideration suggests optimizing over stochastic policies.

By optimizing a lower bound on the performance of the stochastic policies, it should be possible to
find one with a provably high return. Such an idea leads to solving an offline linear bandit problem,
as follows

max
w∈Rd,wi≥0,

∑d
i=1 wi=1

d∑
i=1

wir̂i − c(w) (4)

where c(w) is a suitable confidence interval for the policy w and r̂i is the empirical reward for the i-th
arm defined in equation 1. While this approach is appealing, enlarging the search space to include all
stochastic policies brings an increase in the metric entropy of the function class, and concretely, a

√
d

factor (Abbasi-Yadkori et al., 2011; Rusmevichientong & Tsitsiklis, 2010; Hazan & Karnin, 2016;
Jun et al., 2017; Kim et al., 2022) in the confidence intervals c(w) (in equation 4), which negates all
gains that arise from considering stochastic policies. In the next section, we propose an algorithm
that bypasses the need for such

√
d factor by relying on a more careful analysis and optimization

procedure.

3 TRUST REGION OF UNCERTAINTY FOR STOCHASTIC POLICY
ENHANCEMENT (TRUST)

In this section, we introduce our algorithm, called Trust Region of Uncertainty for Stochastic policy
enhancemenT (TRUST). At a high level, the algorithm is a policy optimization algorithm based on a
trust region centered around a reference policy. The size of the trust region determines the degree of
pessimism, and its optimal problem-dependent size can be determined by analyzing the supremum of
a problem-dependent empirical process. In the sequel, we describe 1) the decision variables, 2) the
trust region optimization program, and 3) some techniques for its practical implementation.

3.1 DECISION VARIABLES

The algorithm searches over the class of stochastic policies given by the weight vector w =
(w1, w2, ..., wd)

⊤ of Definition 2.2. Instead of directly optimizing over the weights of the stochastic
policy, it is convenient to center w around a reference stochastic policy µ̂ which is either known to
perform well or is easy to estimate. In our theory and experiments, we consider a simple setup and
use the behavioral cloning policy weighted by the noise levels {σi} if they are known. Namely, we
consider

µ̂i =
Ni/σ

2
i∑d

j=1 Nj/σ2
j

∀i ∈ [d]. (5)

When the size of the noise σi is constant across all arms, the policy µ̂ is the behavioral cloning
policy; when σi differs across arms, µ̂ minimizes the variance of the empirical reward µ̂ =
argminw∈Rd,wi≥0,

∑
i wi=1 Var

(
w⊤ · r̂

)
, where r̂ = (r̂1, ..., r̂d)

⊤ is defined in equation 1. Us-
ing such definition, we define as decision variable the policy improvement vector ∆ := w − µ̂. This
preparatory step is key: it allows us to implement relative pessimism, namely pessimism on the
improvement—represented by ∆—rather than on the absolute value of the policy w. Moreover, by
restricting the search space to a ball around µ̂, one can efficiently reduce the metric entropy of the
policy class and obtain tighter confidence intervals.

4
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3.2 TRUST REGION OPTIMIZATION

Figure 1: A simple diagram for the trust regions on a 3-dim
simplex. The central point is the reference (stochastic) policy,
while red ellipses are trust regions around this reference
policy.

Trust region. TRUST (Algo-
rithm 1) returns the stochastic policy
πTRUST = ∆̂ + µ̂ ∈ Rd, where µ̂ is
the reference policy defined in equa-
tion 5 and ∆̂ is the policy improve-
ment vector. In order to accurately
quantify the effect of the improvement
vector ∆, we constrain it to a trust re-
gion C (ε) centered around µ̂ where
ε > 0 is the radius of the trust region.
More concretely, for a given radius
ε > 0, the trust region is defined as

C (ε) :=

{
∆ : ∆i + µ̂i ≥ 0,

∥∆+ µ̂∥1 = 1,

d∑
i=1

∆2
i

σ2
i

Ni
≤ ε2

}
. (6)

The trust region above serves two
purposes: it ensures that the policy
∆̂ + µ̂ still represents a valid stochas-
tic policy, and it regularizes the policy
around the reference policy µ̂. We
then search for the best policy within
C (ε) by solving the optimization program

∆̂ε := argmax
∆∈C(ε)

∆⊤r̂. (7)

Computationally, the program equation 7 is a second-order cone program (Alizadeh & Goldfarb,
2003; Boyd & Vandenberghe, 2004), which can be solved efficiently with standard off-the shelf
libraries (Diamond & Boyd, 2016).

When ε = 0, the trust region only includes the vector ∆ = 0, and the reference policy µ̂ is the only
feasible solution. When ε → ∞, the search space includes all stochastic policies. In this latter case,
the solution identified by the algorithm coincides with the greedy algorithm which chooses the arm
with the highest empirical return. Rather than leaving ε as a hyper-parameter, in the following we
highlight a selection strategy for ε based on localized Gaussian complexities.

Critical radius. The choice of ε is crucial to the performance of our algorithm because it balances
optimization with regularization. Such consideration suggests that there is an optimal choice for the
radius ε which balances searching over a larger space with keeping the metric entropy of such space
under control. The optimal problem-dependent choice ε̂∗ can be found as a solution of a certain
equation involving a problem-dependent supremum of an empirical process. More concretely, let E
be the feasible set of ε (e.g., E = R+). We define the critical radius as
Definition 3.1 (Critical Radius). The critical radius ε̂∗ of the trust region is the solution to the
program

ε̂∗ = argmax
ε∈E

[
∆̂⊤

ε · r̂ − G (ε)
]
. (8)

Such equation involves a quantile of the localized gaussian complexity G (ε) of the stochastic policies
identified by the trust region. Mathematically, this is defined as
Definition 3.2 (Quantile of the supremum of Gaussian process). We denote the noise vector as η =
r̂− r, which by our assumption is coordinate-wise independent and satisfies ηi ∼ N

(
0, σ2

i /N(ai)
)
.

We define G (ε) as the smallest quantity such that with probability at least 1− δ, for any ε ∈ E, it
holds that sup∆∈C(ε) ∆

⊤η ≤ G (ε) .

5
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In essence, G (ε) is an upper quantile of the supremum of the Gaussian process sup∆∈C(ε) ∆
⊤η

which holds uniformly for every ε ∈ E. We also remark that this quantity depends on the feasible set
E and the trust region C (ε), and hence, is highly problem-dependent.

The critical radius plays a crucial role: it is the radius of the trust region that optimally balances
optimization with uncertainty. Enlarging ε enlarges the search space for ∆, enabling the discovery of
policies with potentially higher return. However, this also brings an increase in the metric entropy
of the policy class encoded by G (ε), which means that each policy can be estimated less accurately.
The critical radius represents the optimal tradeoff between these two forces. The final improvement
vector that TRUST returns, which we denote as ∆̂∗, is determined by solving equation 7 with the
critical radius ε̂∗ defined in equation 8. In mathematical terms, we express this as

∆̂∗ := argmax
∆∈C(ε̂∗)

∆⊤r̂. (9)

Implementation details. Since it can be difficult to solve equation 8 for a continuous value of
ε ∈ E = R+, we use a discretization argument by considering the following candidate subset:

E =
{
ε0,

ε0
α
, ...,

ε0
α|E|−1

}
, (10)

where α > 1 is the decaying rate and ε0 is the largest possible radius, which is the maximal
weighted distance from the reference policy to any vertex. Mathematically, this is defined as
ε0 = maxi∈[d]

√∑
j ̸=i µ̂

2
jσ

2
j /Nj + (1− µ̂i)2σ2

i /Ni. Our analysis that leads to Theorem 4.1 takes
into account such discretization argument.

In line 2 of Algorithm 1, the algorithm works by estimating the quantile of the supremum of the
localized Gaussian complexity G (ε) that appears in Definition 3.2, and then choose the ε that
maximizes the objective function in equation 8. Although G (ε) can be upper bounded analytically, in
our experiments we aim to obtain tighter guarantees and so we estimate it via Monte-Carlo. This can
be achieved by 1) sampling independent noise vectors η, 2) solving sup∆∈C(ε) ∆

⊤η and 3) estimating
the quantile via order statistics. More details can be found in Appendix D.

Algorithm 1 Trust Region of Uncertainty for Stochas-
tic policy enhancemenT (TRUST)

Input: Offline dataset D, failure probability δ, the
candidate set for the trust region widths E (in prac-
tice, this is chosen as equation 10).
1. For ε ∈ E, compute ∆̂ε from equation 7.
2. For ε ∈ E, estimate G (ε) via Monte-Carlo
method (see Algorithm 2 in Appendix D).
3. Solve equation 8 to obtain the critical radius ε̂∗.
4. Compute the optimal improvement vector in
C (ε̂∗) via equation 9, denoted as ∆̂∗.

5. Return the stochastic policy πTRUST = µ̂+∆̂∗.

In summary, our practical algorithm can be
seen as solving the optimization problem

(ε̂∗, ∆̂∗) = argmax
ε∈E,∆∈C(ε)

{
∆⊤r̂ − Ĝ(ε)

}
where r̂ ∈ Rd is the empirical reward vec-
tor with r̂i defined in equation 1. Here,
Ĝ(ε) is computed according to the Monte-
Carlo method defined in Algorithm 2 in Ap-
pendix D and E is the candidate subset for
radius defined in equation 10. This indicates
a balance between the empirical reward of a
stochastic policy and the local entropy metric
it induces.

4 THEORETICAL GUARANTEES

Problem-dependent analysis In this section, we provide some theoretical guarantees for the policy
πTRUST returned by TRUST. We present 1) an improvement over the reference policy µ̂, 2) a
sub-optimality gap with respect to any comparator policy π and 3) an actionable lower bound on
the performance of the output policy. Given a stochastic policy π, we let V π = Ea∼π[r(a)] denote
its value function. Furthermore, we denote a comparator policy π by a triple (ε,∆, π) such that
ε > 0,∆ ∈ C (ε) , π = µ̂+∆.

Theorem 4.1 (Main theorem). TRUST has the following properties.

6
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1. With probability at least 1− δ, the improvement over the behavioral policy is at least

V πTRUST − V µ̂ ≥ sup
ε≤ε0,∆∈C(ε)

[
∆⊤r − 2G (⌈ε⌉)

]
, where ⌈ε⌉ = inf{ε′ ∈ E, ε′ ≥ ε}.

(11)

2. With probability at least 1− δ, for any stochastic comparator policy (ε,∆, π), the sub-optimality
of the output policy can be upper bounded as

V π − V πTRUST ≤ 2G (⌈ε⌉) . (12)

3. With probability at least 1− 2δ, the data-dependent lower bound on V πTRUST satisfies

V πTRUST ≥ π⊤
TRUST r̂ − G (⌈ε̂∗⌉)−

√
2 log(1/δ)∑d
j=1 Nj/σ2

j

, (13)

where πTRUST = µ̂+ ∆̂∗ is the policy output by Algorithm 1.

The proof of Theorem 4.1 is deferred to Appendix B. A fine-grained analysis for the suboptimality
is contained in Appendix E. Our guarantees are problem-dependent as a function of the Gaussian
process G (·); in Section 5 we show how these can be instantiated on an actual problem, highlighting
the tightness of the analysis. Equation (11) highlights the improvement with respect to the behavioral
policy. It is expressed as a trade-off between maximizing the improvement ∆⊤r and minimizing its
uncertainty G (⌈ε⌉). The presence of the supε indicates that TRUST achieves an optimal balance
between these two factors. The state of the art guarantees that we are aware of highlight a trade-off
between value and variance (Jin et al., 2021; Min et al., 2021). The novelty of our result lies in the
fact that TRUST optimally balances the uncertainty implicitly as a function of the ‘coverage’ as well
as the metric entropy of the search space. That is, TRUST selects the most appropriate search space
by trading off its metric entropy with the quality of the policies that it contains. The right-hand side in
Equation (13) gives actionable statistical guarantees on the quality of the final policy and it can be fully
computed from the available dataset; we give an example of the tightness of the analysis in Section 5.

Figure 2: The upper bound for the localized Gaussian width
over a shifted simplex on d = 10000 dimension. The shifted
simplex is {∆ ∈ Rd :

∑d
i=1 ∆i = 0}. The two-staged upper

bound is based on Theorem 1 in (Bellec, 2019)

Localized Gaussian complexity
G (ε). In Theorem 4.1, we up-
per bound the suboptimality V π −
V πTRUST via a notion of local-
ized metric entropy G (·) . It is
the quantile of the supremum of
a Gaussian process, which can
hardly be calculated analytically
but can be efficiently estimated
via Monte Carlo method (which
does not collect additional sam-
ples, e.g., see Appendix D). It can
also be concentrated around its ex-
pectation, which is also localized
Gaussian width, a concept well-
established in statistical learning
theory (Bellec, 2019; Wei et al.,
2020; Wainwright, 2019). More
concretely, this is the localized
Gaussian width for an affine sim-
plex: E[sup∆∈C(ε) ∆

⊤η] = E[supSd−1∩{∆:∥∆∥Σ≤ε} ∆
⊤η], where Sd−1 denotes the simplex in Rd

and Σ := diag
(

σ2
1

N1
,
σ2
2

N2
, ...,

σ2
d

Nd

)
is the weighted matrix. Moreover, this localized Gaussian width

can be upper bound via

E

[
sup

∆∈C(ε)

∆⊤η

]
≲ min

{√
log (dε2), ε

√
d
}
. (14)
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To make it clearer, we plot this upper bound for localized Gaussian width in Figure 2. In equation 14,
the rate matches the minimax lower bound up to universal constant (Gordon et al., 2007; Lecué &
Mendelson, 2013; Bellec, 2019). To see the implication of the upper bound equation 14, let’s consider
a simple example where the logging policy is uniform over all arms. We denote the optimal arm as
a∗ and define C∗ := 1/µ(a∗) as the concentrability coefficient. By applying equation 14 and some
concentration techniques (see Wainwright, 2019), we can perform a fine-grained analysis for the
suboptimality induced by πTRUST . Specifically, with probability at least 1− δ, one has

V π∗ − V πTRUST ≲
√
C∗ log(2d|E|/δ)/N. (15)

Note that, the high-probability upper bound here is minimax optimal up to constant and logarithmic
factor (Rashidinejad et al., 2021) when C∗ ≥ 2. Moreover, this example of uniform logging policy is
an instance where LCB achieves minimax sub-optimality (up to constant and log factors) (see the
proof of Theorem 2 in Rashidinejad et al., 2021). In this case, TRUST will achieve the same level of
guarantees for the suboptimality of the output policy. We also empirically show the effectiveness of
TRUST in Section 5. The full theorem for a fine-grained analysis for the suboptimality and its proof
are deferred to Appendix E.

Augmentation with LCB. Compared to classical LCB, Algorithm 1 considers a much larger searching
space, which encompasses not only the vertices of the simplex but the inner points as well. This
enlargement of searching space shows great advantage, but this also comes with the price of larger
uncertainty, especially when the width ε is large. In LCB, one considers the uncertainty by upper
bound the noise at each vertex uniformly, while in our case, the uniform upper bound for a sub-region
of the shifted simplex must be considered. When ε is large, the trust region method will induce
larger uncertainty and tend to select a more stochastic policy than LCB and hence, can achieve worse
performance. Moreover, when each arm has sufficiently many data samples to roughly estimate its
mean return to reasonable accuracy, LCB works well because it chooses the arm with a tight lower
bound. However the current results for LCB do not cover the important case where only few samples
(e.g., less than 24 as described in Section 2) are available. Encouragingly our work shows strong
results in such settings. To determine the most effective final policy, one can always combine TRUST
(Algorithm 1) with LCB and select the better one between them based on the lower bound induced by
two algorithms. By comparing the lower bounds of LCB and TRUST, the value of the finally output
policy is guaranteed to outperform the lower bound for either LCB or TRUST with high probability.
We defer the detailed algorithm and its theoretical guarantees to Appendix G.

5 EXPERIMENTS

We present simulated experiments where we show the failure of LCB and the strong performance of
TRUST. Moreover, we also present an application of TRUST to offline reinforcement learning.

Simulated experiments: A data-starved MAB. We consider a data-starved MAB problem with
d = 10000 arms denoted by ai, i ∈ [d]. The reward distributions are

r(ai) ∼ Uniform(0.5, 1.5) for i ≤ 5000; r(ai) ∼ N (0, 1/4) for i > 5000. (16)

Namely, the set of good arms have reward random variables from a uniform distribution over [0.5, 1.5]
with unit mean, while the bad arms return a Gaussian reward with zero mean. We consider a dataset
that contains a single sample for each of these arms.

We test Algorithm 1 on this MAB instance with fixed variance level σi = 1/2. We set the reference
policy µ̂ to be the behavioral cloning policy, which coincides with the uniform policy. We also test
LCB and the greedy method which simply chooses the policy with the highest empirical reward.

In this example, the greedy algorithm fails because it erroneously selects an arm with a reward
> 1.5, but such reward can only originate from a normal distribution with mean zero. Despite LCB
incorporates the principle of pessimism under uncertainty, it selects an arm with average return equal
to zero; its performance lower bound given by the confidence intervals is −1.5, which is almost
vacuous and very uninformative. The behavioral cloning policy performs better, because it selects an
arm uniformly at random, achieving the score 0.5.
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Behavior
Policy Greedy LCB LCB Lower

Bound
Improvement
by TRUST TRUST TRUST

Lower Bound
0.5 0 0 -1.5 0.42 0.92 0.6

Table 1: Results of simulated experiments in a 10000-arm bandit. The reward distribution is described
in equation 16. The offline dataset includes one sample for each arm. The greedy method chooses the
arm with the highest empirical reward. LCB selects an arm based on equation 3. The lower bound for
LCB and TRUST follow equation 2 and equation 13, respectively.

Algorithm 1 achieves the best performance: the value of the policy that it identifies is 0.92, which
almost matches the optimal policy. The lower bound on its performance computed by instantiating
the RHS in equation 13 is around 0.6, a guarantee much tighter than that for LCB.

In order to gain intuition on the learning mechanics of TRUST, in Figure 3 we progressively enlarge
the radius of the trust region from zero to the largest possible radius (on the x axis) and plot the value
of the policy that maximizes the linear objective ∆⊤r̂, ∆ ∈ C (ε) for each value of the radius ε.
Note that we rescale the range of ε to make the largest possible ε be one. In the same figure we also
plot the lower bound computed with the help of equation equation 13.

Figure 3: Policy values and their lower bounds for a data-
starved MAB instance with 10000 arms whose reward distri-
bution is described in equation 16.

Initially, the value of the policy in-
creases because the optimization in
equation 7 is performed over a larger
set of stochastic policies. However,
when ε approaches the maximal pos-
sible radius, all stochastic policies are
included in the optimization program.
In this case, TRUST greedily selects
the arm with the highest empirical re-
ward, which is from a normal distri-
bution with a mean zero. The opti-
mal balance between the size of the
policy search space and its metric en-
tropy is given by the critical radius
ε = 0.0116ε0, which is the point
where the lower bound is the highest.

A more general data-starved MAB.
Besides the data-starved MAB we
constructed, we also show that in
general MABs, the performance of
TRUST is on par with LCB, but
TRUST will have a much tighter statistical guarantee, i.e., a larger lower bound for the value
of the returned policy. We did experiments on a d = 1000-arm MAB where the reward distribution is
r(ai) ∼ N (i/1000, 1/4), ∀i ∈ [d]. We ran TRUST Algorithm 1 and LCB over 8 different random
seeds. When we have a single sample for each arm, TRUST will get a similar score as LCB. However,
TRUST give a much tighter statistical guarantee than LCB, in the sense that the lower bound output by
TRUST is much higher than that output by LCB so that TRUST can output a policy that is guaranteed
to achieved a higher value. Moreover, we found the policies output from TRUST are much more
stable than those from LCB. In all runs, while the lowest value of the arm chosen by LCB is around
0.24, all policies returned by TRUST have values above 0.65 with a much smaller variance, as shown
in Table 2.

Offline reinforcement learning. In this section, we apply Algorithm 1 to the offline reinforcement
learning (RL) setting under the assumption that the logging policies which generated the dataset are
accessible. To be clear, our goal is not to exceed the performance of the state of the art deep RL
algorithms—our algorithm is designed for bandit problems—but rather to illustrate the usefulness of
our algorithm and theory.

Since our algorithm is designed for bandit problems, in order to apply it to the sequential setting, we
map MDPs to MABs. Each policy in the MDP maps to an action in the MAB, and each trajectory
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return in the MDP maps to an experienced return in the MAB setting. Notice that this reduction
disregards the sequential aspect of the problem and thus our algorithm cannot perform ‘trajectory
stitching’ (Levine et al., 2020; Kumar et al., 2020; Kostrikov et al., 2021). Furthermore, it can only
be applied under the assumption that the logging policies are known.

LCB TRUST
mean reward 0.718 0.725

mean lower bound 0.156 0.544
variance 0.265 0.038

minimal reward 0.239 0.658

Table 2: Comparison between LCB and TRUST (Algo-
rithm 1) on a data-starved MAB with 1000 arms whose
reward distribution follows r(ai) ∼ N (i/1000, 1/4). Both
methods are repeated on 8 random seeds.

Specifically we consider a setting
where there are multiple known log-
ging policies, each generating few tra-
jectories. We test Algorithm 1 on
some selected environments from the
D4RL dataset (Fu et al., 2020) and
compare its performance to the (CQL)
algorithm (Kumar et al., 2020), a
popular and strong baseline for of-
fline RL algorithms. Since the D4RL
dataset does not directly include the
logging policies, we generate new
datasets by running Soft Actor Critic
(SAC) (Haarnoja et al., 2018) for 1000
episodes. We store 100 intermediate policies generated by SAC, and roll out 1 trajectory from each
policy.

We use some default hyper-parameters for CQL.1 We report the unnormalized scores in Table 3,
each averaged over 4 random seeds. Algorithm 1 achieves a score on par with or higher than that
of CQL, especially when the offline dataset is of poor quality and when there are very few—or just
one—trajectory generated from each logging policy. Notice that while CQL is not guaranteed to
outperform the behavioral policy, TRUST is backed by Theorem 4.1.

CQL TRUST

Hopper 1-traj-low 499 999
1-traj-high 2606 3437

Ant 1-traj-low 748 763
1-traj-high 4115 4488

Walker2d 1-traj-low 311 346
1-traj-high 4093 4097

HalfCheetah 1-traj-low 5775 5473
1-traj-high 9067 10380

Table 3: Unnormalized score of CQL and TRUST in 4 en-
vironments from D4RL. In 1-traj-low case, we take the first
100 policies in the running of SAC. In 1-traj-high case, we
take the (10x+ 1)-th policy for x ∈ [100]. We sample one
trajectory from each policy we take in all experiments.

Additionally, while CQL took around
16-24 hours on one NVIDIA GeForce
RTX 2080 Ti, TRUST only took 0.5-1
hours on 10 CPUs. The experimen-
tal details are included in Appendix H.
Moreover, while the performance of
CQL is highly reliant on the choice
of hyper-parameters, TRUST is essen-
tially hyper-parameters free.

6 CONCLUSION

In this paper we make a substan-
tial contribution towards sample ef-
ficient decision making, by designing
a data-efficient policy optimization al-
gorithm that leverages offline data for
the MAB setting. The key intuition of
this work is to search over stochastic policies, which can be estimated more easily than deterministic
ones. The design of our algorithm is enabled by a number of key insights, such as the use of the local-
ized gaussian complexity which leads to the definition of the critical radius for the trust region. We
believe that these concepts can be used more broadly to help design truly sample efficient algorithms,
which can in turn enable the application of decision making to new settings where a high sample
efficiency is critical.
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