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Abstract

Sparse regression methods have been widely used in many fields for their statistical effective-
ness and high interpretability. However, there are few sparse regression methods with skew
noise, although statistical modeling using skewness is becoming more important, e.g., in
the medical field. The Azzalini’s skew-normal distribution and its extensions are well-used
for skew noise. Such skew regression methods have a severe problem with statistical inter-
pretability because they model neither mean, median, nor mode. To overcome this problem,
we propose a novel sparse regression method based on mode-invariant skew-normal noise.
The regression model is easy to interpret in the proposed method because it always models
a mode regardless of skewness. The proposed method is simple to implement and optimize,
suggesting it is highly scalable to other machine-learning methods. We also provide theo-
retical guarantees of the proposed method for the average excess risk and the estimation
error. Numerical experiments on artificial and real-world data demonstrate that the pro-
posed method performs significantly better and is more stable than other existing methods
for various skew-noise data.

1 Introduction

Starting with Lasso (Tibshirani, 1996), an ℓ1 regularization regression method is becoming popular for
predictive modeling with relevant features. It has gained significant attention in many fields because of its
ability to handle high-dimensional data efficiently and its exhaustive studies of methodological extensions
and theoretical properties. (For details, e.g., see Bühlmann & Van De Geer (2011); Hastie et al. (2015).) As
we have more data available and need more reasonable models, an ℓ1 regularization regression method will
likely continue to be more essential for high-dimensional data analysis.

The Lasso is based on the squared error; in other words, it focuses on a symmetric noise. In real-world
data analysis, however, we need to treat skewness. For example, statistical modeling using skewness is
indispensable in the medical field. Hossain & Beyene (2015) explored an application of the skew-normal
distribution in the analysis of microRNA (miRNA) data, which often does not follow a normal distribution.
Their findings, derived from both simulations and real miRNA dataset analyses, demonstrated that the skew-
normal distribution could enhance the detection of differentially expressed miRNAs. This enhancement is
particularly noticeable when the data is significantly skewed. Shafiei et al. (2020) introduced an automated
stain normalization framework for histopathology images that uses a mixture of multivariate skew-normal
distributions to capture both symmetric and non-symmetric observations. The method can model multi-
modal and multiple correlated distributions, regardless of their non-symmetry, and has shown consistent and
superior performance compared to existing methods. How to treat skewness is also a topic of interest in
other fields, including financial, meteorological, and industrial data (Adcock et al., 2015; Hao et al., 2019;
Simola et al., 2019).

Skew distributions have been studied extensively (Azzalini & Capitanio, 1999; Branco & Dey, 2001; Sahu
et al., 2003; Liseo & Loperfido, 2003; González-Farías et al., 2004; Arellano-Valle & Genton, 2005; Arellano-
Valle & Azzalini, 2006). However, despite the intense need for skewness in real-world data analysis, there
currently exist few relevant ℓ1 regularization regression methods. The most significant study is Chen et al.
(2014), who assumed a regression model for the location parameter of the well-used Azzalini’s skew-normal
distribution (Azzalini, 1985) and then proposed an ℓ1 regularization regression method with an efficient
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Figure 1: The difference between the Azzalini’s skew-normal distribution (upper row) and the mode-invariant
skew-normal distribution (lower row) with the location parameter µ and the different skewness parameter α.
The scale parameter is set to σ = 1. The blue and black dashed lines in the upper row represent the positions
of the mode and µ in the former distribution, respectively. The mode of the former distribution depends
complicatedly on the skewness parameter as well as the location and scale parameters. As α increases, the
mode goes first to the right and then back to the left (to the original location). This behavior makes it
difficult to interpret the former distribution. The red dashed line in the lower row represents the positions
of both the mode and µ in the latter distribution. The mode of the latter distribution is invariant for any
α. As α → ∞, both asymptotically approach half-normal distributions. The former is stretched vertically,
but the latter is stretched horizontally.

parameter estimation algorithm. Even if we move away from the ℓ1 regularization, there exist few regu-
larization methods; e.g., Cao et al. (2023) recently proposed the ridge regularization regression method for
the mode of the Azzalini’s skew-normal distribution. This lack of attention may be because we would gen-
erally deal with skewed data using non-linear pre-processing with a power transform such as the Box-Cox
transformation (Box & Cox, 1964) and Yeo-Johnson transformation (Yeo & Johnson, 2000). However, these
non-linear transformations may not be suitable for a regression model with skewed noise because such trans-
formations can provide symmetric distributions of outcomes but not symmetric noises due to asymmetric
feature distributions. Furthermore, non-linear transformations can make it difficult to interpret a regression
model since the non-linearity changes the meaning of an observation unit.

In this paper, we focus on a regression model whose noise is assumed to follow the mode-invariant skew-
normal distribution introduced by Fujisawa & Abe (2015), and then we propose the regression estimator
of the mode (location parameter) that is defined as the minimizer of the negative log-likelihood plus the
ℓ1 regularization, aiming to achieve both skewness modeling and statistical interpretability. The mode-
invariant skew-normal distribution is a subclass of the Transformation-of-Scale (ToS) distribution (Jones,
2014; 2016) and is consistent with a normal distribution when not skewed. As the name implies, its mode
is invariant regardless of skewness, where its location parameter coincides with its mode. Therefore, the
proposed method always models a mode regardless of skewness, making it easy to interpret the statistical
role of sparse features. This is equivalent to the reasonable assumption that a noiseless situation has the
highest probability. Despite its helpful properties, there are few studies with the mode-invariant skew-normal
distribution besides the basic maximum likelihood estimation (Fujisawa & Abe, 2015).

The proposed method differs significantly from Chen et al. (2014)’s regression model for the location param-
eter of the Azzalini’s skew-normal distribution. Figure 1 illustrates different shapes between the Azzalini’s
skew-normal distribution and the mode-invariant skew-normal distribution. Note that the location parame-
ter of the Azzalini’s skew-normal distribution is neither mean, median, nor mode, which means that the role
of Chen et al. (2014)’s regression model is uncertain and difficult to interpret.
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Our main contributions are as follows:

• Highlighting the attractiveness of the mode-invariant skew-normal distribution and assuming noise
to follow it, we propose a novel ℓ1 regularization regression method having both skewness modeling
and statistical interpretability.

• Revealing partial convexity, we indicate that its optimization and implementation are relatively
straightforward, although the proposed method involves complicated non-linear transformations.

• The proposed method is theoretically guaranteed in terms of its excess risk and estimation error
by non-asymptotic analysis under mild assumptions usually adopted in the theoretical analysis of
Lasso-type problems.

This paper is organized as follows. In Section 2, the proposed method is introduced. In Section 3, the
theoretical guarantees of the proposed method are provided by non-asymptotic analysis in terms of the
excess risk and the estimation error. Such theoretical studies for skew regression models have not been
shown so far. In Section 4, numerical experiments on artificial and real-world data are demonstrated. The
results obtained in that study indicate that the proposed method can serve as a viable alternative to Lasso.
In Section 5, concluding remarks are given.

2 Proposed Method

2.1 Skew Distribution

We use the mode-invariant skew-normal distribution (Fujisawa & Abe, 2015) with the parameter vector
ψ := [µ, σ, α]⊤ ∈ R× R+ × R:

f(y | ψ) := 1
σ
ϕ

(
rα

(
y − µ
σ

))
, (1)

where ϕ is the probability density function of the standard normal distribution, rα is a special transformation
function of scale, described later, and µ, σ, and α are the parameters of location, scale, and skewness,
respectively. The function rα must satisfy

r′
α(u) > 0, (2)
q′

α(v) + q′
α(−v) = 2, (3)

where qα is the inverse function of rα. Note that the condition (2) ensures a monotone-increasing property
of rα(u). The model (1) is unimodal with the mode-invariant property Mode [f(y | ψ)] = µ for any σ and α.

Let Hα(v) := qα(v) − v. While Hα (or rα) can be freely designed if it satisfies the above conditions, this
paper employs the following special function Hα because of its better analytical treatment:

Hα(v) :=ρα

√
1 + α2v2 − 1

α
, (4)

where ρα := 1− 1
2 exp(−α2).

Remark 1. The above function ρα slightly differs from that proposed in Fujisawa & Abe (2015) because the
Fisher information matrix is non-singular at α = 0 when we use the above function but singular when we use
the function proposed in Fujisawa & Abe (2015). The non-singularity is usually necessary to obtain some
theoretical properties. A related proposition appears in Proposition 2.

2.2 Problem Description

We consider the linear regression model with the skew-unimodal noise, given by

y = X⊤β + e, (5)
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Algorithm 1 Optimization of the proposed method
Require: Hyper-parameter λ and initialized β, σ, α

1: while until convergence do
2: while until convergence (of β) do
3: for n = 1, . . . , N do
4: zn ← α

σ

(
yn −X⊤

n β
)

+ ρα

5: wn ←
√
z2

n + 1− ρ2
α

6: ỹn ←X⊤
n β + σ

2α

(
zn − ρα

1+ρ2
α

(
wn + z2

n

wn

))
7: end for
8: β ← argmin

β

1+ρ2
α

N(1−ρ2
α)2σ2

∑N
n=1

(
ỹn −X⊤

n β
)2 + λ∥β∥1

9: end while
10: σ ← argmin

σ: σ>0
ℓ(θ | DN ) with L-BFGS-B (or other valid algorithm)

11: α← argmin
α

ℓ(θ | DN ) with L-BFGS (or other valid algorithm)
12: end while

where y ∈ R is an output, X ∈ RP is a P -dimensional feature vector, β ∈ RP is a parameter vector, and e
follows a skew-unimodal distribution f(e | 0, σ, α). Let ψ(X) := [X⊤β, σ, α]⊤. The distribution of y can be
expressed by f(y | ψ(X)), and the mode is X⊤β.

Let the log-likelihood function be denoted by l(θ | X, y) := log f(y | ψ(X)) with the parameter vector
θ := [β⊤, σ, α]⊤. Let DN := {(yn,Xn)}N

n=1 be the i.i.d. data. We define the loss function by

ℓ(θ | DN ) :=− 1
N

N∑
n=1

l(θ |Xn, yn)

=− 1
N

N∑
n=1

log f(yn | ψ(Xn)). (6)

Since we are interested in sparse regression, this paper focuses on the Lasso-type problem

min
θ∈Θ

ℓ(θ | DN ) + λ∥β∥1, (7)

where λ ≥ 0 is the regularization parameter.

2.3 Optimization

The loss function (6) is non-convex for θ but convex for β when σ and α are fixed, as described in the
following theorem.
Theorem 1. The loss function ℓ(θ | DN ) is convex with a Lipschitz continuous gradient for β. In particular,
if SN := 1

N

∑N
n=1XnX

⊤
n is positive definite, ℓ(θ | DN ) is strongly convex for β.

The proof is given in Appendix B. Using this theorem, we develop a problem-specific optimization method
based on the block coordinate descent method. This method allows us to separate the optimization problem
into convex and non-convex and take advantage of the convenient property described in Theorem 1.

The update algorithm is summarized in Algorithm 1. We update β, σ, and α alternately. First, we fix (σ, α)
and optimize β. We employ the Majorization-Minimization (MM) algorithm using the Taylor expansion
with acceleration techniques (Jamshidian & Jennrich, 1997; Sun et al., 2016). The derivation of this MM
algorithm is given in Appendix C. As shown in line 8 of Algorithm 1, we can rewrite the β update as
another Lasso-type problem and then use well-known software, e.g., the sklearn.linear_model package of
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Python. Next, we fix (β, α) and optimize σ, and finally fix (β, σ) and optimize α. Although we need to
consider the non-convexity for σ and α, their optimization problems are at most one variable. Hence, we
can easily use trustable software, e.g. the scipy.optimize package of Python. In this paper, we employ
the L-BFGS(-B) algorithm (Byrd et al., 1995; Zhu et al., 1997), which is an iterative method for solving
non-linear optimization problems (with bounded constraints).

Algorithm 1 guarantees convergence to a stationary point, as described in the following theorem.

Theorem 2. Let {θ(t)}t=0,1,... be a sequence of θ after updating σ in Algorithm 1. Then, every cluster point
of {θ(t)}t=0,1,... is a stationary point.

The proof is given in Appendix D. Here, we describe how to set initial values in this paper. The regression
parameter β started from the estimated coefficients of the Lasso model for the same data. Using the residuals
of its model, we initialized σ with their sample standard deviation and α with −1 or 1 corresponding to the
sign of their sample skewness.

2.4 Related Work

The most famous skew distribution is the Azzalini’s skew-normal distribution (Azzalini, 1985), implemented
in current standard scientific computing software. Many skew distributions were developed using the Azza-
lini’s basic idea (Azzalini & Capitanio, 1999; Branco & Dey, 2001; Sahu et al., 2003; Liseo & Loperfido, 2003;
González-Farías et al., 2004; Arellano-Valle & Genton, 2005; Arellano-Valle & Azzalini, 2006). The closest
method to the proposed method is Chen et al. (2014), which assumes a regression model for the location
parameter of the Azzalini’s skew-normal distribution. However, the location parameter in these skew distri-
butions is neither mean, median, nor mode; the mean, median, and mode have complicated combinations of
all the location, scale, and skewness parameters. Even if the location is modeled by X⊤β for the Azzalini’s
skew-normal distribution, it is difficult to understand the role of features. The proposed modeling makes
it easy to understand the role of features via the modeling of mode. The proposed modeling is suitable
for an interpretable one in a high-dimensional setting, but the modelings using the Azzalini’s skew-normal
distribution are not.

3 Theoretical Results

This section provides theoretical guarantees for the proposed method by non-asymptotic analysis. First, we
present some basic properties of the first, second, and third derivatives of ℓ(ψ | y) = log f(y | ψ). Next,
using them, we show that the excess risk has a quadratic margin. Finally, we show the upper bounds of the
average excess risk and the estimation error, and then we verify the favorable properties of the proposed
method. All proofs of propositions and theorems in this section are given in Appendices E, F, G, and H.

3.1 Basic Properties of Likelihood

We present some basic properties of the first, second, and third derivatives of ℓ(ψ | y). These properties are
the basis of non-asymptotic analysis.

Suppose that X = {X} is included in a bounded space of RP . We assume that the parameter spaces Ψ = {ψ}
and Θ = {θ} are bounded in the following sense. Hereafter, we suppose that the following assumption is
satisfied.

Assumption 1. For some positive constant K, we suppose

Ψ ⊂ Ψ̃ = {ψ : |µ| ≤ K, 1/K ≤ |σ| ≤ K, |α| ≤ K}, (8)
Θ ⊂ Θ̃ = {θ : ψ(X) ∈ Ψ̃ for any X ∈ X}. (9)

The true parameters ψ0 and θ0 are included in Ψ and Θ, respectively.
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Let the score function (first derivative) of l(ψ | y) := log f(y | ψ) be denoted by

sψ(y) := ∂

∂ψ
l(ψ | y). (10)

Proposition 1. We have

∥sψ(y)∥∞ ≤ C1,2|y|2 + C1,1|y|+ C1,0, (11)

where C1,2, C1,1, C1,0 are some positive constants.

The score functions of regression parameters µ and σ are bounded by the first and second-order polynomials
of |y|. This is the same property as the normal linear regression model. We may expect that the score
function of skew parameter α is bounded by a third-order polynomial of |y| because the skewness usually
depends on the third moment. However, it is bounded by a second-order polynomial of |y|. Proposition 1
implies that the proposed model is easy to treat α as well as σ.

Let the Fisher information matrix of fψ(y) := f(y | ψ) be denoted by

I(ψ) := Efψ

[
− ∂2

∂ψ∂ψ⊤ l(ψ | y)
]
. (12)

Proposition 2. Let ψ0(X) := [X⊤β0, σ0, α0]⊤. The Fisher information matrix I(ψ0(X)) is uniformly
positive definite for all X, in other words, infX Λmin(I(ψ0(X))) > 0, where Λmin(A) is the smallest eigen-
value of A.

If the model is simple, we can easily prove a similar proposition to Proposition 2 because the Fisher in-
formation matrix is easily calculated. However, the model (1) is not simple, and it is not easy to verify
Proposition 2, as seen in a devised proof of Appendix E.3. We found that the constant factor ρα proposed
by Fujisawa & Abe (2015) does not satisfy Proposition 2 at α = 0. This is why a constant factor ρα is
slightly modified, as described in Remark 1, and then we can prove Proposition 2.
Proposition 3. There exists some function G3(y) such that

sup
(i1,i2,i3)∈{1,2,3}3

∣∣∣∣ ∂3

∂ψi1∂ψi2∂ψi3

l(ψ | y)
∣∣∣∣ ≤ G3(y),

C3 := sup
X

∫
G3(y)f(y | ψ0(X))dy <∞. (13)

3.2 Excess Risk and Margin

Let the Kullback-Leibler divergence between fψ0 and fψ, which is called the excess risk, be denoted by

E(ψ | ψ0) := Efψ0

[
log

fψ0(y)
fψ(y)

]
. (14)

Proposition 4. For any ϵ > 0, there exists some constant δϵ > 0 such that

inf
X

inf
∥ψ−ψ0(X)∥2>ϵ

E(ψ | ψ0(X)) ≥ δϵ. (15)

Proposition 4 shows the identifiability condition, which is usually necessary to estimate the true parameter
by a statistical method correctly. The identifiability condition is often assumed implicitly, but it is precisely
verified here because the model (1) is complicated due to skew noise.
Theorem 3. There exists some constant C > 0 such that

inf
X

E
(
ψ | ψ0(X)

)
∥ψ −ψ0(X)∥2

2
≥ 1
C2 . (16)

Theorem 3 says that the proposed method has a quadratic margin, implying the error E
(
ψ | ψ0(X)

)
presents

a sharper behavior around ψ0(X) than the well-used squared error ∥ψ −ψ0(X)∥2
2 up to a constant factor.
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3.3 Convergence Rate

The following is a well-used condition in non-asymptotic analysis for the ℓ1 penalized method, which is called
the restricted eigenvalue condition.
Assumption 2. Let S0 := {p : β0

p ̸= 0} and SC
0 := {1, . . . , P}\S0. With L > 1, define the (L,S0)-restricted

eigenvalue constant by

κ̃2(L,S0) := inf
∥βSC

0
∥1≤L∥βS0 ∥1

β⊤SNβ

∥β∥2
2
. (17)

We set L = 6 and assume 0 < κ̃(L,S0) ≤ 1.

The squared loss of the simple linear regression model for a low-dimensional case is strongly convex be-
cause the Hessian matrix of the squared loss concerning the regression parameter vector β is SN and it is
positive definite. This property provides the strength of the least squared estimator. However, for the high-
dimensional case N < P , SN may not be of full rank; in other words, its smallest eigenvalue may be zero,
and then the squared loss is not strongly convex. The non-asymptotic analysis reveals that if the smallest
eigenvalue of SN under the restricted condition ∥βSC

0
∥1 ≤ L∥βS0∥1 is positive, such as Assumption 2, we can

show theoretical guarantees of the ℓ1 regularized estimator (Bühlmann & Van De Geer, 2011; Hastie et al.,
2015).

In Assumption 2, we set L = 6 to simplify later notations. We can replace it with any constant greater
than one by adjusting how to choose the regularization parameter. Based on this assumption, we have the
following important theorem.
Theorem 4. Suppose that Assumption 2 is satisfied. Fix X1, . . . ,XN . Let the average excess risk and the
empirical process of the loss function (6) be denoted by

Ē(θ | θ0) := 1
N

N∑
n=1
E
(
ψ(Xn) | ψ0(Xn)

)
, (18)

VN (θ) := 1
N

N∑
n=1

(l (ψ(Xn) | yn)− E [l (ψ(Xn) | y)]) . (19)

Let ∥θ∥∗ := ∥β∥1 + ∥[σ, α]⊤∥2. Fix γ ≥ 1 and λ0 > 0. Let

J :=

{∣∣VN (θ)− VN

(
θ0)∣∣

∥θ̂ − θ0∥∗ ∨ λ0
≤ γλ0

}
. (20)

If the regularization parameter λ is chosen to satisfy λ ≥ 2γλ0, then we have on J

Ē(θ̂ | θ0) + 2(λ− γλ0)∥β̂ − β0∥1 ≤ 9(λ+ γλ0)2C2κ2s0, (21)

where C is the constant defined in Theorem 3, κ−1 := κ̃(L,S0), and s0 := #S0.

Suppose

λ0 = O

(
(logN)2

√
log(N ∨ P )

N

)
. (22)

This order is necessary to prove Theorem 5 and is relevant to the following two corollaries. From Theorem 4,
we can obtain convergence rates regarding the average excess risk Ē(θ̂ | θ0) and the estimation error of β̂.
Corollary 1. Suppose λ = 2γλ0 with (22) and the same assumptions as in Theorem 4. Then, we have

Ē(θ̂ | θ0) = OP

(
s0(logN)4 log(N ∨ P )

N

)
, (23)

∥β̂ − β0∥1 = OP

(
s0(logN)2

√
log(N ∨ P ))

N

)
. (24)
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The orders of the average excess risk (23) and the estimation error (24) are (logN)4 and (logN)2 larger than
those of the ordinary Lasso, respectively. These are the same as in some well-known complicated models,
such as the linear mixed effects models with ℓ1 regularization (Schelldorfer et al., 2011). A similar result is
also seen in Corollary 2.

3.4 Feature Selection

When the non-zero coefficients are sufficiently large, which is the so-called beta-min condition (Bühlmann,
2012), we can show that the estimated set of non-zero coefficients Ŝ := {p : β̂p ̸= 0} includes the true set of
non-zero coefficients S0 with high probability.
Corollary 2. Suppose λ = 2γλ0 with (22) and the same assumptions as in Theorem 4. Suppose the non-zero
coefficients of β0 are sufficiently large so that

min
p∈S0
|β0

p | ≫ O

(
s0(logN)2

√
log(N ∨ P ))

N

)
. (25)

Then, with high probability, it holds Ŝ ⊇ S0.

As in Corollary 1, the order in (25) is (logN)2 larger when compared to the ordinary Lasso.

3.5 Reasonable Success Probability

The statements after Section 3.3 hold when the event J in (20) occurs. Finally, we show that the event J
occurs with high probability.
Theorem 5. Suppose λ = 2γλ0 with (22) and the same assumptions as in Theorem 4. The event J occurs
with probability at least 1− δ, where with some positive constants C4,1, C4,2 > 0,

δ := C4,1 exp

(
−γ

2(logN)2 log(N ∨ P )
C2

4,2

)
+ 1
N
. (26)

4 Experimental Results

This section demonstrates the performance of the proposed method with synthetic and real-world datasets.

4.1 Skew-Noises with Mode Zero

The simulation model is y = X⊤β0 + e. The feature vector Xn ∈ RP =100 was generated randomly with
each element following the continuous uniform distribution on [−1, 1] ∈ R. The true parameter was set
to β0 = [1.0,−0.9, 0.8, ...,−0.1, 0, ..., 0]⊤ ∈ R100 with 10% non-zero coefficients of varying magnitudes and
signs. Let the random variable following (1) be denoted by SN (µ, σ, α). Let the log-normal variable be
denoted by lnN (µ, σ). The noise e was generated from four types of distribution: SN (0, 1, 1) (Data 1),
SN (0, 1, 2) (Data 2), lnN (0, 0.5) − exp(−0.52) (Data 3), and lnN (0, 1) − exp(−12) (Data 4). Data 3
and Data 4 are the log-normal variable adjusted to mode zero. These are misspecified models. The noise
distributions are depicted in the first column of Figure 2.

We compared the proposed method with the ordinary Lasso (Tibshirani, 1996) (“Lasso”), the ordinary Lasso
applied to the Yeo-Johnson transformed output (“Lasso+YJ”), and another skew-noise Lasso (Chen et al.,
2014) (“Chen+”) that assumes a regression model for the location parameter of the Azzalini’s skew-normal
distribution. The tuning power parameter in the Yeo-Johnson transformation was determined by maximum
likelihood estimation. The sample size was set to N = 500. We conducted 50 experiments with different
random seeds. For each trial, the regularization coefficient λ was adjusted by 5-fold cross-validation based
on the log-likelihood loss, in which the numbers of training and validation data for each trial were set to 400
and 100, respectively.
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Figure 2: Comparison of four methods with four different types of simulation noises in terms of five evaluation
measures. From top to bottom, each row results from Data 1, Data 2, Data 3, and Data 4, respectively. The
first column plots the probability density function of the noise. The second through fifth columns are box
plots of some scores. The last column is the mean F1 score for each threshold (horizontal axis). In all figures,
the proposed method, Chen+ (Chen et al., 2014), Lasso, and Lasso with the Yeo-Johnson transformation
are in red, green, blue, and yellow, respectively. All experiments were conducted for 50 runs with different
random seeds.

Five evaluation measures are shown in the second through six columns of Figure 2. The second column is
the Mean Squared Error (MSE) for the prediction: MSE(ŷ) :=

∑
n:test(ŷn − y0

n)2/N , where the MSE was
estimated from 2,000 test data generated under the same conditions. The third column is the MSE of the
estimated coefficients: MSE(β̂) := ∥β̂−β0∥2

2/P . Since “Lasso+YJ” is based on the Yeo-Johnson transformed
output, the resulting estimator β̂ does not generally converge to β0. Therefore, MSE(β̂) is expected to be
inferior to other methods. The fourth column is a measure for sparsity by Hurley & Rickard (2009) as the
most robust measure founded on a weighted sum of estimated all coefficients for evaluating sparsity. The
measure range is [0, 1] ∈ R; as a coefficient vector is sparser, its value is higher (see Appendix I.1 for details).
The fifth column is the size of the estimated model, which is defined as the number of non-zero coefficients:
Model Size(β̂) := #{β̂p ̸= 0 : 1 ≤ p ≤ P}. The last column is the F1 score (Van Rijsbergen, 2004) defined
by

F1 Score := 2× Precision× Recall
Precision + Recall

, (27)

where Precision and Recall are defined by TP/(TP + FP) and TP/(TP + FN), respectively, and TP, FP,
and FN mean the true positive, false positive, and false negative, respectively. The positivity (negativity)
of the estimated coefficient is defined by |β̂p|/∥β̂∥∞ > δT for a threshold δT ∈ [0, 1] (horizontal axis). As
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Figure 3: Box plots of MSEs for Data 2 with P = 100 fixed and various sample sizes N . The vertical axis is
a logarithmic scale. The horizontal axis is the sample size N . All experiments were conducted for 100 runs
with different random seeds.

the feature selection is more successful at each threshold, the F1 score is larger. This means that a better
method presents an upper curve.

As a result of Figure 2, the proposed method outperformed the comparative methods in all the cases,
indicating better prediction and feature selection with a smaller number of features. We see that Chen+
is inferior to Lasso in Data 3. This might be because the Azzalini’s skew-normal distribution could not
adequately model such skewed noise.

Figure 3 shows box plots of MSEs for 100 trials regarding Data 2 with P = 100 fixed and various sample
sizes N . The regularization coefficient λ was tuned by 5-fold cross-validation with 80% training and 20%
validation data. The Lasso is a benchmark against the proposed method. The proposed method presented
stable behaviors for N < P as well as N > P .

In Appendix I.2, we also show the results with a linear regression model without regularization, assuming the
Azzalini’s skew-normal distribution, skew-t distribution, and skew-Cauchy distribution for noise (Arellano-
Valle & Azzalini, 2013; Azzalini & Arellano-Valle, 2013; Azzalini & Salehi, 2020), on Data 1 through Data 4.

4.2 Normal and Azzalini’s Skew-Noises

We explore both normal and Azzalini’s skew-normal noises under the same conditions as in Section 4.1.
Let the random variable following the Azzalini’s skew-normal be denoted by SNA(µ, σ, α). The noise
e was generated from additional four types of distribution: N (0, 1) (Data 5), SNA(0, 1, 2) (Data 6),
SNA(0, 1, 4) (Data 7), and SNA(0, 1, 6) (Data 8). Notably, the Azzalini’s skew-normal noise is not
mode-invariant, i.e., its location parameter does not coincide with its mode, which significantly violates
the assumptions of the proposed method.

The results are shown in Figure 4. In Data 5, the four methods presented similar behaviors, as expected.
In Data 6, Data 7, and Data 8, the proposed method outperformed the other methods with the difference
becoming more significant as α increased. Surprisingly, Chen+ presented similar results to Lasso, although
Chen+ was slightly worse. This would be because the objective function of Chen+ is hard to optimize due
to troublesome non-convexity with complicated combinations of all parameters. Similarly, for Data 3 (skew
data), Chen+ was worse than Lasso. In comparison, the proposed method can present stable behaviors
because the objective function is convex for many variables β ∈ RP , although it is non-convex for only two
variables σ, α ∈ R, as shown in Theorem 1.

4.3 Real-World Medical Data

We applied the proposed method to the following two medical datasets: PDGFR (Platelet Derived Growth
Factor Receptor) consists of N = 79 samples and P = 320 features, where the outcome is the ability to

10
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Figure 4: Comparison of four methods with four different types of simulation noises in terms of five evaluation
measures. From top to bottom, each row results from Data 5, Data 6, Data 7, and Data 8, respectively. The
first column plots the probability density function of the noise. The second through fifth columns are box
plots of some scores. The last column is the mean F1 score for each threshold (horizontal axis). In all figures,
the proposed method, Chen+ (Chen et al., 2014), Lasso, and Lasso with the Yeo-Johnson transformation
are in red, green, blue, and yellow, respectively. All experiments were conducted for 50 runs with different
random seeds.

inhibit PDGFR phosphorylation (Guha & Jurs, 2004). MTP (MelTing Point) includes N = 274 samples
and P = 1142 features, where the outcome is the melting point of drug-like compounds (Karthikeyan et al.,
2005). These datasets have many features compared to their sample size and may hold skewed noise, as
described later. We compared the proposed method with “Chen+” (Chen et al., 2014), “Lasso” (Tibshirani,
1996), and “Lasso+YJ”, as in the previous section.

We used 80% of the samples for training and the remaining 20% for testing. Then, we tuned each regular-
ization coefficient λ with 5-fold cross-validation using 20% of the training samples (i.e., 16% of all samples)
as validation data. These samples were generated randomly, and 30 trials were conducted with different
random seeds. We calculated MSE(ŷ), Sparsity of β̂, and Model Size(β̂) and evaluated their performance.

Table 1 and Table 2 show the results of PDGFR and MTP, respectively, with the means and standard devi-
ations (in parentheses) of the evaluation measures. For both datasets, the proposed method simultaneously
achieved the smallest prediction error and the smallest model size. In particular, for MTP, the proposed
method reduced the model size to less than half when compared to the other methods. Regarding the resid-
uals of the test data after training with Lasso, the mean of the normalized skewness of the residuals was
−0.81 for PDGFR and 0.75 for MTP.

11
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Table 1: Results of PDGFR (N = 79, P = 320).
MSE(ŷ) Sparsity(β̂) Size(β̂)

Proposed 7.00× 10−1 (3.16 × 10−1) 9.90× 10−1 (3.16 × 10−3) 5.30× 100 (1.84 × 100)

Chen+ 10.9× 10−1 (2.54 × 10−1) 8.18× 10−1 (3.72 × 10−1) 8.17× 100 (4.82 × 100)

Lasso 7.28× 10−1 (4.79 × 10−1) 9.85× 10−1 (9.82 × 10−3) 8.90× 100 (5.57 × 100)

Lasso + YJ 12.7× 10−1 (4.22 × 10−1) 9.85× 10−1 (9.82 × 10−3) 8.93× 100 (5.57 × 100)

Table 2: Results of MTP (N = 274, P = 1142).
MSE(ŷ) Sparsity(β̂) Size(β̂)

Proposed 8.43× 10−1 (1.65 × 10−1) 9.91× 10−1 (2.05 × 10−3) 2.09× 101 (5.45 × 100)

Chen+ 10.8× 10−1 (1.88 × 10−1) 9.72× 10−1 (4.58 × 10−3) 5.93× 101 (7.47 × 100)

Lasso 23.4× 10−1 (84.9 × 10−1) 9.82× 10−1 (6.66 × 10−3) 4.25× 101 (13.9 × 100)

Lasso + YJ 11.6× 10−1 (3.84 × 10−1) 9.82× 10−1 (6.66 × 10−3) 4.25× 101 (13.9 × 100)

In Appendix I.3, we also applied the proposed method to more easily interpretable data, specifically the
Engineering Graduate Salary (EGS) prediction data (Aggarwal et al., 2016). EGS has fewer features than
the two datasets above, and the meanings of all features are specifically provided. These properties allow
us to consider the validity of the estimated active features. The result shows that the proposed method
outperformed the comparative methods and could select more reasonable features.

5 Conclusion

In this paper, we have proposed a novel sparse regression model whose noise is assumed to follow the mode-
invariant skew-normal distribution. The proposed method always models a mode regardless of skewness
and is highly adaptable and interpretable to skew noise. We have also shown that the proposed method is
straightforward to implement and optimize, and it has theoretical guarantees for the average excess risk and
the estimation error by non-asymptotic analysis. The results of numerical experiments demonstrated that
the proposed method achieved both skewness modeling and statistical interpretability simultaneously, even
for high-dimensional data, highlighting its significant effectiveness.

As a next challenge, we focus on extending to the mode-invariant skew-t distribution. To our knowledge,
no study has explicitly dealt with this distribution besides its basic idea being mentioned in Fujisawa &
Abe (2015). The first problem would be to prove the positive definiteness of the Fisher information matrix,
whose proof could be complicated, such as in the proof of Proposition 2. Its optimization algorithm could
also be problematic. However, these may be overcome in terms of t distribution being a scale mixture of
normal distribution. It is also interesting to extend from univariate to multivariate noise for some machine
learning algorithms. Fortunately, a multivariate mode-invariant skew-normal distribution has already been
proposed by Abe & Fujisawa (2019), suggesting that we could quickly tackle and formulate models.
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A Upper Bounds on |Hα(v)| and |rα(u)|

Proposition 5. We have |Hα(v)| < ρα|v|, |hα(v)| < ρα, |h′
α(v)| < ρα|α|, and |h′′

α(v)| < 3ραα
2. From

ρα < 1, we also have |Hα(v)| < |v|, |hα(v)| < 1, |h′
α(v)| < |α|, and |h′′

α(v)| < 3α2.

Proof. It holds after simple calculation that

hα(v) = d

dv
Hα(v) = ρααv√

1 + α2v2
, (28)

h′
α(v) = d2

dv2Hα(v) = ραα

(1 + α2v2) 3
2
, (29)

h′′
α(v) = d3

dv3Hα(v) = − 3ραα
3v

(1 + α2v2) 5
2
. (30)

We clearly see |hα(v)| < ρα and |h′
α(v)| < ρα|α|. Since Hα(v) =

∫ v

0 hα(v)dv, we have |Hα(v)| < ρα|v|. We
also have

|h′′
α(v)| = 3ραα

2 |αv|
(1 + α2v2) 1

2

1
(1 + α2v2)2 ≤ 3ραα

2 (31)

Proposition 6. Suppose that Assumption 1 holds. Then, r′
α(u), r′′

α(u), and r′′′
α (u) are bounded and |rα(u)|

are bounded by c|u| with some constant c.

Proof. For α = 0, since rα(u) = u, this proposition clearly holds. Hereafter, we consider the case α ̸= 0. By
differentiating u = qα(r(u)) with respect to u, we have 1 = q′

α(rα(u))r′
α(u) and then

r′
α(u) = 1

q′
α(rα(u))

= 1
1 + hα(rα(u))

. (32)

From Proposition 5, we have

0 < 1
1 + ρα

≤ r′
α(u) ≤ 1

1− ρα
. (33)

We can easily see that 1/2 < ρα < c with some constant c < 1 because ρα = 1 − (1/2) exp(−α2) and α
is bounded from Assumption 1. This implies that r′

α(u) is bounded. From rα(0) = 0, we have rα(u) =∫ u

0 r′
α(s)ds and then

|rα(u)| ≤ 1
1− ρα

|u| < c|u|. (34)

By differentiating (32) with respect to u, we have

r′′
α(u) = − h′

α(rα(u))r′
α(u)

{1 + hα(rα(u))}2 = −h′
α(rα(u)){r′

α(u)}3. (35)

By differentiating the above with respect to u, we have

r′′′
α (u) = −h′′

α(rα(u)){r′
α(u)}4 − 3h′

α(rα(u)){r′
α(u)}2r′′

α(u). (36)

From Proposition 5 and the boundedness of α, we can easily see r′′
α(u) and r′′′

α (u) are bounded.

Proposition 7. Fix α ̸= 0. For the definition in (4), the upper bounds of
∣∣ ∂

∂αHα(v)
∣∣, ∣∣∣ ∂2

∂α2Hα(v)
∣∣∣, and∣∣∣ ∂3

∂α3Hα(v)
∣∣∣ can be described by a linear function of |v|. They can also be described by a linear function of

|u|. For α = 0, the upper bounds of
∣∣ ∂

∂αHα(v)
∣∣, ∣∣∣ ∂2

∂α2Hα(v)
∣∣∣, and

∣∣∣ ∂3

∂α3Hα(v)
∣∣∣ can be described by a quadratic

function of |v|, a constant, and a quartic function of |v|, respectively. They can also be described by a
quadratic function of |u|, a constant, and a quartic function of |u|, respectively.
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Proof. Analytically, for fixed α ̸= 0,

∂

∂α
Hα(v) =

(
α exp(−α2)

ρα
+ 1
α
√

1 + α2v2

)
Hα(v)

≤
(
α exp(−α2)

ρα
+ 1
α

)
Hα(v), (37)

∂2

∂α2Hα(v) =
(

(ρα − 2α2) exp(−α2)
ρ2

α

− v2

(1 + α2v2) 3
2
− 1
α2
√

1 + α2v2

)
Hα(v)

+
(
α exp(−α2)

ρα
+ 1
α
√

1 + α2v2

)2

Hα(v)

≤

(∣∣ρα − 2α2
∣∣ exp(−α2)
ρ2

α

+ 2
√

3
9α2 + 1

α2

)
Hα(v)

+
(
α exp(−α2)

ρα
+ 1
α

)2

Hα(v), (38)

∂3

∂α3Hα(v) =
(
−2α(ρα − 2α) exp(−α2)

ρ2
α

− 2α(ρα − 2α2) exp(−2α2)
ρ3

α

− 2α(1 + ρα) exp(−α2)
ρ2

α

)
Hα(v)

+
(

3αv4

(1 + α2v2) 5
2

+ v2

α(1 + α2v2) 3
2

+ 2
α3
√

1 + α2v2

)
Hα(v)

+ 3
(

(ρα − 2α2) exp(−α2)
ρ2

α

− v2

(1 + α2v2) 3
2
− 1
α2
√

1 + α2v2

)(
α exp(−α2)

ρα
+ 1
α
√

1 + α2v2

)
Hα(v)

+
(
α exp(−α2)

ρα
+ 1
α
√

1 + α2v2

)3

Hα(v)

≤
(

2α|ρα − 2α| exp(−α2)
ρ2

α

+ 2α|ρα − 2α2| exp(−2α2)
ρ3

α

+ 2α(1 + ρα) exp(−α2)
ρ2

α

)
Hα(v)

+ 1
α3

(
48
√

5
125

+ 2
√

3
9

+ 2
)
Hα(v)

+ 3
(
|ρα − 2α2| exp(−2α2)

ρ2
α

+ 2
√

3
9α2 + 1

α2

)(
α exp(−2α2)

ρα
+ 1
α

)
Hα(v)

+
(
α exp(−α2)

ρα
+ 1
α

)3

Hα(v). (39)

Therefore, since |Hα(v)| < ρα|v| from Proposition 5, it holds that the upper bounds of
∣∣ ∂

∂αHα(v)
∣∣,∣∣∣ ∂2

∂α2Hα(v)
∣∣∣, and

∣∣∣ ∂3

∂α3Hα(v)
∣∣∣ can be described by a linear function of |v|. Furthermore, from (34), their

upper bounds can also be described by a linear function of |u|.

Next, we consider the case α → 0. Let g(x) :=
√

1 + x2 − 1. Letting the m-th order derivative of g(x) be
denoted by g(m)(x), we have

g(1)(x) = x√
1 + x2

, (40)

g(2)(x) = 1
(1 + x2) 3

2
, (41)

g(3)(x) = − 3x
(1 + x2) 5

2
, (42)
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Then, it holds after simple calculations that

lim
α→0

g(αv)
α

= 0 (43)

lim
α→0

∂

∂α

g(αv)
α

= lim
α→0

(
−g(αv)

α2 + v · g(1)(αv)
α

)
= 1

2
v2 (44)

lim
α→0

∂2

∂α2
g(αv)
α

= lim
α→0

(
2g(αv)
α3 − 2v · g(1)(αv)

α2 + v2 · g(2)(αv)
α

)
= 0 (45)

lim
α→0

∂3

∂α3
g(αv)
α

= lim
α→0

(
−6g(αv)

α4 + 6v · g(1)(αv)
α3 − 3v2 · g(2)(αv)

α2 + v3 · g(3)(αv)
α

)
= −3

4
v4 (46)

It also holds that

lim
α→0

ρα = lim
α→0

(
1− 1

2
exp(−α2)

)
= 1

2
(47)

lim
α→0

∂

∂α
ρα = lim

α→0
α exp(−α2)

= 0 (48)

lim
α→0

∂2

∂α2 ρα = lim
α→0

(1− 2α2) exp(−α2)

= 1 (49)

lim
α→0

∂3

∂α3 ρα = lim
α→0

2α(2α2 − 3) exp(−α2)

= 0 (50)

Note that Hα(v) = ρα
g(αv)

α . Using from (43) through (50), we have

lim
α→0

∂

∂α
Hα(v) = lim

α→0

(
∂

∂α
ρα ·

g(αv)
α

+ ρα ·
∂

∂α

g(αv)
α

)
= 1

4
v2 (51)

lim
α→0

∂2

∂α2Hα(v) = lim
α→0

(
∂2

∂α2 ρα ·
g(αv)
α

+ 2 · ∂
∂α

ρα ·
∂

∂α

g(αv)
α

+ ρα ·
∂2

∂α2
g(αv)
α

)
= 0 (52)

lim
α→0

∂3

∂α3Hα(v) = lim
α→0

(
∂3

∂α3 ρα ·
g(αv)
α

+ 3 · ∂
2

∂α2 ρα ·
∂

∂α

g(αv)
α

+ 3 · ∂
∂α

ρα ·
∂2

∂α2
g(αv)
α

+ ρα ·
∂3

∂α3
g(αv)
α

)
= 3

2
v2 − 3

8
v4 (53)

Therefore, the upper bounds of
∣∣ ∂

∂αHα(v)
∣∣, ∣∣∣ ∂2

∂α2Hα(v)
∣∣∣, and

∣∣∣ ∂3

∂α3Hα(v)
∣∣∣ as α → 0 can be described by a

quadratic function of |v|, a constant, and a quartic function of |v|, respectively. From (34), their upper
bounds can also be described by a quadratic function of |u|, a constant, and a quartic function of |u|,
respectively.
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Proposition 8. Fix α ̸= 0. For the definition in (4), the upper bounds of
∣∣ ∂

∂αrα(u)
∣∣, ∣∣∣ ∂2

∂α2 rα(u)
∣∣∣, and∣∣∣ ∂3

∂α3 rα(u)
∣∣∣ can be described by a linear function of |u|, a quadratic function of |u|, and a cubic function of

|u|, respectively. For α = 0, the upper bounds of
∣∣ ∂

∂αrα(u)
∣∣, ∣∣∣ ∂2

∂α2 rα(u)
∣∣∣, and

∣∣∣ ∂3

∂α3 rα(u)
∣∣∣ can be described by

a quadratic function of |u|, a quartic function of |u|, and a sextic function of |u|, respectively.

Proof. Using the Euler’s chain rule,

∂

∂α
rα(u) = −r′

α(u) ∂
∂α

Hα(v), (54)

∂2

∂α2 rα(u) = r′′
α(u)

(
∂

∂α
Hα(v)

)2

− r′
α(u) ∂

2

∂α2Hα(v), (55)

∂3

∂α3 rα(u) = −r′′′
α (u)

(
∂

∂α
Hα(v)

)3

+ 3r′′
α(u) ∂

∂α
Hα(v) · ∂

2

∂α2Hα(v)− r′
α(u) ∂

3

∂α3Hα(v). (56)

Therefore, from Proposition 6 and Proposition 7, the proof is complete.

B Proof of Theorem 1

Let f∗(u | α) := ϕ(rα(u)). Let l∗(α | u) := log f∗(u | α). For α = 0, since the optimization problem can be
regarded as an ordinary least squares method, this theorem clearly holds. Therefore, in the following, we
consider the case α ̸= 0. From u = (y − µ)/σ and µ = X⊤β, since

∂2

∂β∂β⊤ ℓ(θ | DN ) =− 1
N

N∑
n=1

∂2

∂β∂β⊤ l(β, σ, α |Xn, yn)

= − 1
Nσ2

N∑
n=1

XnX
⊤
n

∂2

∂u2
n

l∗(α | un), (57)

it is sufficient for Theorem 1 to verify the convexity of l∗(α | un) for un. Letting vn := rα(un), we have

− ∂2

∂u2
n

l∗(α | un) = 1
2
∂2

∂u2
n

r2
α(un)

= (r′
α(un))2 + rα(un)r′′

α(un)

= 1 + hα(vn)− vnh
′
α(vn)

(1 + hα(vn))3 , (58)

where the last equality holds from the calculation in the proof of Proposition 6.

Since |hα(vn)| < ρα < 1 from Proposition 5, the denominator of (58) is bounded by

0 < (1− ρα)3
< (1 + hα(vn))3

< (1 + ρα)3
< 8. (59)

The numerator of (58) is obviously 1 for vn = 0. Consider the case vn ̸= 0. The numerator of (58) is
expressed as

1 + hα(vn)− vnh
′
α(vn) = 1− v2

n

(
hα(vn)
vn

)′

= 1− ρα

(
αvn√

1 + α2v2
n

)3

, (60)

and then

0 < 1− ρα <1 + hα(vn)− vnh
′
α(vn) < 1 + ρα < 2. (61)
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Combining (58), (59), and (61), we have

0 < 1− ρα

(1 + ρα)3 <
1 + hα(vn)− vnh

′
α(vn)

(1 + hα(vn))3 <
1 + ρα

(1− ρα)3 <∞. (62)

Thus, there exist some constants CL := (1− ρα)/(1 + ρα)3 > 0 and CU := (1 + ρα)/(1− ρα)3 > 0, satisfying

CL

Nσ2

N∑
n=1

X⊤
n Xn ≺

∂2

∂β∂β⊤ ℓ(θ | DN ) ≺ CU

Nσ2

N∑
n=1

X⊤
n Xn. (63)

From Assumption 1, α is bounded and then we see that CL is bounded above zero and CU is bounded below.
In particular, if SN is positive definite, the minimum eigenvalue of ∂2

∂β∂β⊤ ℓ(θ | DN ) is positive from (63).
Hence, ℓ(θ | DN ) is strongly convex for β. The proof is complete.

C Derivation of MM Algorithm

Consider fixing (σ, α) and optimizing β. According to Fujisawa & Abe (2015), the function rα corresponding
to (4) is

rα(u) =

{
1

α(1−ρ2
α)

(
αu+ ρα − ρα

√
(αu+ ρα)2 + (1− ρ2

α)
)

(α ̸= 0)
u (α = 0)

. (64)

For α ̸= 0, the optimize problem (7) is rewritten as

arg min
β

− 1
N

N∑
n=1

log f(yn |X⊤
n β, σ, α) + λ∥β∥1

= arg min
β

1
2N

N∑
n=1

(
zn − ραwn

α(1− ρ2
α)

)2

+ λ∥β∥1

= arg min
β

1
2N

N∑
n=1

z2
n − 2ραznwn + ρ2

α(z2
n + 1− ρ2

α)
α2(1− ρ2

α)2 + λ∥β∥1

= arg min
β

1
2N

N∑
n=1

(1 + ρ2
α)z2

n − 2ραznwn

α2(1− ρ2
α)2 + λ∥β∥1

= arg min
β

1 + ρ2
α

2Nα2(1− ρ2
α)2

N∑
n=1

(
z2

n −
2ρα

1 + ρ2
α

znwn

)
+ λ∥β∥1, (65)

where zn(β) := α
σ (yn −X⊤

n β) + ρα and wn(β) :=
√
z2

n + 1− ρ2
α.

Note that ∂
∂β zn = −α

σXn and ∂
∂βwn = −α

σ
zn

wn
Xn. Letting l̂n(β) := z2

n −
2ρα

1+ρ2
α
znwn, we have

∂

∂β
l̂n(β) = −2α

σ
znXn + 2αρα

σ(1 + ρ2
α)

(
wn + z2

n

wn

)
Xn

= −2α
σ
znXn + 2αρα

σ(1 + ρ2
α)

(
2wn −

1− ρ2
α

wn

)
Xn (66)

∂2

∂β∂β⊤ l̂n(β) = 2α2

σ2 XnX
⊤
n −

2α2ρα

σ2(1 + ρ2
α)

(
2 + 1− ρ2

α

w2
n

)
zn

wn
XnX

⊤
n . (67)

Since
(

2 + 1−ρ2
α

w2
n

)
zn

wn
→ ±2 as zn → ±∞ and

∂

∂zn

(
2 + 1− ρ2

α

w2
n

)
zn

wn
= 3(1− ρ2

α)2

w5
n

> 0, (68)
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we have
∣∣∣(2 + 1−ρ2

α

w2
n

)
zn

wn

∣∣∣ < 2. Then, using 0 ≤ ρα

1+ρ2
α
< 1

2 from 0 ≤ ρα < 1, we have from (67),

0 ≺ ∂2

∂β∂β⊤ l̂n(β) ≺ 4α2

σ2 XnX
⊤
n . (69)

From (65), (66), and (67), we can construct a surrogate function and update β(t) at the t-th iteration based
on the second-order Taylor expansion as follows (see Lemma 12 of Sun et al. (2016) for details):

β(t+1) = arg min
β

1 + ρ2
α

2Nα2(1− ρ2
α)2

N∑
n=1

 ∂l̂n
∂β

∣∣∣∣∣
β=β(t)

(β − β(t)) + 2α2

σ2 (β − β(t))⊤XnX
⊤
n (β − β(t))

+ λ∥β∥1

= arg min
β

1 + ρ2
α

N(1− ρ2
α)2σ2

N∑
n=1

(
ỹn −X⊤

n β
)2 + λ∥β∥1, (70)

where ỹn := X⊤
n β

(t) + σ
2α

(
z

(t)
n − ρα

1+ρ2
α

(
w

(t)
n + z(t)2

n

w
(t)
n

))
with z

(t)
n := zn(β(t)) and w

(t)
n := wn(β(t)).

For α = 0, the optimize problem (7) is rewritten as the ordinary Lasso, i.e.,

arg min
β

1
2Nσ2

N∑
n=1

(
yn −X⊤

n β
)2 + λ∥β∥1. (71)

D Proof of Theorem 2

First, we fix (σ, α) and consider the convergence of the MM algorithm for β. From Theorem 1, the loss
function ℓ(θ | DN ) is convex with L-Lipschitz continuous gradient for β. From Section 2.2 of Mairal (2013),
the surrogate function (70) is a first-order surrogate near β(t) because it belongs to a quadratic surrogate
class (or, including the ℓ1 regularization term, it belongs to a proximal gradient surrogate class). Then, from
Proposition 2.2 of Mairal (2013), we have for any t ≥ 1 and some positive constant R,

ℓ̃(β(t), σ, α)− ℓ̃(β∗, σ, α) ≤ 2LR2

t+ 2
, (72)

where ℓ̃(θ) := ℓ(θ | DN )+λ∥β∥1 and β∗ is a minimizer of ℓ̃ with fixed (σ, α). Hence, it holds that β(t) → β∗

as t→∞.

Next, we regard Algorithm 1 as the block coordinate descent (BCD) method for the three blocks (β, σ, α)
and consider its convergence based on Theorem 4.1 (c) of Tseng (2001). When using the cyclic rule (see
Section 2 of Tseng (2001)) to update the BCD method for B blocks, Theorem 4.1 (c) of Tseng (2001) states
the following.

Theorem 4.1 (c) of Tseng (2001). Assume that the level set Θ0 :=
{
θ | ℓ̃(θ | DN ) ≤ ℓ̃(θ(0) | DN )

}
is

compact and that ℓ̃ is continuous on Θ0. If ℓ̃(θ1, . . . ,θB) has at most one minimum in θb for b = 2, . . . , B−1,
then every cluster point θ† of {θ(t)}t:=(B−1) mod B is a coordinatewise minimum point of ℓ̃. In addition, if ℓ̃
is regular at θ†, then θ† is a stationary point of ℓ̃.

We assume that there always exists (yn,Xn) ∈ DN such that yn −X⊤
n β > 0 after updating β by the MM

algorithm, and also, there always exists (yn,Xn) ∈ DN such that yn −X⊤
n β < 0. Under this assumption, it

holds that ℓ̃(θ | DN )→∞ as σ ↓ 0, σ →∞, α→ −∞, or α→∞.

Let domℓ and dom ℓ̃ be the effective domain of ℓ and ℓ̃, respectively. We can see that ℓ̃(θ | DN ) is continuous
in dom ℓ̃ and the level set Θ0 is compact. From Lemma 3.1 of Tseng (2001), ℓ̃ is regular at any θ ∈ dom ℓ̃
since dom ℓ is open and ℓ is Gâteaux-differentiable on dom ℓ. Therefore, from Theorem 4.1 (c) of Tseng
(2001), if ℓ̃(θ | DN ) has at most one minimum in σ, then Theorem 2 holds. We will prove that this necessary
condition holds.

20



Under review as submission to TMLR

Let χ(u) := urα(u)r′
α(u). We have

χ′(u) = rα(u)r′
α(u) + u (r′

α(u))2 + urα(u)r′′
α(u)

= rα(u)r′
α(u) + u

(
(r′

α(u))2 + rα(u)r′′
α(u)

)
. (73)

Since r′
α(u) > 0 from (33) and rα(0) = 0 from (64), it holds that

sgn(rα(u)r′
α(u)) = sgn(r(u))

= sgn(u). (74)

Since (r′
α(u))2 + rα(u)r′′

α(u) > 0 from (58) and (62), it holds that

sgn
(
u
(

(r′
α(u))2 + rα(u)r′′

α(u)
))

= sgn(u). (75)

Hence, we have

sgn(χ′(u)) = sgn(u). (76)

Let un := yn−X⊤
n β

σ . For yn−X⊤
n β > 0, un ∈ (0,∞) decreases monotonically as σ increases. Since χ′(un) > 0

for un ∈ (0,∞) from (76), χ(un) is a strictly decreasing function for σ. For yn −X⊤
n β < 0, un ∈ (−∞, 0)

increases monotonically as σ increases. Since χ′(un) < 0 for un ∈ (−∞, 0) from (76), χ(un) is also a strictly
decreasing function for σ. For yn −X⊤

n β = 0, χ(un) = χ(0) = 0.

Thus, ∂
∂σ ℓ(θ | DN ) is a strictly increasing function for σ, because

∂

∂σ
ℓ(θ | DN ) = − 1

N

N∑
n=1

∂

∂σ
l(θ |Xn, yn)

= 1
Nσ

N∑
n=1

(1− unrα(un)r′
α(un))

= 1
Nσ

(
N −

N∑
n=1

χ(un)

)
. (77)

Moreover, there exists only one σ(=: σ̃) satisfying
∑N

n=1 χ(un) = N , because

lim
σ↓0

N∑
n=1

χ(un) = lim
un→−∞

∑
un<0

χ(un)︸ ︷︷ ︸
→∞

+ lim
un→∞

∑
un>0

χ(un)︸ ︷︷ ︸
→∞

=∞, (78)

lim
σ→∞

N∑
n=1

χ(un) = lim
un↑0

∑
un<0

χ(un)︸ ︷︷ ︸
→0

+ lim
un↓0

∑
un>0

χ(un)︸ ︷︷ ︸
→0

= 0. (79)

σ̃ is also the only solution satisfying ∂
∂σ ℓ(θ | DN ) = 0 and the only minimum of ℓ(θ | DN ). The proof is

complete.

Note that from Theorem 1, if SN is positive definite, ℓ(θ | DN ) is strongly convex for β and has only one
minimum in β. In this case, σ can be optimized first by swapping lines 2 to 9 and line 10 in Algorithm 1,
and then every cluster point in a sequence of θ after updating β is a stationary point.
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E Proof of Propositions

E.1 Preliminary Propositions

Proposition 9. The M -th order moment of U ∼ f∗(u | α) is finite. The M -th order moment of Y ∼ f(y |
X⊤β, σ, α) is also finite.

Proof. From Proposition 5, it holds that

EU∼f∗ [Um] =
∫
umϕ (rα(u)) du

=
∫

(v +Hα(v))mϕ(v)(1 + hα(v))dv

≤
∫
|v +Hα(v)|m|1 + hα(v)|ϕ(v)dv

≤
∫

(|v|+ |Hα(v)|)m(1 + |hα(v)|)ϕ(v)dv

≤
∫

(|v|+ ρα|v|)m(1 + ρα)ϕ(v)dv

= (1 + ρα)m+1
∫
|v|mϕ(v)dv

= (1 + ρα)m+1EV ∼ϕ [|V |m] <∞. (80)

Furthermore, since y = σu+ µ, it obviously holds that

EY ∼f [Y m] = EU∼f∗

[
(σU +X⊤β)m

]
=

m∑
k=0

(
m

k

)
σk
(
X⊤β

)m−k EU∼f∗

[
Uk
]
<∞. (81)

Proposition 10. Suppose that Assumption 1 is satisfied. Then, the third-order derivative of the log-likelihood
function l(θ |X, y), more precisely,

∣∣∣ ∂3

∂θi1 ∂θi2 ∂θi3
l(θ |X, y)

∣∣∣ for any (i1, i2, i3) ∈ {1, . . . , P + 2}3 are bounded
by a polynomial of |y|.

Proof. The scores of the log-likelihood function l(θ |X, y) is

∂

∂β
l(θ |X, y) = ∂

∂u

∂u

∂µ

∂µ

∂β
l∗(α | u)

= 1
σ
rα(u)r′

α(u)X, (82)

∂

∂σ
l(θ |X, y) = ∂

∂u

∂u

∂σ
l∗(α | u) + ∂

∂σ
log 1

σ

= u

σ
rα(u)r′

α(u)− 1
σ
, (83)

∂

∂α
l(θ |X, y) = ∂

∂α
l∗(α | u)

= −rα(u) ∂
∂α

rα(u). (84)

The second-order derivatives of (82), (83), and (84) with respect to θ consist of

u, rα(u), r′
α(u), r′′

α(u), r′′′
α (u), ∂

∂α
rα(u), ∂2

∂α2 rα(u), ∂3

∂α3 rα(u), ∂

∂α
r′

α(u), ∂

∂α
r′′

α(u), ∂2

∂α2 r
′
α(u), (85)
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as terms involving u. From Proposition 6 and Proposition 8, the second to eighth functions of (85) are
bounded by some sextic function of u. Consider the remaining last three functions of (85). We have

∂

∂α
r′

α(u) = −r′′
α(u) ∂

∂α
Hα(v), (86)

∂

∂α
r′′

α(u) = −r′′′
α (u) ∂

∂α
Hα(v), (87)

∂2

∂α2 r
′
α(u) = r′′′

α (u)
(
∂

∂α
Hα(v)

)2

− r′′
α(u) ∂

2

∂α2Hα(v). (88)

From Proposition 6 and Proposition 8, the absolutes of the above three functions are bounded by some
quintic function of |u|. Since u = (y − µ)/σ and Assumption 1, the proof is complete.

Proposition 11. Let ξ(qα(v)) := η(v). Then, we have

EU∼f∗(u|α)[ξ(U)] = EV ∼ϕ(v)[η(V )(1 + hα(V ))]. (89)

Proof. On the basis of integration by substitution,

EU∼f0(u|α)[ξ(U)] =
∫
ξ(u)ϕ(rα(u))du

=
∫
η(v)ϕ(v)(1 + hα(v))dv

= EV ∼ϕ(v)[η(V )(1 + hα(V ))]. (90)

For a condition A, let 1{A} be the indicator function, which means 1{A} = 1 if A is true and 1{A} = 0 if
A is false.

Proposition 12. For V ∼ N (0, 1) and a sufficiently large positive constant M , it holds that

E [|V |m 1 {|V | > M}] ≤

 exp
(
−M2

2

)
(m = 0)(

Mm−1 +O
(
Mm−2)) exp

(
−M2

2

)
(m = 1, 2, 3, 4)

(91)

Proof. For m = 0,

E [1 {|V | > M}] = 2
∫ ∞

M

ϕ(v)dv

= 2
∫ ∞

0
ϕ(v +M)dv

≤ 2 exp
(
−M

2

2

)∫ ∞

0
ϕ(v)dv

= exp
(
−M

2

2

)
. (92)
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For m = 1, 2, 3, 4,

E [|V |1 {|V | > M}] = 2
∫ ∞

M

vϕ(v)dv

=
√

2
π

exp
(
−M

2

2

)
≤ exp

(
−M

2

2

)
, (93)

E
[
|V |2 1 {|V | > M}

]
= 2

∫ ∞

M

v2ϕ(v)dv

=
√

2
π
M exp

(
−M

2

2

)
+ E [1 {|V | > M}]

≤
√

2
π
M exp

(
−M

2

2

)
+ exp

(
−M

2

2

)
≤ (M + 1) exp

(
−M

2

2

)
, (94)

E
[
|V |3 1 {|V | > M}

]
= 2

∫ ∞

M

v3ϕ(v)dv

=
√

2
π
M2 exp

(
−M

2

2

)
+ 2E [|V |1 {|V | > M}]

≤
√

2
π
M2 exp

(
−M

2

2

)
+ 2 exp

(
−M

2

2

)
≤ (M2 + 2) exp

(
−M

2

2

)
, (95)

E
[
|V |4 1 {|V | > M}

]
= 2

∫ ∞

M

v4ϕ(v)dv

=
√

2
π
M3 exp

(
−M

2

2

)
+ 3E

[
|V |2 1 {|V | > M}

]
≤
√

2
π
M3 exp

(
−M

2

2

)
+ 3(M + 1) exp

(
−M

2

2

)
≤ (M3 + 3M + 3) exp

(
−M

2

2

)
. (96)

Proposition 13. For U ∼ f∗(u | α) and a sufficiently large positive constant M , it holds that

E [|U |m 1 {|U | > M}] ≤

 2 exp
(
−M2

8

)
(m = 0)

4
(
Mm−1 +O

(
Mm−2)) exp

(
−M2

8

)
(m = 1, 2, 3, 4)

(97)
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Proof. From Proposition 5, we have |qα(v)| ≤ |v| + |Hα(v)| < 2|v| and |1 + hα(v)| < 1 + |hα(v)| < 2. In
addition to this, using Proposition 11 and Proposition 12, it holds that

E [|U |m 1 {|U | > M}] = E [|qα(V )|m (1 + hα(V ))1 {|qα(V )| > M}]

≤ 2m+1E
[
|V |m 1

{
|V | > M

2

}]

=

 2 exp
(
−M2

8

)
(m = 0)

2m+1
((

M
2
)m−1 +O

((
M
2
)m−2

))
exp

(
−M2

8

)
(m = 1, 2, 3, 4)

=

 2 exp
(
−M2

8

)
(m = 0)

4
(
Mm−1 +O

(
Mm−2)) exp

(
−M2

8

)
(m = 1, 2, 3, 4)

(98)

Proposition 14. For Y ∼ f(y | ζ) and a sufficiently large positive constant M , it holds that

E [|Y |m 1 {|Y | > M}] ≤

 2 exp
(
− 1

8
(

M−K
K

)2
)

(m = 0)

4K
(
Mm−1 +O

(
Mm−2)) exp

(
− 1

8
(

M−K
K

)2
)

(m = 1, 2, 3, 4)
(99)

where K is based on the parameter space (8).

Proof. Note that |µ| ≤ K and σ ≤ K from (8). Using Proposition 13, it holds that

E [|Y |m 1 {|Y | > M}] = E [|µ+ σU |m 1 {|µ+ σU | > M}]
≤ E [(K +K |U |)m

1 {K +K |U | > M}]

= Km
m∑

i=0
mCiE

[
|U |i 1

{
|U | > M −K

K

}]

≤ 2Km exp

(
−1

8

(
M −K
K

)2
)

+ 4Km
m∑

i=1
mCi

((
M −K
K

)i−1

+O

((
M −K
K

)i−2
))

exp

(
−1

8

(
M −K
K

)2
)

=

 2 exp
(
− 1

8
(

M−K
K

)2
)

(m = 0)

4K
(
Mm−1 +O

(
Mm−2)) (− 1

8
(

M−K
K

)2
)

(m = 1, 2, 3, 4)
(100)

Proposition 15. Let the upper bound of (11) be denoted by G5(y). Let

G(y |M) := G5(y)1 {G5(y) > M} . (101)

Then, for Y ∼ f(y | ζ) and a sufficiently large positive constant M , there exist some positive constants C5,1,
C5,2, and C5,3 such that

E [G(Y |M)] ≤ C5,1M
1
2 exp(−C5,3M), (102)

E
[
G2(Y |M)

]
≤ C5,2M

3
2 exp(−C5,3M). (103)

Proof. From Proposition 1, we know

G5(y) = C1,2|y|2 + C1,1|y|+ C1,0 > M, (104)
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and then we have

|y| >
−C1,1 +

√
C2

1,1 + 4C1,2(M − C1,0)

2C1,2
≥
√
C5,4M (105)

where C5,4 is some positive constant. From Proposition 14,

E [G(Y |M)] ≤ E
[(
C1,2|Y |2 + C1,1|Y |+ C1,0

)
1

{
|Y | >

√
C5,4M

}]
≤ 4C1,2K

(√
C5,4M +O (1)

)
exp

−1
8

(√
C5,4M −K

K

)2


≤ C5,1M
1
2 exp(−C5,3M), (106)

where C5,1 and C5,2 are some positive constants.

E
[
G2(Y |M)

]
≤ E

[(
C1,2|y|2 + C1,1|y|+ C1,0

)2
1

{
|Y | >

√
C5,4M

}]
≤ 4C2

1,2K

((√
C5,4M

)3
+O (M)

)
exp

−1
8

(√
C5,4M −K

K

)2


≤ C5,2M
3
2 exp(−C5,3M), (107)

where C5,2 is some positive constant.

Proposition 16. Let G(y) be the function defined by (101). Let

F (y |M) := G(y |M) + E [G(Y |M) |X] . (108)

Let MN := 3
C5,3

logN for N ≥ exp
(

27C2
5,2

C3
5,3

)
∨
(

3C2
5,1

C5,3

) 1
4
∨ e. Then, it holds that

P

(
1
N

N∑
n=1

F (Yn |MN ) > 2 logN
N

)
≤ 1
N
. (109)

Proof. From N ≥ exp
(

27C2
5,2

C3
5,3

)
∨
(

3C2
5,1

C5,3

) 1
4
∨ e, we have

3 3
2C5,2

C
3
2
5,3

≤
√

logN ≤ 2
√

logN −
√

3C5,1√
C5,3N2

. (110)
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Therefore, using Proposition 15, it holds

P

(
1
N

N∑
n=1

F (Yn |MN ) > 2 logN
N

)
≤ P

(
1
N

N∑
n=1

(G(Yn |MN ) + E [G(Y |MN |Xn)]) > 2 logN
N

)

= P

(
1
N

N∑
n=1

G(Yn |MN ) > 2 logN
N

− 1
N

N∑
n=1

E [G(Y |MN ) |Xn]

)

≤ P

(
1
N

N∑
n=1

G(Yn |MN ) > 2 logN
N

− C5,1M
1
2

N exp(−C5,3MN )

)

= P

(
1
N

N∑
n=1

G(Yn |MN ) >
√

logN
N

(
2
√

logN −
√

3C5,1√
C5,3N2

))

≤ P

(
1
N

N∑
n=1

G(Yn |MN ) > logN
N

)

≤ E
[
G2(Y |MN )

]( N

logN

)2

≤ C5,2M
3
2

N exp(−C5,3MN )
(

N

logN

)2

= 3 3
2C5,2

C
3
2
5,3

1
N
√

logN

≤ 1
N

(111)

E.2 Proof of Proposition 1

Proof. Note that u = (y−X⊤β)/σ. This proposition is derived immediately from Assumption 1, (82), (83),
(84), Proposition 6, and Proposition 8.

E.3 Proof of Proposition 2

Proof. For simplicity of notation, let ω(v) := σ ∂
∂αHα(v). From the scores (82), (83), and (84), the Fisher

information matrix can be described as follows by using Proposition 11:

E
[
− ∂2

∂ψ∂ψ⊤ l(ψ | Y )
]

= 1
σ2EV ∼ϕ(v)

 1
1 + hα(V )

 V 2 V 2Hα −V 2ω
V 2Hα V 2H2

α + V 4 −V 2Hαω
−V 2ω −V 2Hαω V 2ω2

− 1
σ2

 0 0 0
0 1 0
0 0 0


⪰ 1

2σ2EV ∼ϕ(v)

 V 2 V 2Hα −V 2ω
V 2Hα V 2H2

α + 3 −V 2Hαω
−V 2ω −V 2Hαω V 2ω2

− 1
σ2

 0 0 0
0 1 0
0 0 0


= 1

2σ2EV ∼ϕ(v)

 V 2 V 2Hα −V 2ω
V 2Hα V 2H2

α + 1 −V 2Hαω
−V 2ω −V 2Hαω V 2ω2


= 1

2σ2EV ∼v2ϕ(v)

 1 Hα −ω
Hα H2

α + 1 −Hαω
−ω −Hαω ω2

 . (112)

Hereafter, since v2ϕ(v) is a probability density function on v ∈ R, the random variable V is regarded as
V ∼ v2ϕ(v) for notational simplicity. Note that matrix (112) is clearly positive semidefinite, we only need
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to check that its determinant is positive. For α→ 0, we have

lim
α→0

Hα(v) = lim
α→0

ρα
αv2

√
1 + α2v2 + 1

= 0, (113)

lim
α→0

ω(v) = σ lim
α→0

(
exp(−α2)

(√
1 + α2v2 − 1

)
+ ρα

v2
√

1 + α2v2
(√

1 + α2v2 + 1
))

= σv2

4
, (114)

and then we see that the determinant of (112) is positive because

det

EV ∼v2ϕ(v)

 1 Hα −ω
Hα H2

α + 1 −Hαω
−ω −Hαω ω2

 =

∣∣∣∣∣∣
1 0 −σ

4EV ∼v2ϕ(v)
[
V 2]

0 1 0
−σ

4EV ∼v2ϕ(v)
[
V 2] 0 σ2

16EV ∼v2ϕ(v)
[
V 4]

∣∣∣∣∣∣
= σ2

16

(
EV ∼v2ϕ(v)

[
V 4]− E2

V ∼v2ϕ(v)
[
V 2])

= 3
4
σ2

> 0. (115)

Consider the case α ̸= 0. We have

det

EV ∼v2ϕ(v)

 1 Hα −ω
Hα H2

α + 1 −Hαω
−ω −Hαω ω2

 =

∣∣∣∣∣∣
1 E [Hα] −E [ω]

E [Hα] E
[
H2

α

]
+ 1 −E [Hαω]

−E [ω] −E [Hαω] E
[
ω2]

∣∣∣∣∣∣
=
(
E
[
H2

α

]
E
[
ω2]− E

[
H2

α

]
E2 [ω]− E2 [Hα]E

[
ω2])

+ 2E [Hαω]E [Hα]E [ω]− E2 [Hαω] + (E
[
ω2]− E2 [ω])

> −E2 [Hα]E2 [ω] + 2E [Hαω]E [Hα]E [ω]− E2 [Hαω] + V [ω]

= − (E [Hαω]− E [Hα]E [ω])2 + V [ω]
= V [ω]− Cov2 [Hα, ω] , (116)

where the inequality is based on V [Hα]V [ω] =
(
E
[
H2

α

]
− E2 [Hα]

) (
E
[
ω2]− E2 [ω]

)
> 0. To examine the

sign of (116), we evaluate V [Hα] concretely, starting with (4), i.e.,

VV ∼v2ϕ(v) [Hα] = ρ2
αVV ∼v2ϕ(v)

[√
V 2 + 1

α2

]

= ρ2
α

(
EV ∼v2ϕ(v)

[
V 2 + 1

α2

]
− E2

V ∼v2ϕ(v)

[√
V 2 + 1

α2

])

= ρ2
α

(
3 + 1

α2 − E2
V ∼v2ϕ(v)

[√
V 2 + 1

α2

])
. (117)
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Here, we focus on the behavior of EV ∼v2ϕ(v)

[√
V 2 + 1

α2

]
with respect to α. We have

∂

∂α

1√
2 + 1

α2

EV ∼v2ϕ(v)

[√
V 2 + 1

α2

]
= ∂

∂α

∫
R

√
1 + α2v2

1 + 2α2 v
2ϕ(v)dv

=
∫
R

∂

∂α

√
1 + α2v2

1 + 2α2 v
2ϕ(v)dv

= α

(1 + 2α2) 3
2

∫
R

(
v4

√
1 + α2v2

− 2v2
√

1 + α2v2

)
ϕ(v)dv

= α

(1 + 2α2) 3
2

∫
R

(
v2

√
1 + α2v2

− α2v4

(1 + α2v2) 3
2

)
ϕ(v)dv

= α

(1 + 2α2) 3
2

∫
R

v2

(1 + α2v2)
3
2
ϕ(v)dv, (118)

where the fourth equality is derived by∫
R

v4
√

1 + α2v2
ϕ(v)dv = −

∫
R

v3
√

1 + α2v2
(ϕ(v))′

dv

= −2 lim
R→∞

R3ϕ(R)√
1 + α2R2︸ ︷︷ ︸
=0

+
∫
R

(
3v2

√
1 + α2v2

− α2v4

(1 + α2v2) 3
2

)
ϕ(v)dv. (119)

Hence, ∂
∂α

1
2+ 1

α2
E2

V ∼v2ϕ(v)

[√
V 2 + 1

α2

]
is monotonically increasing function of α2. Moreover,

1
2 + 1

α2

E2
V ∼v2ϕ(v)

[√
V 2 + 1

α2

]
> lim

α2→0

1
2 + 1

α2

E2
V ∼v2ϕ(v)

[√
V 2 + 1

α2

]
= 1. (120)

Thus, we have

E2
V ∼v2ϕ(v)

[√
V 2 + 1

α2

]
> 2 + 1

α2 , (121)

and VV ∼v2ϕ(v) [Hα] < ρ2
α < 1 from (117). For α ̸= 0, Hα(v) and ω(v) aren’t obviously constant func-

tions. Then, VV ∼v2ϕ(v) [ω(V )] < ∞ because the upper bound of
∣∣ ∂

∂αHα(v)
∣∣ is a linear function of |u| from

Proposition 7. Therefore, since 0 < V [Hα] < 1 and 0 < V [ω] <∞, it holds that

Cov2 [Hα, ω] < V [Hα]V [ω] < V [ω] . (122)

From (116) and (122), we see that I(ψ) = E
[

∂2

∂ψ∂ψ⊤ l(ψ | Y )
]

is positive definite for any ψ. Consider the case
ψ = ψ0(X) = (X⊤β0, σ0, α0). Since ψ0(X) belongs to the bounded set Ψ, we have infX Λmin(I(ψ0(X))) >
0.

E.4 Proof of Proposition 3

Proof. From Proposition 10, with some natural number M and some positive constant C3,m for m =
0, 1, . . . ,M , we have

max
(i1,i2,i3)∈{1,2,3}3

∣∣∣∣ ∂3

∂ψi1∂ψi2∂ψi3

l(θ |X, y)
∣∣∣∣ ≤ M∑

m=0
C3,m|y|m. (123)

Since the m-th order moment of Y ∼ f(y |X⊤β, σ, α) is finite from Proposition 9, the proof is complete.
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E.5 Proof of Proposition 4

Proof. Applying the Taylor expansion around the point ψ0 for (14), there exists some parameter vector
ψ̃ ∈ {tψ0 + (1− t)ψ ∈ R3 | t ∈ [0, 1]} such that

E(ψ | ψ0) = E(ψ0 | ψ0) + ∂E
∂ψ⊤

∣∣∣∣
ψ=ψ0

(ψ −ψ0) + 1
2

(ψ −ψ0)⊤ ∂2E
∂ψ∂ψ⊤

∣∣∣∣
ψ=ψ̃

(ψ −ψ0). (124)

Excess Risk (14) satisfies E(ψ0 | ψ0) = 0 and ∂E
∂ψ (ψ0 | ψ0) = 0 by its definition. Because I(ψ̃) is positive

definite from Proposition 2, its smallest eigenvalue Λmin(I(ψ̃)) is positive. Thus, the quadratic term of (124)
is evaluated as

(ψ −ψ0)⊤ ∂2E
∂ψ∂ψ⊤

∣∣∣∣
ψ=ψ̃

(ψ −ψ0) ≥ Λmin(I(ψ̃))∥ψ −ψ0∥2
2. (125)

Therefore, letting C2 := infX∈X Λmin(I(ψ̃(X))) > 0, based on

inf
X∈X

inf
ψ∈Θ:∥ψ−ψ0∥2>ϵ

E(ψ | ψ0) ≥ inf
X∈X

inf
ψ∈Θ:∥ψ−ψ0∥2>ϵ

1
2

Λmin(I(ψ̃(X)))∥ψ −ψ0∥2
2

>
ϵ2

2
inf

X∈X
Λmin(I(ψ̃(X)))

>
ϵ2C2

2
, (126)

we can take δϵ = ϵ2C2
2 > 0 as δϵ satisfying Proposition 4.

F Proof of Theorem 3

If Condition 1, 2, and 3 in Section 9.4.1.1 of Bühlmann & Van De Geer (2011) holds, the proposition holds
immediately from Lemma 9.1 of Bühlmann & Van De Geer (2011). These Condition 1, 2, and 3 correspond
to Proposition 3, 2, and 4, which were already shown, respectively. The proof is complete.

G Proof of Theorem 4

If Condition 1, 2, and 3 in Section 9.4.1.1 and Condition 4 in Section 9.4.2 of Bühlmann & Van De Geer
(2011) holds, the proposition holds immediately from Theorem 9.1 of Bühlmann & Van De Geer (2011).
These Condition 1, 2, and 3 correspond to Proposition 3, 2, and 4, which were already shown, respectively.
Condition 4 correspond to Assumption 2. The proof is complete.

H Proof of Theorem 5

In Corollary 9.1 of Bühlmann & Van De Geer (2011), the same theorem holds under some conditions for a
finite mixture model. Propositions proved in Section 9.4.3 of Bühlmann & Van De Geer (2011) are proved for
a generalized linear model. Our sparse regression model with the mode-invariant skew-normal noise belongs
to a class of generalized linear models.

The model-specific propositions are Proposition 9.4 and Lemma 9.3 of Bühlmann & Van De Geer (2011),
more precisely, how to obtain an upper bound of the score function and how to set MN . For our sparse
regression model with the mode-invariant skew-normal noise, the upper bound of the score function is
obtained in Proposition 1, which corresponds to Proposition 9.4 of Bühlmann & Van De Geer (2011). In
this case, following the idea described in Bühlmann & Van De Geer (2011), we set MN = O(logN) and then
we can obtain Proposition 16, which corresponds to Lemma 9.3 of Bühlmann & Van De Geer (2011). The
proof is complete.
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I Additional Experimental Details and Results

I.1 Definition of Sparsity

In Section 4, we used the measure for sparsity (denoted by “Sparsity”), as introduced by Hurley & Rickard
(2009). In this section, we briefly review its definition.

Given a vector β ∈ RP , we sort the coefficients from the smallest to largest, i.e., β(1) ≤ . . . ≤ β(P ), where
(p) is the p-th new index after sorting. Then, the “Sparsity” of β is defined by

Sparsity(β) = 1− 2
∥β∥1

P∑
p=1
|β(p)|

(
P − p+ 1

2
P

)
. (127)

This measure is based on a weighted sum of all coefficients, evaluating how important a particular coefficient
is to an overall sparsity. We have Sparsity(β) = 0 for the least sparse case where all coefficients have the
same value, and Sparsity(β) = 1 for the most sparse case where there exist few non-zero coefficients under
the situation P →∞. Therefore, the measure can evaluate sparsity of β.

I.2 Comparison with Other Methods

Adding to Section 4.1, we also compared the proposed model with a linear regression model without regular-
ization, assuming the Azzalini’s skew-normal distribution, skew-t distribution, and skew-Cauchy distribution
for noise (Arellano-Valle & Azzalini, 2013; Azzalini & Arellano-Valle, 2013; Azzalini & Salehi, 2020). These
methods are denoted by “skew-N,” “skew-t,” and “skew-C,” respectively. The experimental setting and data
are the same as in Section 4.1.

Four evaluation measures, i.e., MSE(ŷ), MSE(β̂), Sparsity(β̂), and Model Size(β̂), are shown in Figure 5.
The definitions of these measures are the same as in Section 4.1. As a result of Figure 5, the proposed
method outperformed the comparative methods in all cases, indicating better prediction with a smaller
number of features. Note that the model size for “skew-N,” “skew-t,” and “skew-C” is always 100 due to no
regularization term, and the results of “Proposed,” “Chen+,” and “Lasso” are the same as in Figure 2.

I.3 Real-World Financial Data

We applied the proposed method to the Engineering Graduate Salary (EGS) prediction data (Aggarwal
et al., 2016), which provides engineering graduates’ employment outcomes with standardized assessment
scores. EGS has fewer features than the two medical datasets in Section 4.3, and the meanings of all features
are specifically given. These properties allow us to consider the validity of the estimated active features. For
simplicity, we used only numerical type features (see Table 4 for details). The data used here consisted of
N = 3998 and P = 25. Other experimental conditions were the same as in Section 4.3.

Table 3 shows the result of EGS with the means and standard deviations (in parentheses) of the evaluation
measures. The proposed method simultaneously achieved the smallest prediction error and the smallest
model size. Regarding the residuals of the test data after training with Lasso, the mean of the normalized
skewness of the residuals was 2.24.

We also obtained interesting results. Figure 6 shows box plots of the estimated coefficients for each method.
The top 10 coefficients are picked out based on the averaged absolute values over 30 trials. For example,
a graduate’s quantitative ability (“Quant”) ranked first for the proposed method, while a graduation year
(“12graduation”) ranked first for Lasso and Lasso+YJ. In the proposed method, “12graduation” ranked
fourth with about half an effect. It may sound strange that the most relevant factor for salary is the
graduation year. As the box plots indicate, the coefficient of this feature was sometimes zero. Moreover, an
English score (“English”) and a college tier (“CollegeTier”) ranked second and third in the proposed method.
From these points, the proposed method could select more reasonable features.
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Figure 5: Comparison of six methods with four different types of simulation noises in terms of four evaluation
measures. From top to bottom, each row results from Data 1, Data 2, Data 3, and Data 4, respectively. All
experiments were conducted for 50 runs with different random seeds.

Table 3: Results of EGS (N = 3998, P = 25).
MSE(ŷ) Sparsity(β̂) Size(β̂)

Proposed 2.11× 101 (3.14 × 101) 4.62× 10−1 (2.84 × 10−2) 2.31× 101 (1.05 × 100)

Chen+ 4.97× 101 (7.59 × 101) 1.16× 10−1 (16.8 × 10−2) 8.33× 101 (12.0 × 100)

Lasso 4.89× 101 (7.57 × 101) 3.78× 10−1 (3.72 × 10−2) 2.44× 101 (0.68 × 100)

Lasso + YJ 2.64× 101 (3.86 × 101) 3.78× 10−1 (3.72 × 10−2) 2.44× 101 (0.68 × 100)
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Figure 6: Box plots of the estimated coefficients for EGS. In the vertical axis, the top 10 coefficients are
picked out based on the averaged absolute values over 30 runs with different random seeds. Details of each
feature are described in Table 4.

Table 4: Description of features in EGS data (see Table 2 in Aggarwal et al. (2016) for details).
Feature Description

10percentage Overall marks obtained in grade 10 examinations
12graduation Year of graduation (senior year high school)
12percentage Overall marks obtained in grade 12 examinations

CollegeID Unique ID identifying the college which the candidate attended
CollegeTier Tier of college (computed from the average AMCAT scores)

CollegeGPA Aggregate GPA at graduation
CollegeCityID A unique ID to identify the city in which the college is located

CollegeCityTier The tier of the city in which the college is located
GraduationYear Year of graduation (Bachelor’s degree)

English Score in AMCAT’s English section
Logical Score in AMCAT’s Logical ability section
Quant Score in AMCAT’s Quantitative ability section

Domain Score in AMCAT’s Domain module
ComputerProgramming Score in AMCAT’s Computer programming section
ElectronicsAndSemicon Score in AMCAT’s Electronics & Semiconductor Engineering section

ComputerScience Score in AMCAT’s Computer Science section
MechanicalEngg Score in AMCAT’s Mechanical Engineering section

ElectricalEngg Score in AMCAT’s Electrical Engineering section
TelecomEngg Score in AMCAT’s Telecommunication Engineering section

CivilEngg Score in AMCAT’s Civil Engineering section
conscientiousness Score in one of the sections of AMCAT’s personality test

agreeableness Score in one of the sections of AMCAT’s personality test
extraversion Score in one of the sections of AMCAT’s personality test
nueroticism Score in one of the sections of AMCAT’s personality test

openess_to_experience Score in one of the sections of AMCAT’s personality test
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