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Abstract

The Cox proportional hazards model is a canonical method in survival analysis for
prediction of the life expectancy of a patient given clinical or genetic covariates –
it is a linear model in its original form. In recent years, several methods have been
proposed to generalize the Cox model to neural networks, but none of these are
both numerically correct and computationally efficient. We propose FastCPH, a
new method that runs in linear time and supports both the standard Breslow and
Efron methods for tied events. We also demonstrate the performance of FastCPH
combined with LassoNet, a neural network that provides interpretability through
feature sparsity, on survival datasets. The final procedure is efficient, selects useful
covariates and outperforms existing CoxPH approaches.

1 Introduction

Survival analysis studies the dependency of the time to the occurrence of an event on predictor
variables. We usually call the estimated period "duration" and the event of interest "death" or
"failure." Censored data, where the endpoint of observation is not a failure, is an important component
in this field and requires specialized techniques 2.
The Cox proportional hazards model (CoxPH) is a classic semi-parametric method to handle censored
data [1]. It was originally used as a linear regression model, supposing the log risk of failure is a
linear combination of the clinical or genetic predictor variables. Its core idea is that the dependency of
hazard rate on covariates is time-invariant and multiplicative. The formulation of CoxPH likelihood
is explained in Section 2. CoxPH is developed under the assumption of continuous data, but there
are often tied event times in real datasets. Several ways have been offered to deal with instances
where there are ties, including the exact partial likelihood, the Breslow approximation, and the Efron
approximation, the latter two being well-tested in theory and widely used in practice [2, 3, 4].
In classical survival studies using CoxPH, a lot of effort is needed in feature engineering to make
the model work well. Over the years, several methods were proposed to generalize it to nonlinear
situations, allowing more complex formulation for the log-risk function, yet having mixed results
[5, 6, 7]. We review the four most popular implementations of the CoxPH model in neural networks
as in Table 1: DeepSurv [8] implements a deep learning generalization of the Cox proportional
hazards model using Theano and Lasagne. It supports tensor operation, runs in O(n) by vectorized
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Table 1: Comparisons for different Cox PH implementations
Sksurv PyCox DeepSurv PySurvival FastCPH (Ours)

Time complexity O(n) O(n) O(n) O(n2) O(n)
Deep learning ✗ ✓ ✓ ✗ ✓

Handling ties
Tie-awareness ✓ ✗ ✗ ✓ ✓
Efron approximation ✓ ✗ ✗ ✓ ✓
Breslow approximation ✓ ✗ ✗ ✗ ✓

cumulative sums over the entire input, but assumes there are no tied events. Pycox [9] computes
in O(n) a cumulative sum of all input hazards but not the true risk sets of the CoxPH function.
PySurvival [10] is a PyTorch compatible implementation based on Deepsurv [8], while adding an
O(n2) index matrix for Efron’s method to handle ties. Scikit-survival [11] (sksurv) is package
released in 2020 [12] with Brewslow and Efron approximation in O(n) using an inner for-loop at
each distinct event time when going through all events. However, it does not support deep learning.
Simply assuming the absence of ties or ignoring all tied cases is statistically inappropriate. Failure
to handle ties and oversimplifications may cause unexpected consequences, especially when the
behaviors of neural networks possess randomness and the results can be hard to interpret [4, 13].
However, to the best of our knowledge, none of the existing popular survival analysis packages have
CoxPH implemented in both an efficient and correct way for neural networks.
Here we present the Fast Cox Proportional Hazard model (FastCPH), a computationally efficient and
statistically correct method for survival analysis using neural networks.FastCPH is a fully vectorized
method that runs in O(n) and yields both standard Breslow and Efron methods for tied events,
which overcomes the limitations of existing CoxPH methods. We implement it with PyTorch and it
can be easily used for any other machine learning research requiring the CoxPH model, allowing
computationally efficient deep learning training for a larger scale of data. We also combine it with
LassoNet to present FastCPH-LassoNet, a simple neural network that provides interpretability through
feature sparsity in survival analysis. We evaluate FastCPH-LassoNet on multiple survival datasets,
and FastCPH-LassoNet outperforms existing CoxPH approaches.

2 Fast Cox Proportional Hazards Model

We propose FastCPH as a method for efficient survival analysis for neural networks. As noted
in Table 1, FastCPH is the first CoxPH method that is both computationally efficient for neural
networks and supports Efron and Breslow approximation in handling tied events. We also provide a
step-by-step proof verifying the correctness of our tensor-based implementation.
Definition 2.1. The input is given as a feature matrix x where each row is a sample, and each column
is a feature. Each row is associated with an event time ti (that can produce ties) and an indicator δi
indicating whether the event is censored or not (1 if uncensored). Given a regression model that gives
a real number g(xi) for each sample, the CoxPH likelihood that is maximized in the absence of ties
is:

L(g) =
∏

i|δi=1

exp(g(xi))∑
j|tj≥ti

exp(g(xj))
(1)

The negative log likelihood (loss function) is

LL(g) =
∑
i∈J

log

∑
j∈Ri

exp [g(xj)]

− g(xi) (2)

In implementation, assuming the event times t are sorted in decreasing order (which is a O(n log n)

preprocessing), we can compute all values of log
(∑

j∈Ri
exp [g(xj)]

)
in O(n) by using the

logcumsumexp function3 (as implemented in PyTorch [14]):

LL(g) =
∑
i∈J

logcumsumexp(g(x))i − g(xi) (3)

3logcumsumexp(g(x))i is a slight abuse of notation as logcumsumexp is applied on all events, not just
those from J , then indexed on the elements of J .
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Table 2: Performance of different CoxPH models on survival datasets (in percentage, 95% CI if
indicated). ♢: Models with simple linear architecture (i.e. hidden dimension is 1 and the number of
hidden layers is 1). ♣: Models with more complex structures, best results from (16,16), (32), (32,
16), (64).

Breast cancer WHAS500 Veteran’s
lung cancer HNSCC

CoxPH Linear 51.4 71.3 66.4 59.1
CoxNet 57.0 71.4 72.6 74.3
GlmNet 60.3 (±4.67) 70.1 (±0.68) 70.7 (±1.34) 74.8 (±2.18)

DeepSurv♢ 57.8 (±1.52) 70.0 (±2.05) 66.1 (±3.14) 73.1 (±1.53)
DeepSurv♣ 68.7 (±1.20) 66.1 (±1.07) 69.3 (±0.72) 61.6 (±3.05)

FastCPH-LassoNet ♢ 67.0 (±5.39) 76.6 (±1.21) 71.9 (±1.90) 70.1 (±3.96)
FastCPH-LassoNet ♣ 69.7 (±5.35) 76.8 (±1.40) 73.0 (±2.49) 69.3 (±4.68)

Breslow’s method When there are ties, the theoretical best solution would assume that the events
still happened in some order and sum the formula without ties over all orders. This is not efficient
because there are di! possible orders for each tie, thus rarely used in applications. Breslow approxi-
mation assumes that all di elements were selected from the same risk set. Thus, the above formula
stays unchanged. The implementation simply indexes the logcumsumexp terms so that events with
the same failure time have the same denominator.

Efron’s method observes that the denominator is too big in Breslow’s approximation, as when
multiples elements are selected from the same risk set, that risk set gets smaller.
Definition 2.2. Efron’s approximation results in the following likelihood:

L(g) =
∏
i∈J′

∏
j∈Di

exp(g(xi))

di−1∏
k=0

∑
j∈Ri

exp(g(xj))−
k

di

∑
j∈Di

exp(g(xj))

 (4)

where J ′ is a subset of J with unique event times. The idea is to discount the denominator over the
whole risk set

∑
j∈Ri

exp(g(xj)) by the average risk over Di: 1
di

∑
j∈Di

exp(g(xj)). k indexes the
set Di.

Compared with Equation 2, the numerator did not change (it is still the product over all uncensored
events). The denominator has three terms:

•
∑

j∈Ri
exp(g(xj)) can be computed for all j in linear time as before.

• k
di

is trivial to compute for all elements of J (which is the union of all Di for i ∈ J ′).

•
∑

j∈Di
exp(g(xi)) can also be computed in linear time with a vectorized scatter operation.

Finally, those terms are easy to combine in linear time with vectorized operations. All computations
are realized in the log space to avoid numerical errors, using tricks similar to those used to implement
the log-sum-exp operation. To summarize, we provide FastCPH as an efficient, vectorized and
linear-time function implemented in PyTorch that can be conveniently used by any neural network.

FastCPH-LassoNet is proposed as a survival prediction method with feature sparsity. We use
LassoNet as the backbone [15], which is a neural network that achieves feature sparsity using a
LASSO-style regularization [16]. Originally, it was applied with mean squared error and cross-
entropy losses for regression and classification problems. We apply FastCPH as the loss function for
survival analysis. The implementation detail is in Section A.2 in the supplementary materials.

3 Experiments

In the experiments, we want to evaluate the following three aspects of FastCPH: Is the implemen-
tation of FastCPH computationally efficient for neural networks? Can FastCPH-LassoNet obtain
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Table 3: Hyperparameters and run time of FastCPH-LassoNet (linear structure, 95% CI if indicated).
Run time is in seconds for per run per CPU. Training performed on 2.8 GHz Quad-Core Intel Core i7
with 16 GB memory.

Breast cancer WHAS500 Veteran’s lung cancer HNSCC
# selected features 24.6 (±2.95) 14.0 (±0.00) 10.6 (±0.78) 11.0 (±3.95)
# total features 80 14 11 107

run time 261s 225s 201s 283s

feature sparsity along the regularization path? Does FastCPH-LassoNet have promising performance
compared to other CoxPH-based models on real-world survival datasets?

3.1 Runtime analysis

Figure 1: Runtime comparisons between
different CoxPH implementations. The
x-axis is the size of data, and the y-axis is
the time for one-time CoxPH calculation
in milliseconds

To analyze the computational efficiency of FastCPH, we
compare its runtime with 3 other popular vectorized imple-
mentations including PyCox, DeepSurv, PySurvival. Py-
Survival use risk / fail matrices to compute Efron method.
PyCox and DeepSurv are for deep learning purposes and
do not support tie approximations.
Among these baselines, FastCPH is the most computation-
ally efficient CoxPH implementation that supports Breslow
and Efron approximations. Specifically, as shown in Fig 1,
the curve of FastCPH with Breslow method is very close
to the ones of PyCox and DeepSurv, which don’t have tie
awareness. As the size of data increases, the difference
among FastCPH with Breslow, PyCox, and DeepSurv are
getting smaller. For the two baselines both using Efron
approximation, FastCPH with Efron method is signifi-
cantly faster than PySurvival. The gap between FastCPH
with Efron and Breslow can be caused by the computation
of the weighted terms in denominator. The experimental
results align with our claims on the linearity of FastCPH’s runtime.

3.2 Evaluating FastCPH-LassoNet on real world’s datasets

We compare FastCPH-LassoNet with other CoxPH-based methods on 4 datasets: breast cancer [17],
WHAS500 [18], veteran’s lung cancer [19], and HNSCC [20]. We use CoxPH linear model [1],
CoxNet [21], GlmNet [22] and DeepSurv [8] as baselines. The first three are classical CoxPH-based
models with different regularizations. DeepSurv is considered the most advanced deep learning
CoxPH-based method [8, 23]. We use Harrell’s concordance index (C-index) as a metric. We also
provide a O(n log n) implementation of the C-index using ordered data structures.
As in Table 2, FastCPH-LassoNet is the best CoxPH-based method on 3 out of 4 survival datasets
we use, showing its discrimination ability to provide reliable ranking of survival times based on
risk scores. Notice that for the breast cancer and WHAS500 datasets, FastCPH-LassoNet yields
a significantly better C-index than DeepSurv and other existing methods in Table 2. Specifically,
comparing FastCPH-LassoNet to DeepSurv, FastCPH-LassoNet performs better in 4 datasets under
the same architecture. We supplement further comparisons between FastCPH-LassoNet and DeepSurv
in Section A.2.
Moreover, FastCPH-LassoNet is able to attain an effective recovery of signals given a subset of
features. As shown in Table 2 and 3, the model gives excellent performance with sparsity in covariates.
However, when the number of total features is small, the model may not be able to obtain sparsity
over covariates, as shown by its result of WHAS500. The sparsity demonstrated in the experiments
implies its potential on large-scale, more complicated real world datasets.
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4 Discussion

In this paper, we have proposed FastCPH, an efficient CoxPH method for survival analysis in neural
networks that follows the exact formula of well-tested methods to handle tied events. FastCPH
is an efficient and numerically correct solution for neural networks in survival analysis. It can be
quickly adapted to other deep learning methods and used in more real-world scenarios with censored
data such as [24, 25, 26]. We have shown FastCPH-LassoNet outperformed other CoxPH-based
methods in various survival datasets. More study can be done to provide applications of FastCPH
as an objective function in more complex neural network architectures. It will be interesting to see
the effect of tied events on the behavior of neural networks. In addition, it is worth pointing out
the importance of following the exact formulae of classic statistical methods in implementation and
avoiding oversimplifications in the machine learning community.

A Appendix

This supplementary document is organized as the following. Firstly, we discuss the related work on
CoxPH models, deep learning in survival analysis, and tie handling. Next, we discuss implementation
details on the metric, settings, and baselines. We then provide additional information on datasets
we used in the experiments, including an illustration of pipeline, covariate breakdown, and the
correlation matrix of HNSCC dataset. Lastly, we provide additional experiment comparing FastCPH-
LassoNet with DeepSurv in NN context. We also supplement the code for FastCPH on https:
//github.com/lasso-net/lassonet.

A.1 Related Work

CoxPH models A major advantage of CoxPH models over methods like Kaplan-Meier curves and
the log-rank test is their ability to work easily with quantitative predictor variables and ability to
generalize patterns from censored data [27]. Therefore, they are particularly suitable for survival
analysis and predictions and are applied extensively in the biomedical field including in analyzing
gene expressions and the likelihood of various diseases including liver diseases, coronary heart
disease, diabetes, etc [28, 29, 30, 31]. Beyond that, CoxPH models also have a variety of applications.
When compared with the results of the multiple discriminant analysis methods, the CoxPH model
gives lower type I errors [24].

Deep learning in survival analysis With the rise of deep learning applications in many scientific
fields, some studies have tried to combine CoxPH functions with deep neural networks for better
time-to-event predictions for larger datasets [8, 23, 32]. The inclusion of a neural network can
simplify the a priori covariates selection and make the model adaptively learn them while preserving
the effectiveness of CoxPH functions in survival analysis. Our work focuses on the deep learning
method to model the survival hazards using CoxPH.

Handling ties When handling ties, the most commonly used approach is the Breslow method which
simply uses the number of tied events as the exponent in the denominator of the relative risk [2]. The
Efron method is thought to produce superior outcomes, yet the formulation is more complicated to
implement efficiently [3]. The difference with the Breslow approach is minor when the number of
ties is not large [33]. Our method supports both Efron’s and Breslow’s method.

A.2 Implementation Details

Metric Harrell’s concordance index (C-index) is a generalization of Area under ROC curve (AUC)
regarding censored data, reflecting the accuracy of pairwise orders of the risk function as the output
of the model [34, 35, 36]. For input xi, duration ti and events δi (1 if uncensored, 0 otherwise), the
C-index is computed as:

C =

∑
i,j:tj<ti

1g(xj)>g(xi)δj∑
i,j:tj<ti

δj
. (5)
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Figure 2: Demonstration of the training behavior of FastCPH-LassoNet on the breast cancer dataset.
The y-axis of the first two rows represents the test score, which is calculated as the C-index. The
model starts from a given λ. At each iteration, λ increases at a fixed geometric rate, the model is
retrained based on the model selected at the last λ. At each λ, the iterated model can select a subset of
features in the input, that is supposed to decrease. The first figure is the number of selected features
versus the test C-index. The second figure represents the change in test score when λ increases during
training. The third figure is the number of features selected when λ increases during training. We can
see that the test score reaches a peak when λ is between 102 and 103. The test C-index fluctuates
when the number of selected features decreases, and it reaches the global optimal when the number
of features is 19.

FastCPH-LassoNet is LassoNet combined with FastCPH as the objective function. Like LASSO,
LassoNet penalizes the L1 norm of coefficients applied to features. The Lagrange multiplier associated
with that penalty is noted λ. The model is trained with increasing values of λ, on a dense-to-sparse
path where the values of λ follow a geometric scale. The starting value of λ is a hyperparameter that
should be carefully selected: if it is too small, the model will train on a lot of useless configurations; if
it is too large, the optimizer will ignore features too fast. Another hyperparameter is M , the hierarchy
coefficient that balances the linear and non-linear parts of the model. Fig 2 gives an example of the
training curve of FastCPH-LassoNet on the breast cancer dataset. We can see LassoNet optimized
properly with FastCPH as the loss function.

Runtime Analysis We assume all events are uncensored and the data is sorted by duration. We first
randomly generate data from size 1 to 103. We note down the runtime as calculating the negative log
likelihood once and report the mean of 5 random trails.

Baseline implementation The implementations of the Cox linear model and CoxNet are from
Scikit-survival [11]. For the CoxPH linear model, we set α = 10−6 as the regularization parameter
in the ridge regression penalty. CoxNet is the CoxPH model with an elastic net penalty. We use
cross-validation for choosing the best α of the regularization path from 10−1 to 10−5. For GlmNet,
we use the R built-in cross-validation cv.glmnet with the Breslow method to select the model for
testing. The number of folds in cross-validation (if used) is 5 for breast cancer and veteran’s lung
cancer dataset and 10 for WHAS500 and HNSCC dataset. For FastCPH-LassoNet and DeepSurv, we
fix the number of hidden dimensions to 1 and the number of hidden layers to 1. They share the same
architecture and setting (ReLU, Adam, lr=10−3). For FastCPH-LassoNet, we set M = 10 and start
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at λ = 10−6. The prox method of LassoNet is called on the dense model following on a geometric
path until the model becomes sparse. That value is divided by 10 to give lambda_start. 5-fold
cross validation is used to select the best λ value from multiple runs. We use Efron’s method to break
ties. We use stratified sampling w.r.t uncensored/censored events to split the training set (80%) and
test set (20%) for each of the datasets. For models with randomness in training, we run 5 trails for
each set of hyperparameters and obtain the average performance.

A.3 Datasets statistics

Figure 3: The pipeline of obtaining HNSCC features for survival analysis. HNSCC dataset was
curated by the University of Texas MD Anderson Cancer Center, approved by the institutional review
board, and written informed consent was obtained from all study participants. This dataset is available
publicly upon submission of a limited data access agreement to safeguard patient privacy. While the
dataset has been thoroughly de-identified in accordance with HIPAA, it is theoretically possible to
reconstruct the face, head, or body using volumetric images. For our analysis, we ensured the data
was processed on a HIPAA-compliant encrypted server and the radiomics features extracted for our
analysis do not contain any identifiable information or offensive content.

We use the following four datasets in our experiments:

• Breast cancer dataset [17]: This dataset comes from experiments set up to validate a
certain gene signature in primary breast tumors. It contains data points from 198 patients,
with 80 features each. The endpoint of this dataset is distant metastases. Of all patients, 51
of them (25.8%) exhibited the symptom.

• WHAS500 dataset [18]: The Worcester Heart Attack Study dataset is an observational
dataset set up to track trends in acute myocardial infarction and out-of-hospital coronary
heart disease deaths in Worcester, Massachusetts. The endpoint of this dataset is death. Out
of 500 patients in the dataset with 14 features each, the endpoint occurred for 215 patients
(43.0%).

• Veteran’s lung cancer dataset [19]: This dataset comes from a lung cancer trial by the
Department of Veterans Affairs. The endpoint of this dataset is death. Out of 137 patients in
the dataset with 6 features each, the endpoint occurred for 128 patients (93.4%).

• HNSCC [20]: This dataset is composed of 451 head and neck squamous cell carcinoma
(HNSCC) patients treated with curative-intent intensity modulated radiotherapy (IMRT).
This dataset was previously used to predict local recurrence and HPV status [37]. Survival
analysis is done in data exploration, but nothing predictive. We include it as a showcase of
our method. The endpoint used for our analysis is death. This is a challenging prediction
dataset when adpating it for survival analysis. Fig 4 is a visualization of the correlation
matrix of clinical covariates in HNSCC dataset generated by PySurvival [10]. As we can see
in the figure, many of the covariates are heavily correlated with each other, posing a need of
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Table 4: Event and clinical variable distribution of HNSCC.

# of patients 451
Outcome

Alive / Censored 395 (88%)
Death 56 (12%)

Sex
Male 387 (86%)
Female 64 (14%)

Disease subsite
Base of Tongue 238 (53%)
Tonsil 174 (39%)
Glossopharyngeal sulcus 10 (2%)
Other 29 (6%)

HPV Status
Positive 232 (51%)
Negative / Unknown 219 (49%)

Stage
I 3 (1%)
II 14 (3%)
III 63 (14%)
IV 371 (83%)

Tumor Laterality
R 222 (49%)
L 215 (48%)
Other 14 (3%)

Table 5: Statistics on tied events in different datasets
Breast cancer WHAS500 Veteran’s lung cancer HNSCC

# total observations 198 500 137 451
# total tied events 6 178 64 232

# uncensored events 51 215 128 56
# uncensored tied events 0 80 55 4

selecting useful features for constructing an efficient solution. According to a single value
decomposition computation, the matrix is rank deficient. Despite that, FastCPH-LassoNet
can successfully select a subset of covariates (11.04 out of 107) and attain a good and stable
performance as shown in Table 2.

Ties are common in the datasets we use, listed as in Table 5. Breslow and Efron methods give the
same log likelihood when no ties are present in the dataset. Our method in Table 2 using Breslow
approximation is capable of handling datasets with and without ties.

Data preprocessing For the breast cancer dataset, WHAS500, and veteran’s lung cancer dataset,
we retrieve the data from Scikit-survival package [38] and obtain one-hot encodings to quantify
entries such as treatment received, cell types, prior therapy, etc. The number of final entries is
shown in the last row of Table 3. The HNSCC dataset is publicly available via the Cancer Imaging
Archive with TCIA Limited Access License [20]. The DICOM imaging data is processed using the
Med-ImageTools pipeline [39] to extract the computed tomography (CT) images and gross tumor
volume (GTV) segmentation masks with uniform voxel spacing for consistent feature extraction.
These images and masks are processed into the NIfTI file format, which is a common standard for
3D medical images, and compatible with PyRadiomics. The processed image and GTV masks into
PyRadiomics to extract shape, texture, and statistics features [40].

8



Figure 4: Correlation matrix of covariates in HNSCC. The red color at the bottom of the spectrum
indicates −1 and blue color at the top means 1.

Table 6: Results of FastCPH-LassoNet and DeepSurv with more complex architectures (in percentage,
95% CI)

Breast cancer WHAS500 Veteran’s lung cancer HNSCC
(16, 16)

FastCPH-LassoNet 69.7 (±5.35) 76.6 (±1.35) 73.0 (±2.49) 63.7 (±5.89)
DeepSurv 68.2 (±2.47) 64.5 (±1.06) 66.3 (±1.47) 61.6 (±3.05)

(32)
FastCPH-LassoNet 67.4 (±4.90) 76.8 (±1.29) 72.6 (±2.12) 69.3 (±4.68)
DeepSurv 66.6 (±1.27) 65.8 (±0.68) 69.3 (±0.72) 58.9 (±2.56)

(32, 16)
FastCPH-LassoNet 69.0 (±3.47) 75.4 (±2.49) 71.9 (±3.23) 65.3 (±5.38)
DeepSurv 68.7 (±1.20) 66.1 (±1.07) 66.2 (±1.46) 57.1 (±2.39)

(64)
FastCPH-LassoNet 68.6 (±5.11) 76.8 (±1.40) 72.9 (±2.50) 69.0 (±4.22)
DeepSurv 67.0 (±1.24) 64.8 (±0.63) 67.3 (±1.13) 58.5 (±2.00)
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A.4 FastCPH-LassoNet with more complex architectures

In the context of NN methods, we further analyze the performance of FastCPH-LassoNet using more
complex architectures. We use DeepSurv as the baseline because it is commonly recognized as the
most advanced CoxPH-based deep learning method. We let FastCPH-LassoNet and DeepSurv share
the same architecture (as indicated in parentheses in Table 6) and setting (ReLU, Adam, lr=10−3).
For both methods, we run 15 trails to give 95% CI.
As shown in Table 6, FastCPH-LassoNet outperforms Deepsurv with the same architecture on all
datasets in our experiments. It is a more robust deep learning method with promising results in
survival analysis.
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