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ABSTRACT

Recent reasoning Large Language Models (LLMs) demonstrate remarkable
problem-solving abilities but often generate long thinking traces whose utility
is unclear. Our work aims to improve their efficiency, enabling them to reach
high performance without overthinking. First, we analyze the entropy of token
probabilities in reasoning traces. Across three models, we observe a consistent U-
shaped entropy pattern: high entropy on easy problems despite high accuracy, low
entropy on problems with medium difficulty, and high entropy on hard problems
reflecting uncertainty. Specifically, we notice 22-25% entropy reduction from
easy to medium difficulty regions, suggesting an overthinking phenomenon on
easy instances. Building on these insights, we introduce DiffAdapt, a lightweight
framework that selects Easy/Normal/Hard inference strategies per question based
on their difficulty and reasoning trace entropy. Each inference strategy consists
of a fixed prompt, temperature and maximum token length. In contrast to exist-
ing efficiency optimization methods, our approach does not fine-tune base LLM
but a small probe that classifies LLM’s final hidden state, allowing inexpensive
adaptation. We comprehensively evaluate our method on five models and eight
benchmarks. Our method achieves comparable or improved accuracy while re-
ducing token usage by up to 22.4%, establishing a practical path toward compute-
efficient reasoning.

1 INTRODUCTION

Large Language Models (LLMs) emerged as powerful tools for complex reasoning tasks, spanning
mathematical problem-solving (Lewkowycz et al.l 2022a; |[Pan et al.,|2024), code generation (Chen
et al.,[2021)), and logical deduction (Wei et al.| 2022)). A key ingredient in this success is intermediate
reasoning steps, often referred to as a “chain of thought” (CoT), before producing a final answer (Yu
et al.,|2024; Li et al.} 2025d; |Liu et al., [2024} [Kong et al.| 2025). However, this capability comes at
a significant computational cost. Models typically generate a lengthy and elaborate chain of thought
for every problem, a process sometimes called test-time scaling (Muennighoff et al., 2025} |Chu
et al.,[2025).

Always generating long traces is fundamentally inefficient. It squanders resources on simple prob-
lems, while not necessarily providing sufficient resources for truly complex tasks (Qu et al.| 2025;
Sui et al., 2025} L1 et al., 2025b). In this work, we introduce a framework to bridge this gap through
systematic empirical analysis and adaptive inference strategy design. We first discover a U-shaped
entropy pattern: high entropy on easy problems despite high accuracy, low entropy on problems
with medium difficulty, and high entropy on hard problems reflecting uncertainty. Counterintu-
itively, models show high uncertainty on simple problems despite achieving high accuracy.

This motivates us to design a different inference strategy per each of this three distinct difficulty re-
gions. We develop three simple inference strategies, each equipped with different generation length
(i.e., max token length), prompt and decoding hyperparamenters (e.g., sampling temperature). The
prompt designed for “easy” questions encourages models to answer succintly without overthinking,
while the prompt for high difficulty questions instructs model to think carefully. We first conduct
oracle experiments with these three templates. When allowed to choose an optimal strategy per
question, models achieve 50% token savings while improving the model accuracy by over 10%.
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Based on this observation, we introduce DiffAdapt, a three-stage framework that dynamically se-
lects inference strategy rather than applying uniform reasoning budgets to all problems. Our frame-
work operates in three stages: (1) we use a proxy model to generate training data by sampling
responses and heuristically labeling them with difficulty-based strategy assignments; (2) we train a
lightweight probe on the model’s hidden states to predict problem difficulty; and (3) during infer-
ence, the probe dynamically selects the appropriate reasoning strategy (Easy/Normal/Hard) for each
question. Compared to the training-free baseline DEER (Yang et al., 2025b), DiffAdapt achieves
superior performance with up to 62% token reduction and 18% performance improvement across
eight mathematical reasoning benchmarks |[Lightman et al.[ (2023); Rein et al.| (2024); Wang et al.
(2024); He et al.|(2024); |Cobbe et al.|(2021)) over five modelsDeepSeek-Al et al.|(2025); Yang et al.
(2025a); |L1u et al.| (20254); Hou et al.| (2025)).

2 RELATED WORK

Training-Based Budget Control. Several methods incorporate budget control directly into the
model’s training phase. [Huang et al.| (2025); |Shen et al.| (2025); [L1iu et al.| (2025b)) use reinforcement
learning (RL) with difficulty-aware rewards to train a model for adaptive budgeting. Similarly,
Cheng et al.| (2025) employ a dual-reward system based on Group-Policy Optimization (GRPO)
to encourage conciseness. ThinkPrune (Hou et al., 2025) trains long-thinking LLMs via RL with
token limits, using iterative pruning rounds to achieve better performance-length tradeoffs. LC-R1
(Cheng et al., 2025)) addresses “invalid thinking” through GRPO-based post-training with length and
compress rewards, achieving significant sequence length reduction while maintaining performance.
TL;DR (Li et al., [2025c)) is a training-free method that uses mixed systeml and system?2 data to
control the reasoning process. AdaCoT (Lou et al., |[2025) framed adaptive reasoning as a Pareto
optimization problem that seeks to balance model performance with the costs associated with CoT
invocation. Thinkless (Fang et al. 2025)) is trained under a reinforcement learning paradigm and
employs two control tokens, <short> for concise responses and <t hink> for detailed reasoning.

Inference-Time Budget Control. Other methods operate purely at inference time without requiring
training. [Zhang et al.| (2025a) define an “a moment” to switch from slow to fast thinking, while
Zhang et al.| (2025¢) modify the sampling strategy to explore a continuous concept space. |Yang
et al|(2025b) monitor for specific transition tokens and model confidence to perform an early exit.
Ma et al.| (2025) propose a method to disable the reasoning process of LLMs. These training-free
methods are flexible but often underperform a learned difficulty model.

Methods Requiring Auxiliary Models. Some approaches rely on external models to guide the
LLM’s reasoning process. For instance, |Li et al.| (2025a) train a separate BERT model to predict
the remaining reasoning length and steer the generation process. Zhang et al.|(2025b) employ R1-
7B as a switcher model, using prompt engineering or supervised fine-tuning for strategy selection.
Liang et al.| (2025) utilize an MLP-based switcher with group accuracy as training labels. While
these methods can achieve good performance, they introduce the overhead of running additional
non-trivial models during inference, increasing computational costs and deployment complexity.
Our DiffAdapt framework, in contrast, is a very small classifier integrated directly with the LLM’s
internal states, adding minimal latency.

3 CHARACTERIZING OVERTHINKING PHENOMENON

Recent work has identified that reasoning LLMs exhibit “overthinking” behavior (Ma et al., 2025;
Sui et al., 2025} |Qu et al.l [2025), where models generate exceedingly lengthy solution when they
can arrive at correct solutions much more succintly. Building upon this observation, we analyze
this phenomenon from an entropy perspective, revealing a counterintuitive pattern where models
demonstrate high uncertainty.

3.1 EXPERIMENTAL SETTING

Dataset We use DeepMath-103K dataset (He et al 2025)), a large-scale, challenging, decontam-
inated, and verifiable mathematical dataset designed for advancing reasoning capabilities. The
dataset provides problems with difficulty ratings from 1-10 as evaluated by GPT-40 based on math-
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Revealing Overthinking: Why Simple Problems Show High Reasoning Uncertainty
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Figure 1: Visualization of model accuracy (blue bar), generation entropy (red line) per difficulty
of question (x-axis), across three models (model name at the bottom of the graph). We observe a
consistent U-shaped entropy curve along the difficulty levels on multiple models.
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(a) DeepSeek-R1-Qwen-7B

ematical complexity and covers a wide range of mathematical topics with rigorous decontamination
against numerous benchmarks. For our experiments, we created a balanced experimental set by
sampling 300 questions per difficulty level, with 10 sampling iterations per problem at temperature
0.6, ensuring robust statistical analysis of entropy patterns.

Entropy Calculation We measure model uncertainty using generation entropy, calculated as the
average entropy across all tokens in the generated sequence (Wang et all, [2025). For each token
position ¢, the entropy is computed as H; = — 23‘;1 p¢,j log py 5, where V' is the vocabulary size
and py ; is the probability of predicting the j-th token in the vocabulary given all preceding tokens
o<¢. The entropy H; corresponds to the uncertainty of the token generation distribution at position
t, rather than an intrinsic property of the specific token o; sampled from that distribution.

Correctness Rate Evaluation For each difficulty rating bucket, we measure the correctness rate as
the fraction of successful solutions across multiple sampling iterations. For each problem x;, we
generate n responses {r; ; };”Zl and evaluate their correctness against ground truth solutions. The
correctness rate for problem z; is defined as:

1 n
Clay) = ZH[WJ =il
Jj=1
where I[-] is the indicator function, y; denotes the ground truth solution for problem z;, and n = 10
sampling iterations per problem in our experiments.

3.2 RESULTS

Figure [I] (a) illustrates this U-shaped entropy curve across different difficulty levels using the
DeepSeek-R 1-Distill-Qwen-7B model on the DeepMath-103K dataset 2025). We observe
consistent overthinking patterns across multiple model architectures (see Appendix [ for additional
models).

The U-shaped entropy curve in Figure [T (a) reveals three distinct regions, where each region might
benefit from different computational strategies:

* Overthinking Region (Easy Problems): High correctness rates coupled with high entropy, in-
dicating the model is uncertain about problems it can solve well. This counterintuitive pattern
suggests unnecessary computational overhead and motivates a Easy reasoning strategy, which
allocates minimal computational resources.

* Certainty Region (Normal Problems): Low entropy with optimal performance, representing the
sweet spot where the model’s uncertainty aligns with task complexity. These problems benefit
from Normal reasoning strategy, which allocates standard computational resources.
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Table 1: Our three inference strategy configurations. [Max| refers to the predefined maximum token
budget for generation. Full prompts and detailed configurations can be found in the Appendix E}

Strategy | Temperature | Max Tokens | Simplified Prompt Template

Easy 0.5 0.4 x [Max| | Direct solving with verification
Normal 0.8 1.0 x |Max| | Step-by-step methodical approach
Hard 04 0.5 x |[Max| | Resource-aware strategic reasoning
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Table 2: Plots summarizing task performance (y-axis) and efficiency (x-axis) on Qwen3-4B model
with various inference strategies. In all datasets, we find oracle strategy (i.e., the strategy that
achieves the correct answer while incurring minimal tokens or the strategy incurring minimal to-
kens if no strategy leads to correct answer) significantly outperforms any uniform setting.

» Capability Limit Region (Hard Problems): High entropy with low accuracy, indicating genuine
difficulty where the model struggles. These problems may benefit from Hard reasoning strategy,
which allocates less computational resources and prevents getting stuck in reasoning.

This analysis naturally leads to a three-tier adaptive strategy: Easy, Normal, and Hard reasoning
modes, each tailored to the computational needs revealed by the overthinking phenomenon. We
develop such three inference strategies and present oracle experiments with them in the next section.

4 ORACLE EXPERIMENTS WITH THREE INFERENCE STRATEGIES

Inference Strategy Set We design the inference strategies to address the challenges revealed by
our overthinking analysis. For Easy problems, we use lower temperature and reduced tokens to
prevent the model from exploring unnecessary solution paths. Normal problems receive standard
temperature with full token budget to enable comprehensive reasoning in the optimal region where
the model’s uncertainty appropriately matches task complexity. For Hard problems, we implement
a “Fail Fast” mechanism with strict token limits. Since our analysis indicates that these problems
typically exceed the model’s capabilities regardless of generation length, this strategy prioritizes
cutting computational losses on likely-to-fail queries to reallocate resources, rather than engaging in
potentially unproductive reasoning. Table[I]summarizes the specific configurations for each reason-
ing strategy. Notably, these hyperparameters were empirically determined through a systematic grid
search optimization rather than selected heuristically. Further details are provided in Appendix

Experimental Setting To establish the theoretical upper bound of our approach, we conduct an
oracle experiment using Qwen3-4B across eight reasoning benchmarks. We evaluate on five math-
ematical reasoning tasks: GSMS8K (Cobbe et al., 2021), MATHS00 (Lightman et al., [2023), AIME
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Figure 2: Overview of the DiffAdapt framework. Top: (i) Data Generation: We sample multiple
responses from the proxy model, and compute statistics to heurstically assign inference strategy.
This process yields a training dataset for the probe; (ii) Probe Training: We train lightweight probe
which takes model’s hidden states after processing the query and predict its inference strategy label;
and (iii) Inference with Probe: where the trained probe dynamically selects appropriate inference
strategies (Easy/Normal/Hard).

2024 & 2025, and OlympiadBench (He et al., [2024)), along with three out-of-domain benchmarks:
Minerva (Lewkowycz et al.,2022b), GPQA (Rein et al., 2024)), and MMLU-Pro (Wang et al.,[2024).
For each input, we generates outputs from each of the three inference strategies, Easy, Normal, and
Hard. The Oracle strategy is determined through a two-step process: first, we identify all strategies
that yield a correct answer, and from this set, we then select the one with the minimal token con-
sumption. The parameter configurations are set as the same as the fixed strategies in Table [T} and
the max token limit is 32K. More visualization details can be found in Appendix [G|

Results Figure[2]shows that the oracle consistently dominates fixed strategies across all benchmarks,
yielding a 7.2% average accuracy gain over the best fixed baseline. Token allocation adapts with
problem difficulty, ranging from 198 tokens on GSM8K to 4,675 on AIME2S5, highlighting the
need for adaptive compute budgeting. These results substantiate the overthinking hypothesis and
quantify the benefits of difficulty-aware reasoning in both accuracy and efficiency. The oracle’s
Pareto-optimal frontier across benchmarks sets actionable performance targets for DiffAdapt.

5 THE DIFFADAPT FRAMEWORK

To enable LLMs to adapt their inference process based on question difficulty, we introduce a three-
stage framework that leverages the model’s internal representations to adapt inference to question
difficulty. Figure [2]illustrates our overall approach, consisting of three sequential stages from data
preparation to deployment.

5.1 STAGE 1: DATA GENERATION WITH PROXY MODEL SAMPLING

The first stage generates training data for the difficulty classifier through a self-supervised approach.
Starting from an unlabeled dataset, we use a proxy model—typically the same LLM—to sample
responses and compute its entropy and correctness.

For each problem x, we prompt the model to generate complete reasoning steps and final results with
a maximum length of 32K tokens. We then compute the model’s uncertainty using the same genera-
tion entropy calculation described in Section[3] We perform this process with 10 sampling iterations
per problem to ensure robust entropy estimates. This generation entropy serves as a proxy for task
complexity. Grounded in the U-shaped entropy pattern in Section [3|and the Pareto-optimal Oracle
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analysis (Appendix[D.3)), we adopt the following heuristic labeling rule: Normal if correctness > o
and entropy < (; Hard if correctness < +y; Easy otherwise (typically the low-difficulty anomaly
with moderate correctness but unexpectedly high uncertainty). The thresholds «, 3,y are set per
model using a simple heuristic informed by the observed entropy—correctness distributions; we op-
tionally perform a light sanity check on a small validation split to ensure label stability. Per-model
values are reported in Appendix

5.2 STAGE 2: PROBE TRAINING ON HIDDEN STATES

The second stage trains a lightweight probe using the generated labeled data. As shown in the
bottom-left of Figure[2] we extract hidden state representations iy, from the last layer after prefilling
the question.

A small probe C parameterized by € learns to predict difficulty levels from these hidden states. The
probe is implemented as a simple multi-layer perceptron (MLP):

d = softmax(Wy - ReLU(W1hr + b1) + b2)

where 8 = {W;, Wy, by, by} are the learnable parameters, and d represents the predicted difficulty
distribution over the three classes (Easy/Normal/Hard).

The classifier parameters are optimized by minimizing cross-entropy loss:

1

N
_ ().
L£(0) = —¥ ;logP(dl %)

We keep the base LLM weights frozen, requiring only the training of a small probe network.

5.3 STAGE 3: INFERENCE WITH ADAPTIVE STRATEGY EXECUTION

During the inference, the trained probe dynamically selects a reasoning strategy based on pre-
dicted difficulty, as shown in the bottom-right of Figure 2] The process consists of: Difficulty
Prediction: Extract hidden states after prefilling the question and predict difficulty using the
trained probe. Strategy Selection: Map predicted difficulty to corresponding reasoning strategy
(Easy/Normal/Hard). Adaptive Execution: Apply the selected strategy with appropriate computa-
tional budget allocation.

This difficulty prediction step does not interfere with the model’s prefilling and decoding processes,
making it compatible with most inference optimization techniques including batching, KV cache,
prefix cache, and others (Kwon et al., 2023 [Zheng et al., 2024).

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETUP

Models. We evaluate our framework on five models: three reasoning LLMs (Qwen3-4B (Yang et al.,
2025a), DeepSeek-R1-Qwen-7B (DeepSeek-Al et al.| 2025), DeepSeek-R1-Llama-8B (DeepSeek-
Al et al., [2025)) and three models trained with length control RL training (Nemotron-1.5B (Liu
et al.} 2025a)ﬂ ThinkPrune-7B (Hou et al.,|2025))). The probe uses a simple MLP structure, trained
for 100 epochs using the AdamW optimizer with learning rate le-3.

Training Datasets. The probe training dataset consists of a subset of the DeepMath-103K dataset,
with 300 problems sampled per difficulty level. Data labeling is performed through Stage I of our
DiffAdapt framework [5|to generate difficulty-based strategy assignment.

Baselines. We compare against fixed-strategy baselines that apply exclusively Easy, Normal, or
Hard to all problems, as well as the dynamic early-exit method DEER (Yang et al.l |2025b). For
DEER, we align its maximum generation length with other methods and use the default think thresh-
old of 0.9. This setup highlights the benefit of the proposed DiffAdapt framework over both static
and training-free dynamic approaches.

'https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B



Under review as a conference paper at ICLR 2026

Qwen3-4B DeepSeek-R1-Qwen-7B DeepSeek-R1-Llama-8B
70 55
=®= DiffAdapt
80 =u = All Easy
0 All Normal
g @ e @ 60
B o= ° =+« All Hard o
e @ 45
o — <= DEER P g N
g0 o—e o ©
] U N + / .
€ v tis 50 o ’....‘_—-—‘a-'—-- 40 v =
: s
g 50| @ ‘_‘.' // PRUsL .
| e 40 A e
] Ll [ 4 %
® e 30
D | mm e e en i = -
2 50 30
25
40 20 20
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
Percentage of Maximum Token Limit (%) Percentage of Maximum Token Limit (%) Percentage of Maximum Token Limit (%)

(a) In-domain performance across reasoning LLMs model architectures. DiffAdapt consistently outperforms
fixed strategies across computational budgets.
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(b) Out-of-domain performance on Minerva, MMLU-Pro, and GPQA. DiffAdapt maintains effectiveness under
domain shift for reasoning LLMs.

Figure 3: Performance across reasoning LL.Ms model architectures and domains. The x-axis
represents different maximum token limit constraints as a percentage of the full token budget,
demonstrating how different strategies perform under varying computational budgets. (a) In-domain:
DiffAdapt consistently outperforms fixed strategies. (b) Out-of-domain: Effectiveness maintained
under domain shift.

Evaluation Benchmarks. We evaluate on five mathematical reasoning tasks: GSM8K (Cobbe
et al., 2021), MATHS00 (Lightman et al., [2023), AIME 2024 & 2025, and OlympiadBench (He
et al., [2024), along with three out-of-domain benchmarks: Minerva (Lewkowycz et al. 2022b),
GPQA (Rein et al.,|[2024), and MMLU-Pro (Wang et al., 2024).

Experimental Design. To demonstrate the probe’s ability to perform difficulty-adaptive reason-
ing, we mix benchmarks of different difficulty levels. We present averaged results across bench-
marks with varying domains, in-domain (GSM8K, MATH500, AIME24&25, OlympiadBench) and
out-of-domain (Minerva, GPQA, MMLU-Pro) to show adaptive performance across the difficulty
spectrum. Each experiment is run three times; we report the mean across runs. For evaluation, we
follow reliability protocols from |Ye et al.| (2025 ﬂChen et al.| (2025 ﬂ Max token limits: for each
model-benchmark pair, we first allow a generous cap (e.g., 32K) to observe the model’s longest
output and then set a nearby rounded value as the per-benchmark max_tokens used in plots; see
Appendix Table[I3]for the finalized values and Appendix for details.

6.2 REASONING LLMS RESULTS

To validate the generalizability of our DiffAdapt framework, we conducted comprehensive ex-
periments across different reasoning LLMs model architectures and scales. Figure [3] presents the
performance-efficiency trade-offs for three representative models on both in-domain (ID) and out-
of-domain (OOD) evaluation datasets.

*https://github.com/GAIR-NLP/LIMO
3https://github.com/IA AR-Shanghai/x Verify
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Figure 4: DiffAdapt orthogonality with Length Control RL methods. Performance analysis
across three LC-RL trained models on both ID and OOD datasets.

Performance Analysis DiffAdapt consistently outperforms fixed strategies across all model archi-
tectures and domains. On in-domain tasks (Figure 3a)), Qwen3-4B shows the largest improvements,
particularly at higher token budgets. DeepSeek-R1-Qwen-7B demonstrates stable gains, while
DeepSeek-R1-Llama-8B exhibits significant benefits across model families. On out-of-domain eval-
uation (Figure [3b), the framework remains effective: DiffAdapt delivers consistent improvements
across models and domains, with gains becoming more pronounced as the maximum token bud-
get increases. By contrast, the training-free dynamic baseline DEER performs comparably to the
strongest fixed strategy on in-domain datasets but still lags behind DiffAdapt; under distribution
shift (Minerva, MMLU-Pro, GPQA), DEER exhibits limited generalization and larger performance
degradation. These results confirm DiffAdapt’s robustness across different architectures, scales, and
domains.

Key Findings The results reveal distinct performance patterns for different strategies. Easy strate-
gies achieve high performance with minimal tokens but plateau quickly. Normal and Hard strate-
gies improve continuously with increased computational budgets. This validates averaging across
benchmarks of varying difficulty, as it captures the distinct computational requirements of different
problem complexities. DiffAdapt exploits these patterns through adaptive strategy selection, con-
sistently outperforming fixed approaches across all token limits. Compared with DEER, DiffAdapt
delivers larger and more stable gains across token budgets and domains, indicating that difficulty-
aware strategy selection generalizes better than confidence-based early exit. Models with larger
inter-strategy performance differences show greater DiffAdapt improvements, confirming that
adaptive selection benefits from strategy diversity.

6.3 ORTHOGONALITY WITH LENGTH CONTROL RL METHODS

We evaluate DiffAdapt on models trained with Length Control RL (LC-RL) to demonstrate orthog-
onality with existing training-based approaches. Figure [] shows results across two LC-RL models:
Nemotron-1.5B, ThinkPrune-7B on both in-domain and out-of-domain datasets.

Key Findings. Observing the Easy, Normal, and Hard strategy curves reveals that Easy strategies
achieve superior performance in most settings, as LC-RL training adapts these models to solve
problems efficiently with low computational cost. DiffAdapt shows slightly lower performance than
Easy strategies under low token limits but achieves state-of-the-art results under high token budgets.
This aligns with our design philosophy, enabling LLMs to maintain high performance and efficiency
across problems of varying difficulty and different token budgets.

This analysis establishes that DiffAdapt can be effectively combined with existing training-based op-
timization methods, offering a readily integrable solution that enhances reasoning efficiency without
requiring modifications to the underlying training paradigm.

6.4 COMPUTATIONAL EFFICIENCY ANALYSIS

We quantify computational efficiency in terms of tokens consumed and latency. For token consump-
tion, we measure the average relative token reduction of DiffAdapt compared to a fixed Normal



Under review as a conference paper at ICLR 2026

Table 3: Comparing token savings (%) of our method

Table 4: End-to-end inference time

and baseline (DEER). Negative means more tokens comparison. All methods use vLLM
than the baseline. backend.
Model | DiffAdapt DEER Method | Time (minutes) |
DS-R1-Qwen-7B 9.7% —53.3% vLLM Baseline 64
Qwen3-4B 22.4% —27.5% + DEER 57
ThinkPrune-7B 10.1% - + DiffAdapt 10

strategy across eight benchmarks B:

Tokensy, Normal — TOKensy Method

1
Token Savings = Bl Z
Bl

100%. 1
TOkenSb,Normal % % ( )

A higher value for Token Savings indicates greater efficiency, meaning more tokens are saved com-
pared to the Normal strategy. Conversely, a negative value signifies that the method consumed more
tokens than the baseline.

Token cost From Table[3] we observe substantial efficiency gains from DiffAdapt across models:
Qwen3-4B achieves 22.4% token savings, while DS-R1-Qwen-7B and ThinkPrune-7B reduce usage
by around 10%. In contrast, DEER increases token usage relative to Medium (e.g., —27.5% on
Qwen3-4B and —53.3% on DS-R1-Qwen-7B). The reason is mechanistic: DEER operates under
a fixed token budget and chooses continuation length primarily by confidence/probability, which
frequently drives generations to the maximum token cap rather than allocating tokens adaptively by
problem difficulty.

Latency As shown in Table [d DiffAdapt reduces end-to-end wall-clock time by 6x vs VLLM
baseline and 5x vs DEER (both using VLLM backend) under identical settings (Qwen3-4B; first
40 OlympiadBench problems; batch size 10; single A800 GPU; max token limit 32K; temperature
0.6; DEER think threshold 0.9), corroborating that token savings translate into practical runtime
speedups.

These efficiency gains translate directly into lower inference cost at comparable accuracy levels.

7 ABLATION STUDIES AND ROBUSTNESS ANALYSIS

To rigorously validate the design choices and robustness of DiffAdapt, we conducted extensive
ablation studies regarding hyperparameter sensitivity, probe architecture, and reasoning integrity.

7.1 ROBUSTNESS AND DESIGN CHOICES

We investigate three key dimensions: (1) Threshold Sensitivity: whether the method requires man-
ual tuning per model; (2) Probe Architecture: whether a non-linear MLP is necessary; and (3)
Data Efficiency: performance impact of reducing training data. Our evaluation protocol aligns
with Section @ utilizing in-domain benchmarks including GSM8K, MATH500, AIME 24&25, and
OlympiadBench.

Sensitivity to Thresholds (o, 3,7) A key concern for deployment is whether the difficulty
thresholds require fine-grained calibration. To test this, we replaced the optimized thresholds
of Qwen3-4B with a configuration directly transferred from the DeepSeek-R1 model family
(o = 0.85,5 = 0.35,7 = 0.60). As shown in Table (“Transferred Config”), the performance
difference is negligible (avg. difference ~ 0.3%). This confirms that DiffAdapt is highly robust to
hyperparameter variations, enabling “plug-and-play” deployment without per-model re-calibration.
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Table 5: Ablation study on Qwen3-4B. We compare the Default DiffAdapt configuration against:
(a) Transferred Thresholds from DeepSeek-R1 (to test robustness), (b) a Linear Probe (to test
architecture necessity), and (¢) 30% Training Data (to test data efficiency).

\ Baseline \ Robustness Check | Probe Design Ablation
Token Budget | DiffAdapt (Default) | Transferred (DeepSeek-R1) | Linear Head 30% Data
33.3% 59.3 59.9 56.4 64.5
50.0% 67.2 66.8 64.1 67.9
66.7% 72.4 72.7 68.7 69.3
83.3% 75.8 76.0 72.2 69.8
100% 76.8 76.6 74.0 70.1
Average \ 70.9 \ 71.2 \ 67.7 68.5

Table 6: Pairwise comparison of reasoning qual-
ity (N=50). A blind Judge (Qwen3-30B) com-
pared DiffAdapt vs. Baseline.

Table 7: Failure analysis of the cases where
Baseline won. “Truncation Error” indicates ac-
tual logic failure.

Outcome \ Count Percentage Reason for Loss \ Frequency
DiffAdapt Wins 38 76 % Subjective Preference | 10% (5/50)
Baseline Wins 6 12% Truncation Error 2% (1/50)
Tie 6 12%

Probe Architecture and Data Scale Table[5]also highlights the impact of probe design. Replacing
our 2-layer MLP with a simple Linear Head leads to a consistent accuracy drop (~3.2%), justifying
the need for a lightweight non-linear classifier. Conversely, reducing the training data to only 30%
results in minimal degradation, demonstrating that DiffAdapt is extremely data-efficient compared
to RL-based methods that typically require large-scale rollout data.

7.2 REASONING INTEGRITY ANALYSIS

To address the concern that aggressive token reduction might compromise the logical completeness
of reasoning chains (e.g., causing early truncation), we conducted a blind, pairwise LLM-as-a-
Judge study, more details can be found in Appendix [E]

We sampled 50 queries from GSMS8K and used Qwen3-30B-A3B as an impartial judge to evaluate
anonymized outputs from DiffAdapt and the Baseline (Normal strategy). The judge was explicitly
instructed to penalize logical gaps. As shown in Table [f] DiffAdapt was preferred in 76% of cases,
with the judge often citing that DiffAdapt produced “more concise and direct” reasoning without
redundancy. Notably, catastrophic failure due to early truncation occurred in only 2% of cases
(Table[7), refuting the concern that efficiency comes at the cost of reasoning integrity.

8 CONCLUSION

We characterize a overthinking phenomenon in LLMs, U-shaped entropy patterns across multiple
architectures. This counterintuitive finding challenges the assumption that more computation always
improves reasoning.

Our study offers three takeaways: (1) an empirical characterization of overthinking, with a consis-
tent 22-25% entropy reduction from simple to optimal regions that reveals systematic inefficiency;
(2) Oracle analysis suggesting a large potential for difficulty-aware inference strategy selection;
and (3) DiffAdapt, a lightweight framework that predicts difficulty from hidden states and se-
lects Easy/Normal/Hard strategies, matching or improving accuracy while reducing tokens by up
to 22.4% across five models and eight benchmarks.

DiffAdapt requires no LLM retraining, is compatible with common inference optimizations (e.g.,
batching, KV/prefix caching), and is orthogonal to length-control RL methods. We presents a sim-
ple, lightweight solution to allow adaptive computation allocation for LLM reasoning.

10
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REPRODUCIBILITY STATEMENT

We aim for full reproducibility. Upon publication, we will release code, prompts, evaluation scripts,
and configuration files to reproduce all tables and figures. We specify all random seeds, sampling
settings (temperature/top-p/number of samples n=10), and the base token limit[D.6] We will provide
instructions for dataset preparation (e.g., DeepMath-103K splits and filtering), model versions used
(Qwen3-4B, DeepSeek-R1-Qwen-7B, DeepSeek-R1-Llama-8B, Nemotron-1.5B, ThinkPrune-7B),
and hardware/software environments needed to replicate results. All plots in the paper are generated
by released scripts.

ETHICS STATEMENT

This work studies compute-efficient reasoning strategies for LLMs on public, decontaminated rea-
soning datasets. No personally identifiable or sensitive data are used. We discuss potential risks
of misinterpretation and over-reliance on automatic reasoning systems and recommend careful hu-
man oversight in high-stakes scenarios. We will document evaluation limitations and known failure
modes, and we avoid claims beyond the evaluated settings.
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A USE OF LARGE LANGUAGE MODELS

We used LLMs solely to aid and polish the writing (e.g., wording refinement and grammar), without
generating or altering experimental designs, methods, results, or conclusions. All technical content,
analyses, figures, and tables were authored and verified by the researchers.

B LIMITATIONS AND FUTURE WORK

Transferability and Calibration. While our sensitivity analysis demonstrates that strategy thresh-
olds are robust across model families (e.g., transferring parameters from DeepSeek-R1 to Qwen3
yields negligible < 0.3% deviation), extremely distinct domains may still benefit from a lightweight
calibration phase. Future work could explore completely calibration-free mechanisms.

Prefill-only Trade-off. Our probe relies solely on prefill hidden states to predict difficulty. While
this design minimizes inference latency by avoiding interruption of the decoding process, it inher-
ently ignores generation-time dynamics that might reveal emerging complexity. A promising future
direction is to incorporate lightweight generation signals (e.g., early step-wise entropy), though this
introduces an efficiency-precision trade-off that must be carefully managed.

Labeling via proxy models. Our difficulty labels rely on a proxy model and sampling protocol (10
samples at temperature 0.6). Thresholds («, 3, ) are tuned per model and may require re-calibration
when transferring across domains or changing the sampling configuration. In deployment, we rec-
ommend a light validation phase to re-establish thresholds.

Failure modes under tight budgets. For particularly hard or error-prone cases, aggressive budget
reduction can harm accuracy. A practical fail-safe is to fall back to the Normal strategy when the
probe confidence is low, the prefill signal is out-of-distribution, or the selected strategy underper-
forms recent history.

C COMPLETE REASONING STRATEGY

This section provides the complete reasoning strategy configurations used in our three-tier adaptive
reasoning framework. Each strategy employs specific prompts designed to guide the model’s rea-
soning behavior according to the computational requirements identified through our overthinking
analysis.

C.1 EASY STRATEGY PROMPT

For problems identified as easy (overthinking region), we use a direct approach to minimize unnec-
essary computational overhead:

<think>

This looks straightforward. Let me solve it directly while double-checking my
approach.

</think>
Configuration:

* Temperature: 0.5 (lower randomness for direct solving)
» Max Tokens: 0.4 x |[Max| (reduced computational budget)

* Approach: Direct problem-solving with minimal intermediate steps

C.2 NORMAL STRATEGY PROMPT

For problems in the optimal region, we employ standard methodical reasoning:
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<think>

I’ll break this down into clear, logical steps and solve methodically.

Configuration:

» Temperature: 0.8 (standard exploration level)

» Max Tokens: 1.0 x |Max| (full computational budget)

* Top-p: 0.95 (diverse sampling for comprehensive reasoning)
* Approach: Step-by-step logical decomposition

C.3 HARD STRATEGY PROMPT

For problems at the capability limit, we focus on efficient resource utilization and early termination
of futile paths:

<think>

This appears intricate. I’ll outline the main method while being mindful of
computational resources.

Configuration:

» Temperature: 0.4 (lowest randomness for focused reasoning)
* Max Tokens: 0.5 x |Max]|
* Approach: Strategic method outline to implement a “Fail Fast” mechanism

C.4 DESIGN RATIONALE
The prompt design reflects our empirical findings from the overthinking analysis:

» Easy strategy discourages overthinking by emphasizing directness and verification rather
than extensive exploration.

* Normal strategy encourages systematic reasoning with full computational resources for
optimal performance.

» Hard strategy prioritizes resource conservation, identifying likely-to-fail queries early to
avoid getting stuck in unproductive reasoning loops.

C.5 HYPERPARAMETER OPTIMIZATION

To determine the optimal configuration for these strategies, we avoided heuristic selection and in-
stead conducted a comprehensive Grid Search experiment on the MATHS500 dataset.  Search
Space: We evaluated 125 distinct parameter combinations (5xormat X SHard X DEasy), varying Tem-
perature (7' € [0.1,1.2]) and Max Token Ratios (L € [0.25%,1.0x]). Selection Criterion: We
employed a constrained optimization approach:

1. Filter by Accuracy: We first identified all parameter combinations that maintained high
accuracy (> 95%) on the validation set.

2. Minimize Cost: From these candidates, we selected the configuration that yielded the
lowest average token consumption (960.5 tokens).

Result: Table 8] demonstrates that our chosen configuration is empirically optimal, outperforming
heuristic baselines in efficiency while preserving top-tier accuracy.

These strategies, combined with the corresponding sampling parameters, implement the adaptive
computational allocation strategy motivated by our U-shaped entropy curve analysis.
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Table 8: Comparison of Top-Performing Strategy (Ours) vs. Heuristic Baselines on MATH500. Our
grid-search tuned configuration achieves the best trade-off between accuracy and efficiency.

Strategy Configuration  Description Acc (%) Avg Toks Max Toks Insight

DiffAdapt (Ours) Grid-search tuned: Normal(7'=0.8), 95.0 960.5 10,208 Best trade-off between
Hard(T'=0.4, 0.5 %), Easy(7'=0.5, 0.4x) creativity and stability.

Baseline A (Conservative) Heuristic uniform conservative (7'=0.6, full 94.0 1,003.2 12,461 Slightly lower accuracy;
length for all) higher token cost.

Baseline B (Aggressive) Heuristic uniform high temp (7'=1.2, full 88.0 1,274.8 32,626 Suffers from “reasoning
length for all) loops” on hard queries.

Baseline C (Efficiency) Heuristic aggressive pruning (7'=0.3, 89.0 896.0 10,551  Good efficiency but fails on
0.25x length for all) complex reasoning tasks.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 CRrROSS-DOMAIN GENERALIZATION

To empirically demonstrate the robustness and transferability of DiffAdapt beyond pure math rea-
soning, we extended our evaluation to diverse out-of-domain benchmarks, including Minerva (sci-
entific reasoning), GPQA (graduate-level domain knowledge), and MMLU-Pro (comprehensive
general reasoning). MMLU-Pro Results. We report the detailed zero-shot transfer results on
MMLU-Pro in Table[9] By using the probe and thresholds trained solely on the DeepMath dataset,
DiffAdapt consistently outperforms the fixed-strategy baseline by 3-7% across different token bud-
gets and model architectures (DeepSeek-R1-Qwen/Llama). This confirms that the “difficulty signal”
captured by our probe is generic and effectively transfers to unseen domains without re-training.

Table 9: Performance comparison on MMLU-Pro (OOD Generalization). DiffAdapt is applied zero-
shot using probes trained on math data.

DeepSeek-R1-Qwen-7B DeepSeek-R1-Llama-8B
Token Budget | DiffAdapt (%) Baseline (%) Improvement | DiffAdapt (%) Baseline (%) Improvement
33.3% 32.02 28.21 +3.81% 22.14 17.50 +4.64%
50.0% 35.24 31.07 +4.17% 31.29 27.86 +3.43%
66.7% 35.00 31.07 +3.93% 33.74 31.79 +1.95%
83.3% 35.83 30.36 +5.47% 3545 32.14 +3.31%
100% 36.48 30.71 +5.77% 39.90 32.50 +7.40%

D.2 COMPARISON WITH “WHEN-TO-THINK” BASELINES

We further compared DiffAdapt against specialized “when-to-think” methods like ThinkLess. Un-
like these methods which typically require expensive two-stage training (SFT + RL), DiffAdapt is a
training-free, plug-and-play approach for the LLM. Setup. We applied DiffAdapt to the ThinkLess
Stage-1 model (‘TL-1.5B-Warmup‘) and compared it against their fully trained Stage-2 RL model
(‘TL-1.5B-RL‘). Results. Table[T0|presents the results on MATH500 and GSMSK.

« Efficiency: On GSMS8K, DiffAdapt consistently outperforms the RL baseline while using
fewer tokens.

* Cost-Effectiveness: On MATHS500, while the RL model achieves higher peak accuracy,
DiffAdapt outperforms the Warmup baseline by significant margins (+4-8%) and achieves
competitive performance to the RL model in low-resource regimes using ~35-50% fewer
tokens, without requiring any RL training.

D.3 ORACLE EXPERIMENT DETAILED RESULTS

This subsection provides the complete numerical results from our Oracle experiment across eight
reasoning benchmarks. Table [TT|shows the accuracy and average token consumption for each strat-
egy on every benchmark.

Key Observations. The detailed results reveal several important patterns: (1) Strategy Distribu-
tion: Across all problems, 82.3% benefit from Easy strategy, 7.7% from Normal strategy, and 10.0%
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Table 10: Comparison against ThinkLess (TL) baselines. DiffAdapt is applied to the TL-1.5B-
Warmup model.

MATHS00 GSMSK
Budget | TL-Warmup + DiffAdapt | TL-1.5B-RL | Analysis TL-Warmup + DiffAdapt | TL-1.5B-RL | Analysis
33.3% 64.4% (851 tok) 55.6% (1039 tok) +8.8% / Less Toks 67.0% (336 tok) 66.1% (409 tok) +0.9%
50.0% 67.6% (954 tok) 63.3% (1460 tok) +4.3% / -35% Toks 77.0% (357 tok) 72.0% (465 tok) +5.0%
72.2% 68.0% (973 tok) 69.2% (1775 tok) | Comparable / -50% Toks 78.2% (361 tok) 74.3% (510 tok) +3.9%
100% 68.3% (1003 tok) 73.5% (2020 tok) RL peaks higher 78.6% (364 tok) 78.8% (573 tok) | Comparable

Table 11: Detailed Oracle Experiment Results Across Reasoning Benchmarks With Qwen3-4B

Benchmark Easy Strategy Normal Strategy Hard Strategy Oracle Selection
Acc (%) Tokens | Acc (%) Tokens | Acc(%) Tokens | Acc(%) Tokens
GSMSK 89.90 169.93 93.20 561.80 93.50 511.55 96.20 197.96
MATH 82.80 718.33 96.20 2662.06 93.40 2424.69 98.00 1278.90
GPQA 46.46 812.55 50.51 3022.33 47.98 2952.44 70.20 1001.14
MMLU-Pro 60.36 526.14 65.36 2076.16 62.50 1873.14 74.64 690.04
Minerva 46.69 468.74 55.15 2795.14 53.31 2248.22 65.81 866.31
OlympiadBench 50.96 1628.91 73.63 6722.40 68.59 5895.97 76.89 2756.25
AIME 2024 16.67 3504.90 60.00 10672.23 46.67 10166.87 66.67 4429.37
AIME 2025 16.67 2442.83 53.33 13733.47 40.00 10634.77 56.67 4675.00

from Hard strategy, confirming the prevalence of overthinking in current reasoning approaches. (2)
Benchmark Characteristics: Mathematical competition problems (AIME 2024/2025) require the
highest computational resources, while basic arithmetic (GSM8K) achieves optimal performance
with minimal tokens. (3) Universal Improvement: Oracle selection achieves higher accuracy than
any fixed strategy across all benchmarks while maintaining efficient token usage. (4) Efficiency
Gains: The Oracle demonstrates substantial token savings compared to always using Normal or
Hard strategies, with efficiency improvements ranging from 3x (GSMS8K) to 5x (AIME series).
These results provide the empirical foundation for our DiffAdapt framework and establish clear
performance targets for practical adaptive reasoning systems.

D.4 MODEL-SPECIFIC THRESHOLD VALUES

This subsection provides the specific threshold values used for difficulty classification across differ-
ent models in our framework. The thresholds « (correctness), 5 (entropy), and -y (correctness) are
determined empirically for each model to optimize the strategy assignment performance.

Table 12: Model-Specific Threshold Values for Difficulty Classification

Model « (Normal) S (Entropy) -~ (Hard)
DeepSeek-R1-Qwen-7B 0.85 0.35 0.60
DeepSeek-R1-Llama-8B 0.85 0.35 0.60
Qwen3-4B 0.88 0.32 0.65

Threshold Selection. We use a heuristic procedure guided by the entropy—correctness scatter of
each model (no exhaustive search). Concretely, we pick « near the knee where high-correctness,
low-entropy points concentrate; choose 3 at the elbow separating low vs. high-uncertainty regimes;
and set y to capture the reliability drop-off region in correctness. We optionally verify stability with
a small validation split. This selection ensures that:

* Normal threshold (a): Captures problems where the model performs consistently well
with low uncertainty

* Entropy threshold (5): Distinguishes between confident and uncertain predictions
* Hard threshold (): Identifies problems beyond the model’s reliable capability range

These model-specific thresholds reflect the inherent differences in reasoning capabilities and uncer-
tainty patterns across different architectures and scales.
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D.5 DETAILED ALGORITHMIC PROCEDURES

This subsection provides the complete algorithmic descriptions for the three main stages of our
DiffAdapt framework. These algorithms detail the implementation procedures that correspond to
the conceptual framework presented in Section [5]

Algorithm 1 Data Generation with Proxy Model Sampling

1: Input: Set of problems X = {xl}i\il LLM, thresholds «, 3, v
2: Initialize labeled dataset D « ()
3: for all problem z in X do

4: Generate n = 10 complete reasoning sequences with max length 32K
5: Compute correctness rate C(x) and average entropy H(x)

6: if C(x) > aand H(z) < § then

7: Yiabel <— ‘Normal’

8: else if C(z) < -y then

9: Yiabel < ‘Hard’

10: else
11: Yiabel <— ‘Easy’ > Overthinking cases
12: end if

13: Add (iL’, ylabel) to D
14: end for

15: Output: Labeled dataset D

D.6 MAXIMUM TOKEN LIMITS PER MODEL AND BENCHMARK

This subsection reports the maximum token limits used for each model on each benchmark and de-
scribes how they were determined. For each model-benchmark pair, we first ran the model under a
generous cap (e.g., 32K tokens) to observe its longest response length in a less constrained setting.
We then selected a nearby rounded integer as the per-benchmark max_tokens used in our analy-
ses. This procedure standardizes evaluation across tasks and enables percentage-based truncation in
Figures [3|and 4]

Procedure example. With a 32K cap, Qwen3-4B produced longest responses of approxi-
mately 1,500 tokens on GSM8K and 18,000 tokens on AIME24; we therefore set max_tokens
to 1,500 and 18,000 for those benchmarks, respectively. Analogous rounding was applied to all
model-benchmark pairs (see Table [T3)).

Table 13: Maximum token limits (in tokens) per model and benchmark (ID and OOD). Values are
rounded from observed maxima under a large cap (e.g., 32K).

Model GSMS8K MATH AIME 2024 AIME 2025 OlympiadBench Minerva MMLU-Pro GPQA
Qwen3-4B 1500 12000 18000 18000 15000 3500 3000 4000
DeepSeek-R1-Qwen-7B 500 3000 15000 16000 5500 1750 3000 5500
DeepSeek-R1-Llama-8B 700 3000 14000 14000 5500 1750 1750 3000
Nemotron-1.5B 3500 4000 7000 6000 5500 5000 3500 5000
ThinkPrune-7B 500 3000 15000 14000 5500 1750 2500 4500

E REASONING INTEGRITY ANALYSIS

A primary concern with efficiency-oriented reasoning methods is the potential risk of compromising
reasoning integrity—specifically, whether aggressive token reduction leads to early truncation or
logical gaps. To rigorously evaluate this, we conducted a blind, pairwise LLM-as-a-Judge study.

E.1 EXPERIMENTAL SETUP

We randomly sampled N = 50 queries from the GSM8K test set. For each query, we generated two
responses:
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* System A (DiffAdapt): Our proposed method with adaptive strategy selection.

e System B (Baseline): The standard Normal strategy (Temperature=0.8, full token budget).

We employed Qwen3-30B-A3B as an impartial judge. To ensure fairness, the evaluation was blind
(model identities were anonymized) and pairwise (side-by-side comparison). The judge was ex-
plicitly instructed to evaluate based on logical completeness, coherence, and conciseness, and to
penalize any instances of unjustified truncation.

E.2 EVALUATION PROMPT

The specific prompt used for the LLM-as-a-Judge evaluation is provided below. It explicitly asks
the judge to focus on the preservation of coherent reasoning under token constraints.

LLM-as-a-Judge Prompt

You will compare two systems on the same GSM8K math word problem.

Problem:
{problem}

Ground-truth solution (for verification only):
{ground-truth solution}

System A:

- Strategy: {strategyA}

- Tokens used: {tokens_A}

- Final prediction: {Correct/Incorrect}
Reasoning trace:

<<<

{reasoning_trace A}

>>>

System B:

- Strategy: {strategy.B}

- Tokens used: {tokens.B}

- Final prediction: {Correct/Incorrect}
Reasoning trace:

<<<

{reasoning_trace.B}

>>>

Decide which reasoning trace better preserves coherent, logically
complete reasoning under tight token budgets. Explain your
reasoning and output the winner (System A, System B, or Tie).

E.3 RESULTS AND ANALYSIS
Table [[4] summarizes the results of the blind evaluation.

Table 14: Blind pairwise comparison of reasoning quality (N=50) by Qwen3-30B Judge.

Outcome \ Count Percentage \ Judge’s Common Rationale

DiffAdapt Wins 38 76 % “More direct,” “Avoids unnecessary repetition,” “Efficient logic”
Baseline Wins 6 12% “More detailed explanation” (in 5 cases), “Truncation” (in 1 case)
Tie 6 12% “Both reasoning paths are identical”
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Frequency of Logical Failure We performed a manual failure analysis on the 6 cases where the
Baseline won:

* Subjective Preference (5 cases): The Baseline produced a more verbose explanation
which the judge preferred, even though DiffAdapt’s response was correct and logically
complete.

* Truncation Error (1 case): Only a single instance (2%) involved actual logical failure due
to aggressive token reduction (misclassified as Easy).

This low failure rate (2%) confirms that DiffAdapt’s fallback mechanisms (Normal strategy for am-
biguous cases) effectively preserve reasoning integrity while significantly reducing computational
cost.

F ADDITIONAL OVERTHINKING ANALYSIS ACROSS MODEL
ARCHITECTURES

To demonstrate the universality of the overthinking phenomenon, we present additional overthinking
analysis results for two more model architectures: DeepSeek-R 1-Distill-Qwen-1.5B and Nemotron-
Research-Reasoning-Qwen-1.5B. These results complement the main analysis presented in Sec-
tion 3] and provide further evidence that the U-shaped entropy pattern is consistent across different
model sizes and architectures.

F.1 DEEPSEEK-R1-DISTILL-QWEN-1.5B OVERTHINKING ANALYSIS

Figure [5] shows the overthinking analysis for the DeepSeek-R1-Distill-Qwen-1.5B model. Despite
being a smaller 1.5B parameter model, it exhibits the same characteristic U-shaped entropy curve:

» Simple Problems (Difficulty 1-2): High entropy with good correctness, indicating over-
thinking behavior

* Certainty Region (Difficulty 3-6): Reduced entropy with maintained performance

* Difficult Problems (Difficulty 8+): Increased entropy with declining performance

The entropy reduction of 23.3% from simple to optimal regions demonstrates strong overthinking
evidence, consistent with our findings across model architectures.

F.2 NEMOTRON-RESEARCH-REASONING-QWEN-1.5B OVERTHINKING ANALYSIS

Figure 6] presents the analysis for Nemotron-Research-Reasoning-Qwen-1.5B, another 1.5B param-
eter reasoning model. This model shows the most pronounced U-shaped pattern:

* Simple Problems (Difficulty 1-2): High entropy with strong correctness, showing clear
overthinking

* Certainty Region (Difficulty 3-6): Significantly reduced entropy with peak performance

* Difficult Problems (Difficulty 8+): Highest entropy with declining accuracy

This model demonstrates a 21.3% entropy reduction from simple to optimal regions, providing ad-
ditional validation of the overthinking phenomenon across different reasoning architectures.

G ADDITIONAL ORACLE ANALYSIS RESULTS

This section presents comprehensive Oracle analysis results across multiple model architectures to
validate the generalizability of our findings. We conduct the same Oracle experiment described in
SectionE] on three additional models: DS-Qwen-7B, Nemotron-1.5B, and DeepSeek-R1-Llama-8B.
These models represent different scales, architectures, and training methodologies, providing robust
evidence for the universal applicability of adaptive reasoning strategies.
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Revealing Overthinking: Why Simple Problems Show High Reasoning Uncertainty
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Figure 5: Overthinking phenomenon in DeepSeek-R1-Distill-Qwen-1.5B model showing the char-
acteristic U-shaped entropy pattern across difficulty levels.

Revealing Overthinking: Why Simple Problems Show High Reasoning Uncertainty
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Figure 6: Overthinking phenomenon in Nemotron-Research-Reasoning-Qwen-1.5B model demon-
strating the universal U-shaped entropy pattern.

G.1 DEEPSEEK-R1-QWEN-7B ORACLE ANALYSIS
Figure [7] shows the performance-token trade-offs for DeepSeek-R1-Qwen-7B across all eight rea-

soning benchmarks. The results demonstrate consistent Oracle superiority with an average improve-
ment of +12.3% over the best fixed strategy, validating our findings across larger model scales.

G.2 NEMOTRON-1.5B ORACLE ANALYSIS
Figure [§] presents the Oracle analysis for Nemotron-1.5B, demonstrating that adaptive strategy se-

lection benefits extend to smaller model scales. Despite the reduced parameter count, the Oracle
achieves +7.9% average improvement while maintaining superior token efficiency.
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Performance vs. Token Consumption for Different Strategy Selections
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Figure 7: DeepSeek-R1-Qwen-7B Oracle Analysis: Performance vs. Token Consumption Trade-
offs. The Oracle strategy (gold stars) consistently outperforms all fixed strategies across mathe-
matical reasoning tasks (GSM8K, MATH), competition problems (AIME24/25, OlympiadBench),
and out-of-domain benchmarks (GPQA, Minerva, MMLU-Pro), achieving optimal Pareto efficiency
with an average +12.3% accuracy improvement.

Performance vs. Token Consumption for Different Strategy Selections
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Figure 8: Nemotron-1.5B Oracle Analysis: Performance vs. Token Consumption Trade-offs. Even
at smaller scale (1.5B parameters), the Oracle strategy demonstrates consistent advantages across
all benchmarks, achieving +7.9% average accuracy improvement with efficient token utilization,
confirming the scalability of adaptive reasoning approaches.

G.3 DEEPSEEK-R1-LLAMA-8B ORACLE ANALYSIS

Figure[9]shows the most compelling results from DeepSeek-R1-Llama-8B, which achieves the high-
est Oracle benefits with +16.2% average improvement. This model demonstrates exceptional token

efficiency, with Oracle strategy consuming significantly fewer tokens while achieving superior per-
formance across all benchmarks.
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Performance vs. Token Consumption for Different Strategy Selections
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Figure 9: DeepSeek-R1-Llama-8B Oracle Analysis: Performance vs. Token Consumption Trade-
offs. This model shows the strongest Oracle benefits with +16.2% average accuracy improvement
and exceptional token efficiency. The Oracle strategy achieves superior performance while consum-
ing 10-35% fewer tokens than fixed strategies, demonstrating optimal resource utilization.

G.4 CROSS-MODEL ORACLE ANALYSIS SUMMARY

Table|15|summarizes the Oracle analysis results across all four models, demonstrating the universal
effectiveness of adaptive strategy selection.

Table 15: Cross-Model Oracle Analysis Summary

Model | Parameters | Avg. Accuracy Improvement | Dominance Rate | Token Efficiency
Qwen3-4B 4B +7.2% 100% Mixed
DS-Qwen-7B 7B +12.3% 100% Moderate
Nemotron-1.5B 1.5B +7.9% 100% High
DeepSeek-R1-Llama-8B 8B +16.2% 100% Excellent

Key Insights:

* Universal Dominance: Oracle strategy achieves 100% dominance rate across all models

and benchmarks

* Scalable Benefits: Performance improvements scale with model capability, ranging from

+7.2% to +16.2%

* Consistent Token Efficiency: All models show improved resource utilization with adap-
tive strategy selection

* Robust Generalization: Benefits span mathematical reasoning, competition problems, and
out-of-domain tasks

These comprehensive results provide strong empirical evidence that adaptive reasoning strategies
offer universal benefits across diverse model architectures, scales, and problem domains, directly
motivating the design and deployment of our DiffAdapt framework.
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