

000 001 002 003 004 005 DIFFADAPT: DIFFICULTY-ADAPTIVE REASONING FOR 006 TOKEN-EFFICIENT LLM INFERENCE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029 Recent reasoning Large Language Models (LLMs) demonstrate remarkable
030 problem-solving abilities but often generate long thinking traces whose utility
031 is unclear. Our work aims to improve their efficiency, enabling them to reach
032 high performance without overthinking. First, we analyze the entropy of token
033 probabilities in reasoning traces. Across three models, we observe a consistent U-
034 shaped entropy pattern: high entropy on easy problems despite high accuracy, low
035 entropy on problems with medium difficulty, and high entropy on hard problems
036 reflecting uncertainty. Specifically, we notice 22–25% entropy reduction from
037 easy to medium difficulty regions, suggesting an overthinking phenomenon on
038 easy instances. Building on these insights, we introduce **DiffAdapt**, a lightweight
039 framework that selects Easy/Normal/Hard inference strategies per question based
040 on their difficulty and reasoning trace entropy. Each inference strategy consists
041 of a fixed prompt, temperature and maximum token length. In contrast to existing
042 efficiency optimization methods, our approach does not fine-tune base LLM
043 but a small probe that classifies LLM’s final hidden state, allowing inexpensive
044 adaptation. We comprehensively evaluate our method on five models and eight
045 benchmarks. Our method achieves comparable or improved accuracy while re-
046 ducing token usage by up to 22.4%, establishing a practical path toward compute-
047 efficient reasoning.

048 1 INTRODUCTION 049

050 Large Language Models (LLMs) emerged as powerful tools for complex reasoning tasks, spanning
051 mathematical problem-solving (Lewkowycz et al., 2022a; Pan et al., 2024), code generation (Chen
052 et al., 2021), and logical deduction (Wei et al., 2022). A key ingredient in this success is intermediate
053 reasoning steps, often referred to as a “chain of thought” (CoT), before producing a final answer (Yu
054 et al., 2024; Li et al., 2025d; Liu et al., 2024; Kong et al., 2025). However, this capability comes at
055 a significant computational cost. Models typically generate a lengthy and elaborate chain of thought
056 for every problem, a process sometimes called test-time scaling (Muennighoff et al., 2025; Chu
057 et al., 2025).

058 Always generating long traces is fundamentally inefficient. It squanders resources on simple prob-
059 lems, while not necessarily providing sufficient resources for truly complex tasks (Qu et al., 2025;
060 Sui et al., 2025; Li et al., 2025b). In this work, we introduce a framework to bridge this gap through
061 systematic empirical analysis and adaptive inference strategy design. We first discover a U-shaped
062 entropy pattern: high entropy on easy problems despite high accuracy, low entropy on problems
063 with medium difficulty, and high entropy on hard problems reflecting uncertainty. Counterintui-
064 tively, models show high uncertainty on simple problems despite achieving high accuracy.

065 This motivates us to design a different inference strategy per each of these three distinct difficulty re-
066 gions. We develop three simple inference strategies, each equipped with different generation length
067 (i.e., max token length), prompt and decoding hyperparameters (e.g., sampling temperature). The
068 prompt designed for “easy” questions encourages models to answer succinctly without overthinking,
069 while the prompt for high difficulty questions instructs model to think carefully. We first conduct
070 oracle experiments with these three templates. When allowed to choose an optimal strategy per
071 question, models achieve 50% token savings while improving the model accuracy by over 10%.

054 Based on this observation, we introduce **DiffAdapt**, a three-stage framework that dynamically se-
 055 lects inference strategy rather than applying uniform reasoning budgets to all problems. Our frame-
 056 work operates in three stages: (1) we use a proxy model to generate training data by sampling
 057 responses and heuristically labeling them with difficulty-based strategy assignments; (2) we train a
 058 lightweight probe on the model’s hidden states to predict problem difficulty; and (3) during infer-
 059 ence, the probe dynamically selects the appropriate reasoning strategy (Easy/Normal/Hard) for each
 060 question. Compared to the training-free baseline DEER (Yang et al., 2025b), DiffAdapt achieves
 061 superior performance with up to 62% token reduction and 18% performance improvement across
 062 eight mathematical reasoning benchmarks Lightman et al. (2023); Rein et al. (2024); Wang et al.
 063 (2024); He et al. (2024); Cobbe et al. (2021) over five models DeepSeek-AI et al. (2025); Yang et al.
 064 (2025a); Liu et al. (2025a); Hou et al. (2025).

065 2 RELATED WORK

066 **Training-Based Budget Control.** Several methods incorporate budget control directly into the
 067 model’s training phase. Huang et al. (2025); Shen et al. (2025); Liu et al. (2025b) use reinforcement
 068 learning (RL) with difficulty-aware rewards to train a model for adaptive budgeting. Similarly,
 069 Cheng et al. (2025) employ a dual-reward system based on Group-Policy Optimization (GPO)
 070 to encourage conciseness. ThinkPrune (Hou et al., 2025) trains long-thinking LLMs via RL with
 071 token limits, using iterative pruning rounds to achieve better performance-length tradeoffs. LC-R1
 072 (Cheng et al., 2025) addresses “invalid thinking” through GPO-based post-training with length and
 073 compress rewards, achieving significant sequence length reduction while maintaining performance.
 074 TL;DR (Li et al., 2025c) is a training-free method that uses mixed system1 and system2 data to
 075 control the reasoning process. AdaCoT (Lou et al., 2025) framed adaptive reasoning as a Pareto
 076 optimization problem that seeks to balance model performance with the costs associated with CoT
 077 invocation. Thinkless (Fang et al., 2025) is trained under a reinforcement learning paradigm and
 078 employs two control tokens, `<short>` for concise responses and `<think>` for detailed reasoning.

079 **Inference-Time Budget Control.** Other methods operate purely at inference time without requiring
 080 training. Zhang et al. (2025a) define an “ α moment” to switch from slow to fast thinking, while
 081 Zhang et al. (2025c) modify the sampling strategy to explore a continuous concept space. Yang
 082 et al. (2025b) monitor for specific transition tokens and model confidence to perform an early exit.
 083 Ma et al. (2025) propose a method to disable the reasoning process of LLMs. These training-free
 084 methods are flexible but often underperform a learned difficulty model.

085 **Methods Requiring Auxiliary Models.** Some approaches rely on external models to guide the
 086 LLM’s reasoning process. For instance, Li et al. (2025a) train a separate BERT model to predict
 087 the remaining reasoning length and steer the generation process. Zhang et al. (2025b) employ R1-
 088 7B as a switcher model, using prompt engineering or supervised fine-tuning for strategy selection.
 089 Liang et al. (2025) utilize an MLP-based switcher with group accuracy as training labels. While
 090 these methods can achieve good performance, they introduce the overhead of running additional
 091 non-trivial models during inference, increasing computational costs and deployment complexity.
 092 Our DiffAdapt framework, in contrast, is a very small classifier integrated directly with the LLM’s
 093 internal states, adding minimal latency.

094 3 CHARACTERIZING OVERTHINKING PHENOMENON

095 Recent work has identified that reasoning LLMs exhibit “overthinking” behavior (Ma et al., 2025;
 096 Sui et al., 2025; Qu et al., 2025), where models generate exceedingly lengthy solution when they
 097 can arrive at correct solutions much more succinctly. Building upon this observation, we analyze
 098 this phenomenon from an entropy perspective, revealing a counterintuitive pattern where models
 099 demonstrate high uncertainty.

100 3.1 EXPERIMENTAL SETTING

101 **Dataset** We use DeepMath-103K dataset (He et al., 2025), a large-scale, challenging, decontam-
 102 inated, and verifiable mathematical dataset designed for advancing reasoning capabilities. The
 103 dataset provides problems with difficulty ratings from 1-10 as evaluated by GPT-4o based on math-

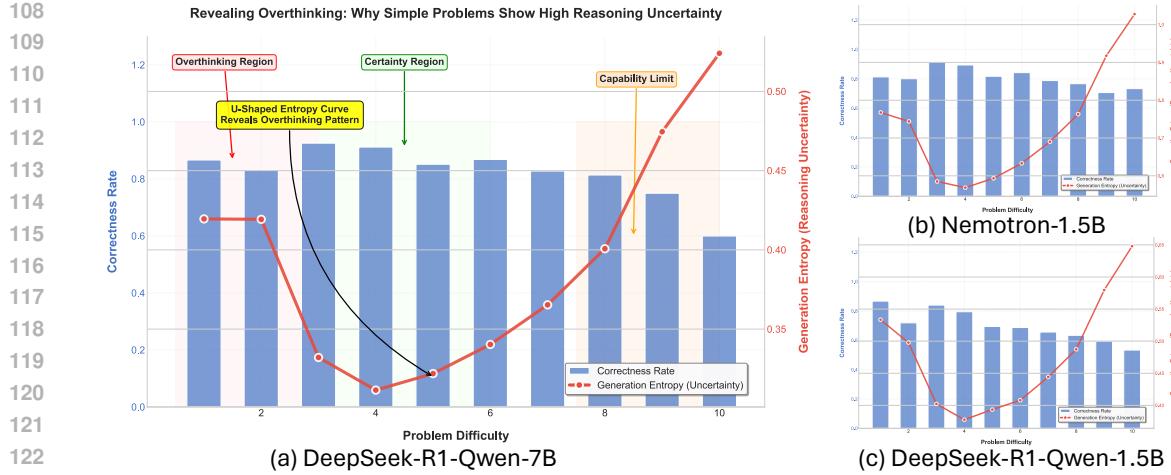


Figure 1: Visualization of model accuracy (blue bar), generation entropy (red line) per difficulty of question (x-axis), across three models (model name at the bottom of the graph). We observe a consistent U-shaped entropy curve along the difficulty levels on multiple models.

ematical complexity and covers a wide range of mathematical topics with rigorous decontamination against numerous benchmarks. For our experiments, we created a balanced experimental set by sampling 300 questions per difficulty level, with 10 sampling iterations per problem at temperature 0.6, ensuring robust statistical analysis of entropy patterns.

Entropy Calculation We measure model uncertainty using generation entropy, calculated as the average entropy across all tokens in the generated sequence (Wang et al., 2025). For each token position t , the entropy is computed as $H_t = -\sum_{j=1}^V p_{t,j} \log p_{t,j}$, where V is the vocabulary size and $p_{t,j}$ is the probability of predicting the j -th token in the vocabulary given all preceding tokens $o_{<t}$. The entropy H_t corresponds to the uncertainty of the token generation distribution at position t , rather than an intrinsic property of the specific token o_t sampled from that distribution.

Correctness Rate Evaluation For each difficulty rating bucket, we measure the correctness rate as the fraction of successful solutions across multiple sampling iterations. For each problem x_i , we generate n responses $\{r_{i,j}\}_{j=1}^n$ and evaluate their correctness against ground truth solutions. The correctness rate for problem x_i is defined as:

$$\mathcal{C}(x_i) = \frac{1}{n} \sum_{j=1}^n \mathbb{I}[r_{i,j} = y_i]$$

where $\mathbb{I}[\cdot]$ is the indicator function, y_i denotes the ground truth solution for problem x_i , and $n = 10$ sampling iterations per problem in our experiments.

3.2 RESULTS

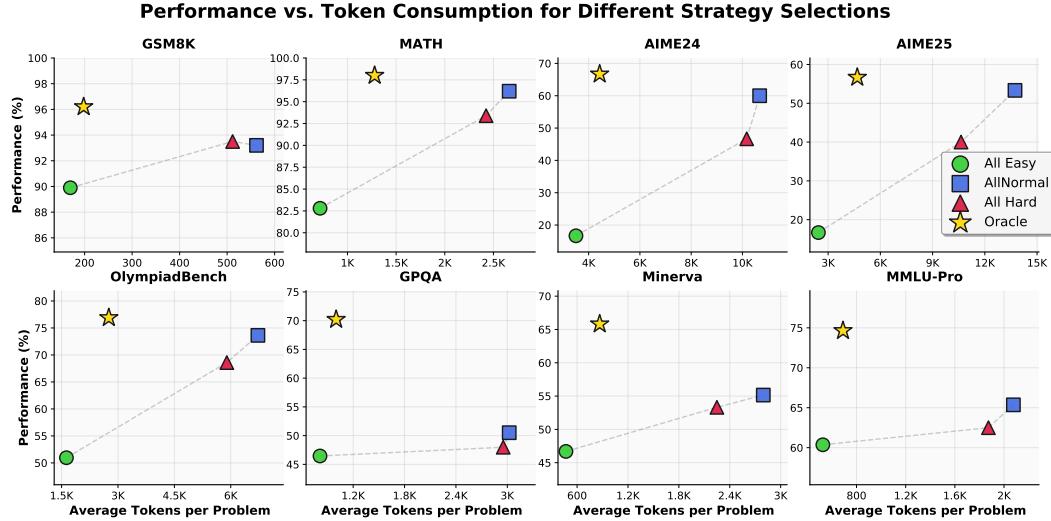
Figure 1 (a) illustrates this U-shaped entropy curve across different difficulty levels using the DeepSeek-R1-Distill-Qwen-7B model on the DeepMath-103K dataset (He et al., 2025). We observe consistent overthinking patterns across multiple model architectures (see Appendix F for additional models).

The U-shaped entropy curve in Figure 1 (a) reveals three distinct regions, where each region might benefit from different computational strategies:

- **Overthinking Region (Easy Problems):** High correctness rates coupled with high entropy, indicating the model is uncertain about problems it can solve well. This counterintuitive pattern suggests unnecessary computational overhead and motivates a *Easy reasoning strategy*, which allocates minimal computational resources.
- **Certainty Region (Normal Problems):** Low entropy with optimal performance, representing the sweet spot where the model’s uncertainty aligns with task complexity. These problems benefit from *Normal reasoning strategy*, which allocates standard computational resources.

162
163
164
165 Table 1: Our three inference strategy configurations. $|\text{Max}|$ refers to the predefined maximum token
166 budget for generation. Full prompts and detailed configurations can be found in the Appendix C.
167
168
169

170 Strategy	171 Temperature	172 Max Tokens	173 Simplified Prompt Template
174 Easy	175 0.5	176 $0.4 \times \text{Max} $	177 Direct solving with verification
178 Normal	179 0.8	180 $1.0 \times \text{Max} $	181 Step-by-step methodical approach
182 Hard	183 0.4	184 $0.5 \times \text{Max} $	185 Resource-aware strategic reasoning



177 Table 2: Plots summarizing task performance (y-axis) and efficiency (x-axis) on Qwen3-4B model
178 with various inference strategies. In all datasets, we find oracle strategy (i.e., the strategy that
179 achieves the correct answer while incurring minimal tokens or the strategy incurring minimal to-
180 kens if no strategy leads to correct answer) significantly outperforms any uniform setting.
181
182
183
184
185

- 186
187
188
189
190
191
192
193 • **Capability Limit Region (Hard Problems):** High entropy with low accuracy, indicating genuine
194 difficulty where the model struggles. These problems may benefit from *Hard reasoning strategy*,
195 which allocates less computational resources and prevents getting stuck in reasoning.

196 This analysis naturally leads to a three-tier adaptive strategy: **Easy**, **Normal**, and **Hard** reasoning
197 modes, each tailored to the computational needs revealed by the overthinking phenomenon. We
198 develop such three inference strategies and present oracle experiments with them in the next section.
199
200

4 ORACLE EXPERIMENTS WITH THREE INFERENCE STRATEGIES

201
202 **Inference Strategy Set** We design the inference strategies to address the challenges revealed by
203 our overthinking analysis. For **Easy problems**, we use lower temperature and reduced tokens to
204 prevent the model from exploring unnecessary solution paths. **Normal problems** receive standard
205 temperature with full token budget to enable comprehensive reasoning in the optimal region where
206 the model’s uncertainty appropriately matches task complexity. For **Hard problems**, we implement
207 a “**Fail Fast**” mechanism with strict token limits. Since our analysis indicates that these problems
208 typically exceed the model’s capabilities regardless of generation length, this strategy prioritizes
209 cutting computational losses on likely-to-fail queries to reallocate resources, rather than engaging in
210 potentially unproductive reasoning. Table 1 summarizes the specific configurations for each reasoning
211 strategy. Notably, these hyperparameters were empirically determined through a systematic grid
212 search optimization rather than selected heuristically. Further details are provided in Appendix C.
213

214 **Experimental Setting** To establish the theoretical upper bound of our approach, we conduct an
215 oracle experiment using Qwen3-4B across eight reasoning benchmarks. We evaluate on five mathematical
reasoning tasks: GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), AIME

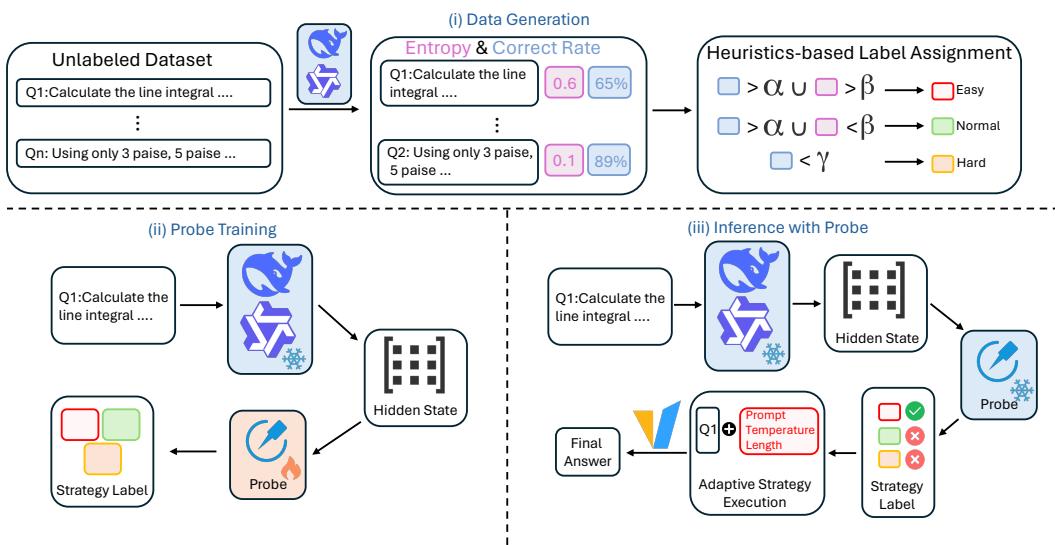


Figure 2: Overview of the DiffAdapt framework. Top: (i) **Data Generation**: We sample multiple responses from the proxy model, and compute statistics to heuristically assign inference strategy. This process yields a training dataset for the probe; (ii) **Probe Training**: We train lightweight probe which takes model’s hidden states after processing the query and predict its inference strategy label; and (iii) **Inference with Probe**: where the trained probe dynamically selects appropriate inference strategies (Easy/Normal/Hard).

2024 & 2025, and OlympiadBench (He et al., 2024), along with three out-of-domain benchmarks: Minerva (Lewkowycz et al., 2022b), GPQA (Rein et al., 2024), and MMLU-Pro (Wang et al., 2024). For each input, we generates outputs from each of the three inference strategies, **Easy**, **Normal**, and **Hard**. The Oracle strategy is determined through a two-step process: first, we identify all strategies that yield a correct answer, and from this set, we then select the one with the minimal token consumption. The parameter configurations are set as the same as the fixed strategies in Table 1, and the max token limit is 32K. More visualization details can be found in Appendix G.

Results Figure 2 shows that the oracle consistently dominates fixed strategies across all benchmarks, yielding a 7.2% average accuracy gain over the best fixed baseline. Token allocation adapts with problem difficulty, ranging from 198 tokens on GSM8K to 4,675 on AIME25, highlighting the need for adaptive compute budgeting. These results substantiate the overthinking hypothesis and quantify the benefits of difficulty-aware reasoning in both accuracy and efficiency. The oracle’s Pareto-optimal frontier across benchmarks sets actionable performance targets for DiffAdapt.

5 THE DIFFADAPT FRAMEWORK

To enable LLMs to adapt their inference process based on question difficulty, we introduce a three-stage framework that leverages the model’s internal representations to adapt inference to question difficulty. Figure 2 illustrates our overall approach, consisting of three sequential stages from data preparation to deployment.

5.1 STAGE 1: DATA GENERATION WITH PROXY MODEL SAMPLING

The first stage generates training data for the difficulty classifier through a self-supervised approach. Starting from an unlabeled dataset, we use a proxy model—typically the same LLM—to sample responses and compute its entropy and correctness.

For each problem x , we prompt the model to generate complete reasoning steps and final results with a maximum length of 32K tokens. We then compute the model’s uncertainty using the same generation entropy calculation described in Section 3. We perform this process with 10 sampling iterations per problem to ensure robust entropy estimates. This generation entropy serves as a proxy for task complexity. Grounded in the U-shaped entropy pattern in Section 3 and the Pareto-optimal Oracle

270 analysis (Appendix D.3), we adopt the following heuristic labeling rule: **Normal** if correctness $\geq \alpha$
 271 and entropy $\leq \beta$; **Hard** if correctness $< \gamma$; **Easy** otherwise (typically the low-difficulty anomaly
 272 with moderate correctness but unexpectedly high uncertainty). The thresholds α, β, γ are set per
 273 model using a simple heuristic informed by the observed entropy–correctness distributions; we
 274 optionally perform a light sanity check on a small validation split to ensure label stability. Per-model
 275 values are reported in Appendix D.4.

276

277 5.2 STAGE 2: PROBE TRAINING ON HIDDEN STATES

278 The second stage trains a lightweight probe using the generated labeled data. As shown in the
 279 bottom-left of Figure 2, we extract hidden state representations h_L from the last layer after prefilling
 280 the question.
 281

282 A small probe C parameterized by θ learns to predict difficulty levels from these hidden states. The
 283 probe is implemented as a simple multi-layer perceptron (MLP):

$$284 \quad d = \text{softmax}(W_2 \cdot \text{ReLU}(W_1 h_L + b_1) + b_2)$$

285 where $\theta = \{W_1, W_2, b_1, b_2\}$ are the learnable parameters, and d represents the predicted difficulty
 286 distribution over the three classes (Easy/Normal/Hard).
 287

288 The classifier parameters are optimized by minimizing cross-entropy loss:

$$289 \quad \mathcal{L}(\theta) = -\frac{1}{N} \sum_{i=1}^N \log P(d_i = y_i | h_L^{(i)}; \theta)$$

292 We keep the base LLM weights frozen, requiring only the training of a small probe network.
 293

294 5.3 STAGE 3: INFERENCE WITH ADAPTIVE STRATEGY EXECUTION

296 During the inference, the trained probe dynamically selects a reasoning strategy based on pre-
 297 dicted difficulty, as shown in the bottom-right of Figure 2. The process consists of: **Difficulty**
 298 **Prediction**: Extract hidden states after prefilling the question and predict difficulty using the
 299 trained probe. **Strategy Selection**: Map predicted difficulty to corresponding reasoning strategy
 300 (Easy/Normal/Hard). **Adaptive Execution**: Apply the selected strategy with appropriate computa-
 301 tional budget allocation.

302 This difficulty prediction step does not interfere with the model’s prefilling and decoding processes,
 303 making it compatible with most inference optimization techniques including batching, KV cache,
 304 prefix cache, and others (Kwon et al., 2023; Zheng et al., 2024).
 305

306 6 EXPERIMENTAL RESULTS

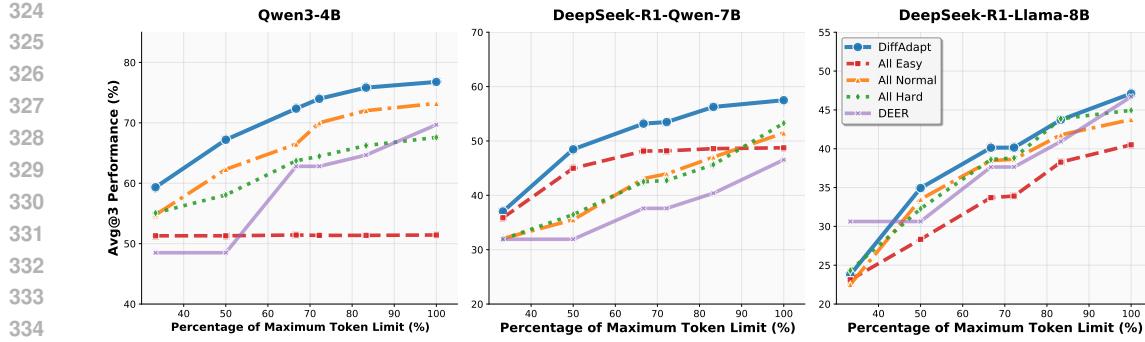
308 6.1 EXPERIMENTAL SETUP

310 **Models.** We evaluate our framework on five models: three reasoning LLMs (Qwen3-4B (Yang et al.,
 311 2025a), DeepSeek-R1-Qwen-7B (DeepSeek-AI et al., 2025), DeepSeek-R1-Llama-8B (DeepSeek-
 312 AI et al., 2025)) and three models trained with length control RL training (Nemotron-1.5B (Liu
 313 et al., 2025a),¹ ThinkPrune-7B (Hou et al., 2025)). The probe uses a simple MLP structure, trained
 314 for 100 epochs using the AdamW optimizer with learning rate 1e-3.

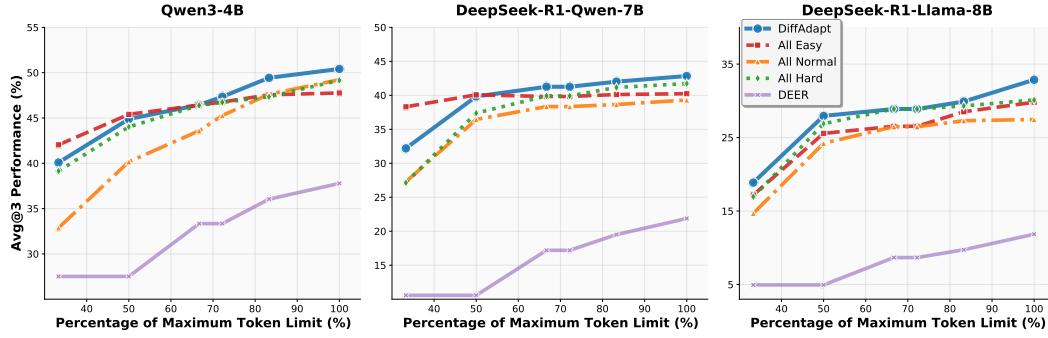
315 **Training Datasets.** The probe training dataset consists of a subset of the DeepMath-103K dataset,
 316 with 300 problems sampled per difficulty level. Data labeling is performed through Stage I of our
 317 DiffAdapt framework 5 to generate difficulty-based strategy assignment.

318 **Baselines.** We compare against fixed-strategy baselines that apply exclusively *Easy*, *Normal*, or
 319 *Hard* to all problems, as well as the dynamic early-exit method DEER (Yang et al., 2025b). For
 320 DEER, we align its maximum generation length with other methods and use the default think thresh-
 321 old of 0.9. This setup highlights the benefit of the proposed DiffAdapt framework over both static
 322 and training-free dynamic approaches.
 323

¹<https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B>



(a) In-domain performance across reasoning LLMs model architectures. DiffAdapt consistently outperforms fixed strategies across computational budgets.



(b) Out-of-domain performance on Minerva, MMLU-Pro, and GPQA. DiffAdapt maintains effectiveness under domain shift for reasoning LLMs.

Figure 3: **Performance across reasoning LLMs model architectures and domains.** The x-axis represents different maximum token limit constraints as a percentage of the full token budget, demonstrating how different strategies perform under varying computational budgets. (a) In-domain: DiffAdapt consistently outperforms fixed strategies. (b) Out-of-domain: Effectiveness maintained under domain shift.

Evaluation Benchmarks. We evaluate on five mathematical reasoning tasks: GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), AIME 2024 & 2025, and OlympiadBench (He et al., 2024), along with three out-of-domain benchmarks: Minerva (Lewkowycz et al., 2022b), GPQA (Rein et al., 2024), and MMLU-Pro (Wang et al., 2024).

Experimental Design. To demonstrate the probe’s ability to perform difficulty-adaptive reasoning, we mix benchmarks of different difficulty levels. We present averaged results across benchmarks with varying domains, in-domain (GSM8K, MATH500, AIME24&25, OlympiadBench) and out-of-domain (Minerva, GPQA, MMLU-Pro) to show adaptive performance across the difficulty spectrum. Each experiment is run three times; we report the mean across runs. For evaluation, we follow reliability protocols from Ye et al. (2025)², Chen et al. (2025)³. *Max token limits:* for each model–benchmark pair, we first allow a generous cap (e.g., 32K) to observe the model’s longest output and then set a nearby rounded value as the per-benchmark max_tokens used in plots; see Appendix Table 13 for the finalized values and Appendix D.6 for details.

6.2 REASONING LLMs RESULTS

To validate the generalizability of our DiffAdapt framework, we conducted comprehensive experiments across different reasoning LLMs model architectures and scales. Figure 3 presents the performance-efficiency trade-offs for three representative models on both in-domain (ID) and out-of-domain (OOD) evaluation datasets.

²<https://github.com/GAIR-NLP/LIMO>

³<https://github.com/IAAR-Shanghai/xVerify>

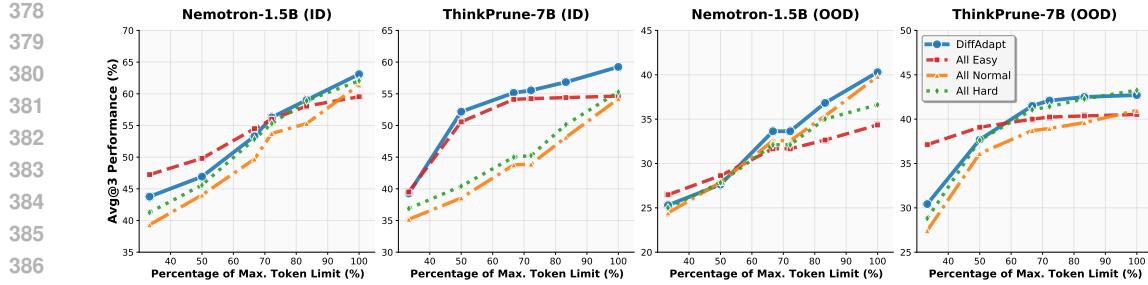


Figure 4: **DiffAdapt orthogonality with Length Control RL methods.** Performance analysis across three LC-RL trained models on both ID and OOD datasets.

Performance Analysis DiffAdapt consistently outperforms fixed strategies across all model architectures and domains. On in-domain tasks (Figure 3a), Qwen3-4B shows the largest improvements, particularly at higher token budgets. DeepSeek-R1-Qwen-7B demonstrates stable gains, while DeepSeek-R1-Llama-8B exhibits significant benefits across model families. On out-of-domain evaluation (Figure 3b), the framework remains effective: DiffAdapt delivers consistent improvements across models and domains, with gains becoming more pronounced as the maximum token budget increases. By contrast, the training-free dynamic baseline DEER performs comparably to the strongest fixed strategy on in-domain datasets but still lags behind DiffAdapt; under distribution shift (Minerva, MMLU-Pro, GPQA), DEER exhibits limited generalization and larger performance degradation. These results confirm DiffAdapt’s robustness across different architectures, scales, and domains.

Key Findings The results reveal distinct performance patterns for different strategies. Easy strategies achieve high performance with minimal tokens but plateau quickly. Normal and Hard strategies improve continuously with increased computational budgets. This validates averaging across benchmarks of varying difficulty, as it captures the distinct computational requirements of different problem complexities. DiffAdapt exploits these patterns through adaptive strategy selection, consistently outperforming fixed approaches across all token limits. Compared with DEER, DiffAdapt delivers larger and more stable gains across token budgets and domains, indicating that difficulty-aware strategy selection generalizes better than confidence-based early exit. Models with **larger inter-strategy performance differences show greater DiffAdapt improvements**, confirming that adaptive selection benefits from strategy diversity.

6.3 ORTHOGONALITY WITH LENGTH CONTROL RL METHODS

We evaluate DiffAdapt on models trained with Length Control RL (LC-RL) to demonstrate orthogonality with existing training-based approaches. Figure 4 shows results across two LC-RL models: Nemotron-1.5B, ThinkPrune-7B on both in-domain and out-of-domain datasets.

Key Findings. Observing the Easy, Normal, and Hard strategy curves reveals that Easy strategies achieve superior performance in most settings, as LC-RL training adapts these models to solve problems efficiently with low computational cost. DiffAdapt shows slightly lower performance than Easy strategies under low token limits but achieves state-of-the-art results under high token budgets. This aligns with our design philosophy, enabling LLMs to maintain high performance and efficiency across problems of varying difficulty and different token budgets.

This analysis establishes that DiffAdapt can be effectively combined with existing training-based optimization methods, offering a readily integrable solution that enhances reasoning efficiency without requiring modifications to the underlying training paradigm.

6.4 COMPUTATIONAL EFFICIENCY ANALYSIS

We quantify computational efficiency in terms of tokens consumed and latency. For token consumption, we measure the average relative token reduction of DiffAdapt compared to a fixed Normal

432 Table 3: Comparing token savings (%) of our method
 433 and baseline (DEER). Negative means more tokens
 434 than the baseline.

Model	DiffAdapt	DEER
DS-R1-Qwen-7B	9.7%	-53.3%
Qwen3-4B	22.4%	-27.5%
ThinkPrune-7B	10.1%	-

435 strategy across eight benchmarks B :

$$436 \text{Token Savings} = \frac{1}{|B|} \sum_{b \in B} \frac{\text{Tokens}_{b,\text{Normal}} - \text{Tokens}_{b,\text{Method}}}{\text{Tokens}_{b,\text{Normal}}} \times 100\%. \quad (1)$$

437 A higher value for Token Savings indicates greater efficiency, meaning more tokens are saved com-
 438 pared to the Normal strategy. Conversely, a negative value signifies that the method consumed more
 439 tokens than the baseline.

440 **Token cost** From Table 3, we observe substantial efficiency gains from DiffAdapt across models:
 441 Qwen3-4B achieves 22.4% token savings, while DS-R1-Qwen-7B and ThinkPrune-7B reduce usage
 442 by around 10%. In contrast, DEER *increases* token usage relative to Medium (e.g., -27.5% on
 443 Qwen3-4B and -53.3% on DS-R1-Qwen-7B). The reason is mechanistic: DEER operates under
 444 a fixed token budget and chooses continuation length primarily by confidence/probability, which
 445 frequently drives generations to the maximum token cap rather than allocating tokens adaptively by
 446 problem difficulty.

447 **Latency** As shown in Table 4, DiffAdapt reduces end-to-end wall-clock time by $6 \times$ vs vLLM
 448 baseline and $5 \times$ vs DEER (both using vLLM backend) under identical settings (Qwen3-4B; first
 449 40 OlympiadBench problems; batch size 10; single A800 GPU; max token limit 32K; temperature
 450 0.6; DEER think threshold 0.9), corroborating that token savings translate into practical runtime
 451 speedups.

452 These efficiency gains translate directly into lower inference cost at comparable accuracy levels.

464 7 ABLATION STUDIES AND ROBUSTNESS ANALYSIS

465 To rigorously validate the design choices and robustness of DiffAdapt, we conducted extensive
 466 ablation studies regarding hyperparameter sensitivity, probe architecture, and reasoning integrity.

470 7.1 ROBUSTNESS AND DESIGN CHOICES

471 We investigate three key dimensions: (1) **Threshold Sensitivity**: whether the method requires man-
 472 ual tuning per model; (2) **Probe Architecture**: whether a non-linear MLP is necessary; and (3)
 473 **Data Efficiency**: performance impact of reducing training data. Our evaluation protocol aligns
 474 with Section 6, utilizing in-domain benchmarks including GSM8K, MATH500, AIME 24&25, and
 475 OlympiadBench.

476
 477
 478 **Sensitivity to Thresholds** (α, β, γ) A key concern for deployment is whether the difficulty
 479 thresholds require fine-grained calibration. To test this, we replaced the optimized thresholds
 480 of Qwen3-4B with a configuration **directly transferred from the DeepSeek-R1 model family**
 481 ($\alpha = 0.85, \beta = 0.35, \gamma = 0.60$). As shown in Table 5 (“Transferred Config”), the performance
 482 difference is negligible (avg. difference $\approx 0.3\%$). This confirms that DiffAdapt is highly robust to
 483 hyperparameter variations, enabling “plug-and-play” deployment without per-model re-calibration.

484 Table 4: End-to-end inference time
 485 comparison. All methods use vLLM
 486 backend.

Method	Time (minutes) ↓
vLLM Baseline	64
+ DEER	57
+ DiffAdapt	10

486 Table 5: Ablation study on Qwen3-4B. We compare the Default DiffAdapt configuration against:
 487 (a) **Transferred Thresholds** from DeepSeek-R1 (to test robustness), (b) a **Linear Probe** (to test
 488 architecture necessity), and (c) **30% Training Data** (to test data efficiency).

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539	Baseline		Robustness Check		Probe Design Ablation	
	Token Budget	DiffAdapt (Default)	Transferred (DeepSeek-R1)	Linear Head	30% Data	
33.3%	59.3	59.9	56.4	64.5		
50.0%	67.2	66.8	64.1	67.9		
66.7%	72.4	72.7	68.7	69.3		
83.3%	75.8	76.0	72.2	69.8		
100%	76.8	76.6	74.0	70.1		
Average	70.9	71.2	67.7	68.5		

Table 6: Pairwise comparison of reasoning quality (N=50). A blind Judge (Qwen3-30B) compared DiffAdapt vs. Baseline.

Table 7: Failure analysis of the cases where Baseline won. "Truncation Error" indicates actual logic failure.

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539	Outcome	Count	Percentage
DiffAdapt Wins	38	76%	
Baseline Wins	6	12%	
Tie	6	12%	

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539	Reason for Loss	Frequency
Subjective Preference	10% (5/50)	
Truncation Error	2% (1/50)	

Probe Architecture and Data Scale Table 5 also highlights the impact of probe design. Replacing our 2-layer MLP with a simple Linear Head leads to a consistent accuracy drop ($\sim 3.2\%$), justifying the need for a lightweight non-linear classifier. Conversely, reducing the training data to only 30% results in minimal degradation, demonstrating that DiffAdapt is extremely data-efficient compared to RL-based methods that typically require large-scale rollout data.

7.2 REASONING INTEGRITY ANALYSIS

To address the concern that aggressive token reduction might compromise the logical completeness of reasoning chains (e.g., causing early truncation), we conducted a blind, pairwise **LLM-as-a-Judge** study, more details can be found in Appendix E.

We sampled 50 queries from GSM8K and used Qwen3-30B-A3B as an impartial judge to evaluate anonymized outputs from DiffAdapt and the Baseline (Normal strategy). The judge was explicitly instructed to penalize logical gaps. As shown in Table 6, DiffAdapt was preferred in 76% of cases, with the judge often citing that DiffAdapt produced "more concise and direct" reasoning without redundancy. Notably, catastrophic failure due to early truncation occurred in only 2% of cases (Table 7), refuting the concern that efficiency comes at the cost of reasoning integrity.

8 CONCLUSION

We characterize a overthinking phenomenon in LLMs, *U-shaped entropy patterns* across multiple architectures. This counterintuitive finding challenges the assumption that more computation always improves reasoning.

Our study offers three takeaways: (1) an empirical characterization of overthinking, with a consistent 22–25% entropy reduction from simple to optimal regions that reveals systematic inefficiency; (2) Oracle analysis suggesting a large potential for difficulty-aware inference strategy selection; and (3) **DiffAdapt**, a lightweight framework that predicts difficulty from hidden states and selects Easy/Normal/Hard strategies, matching or improving accuracy while reducing tokens by up to 22.4% across five models and eight benchmarks.

DiffAdapt requires no LLM retraining, is compatible with common inference optimizations (e.g., batching, KV/prefix caching), and is orthogonal to length-control RL methods. We presents a simple, lightweight solution to allow adaptive computation allocation for LLM reasoning.

540 REPRODUCIBILITY STATEMENT
541

542 We aim for full reproducibility. Upon publication, we will release code, prompts, evaluation scripts,
543 and configuration files to reproduce all tables and figures. We specify all random seeds, sampling
544 settings (temperature/top- p /number of samples $n=10$), and the base token limit D.6. We will provide
545 instructions for dataset preparation (e.g., DeepMath-103K splits and filtering), model versions used
546 (Qwen3-4B, DeepSeek-R1-Qwen-7B, DeepSeek-R1-Llama-8B, Nemotron-1.5B, ThinkPrune-7B),
547 and hardware/software environments needed to replicate results. All plots in the paper are generated
548 by released scripts.

550 ETHICS STATEMENT
551

552 This work studies compute-efficient reasoning strategies for LLMs on public, decontaminated reasoning
553 datasets. No personally identifiable or sensitive data are used. We discuss potential risks
554 of misinterpretation and over-reliance on automatic reasoning systems and recommend careful hu-
555 man oversight in high-stakes scenarios. We will document evaluation limitations and known failure
556 modes, and we avoid claims beyond the evaluated settings.

558 REFERENCES
559

- 560 Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao Zhang, Bo Tang, Feiyu Xiong, Xinchi Li,
561 Minchuan Yang, and Zhiyu Li. xverify: Efficient answer verifier for reasoning model evalua-
562 tions. *arXiv preprint arXiv:2504.10481*, 2025.
- 563 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
564 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
565 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
- 566 Zhengxiang Cheng, Dongping Chen, Mingyang Fu, and Tianyi Zhou. Optimizing length compres-
567 sion in large reasoning models, 2025. URL <https://arxiv.org/abs/2506.14755>.
- 568 Yuanlin Chu, Bo Wang, Xiang Liu, Hong Chen, Aiwei Liu, and Xuming Hu. Ssr: Speculative
569 parallel scaling reasoning in test-time. *arXiv preprint arXiv:2505.15340*, 2025.
- 570 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
571 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
572 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.
- 573 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
574 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
575 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
576 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
577 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
578 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
579 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
580 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
581 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
582 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
583 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
584 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
585 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghai Lu, Shangyan Zhou, Shanhuan Chen, Shengfeng
586 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
587 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
588 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
589 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
590 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
591 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
592 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
593

- 594 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 595 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 596 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 597 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 598 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 599 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 600 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 601 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
 602 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.
- 603 Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. *arXiv preprint*
 604 *arXiv:2505.13379*, 2025.
- 605 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
 606 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
 607 Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual
 608 multimodal scientific problems, 2024. URL <https://arxiv.org/abs/2402.14008>.
- 609
- 610 Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
 611 Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging,
 612 contaminated, and verifiable mathematical dataset for advancing reasoning. *arXiv preprint*
 613 *arXiv:2504.11456*, 2025.
- 614 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 615 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint*
 616 *arXiv:2504.01296*, 2025.
- 617 Shijue Huang, Hongru Wang, Wanjun Zhong, Zhaochen Su, Jiazhan Feng, Bowen Cao, and Yi R.
 618 Fung. Adactrl: Towards adaptive and controllable reasoning via difficulty-aware budgeting,
 619 2025. URL <https://arxiv.org/abs/2505.18822>.
- 620
- 621 Zhenglun Kong, Yize Li, Fanhu Zeng, Lei Xin, Shvat Messica, Xue Lin, Pu Zhao, Manolis Kel-
 622 lis, Hao Tang, and Marinka Zitnik. Token reduction should go beyond efficiency in generative
 623 models—from vision, language to multimodality. *arXiv preprint arXiv:2505.18227*, 2025.
- 624 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 625 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 626 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 627 *Systems Principles*, 2023.
- 628 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 629 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 630 reasoning problems with language models. *Advances in neural information processing systems*,
 631 35:3843–3857, 2022a.
- 632 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 633 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 634 reasoning problems with language models. *Advances in neural information processing systems*,
 635 35:3843–3857, 2022b.
- 636
- 637 Junyan Li, Wenshuo Zhao, Yang Zhang, and Chuang Gan. Steering llm thinking with budget guid-
 638 ance, 2025a. URL <https://arxiv.org/abs/2506.13752>.
- 639 Qi Li, Junpan Wu, Xiang Liu, Yuxin Wang, Zeyu Li, Zhenheng Tang, Yuhan Chen, Shaohuai Shi,
 640 and Xiaowen Chu. Reasoning language model inference serving unveiled: An empirical study.
 641 *arXiv preprint arXiv:2510.18672*, 2025b.
- 642 Zhong-Zhi Li, Xiao Liang, Zihao Tang, Lei Ji, Peijie Wang, Haotian Xu, Haizhen Huang, Weiwei
 643 Deng, Ying Nian Wu, Yeyun Gong, et al. Tl; dr: Too long, do re-weighting for efficient llm
 644 reasoning compression. *arXiv preprint arXiv:2506.02678*, 2025c.
- 645
- 646 Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zhengyan Liu, Yuxuan Yao, Haotian
 647 Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
 reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025d.

- 648 Guosheng Liang, Longguang Zhong, Ziyi Yang, and Xiaojun Quan. Thinkswitcher: When to think
 649 hard, when to think fast. *arXiv preprint arXiv:2505.14183*, 2025.
- 650
- 651 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 652 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step, 2023. URL
 653 <https://arxiv.org/abs/2305.20050>.
- 654 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 655 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models,
 656 2025a. URL <https://arxiv.org/abs/2505.24864>.
- 657
- 658 Shih-Yang Liu, Xin Dong, Ximing Lu, Shizhe Diao, Mingjie Liu, Min-Hung Chen, Hongxu
 659 Yin, Yu-Chiang Frank Wang, Kwang-Ting Cheng, Yejin Choi, et al. Dler: Doing length
 660 penalty right-incentivizing more intelligence per token via reinforcement learning. *arXiv preprint*
 661 *arXiv:2510.15110*, 2025b.
- 662 Xiang Liu, Peijie Dong, Xuming Hu, and Xiaowen Chu. LongGenBench: Long-context genera-
 663 tion benchmark. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of*
 664 *the Association for Computational Linguistics: EMNLP 2024*, pp. 865–883, Miami, Florida,
 665 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 666 *findings-emnlp.48*. URL [https://aclanthology.org/2024.findings-emnlp.48/](https://aclanthology.org/2024.findings-emnlp.48).
- 667
- 668 Chenwei Lou, Zewei Sun, Xinnian Liang, Meng Qu, Wei Shen, Wenqi Wang, Yuntao Li, Qing-
 669 ping Yang, and Shuangzhi Wu. Adacot: Pareto-optimal adaptive chain-of-thought triggering via
 670 reinforcement learning. *arXiv preprint arXiv:2505.11896*, 2025.
- 671
- 672 Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
 673 models can be effective without thinking, 2025. URL <https://arxiv.org/abs/2504.09858>.
- 674
- 675 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 676 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 677 scaling. *arXiv preprint arXiv:2501.19393*, 2025.
- 678
- 679 Rui Pan, Shuo Xing, Shizhe Diao, Wenhe Sun, Xiang Liu, KaShun Shum, Jipeng Zhang, Renjie
 680 Pi, and Tong Zhang. Plum: Prompt learning using metaheuristics. In Lun-Wei Ku, Andre Martins,
 681 and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL*
 682 2024, pp. 2177–2197, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
 683 doi: 10.18653/v1/2024.findings-acl.129. URL <https://aclanthology.org/2024.findings-acl.129/>.
- 684
- 685 Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
 686 Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
 687 Language, multimodality, and beyond. *arXiv preprint arXiv:2503.21614*, 2025.
- 688
- 689 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 690 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 691 mark. In *First Conference on Language Modeling*, 2024.
- 692
- 693 Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
 694 Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reason-
 695 ing models, 2025. URL <https://arxiv.org/abs/2503.04472>.
- 696
- 697 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 698 Andrew Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning
 699 for large language models. *arXiv preprint arXiv:2503.16419*, 2025.
- 700
- 701 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 702 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
 703 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
 704 effective reinforcement learning for llm reasoning, 2025. URL <https://arxiv.org/abs/2506.01939>.

- 702 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 703 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 704 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 705 37:95266–95290, 2024.
- 706 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 707 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 708 neural information processing systems*, 35:24824–24837, 2022.
- 709
- 710 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 711 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 712 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 713 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 714 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 715 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 716 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 717 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 718 Qiu. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.
- 719 Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
 720 and Weiping Wang. Dynamic early exit in reasoning models, 2025b. URL <https://arxiv.org/abs/2504.15895>.
- 721
- 722 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
 723 for reasoning, 2025. URL <https://arxiv.org/abs/2502.03387>.
- 724
- 725 Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. *arXiv preprint
 726 arXiv:2407.06023*, 2024.
- 727
- 728 Junyu Zhang, Runpei Dong, Han Wang, Xuying Ning, Haoran Geng, Peihao Li, Xialin He, Yutong
 729 Bai, Jitendra Malik, Saurabh Gupta, and Huan Zhang. Alphaone: Reasoning models thinking
 730 slow and fast at test time, 2025a. URL <https://arxiv.org/abs/2505.24863>.
- 731
- 732 Ruiqi Zhang, Changyi Xiao, and Yixin Cao. Long or short cot? investigating instance-level switch
 733 of large reasoning models. *arXiv preprint arXiv:2506.04182*, 2025b.
- 734
- 735 Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
 736 and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous
 737 concept space, 2025c. URL <https://arxiv.org/abs/2505.15778>.
- 738
- 739 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
 740 Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
 741 Efficient execution of structured language model programs, 2024. URL <https://arxiv.org/abs/2312.07104>.
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756	APPENDIX	
757		
758	A Use of Large Language Models	16
759		
760	B Limitations and Future Work	16
761		
762	C Complete Reasoning Strategy	16
763		
764	C.1 Easy Strategy Prompt	16
765		
766	C.2 Normal Strategy Prompt	16
767		
768	C.3 Hard Strategy Prompt	17
769		
770	C.4 Design Rationale	17
771		
772	C.5 Hyperparameter Optimization	17
773		
774	D Additional Experimental Details	18
775		
776	D.1 Cross-Domain Generalization	18
777		
778	D.2 Comparison with “When-to-Think” Baselines	18
779		
780	D.3 Oracle Experiment Detailed Results	18
781		
782	D.4 Model-Specific Threshold Values	19
783		
784	D.5 Detailed Algorithmic Procedures	20
785		
786	D.6 Maximum Token Limits per Model and Benchmark	20
787		
788	E Reasoning Integrity Analysis	20
789		
790	E.1 Experimental Setup	20
791		
792	E.2 Evaluation Prompt	21
793		
794	E.3 Results and Analysis	21
795	F Additional Overthinking Analysis Across Model Architectures	22
796		
797	F.1 DeepSeek-R1-Distill-Qwen-1.5B Overthinking Analysis	22
798		
799	F.2 Nemotron-Research-Reasoning-Qwen-1.5B Overthinking Analysis	22
800		
801	G Additional Oracle Analysis Results	22
802		
803	G.1 DeepSeek-R1-Qwen-7B Oracle Analysis	23
804		
805	G.2 Nemotron-1.5B Oracle Analysis	23
806		
807	G.3 DeepSeek-R1-Llama-8B Oracle Analysis	24
808		
809	G.4 Cross-Model Oracle Analysis Summary	25

810 A USE OF LARGE LANGUAGE MODELS
811812 We used LLMs solely to aid and polish the writing (e.g., wording refinement and grammar), without
813 generating or altering experimental designs, methods, results, or conclusions. All technical content,
814 analyses, figures, and tables were authored and verified by the researchers.
815816 B LIMITATIONS AND FUTURE WORK
817818 **Transferability and Calibration.** While our sensitivity analysis demonstrates that strategy thresh-
819 olds are robust across model families (e.g., transferring parameters from DeepSeek-R1 to Qwen3
820 yields negligible $< 0.3\%$ deviation), extremely distinct domains may still benefit from a lightweight
821 calibration phase. Future work could explore completely calibration-free mechanisms.
822823 **Prefill-only Trade-off.** Our probe relies solely on prefill hidden states to predict difficulty. While
824 this design minimizes inference latency by avoiding interruption of the decoding process, it inher-
825 ently ignores generation-time dynamics that might reveal emerging complexity. A promising future
826 direction is to incorporate lightweight generation signals (e.g., early step-wise entropy), though this
827 introduces an efficiency-precision trade-off that must be carefully managed.
828829 **Labeling via proxy models.** Our difficulty labels rely on a proxy model and sampling protocol (10
830 samples at temperature 0.6). Thresholds (α, β, γ) are tuned per model and may require re-calibration
831 when transferring across domains or changing the sampling configuration. In deployment, we rec-
832 ommend a light validation phase to re-establish thresholds.
833834 **Failure modes under tight budgets.** For particularly hard or error-prone cases, aggressive budget
835 reduction can harm accuracy. A practical fail-safe is to fall back to the *Normal* strategy when the
836 probe confidence is low, the prefill signal is out-of-distribution, or the selected strategy underper-
837 forms recent history.
838839 C COMPLETE REASONING STRATEGY
840841 This section provides the complete reasoning strategy configurations used in our three-tier adaptive
842 reasoning framework. Each strategy employs specific prompts designed to guide the model’s rea-
843 soning behavior according to the computational requirements identified through our overthinking
844 analysis.
845846 C.1 EASY STRATEGY PROMPT
847848 For problems identified as easy (overthinking region), we use a direct approach to minimize unnec-
849 essary computational overhead:
850851 <think>
852 This looks straightforward. Let me solve it directly while double-checking my
853 approach.
854 </think>855 **Configuration:**
856

- 857 • Temperature: 0.5 (lower randomness for direct solving)
-
- 858 • Max Tokens:
- $0.4 \times |\text{Max}|$
- (reduced computational budget)
-
- 859 • Approach: Direct problem-solving with minimal intermediate steps
-
- 860

861 C.2 NORMAL STRATEGY PROMPT
862

863 For problems in the optimal region, we employ standard methodical reasoning:

864 <think>
 865
 866 I'll break this down into clear, logical steps and solve methodically.
 867
 868

869 **Configuration:**

- 870 • Temperature: 0.8 (standard exploration level)
 871 • Max Tokens: $1.0 \times |\text{Max}|$ (full computational budget)
 872 • Top-p: 0.95 (diverse sampling for comprehensive reasoning)
 873 • Approach: Step-by-step logical decomposition
 874

875

876 **C.3 HARD STRATEGY PROMPT**
 877

878 For problems at the capability limit, we focus on efficient resource utilization and early termination
 879 of futile paths:

880 <think>
 881
 882 This appears intricate. I'll outline the main method while being mindful of
 883 computational resources.
 884

885

886 **Configuration:**

- 887 • Temperature: 0.4 (lowest randomness for focused reasoning)
 888 • Max Tokens: $0.5 \times |\text{Max}|$
 889 • Approach: Strategic method outline to implement a “Fail Fast” mechanism
 890

891

892 **C.4 DESIGN RATIONALE**
 893

894 The prompt design reflects our empirical findings from the overthinking analysis:

- 895 • **Easy strategy** discourages overthinking by emphasizing directness and verification rather
 896 than extensive exploration.
 897 • **Normal strategy** encourages systematic reasoning with full computational resources for
 898 optimal performance.
 899 • **Hard strategy** prioritizes resource conservation, identifying likely-to-fail queries early to
 900 avoid getting stuck in unproductive reasoning loops.
 901

902

903 **C.5 HYPERPARAMETER OPTIMIZATION**

904 To determine the optimal configuration for these strategies, we avoided heuristic selection and in-
 905 stead conducted a comprehensive **Grid Search** experiment on the **MATH500** dataset. **Search**
 906 **Space:** We evaluated **125 distinct parameter combinations** ($5_{\text{Normal}} \times 5_{\text{Hard}} \times 5_{\text{Easy}}$), varying Temperature ($T \in [0.1, 1.2]$) and Max Token Ratios ($L \in [0.25 \times, 1.0 \times]$). **Selection Criterion:** We
 907 employed a constrained optimization approach:
 908

- 909 1. **Filter by Accuracy:** We first identified all parameter combinations that maintained high
 910 accuracy ($\geq 95\%$) on the validation set.
 911 2. **Minimize Cost:** From these candidates, we selected the configuration that yielded the
 912 **lowest average token consumption** (960.5 tokens).
 913

914 **Result:** Table 8 demonstrates that our chosen configuration is empirically optimal, outperforming
 915 heuristic baselines in efficiency while preserving top-tier accuracy.
 916

917 These strategies, combined with the corresponding sampling parameters, implement the adaptive
 918 computational allocation strategy motivated by our U-shaped entropy curve analysis.

918 Table 8: Comparison of Top-Performing Strategy (Ours) vs. Heuristic Baselines on MATH500. Our
 919 grid-search tuned configuration achieves the best trade-off between accuracy and efficiency.
 920

921 Strategy Configuration	922 Description	923 Acc (%)	924 Avg Toks	925 Max Toks	926 Insight
DiffAdapt (Ours)	Grid-search tuned: Normal($T=0.8$), Hard($T=0.4, 0.5\times$), Easy($T=0.5, 0.4\times$)	95.0	960.5	10,208	Best trade-off between creativity and stability.
Baseline A (Conservative)	Heuristic uniform conservative ($T=0.6$, full length for all)	94.0	1,003.2	12,461	Slightly lower accuracy; higher token cost.
Baseline B (Aggressive)	Heuristic uniform high temp ($T=1.2$, full length for all)	88.0	1,274.8	32,626	Suffers from “reasoning loops” on hard queries.
Baseline C (Efficiency)	Heuristic aggressive pruning ($T=0.3, 0.25\times$ length for all)	89.0	896.0	10,551	Good efficiency but fails on complex reasoning tasks.

928 D ADDITIONAL EXPERIMENTAL DETAILS

931 D.1 CROSS-DOMAIN GENERALIZATION

933 To empirically demonstrate the robustness and transferability of DiffAdapt beyond pure math reasoning, we extended our evaluation to diverse out-of-domain benchmarks, including **Minerva** (scientific reasoning), **GPQA** (graduate-level domain knowledge), and **MMLU-Pro** (comprehensive general reasoning). **MMLU-Pro Results.** We report the detailed zero-shot transfer results on MMLU-Pro in Table 9. By using the probe and thresholds trained solely on the DeepMath dataset, DiffAdapt consistently outperforms the fixed-strategy baseline by **3-7%** across different token budgets and model architectures (DeepSeek-R1-Qwen/Llama). This confirms that the “difficulty signal” captured by our probe is generic and effectively transfers to unseen domains without re-training.

941 Table 9: Performance comparison on MMLU-Pro (OOD Generalization). DiffAdapt is applied zero-
 942 shot using probes trained on math data.

944 Token Budget	945 DeepSeek-R1-Qwen-7B			946 DeepSeek-R1-Llama-8B		
	947 DiffAdapt (%)	948 Baseline (%)	949 Improvement	950 DiffAdapt (%)	951 Baseline (%)	952 Improvement
33.3%	32.02	28.21	+3.81%	22.14	17.50	+4.64%
50.0%	35.24	31.07	+4.17%	31.29	27.86	+3.43%
66.7%	35.00	31.07	+3.93%	33.74	31.79	+1.95%
83.3%	35.83	30.36	+5.47%	35.45	32.14	+3.31%
100%	36.48	30.71	+5.77%	39.90	32.50	+7.40%

953 D.2 COMPARISON WITH “WHEN-TO-THINK” BASELINES

954 We further compared DiffAdapt against specialized “when-to-think” methods like ThinkLess. Unlike these methods which typically require expensive two-stage training (SFT + RL), DiffAdapt is a 955 training-free, plug-and-play approach for the LLM. **Setup.** We applied DiffAdapt to the **ThinkLess** 956 **Stage-1 model** (‘TL-1.5B-Warmup’) and compared it against their fully trained **Stage-2 RL model** 957 (‘TL-1.5B-RL’). **Results.** Table 10 presents the results on MATH500 and GSM8K.

- 958 • **Efficiency:** On GSM8K, DiffAdapt consistently outperforms the RL baseline while using 959 fewer tokens.
- 960 • **Cost-Effectiveness:** On MATH500, while the RL model achieves higher peak accuracy, 961 DiffAdapt outperforms the Warmup baseline by significant margins (+4-8%) and achieves 962 competitive performance to the RL model in low-resource regimes using **~35-50% fewer** 963 **tokens**, without requiring any RL training.

964 D.3 ORACLE EXPERIMENT DETAILED RESULTS

967 This subsection provides the complete numerical results from our Oracle experiment across eight 968 reasoning benchmarks. Table 11 shows the accuracy and average token consumption for each strategy 969 on every benchmark.

971 **Key Observations.** The detailed results reveal several important patterns: (1) **Strategy Distribution:** Across all problems, 82.3% benefit from Easy strategy, 7.7% from Normal strategy, and 10.0%

972
973
974
Table 10: Comparison against ThinkLess (TL) baselines. DiffAdapt is applied to the TL-1.5B-
975 Warmup model.
976
977
978

Budget	MATH500		Analysis	GSM8K	
	TL-Warmup + DiffAdapt	TL-1.5B-RL		TL-Warmup + DiffAdapt	TL-1.5B-RL
33.3%	64.4% (851 tok)	55.6% (1039 tok)	+8.8% / Less Toks	67.0% (336 tok)	66.1% (409 tok)
50.0%	67.6% (954 tok)	63.3% (1460 tok)	+4.3% / -35% Toks	77.0% (357 tok)	72.0% (465 tok)
72.2%	68.0% (973 tok)	69.2% (1775 tok)	Comparable / -50% Toks	78.2% (361 tok)	74.3% (510 tok)
100%	68.3% (1003 tok)	73.5% (2020 tok)	RL peaks higher	78.6% (364 tok)	78.8% (573 tok)

979
980
981
Table 11: Detailed Oracle Experiment Results Across Reasoning Benchmarks With Qwen3-4B

Benchmark	Easy Strategy Acc (%)	Strategy Tokens	Normal Strategy Acc (%)	Strategy Tokens	Hard Strategy Acc (%)	Strategy Tokens	Oracle Selection Acc (%)	Selection Tokens
GSM8K	89.90	169.93	93.20	561.80	93.50	511.55	96.20	197.96
MATH	82.80	718.33	96.20	2662.06	93.40	2424.69	98.00	1278.90
GPQA	46.46	812.55	50.51	3022.33	47.98	2952.44	70.20	1001.14
MMLU-Pro	60.36	526.14	65.36	2076.16	62.50	1873.14	74.64	690.04
Minerva	46.69	468.74	55.15	2795.14	53.31	2248.22	65.81	866.31
OlympiadBench	50.96	1628.91	73.63	6722.40	68.59	5895.97	76.89	2756.25
AIME 2024	16.67	3504.90	60.00	10672.23	46.67	10166.87	66.67	4429.37
AIME 2025	16.67	2442.83	53.33	13733.47	40.00	10634.77	56.67	4675.00

992 from Hard strategy, confirming the prevalence of overthinking in current reasoning approaches. (2)
993 **Benchmark Characteristics:** Mathematical competition problems (AIME 2024/2025) require the
994 highest computational resources, while basic arithmetic (GSM8K) achieves optimal performance
995 with minimal tokens. (3) **Universal Improvement:** Oracle selection achieves higher accuracy than
996 any fixed strategy across all benchmarks while maintaining efficient token usage. (4) **Efficiency**
997 **Gains:** The Oracle demonstrates substantial token savings compared to always using Normal or
998 Hard strategies, with efficiency improvements ranging from 3× (GSM8K) to 5× (AIME series).
999 These results provide the empirical foundation for our DiffAdapt framework and establish clear
1000 performance targets for practical adaptive reasoning systems.

1001
1002 D.4 MODEL-SPECIFIC THRESHOLD VALUES

1003 This subsection provides the specific threshold values used for difficulty classification across different
1004 models in our framework. The thresholds α (correctness), β (entropy), and γ (correctness) are
1005 determined empirically for each model to optimize the strategy assignment performance.

1006
1007
1008 Table 12: Model-Specific Threshold Values for Difficulty Classification

Model	α (Normal)	β (Entropy)	γ (Hard)
DeepSeek-R1-Qwen-7B	0.85	0.35	0.60
DeepSeek-R1-Llama-8B	0.85	0.35	0.60
Qwen3-4B	0.88	0.32	0.65

1014 **Threshold Selection.** We use a heuristic procedure guided by the entropy–correctness scatter of
1015 each model (no exhaustive search). Concretely, we pick α near the knee where high-correctness,
1016 low-entropy points concentrate; choose β at the elbow separating low vs. high-uncertainty regimes;
1017 and set γ to capture the reliability drop-off region in correctness. We optionally verify stability with
1018 a small validation split. This selection ensures that:

- 1019
1020 • **Normal threshold (α):** Captures problems where the model performs consistently well
1021 with low uncertainty
1022 • **Entropy threshold (β):** Distinguishes between confident and uncertain predictions
1023 • **Hard threshold (γ):** Identifies problems beyond the model’s reliable capability range

1024
1025 These model-specific thresholds reflect the inherent differences in reasoning capabilities and uncertainty
1026 patterns across different architectures and scales.

1026 D.5 DETAILED ALGORITHMIC PROCEDURES
10271028 This subsection provides the complete algorithmic descriptions for the three main stages of our
1029 DiffAdapt framework. These algorithms detail the implementation procedures that correspond to
1030 the conceptual framework presented in Section 5.

1031

1032 **Algorithm 1** Data Generation with Proxy Model Sampling

```

1: Input: Set of problems  $\mathcal{X} = \{x_i\}_{i=1}^N$ , LLM, thresholds  $\alpha, \beta, \gamma$ 
2: Initialize labeled dataset  $\mathcal{D} \leftarrow \emptyset$ 
3: for all problem  $x$  in  $\mathcal{X}$  do
4:   Generate  $n = 10$  complete reasoning sequences with max length 32K
5:   Compute correctness rate  $\mathcal{C}(x)$  and average entropy  $\bar{H}(x)$ 
6:   if  $\mathcal{C}(x) > \alpha$  and  $\bar{H}(x) < \beta$  then
7:      $y_{\text{label}} \leftarrow \text{Normal}$ 
8:   else if  $\mathcal{C}(x) < \gamma$  then
9:      $y_{\text{label}} \leftarrow \text{Hard}$ 
10:  else
11:     $y_{\text{label}} \leftarrow \text{Easy}$                                  $\triangleright$  Overthinking cases
12:  end if
13:  Add  $(x, y_{\text{label}})$  to  $\mathcal{D}$ 
14: end for
15: Output: Labeled dataset  $\mathcal{D}$ 

```

1048

1049 D.6 MAXIMUM TOKEN LIMITS PER MODEL AND BENCHMARK
10501051 This subsection reports the maximum token limits used for each model on each benchmark and de-
1052 scribes how they were determined. For each model–benchmark pair, we first ran the model under a
1053 generous cap (e.g., 32K tokens) to observe its longest response length in a less constrained setting.
1054 We then selected a nearby rounded integer as the per-benchmark max_tokens used in our analy-
1055 ses. This procedure standardizes evaluation across tasks and enables percentage-based truncation in
1056 Figures 3 and 4.1057 **Procedure example.** With a 32K cap, Qwen3-4B produced longest responses of approxi-
1058 mately 1,500 tokens on GSM8K and 18,000 tokens on AIME24; we therefore set max_tokens
1059 to 1,500 and 18,000 for those benchmarks, respectively. Analogous rounding was applied to all
1060 model–benchmark pairs (see Table 13).1061 Table 13: Maximum token limits (in tokens) per model and benchmark (ID and OOD). Values are
1062 rounded from observed maxima under a large cap (e.g., 32K).

Model	GSM8K	MATH	AIME 2024	AIME 2025	OlympiadBench	Minerva	MMLU-Pro	GPQA
Qwen3-4B	1500	12000	18000	18000	15000	3500	3000	4000
DeepSeek-R1-Qwen-7B	500	3000	15000	16000	5500	1750	3000	5500
DeepSeek-R1-Llama-8B	700	3000	14000	14000	5500	1750	1750	3000
Nemotron-1.5B	3500	4000	7000	6000	5500	5000	3500	5000
ThinkPrune-7B	500	3000	15000	14000	5500	1750	2500	4500

1069

1070

1071 E REASONING INTEGRITY ANALYSIS
10721073 A primary concern with efficiency-oriented reasoning methods is the potential risk of compromis-
1074 ing reasoning integrity—specifically, whether aggressive token reduction leads to early truncation or
1075 logical gaps. To rigorously evaluate this, we conducted a blind, pairwise **LLM-as-a-Judge** study.

1076

1077 E.1 EXPERIMENTAL SETUP
10781079 We randomly sampled $N = 50$ queries from the GSM8K test set. For each query, we generated two
responses:

- 1080 • **System A (DiffAdapt):** Our proposed method with adaptive strategy selection.
 1081 • **System B (Baseline):** The standard Normal strategy (Temperature=0.8, full token budget).

1082 1083 We employed **Qwen3-30B-A3B** as an impartial judge. To ensure fairness, the evaluation was **blind**
 1084 (model identities were anonymized) and **pairwise** (side-by-side comparison). The judge was ex-
 1085 plicitly instructed to evaluate based on logical completeness, coherence, and conciseness, and to
 1086 penalize any instances of unjustified truncation.

1088 E.2 EVALUATION PROMPT

1090 1091 The specific prompt used for the LLM-as-a-Judge evaluation is provided below. It explicitly asks
 1092 the judge to focus on the preservation of coherent reasoning under token constraints.

1093 LLM-as-a-Judge Prompt

1095 You will compare two systems on the same GSM8K math word problem.

1097 **Problem:**

1098 {problem}

1099 **Ground-truth solution (for verification only):**

1100 {ground-truth solution}

1102 **System A:**

- 1103 - Strategy: {strategy_A}
 1104 - Tokens used: {tokens_A}
 1105 - Final prediction: {Correct/Incorrect}

1106 **Reasoning trace:**

1107 <<<

1108 {reasoning_trace_A}

1109 >>>

1110 **System B:**

- 1111 - Strategy: {strategy_B}
 1112 - Tokens used: {tokens_B}
 1113 - Final prediction: {Correct/Incorrect}

1114 **Reasoning trace:**

1115 <<<

1116 {reasoning_trace_B}

1117 >>>

1118 Decide which reasoning trace better preserves coherent, logically
 1119 complete reasoning under tight token budgets. Explain your
 reasoning and output the winner (System A, System B, or Tie).

1121 E.3 RESULTS AND ANALYSIS

1123 Table 14 summarizes the results of the blind evaluation.

1125 Table 14: Blind pairwise comparison of reasoning quality (N=50) by Qwen3-30B Judge.

1127 Outcome	1128 Count	1129 Percentage	1130 Judge's Common Rationale
1129 DiffAdapt Wins	1130 38	1131 76%	“More direct,” “Avoids unnecessary repetition,” “Efficient logic”
1130 Baseline Wins	1131 6	1132 12%	“More detailed explanation” (in 5 cases), “Truncation” (in 1 case)
1131 Tie	1132 6	1133 12%	“Both reasoning paths are identical”

1134 **Frequency of Logical Failure** We performed a manual failure analysis on the 6 cases where the
 1135 Baseline won:

1136

- 1137 • **Subjective Preference (5 cases):** The Baseline produced a more verbose explanation
 1138 which the judge preferred, even though DiffAdapt’s response was correct and logically
 1139 complete.
- 1140 • **Truncation Error (1 case):** Only a single instance (2%) involved actual logical failure due
 1141 to aggressive token reduction (misclassified as Easy).

1142

1143 This low failure rate (2%) confirms that DiffAdapt’s fallback mechanisms (Normal strategy for am-
 1144 biguous cases) effectively preserve reasoning integrity while significantly reducing computational
 1145 cost.

1146

1147 F ADDITIONAL OVERTHINKING ANALYSIS ACROSS MODEL 1148 ARCHITECTURES

1149

1150 To demonstrate the universality of the overthinking phenomenon, we present additional overthinking
 1151 analysis results for two more model architectures: DeepSeek-R1-Distill-Qwen-1.5B and Nemotron-
 1152 Research-Reasoning-Qwen-1.5B. These results complement the main analysis presented in Sec-
 1153 tion 3 and provide further evidence that the U-shaped entropy pattern is consistent across different
 1154 model sizes and architectures.

1155

1156 F.1 DEEPSEEK-R1-DISTILL-QWEN-1.5B OVERTHINKING ANALYSIS

1157

1158 Figure 5 shows the overthinking analysis for the DeepSeek-R1-Distill-Qwen-1.5B model. Despite
 1159 being a smaller 1.5B parameter model, it exhibits the same characteristic U-shaped entropy curve:

1160

- 1161 • **Simple Problems (Difficulty 1-2):** High entropy with good correctness, indicating over-
 1162 thinking behavior
- 1163 • **Certainty Region (Difficulty 3-6):** Reduced entropy with maintained performance
- 1164 • **Difficult Problems (Difficulty 8+):** Increased entropy with declining performance

1165

1166 The entropy reduction of 23.3% from simple to optimal regions demonstrates strong overthinking
 1167 evidence, consistent with our findings across model architectures.

1168

1169 F.2 NEMOTRON-RESEARCH-REASONING-QWEN-1.5B OVERTHINKING ANALYSIS

1170

1171 Figure 6 presents the analysis for Nemotron-Research-Reasoning-Qwen-1.5B, another 1.5B param-
 1172 eter reasoning model. This model shows the most pronounced U-shaped pattern:

1173

- 1174 • **Simple Problems (Difficulty 1-2):** High entropy with strong correctness, showing clear
 1175 overthinking
- 1176 • **Certainty Region (Difficulty 3-6):** Significantly reduced entropy with peak performance
- 1177 • **Difficult Problems (Difficulty 8+):** Highest entropy with declining accuracy

1178

1179 This model demonstrates a 21.3% entropy reduction from simple to optimal regions, providing ad-
 1180 ditional validation of the overthinking phenomenon across different reasoning architectures.

1181

1182 G ADDITIONAL ORACLE ANALYSIS RESULTS

1183

1184

1185

1186

1187

1188 This section presents comprehensive Oracle analysis results across multiple model architectures to
 1189 validate the generalizability of our findings. We conduct the same Oracle experiment described in
 1190 Section 3 on three additional models: DS-Qwen-7B, Nemotron-1.5B, and DeepSeek-R1-Llama-8B.
 1191 These models represent different scales, architectures, and training methodologies, providing robust
 1192 evidence for the universal applicability of adaptive reasoning strategies.

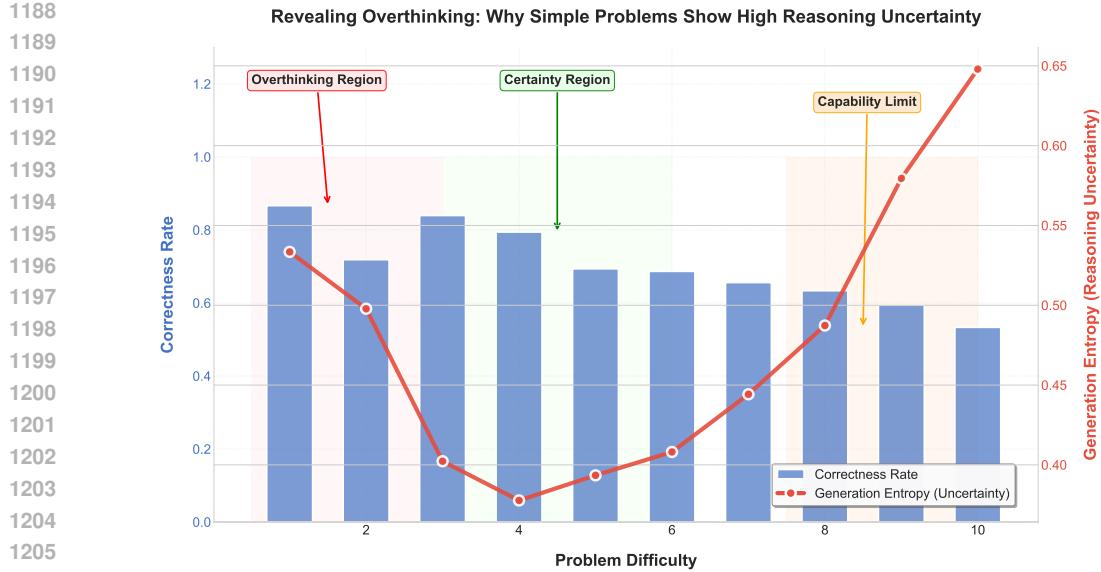


Figure 5: Overthinking phenomenon in DeepSeek-R1-Distill-Qwen-1.5B model showing the characteristic U-shaped entropy pattern across difficulty levels.

Figure 6: Overthinking phenomenon in Nemotron-Research-Reasoning-Qwen-1.5B model demonstrating the universal U-shaped entropy pattern.

G.1 DEEPSEEK-R1-QWEN-7B ORACLE ANALYSIS

Figure 7 shows the performance-token trade-offs for DeepSeek-R1-Qwen-7B across all eight reasoning benchmarks. The results demonstrate consistent Oracle superiority with an average improvement of +12.3% over the best fixed strategy, validating our findings across larger model scales.

G.2 NEMOTRON-1.5B ORACLE ANALYSIS

Figure 8 presents the Oracle analysis for Nemotron-1.5B, demonstrating that adaptive strategy selection benefits extend to smaller model scales. Despite the reduced parameter count, the Oracle achieves +7.9% average improvement while maintaining superior token efficiency.

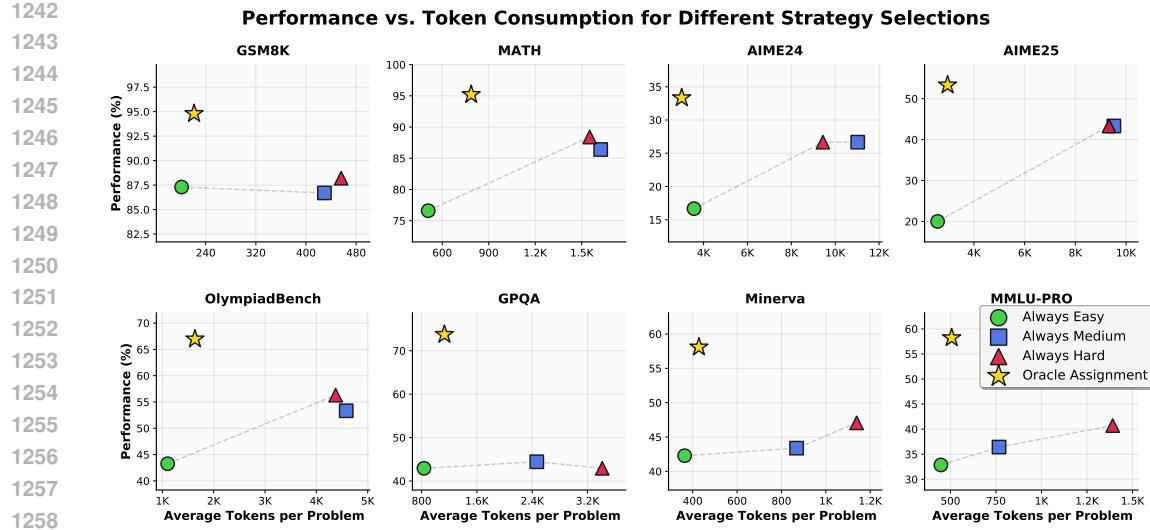


Figure 7: DeepSeek-R1-Qwen-7B Oracle Analysis: Performance vs. Token Consumption Trade-offs. The Oracle strategy (gold stars) consistently outperforms all fixed strategies across mathematical reasoning tasks (GSM8K, MATH), competition problems (AIME24/25, OlympiadBench), and out-of-domain benchmarks (GPQA, Minerva, MMLU-Pro), achieving optimal Pareto efficiency with an average +12.3% accuracy improvement.

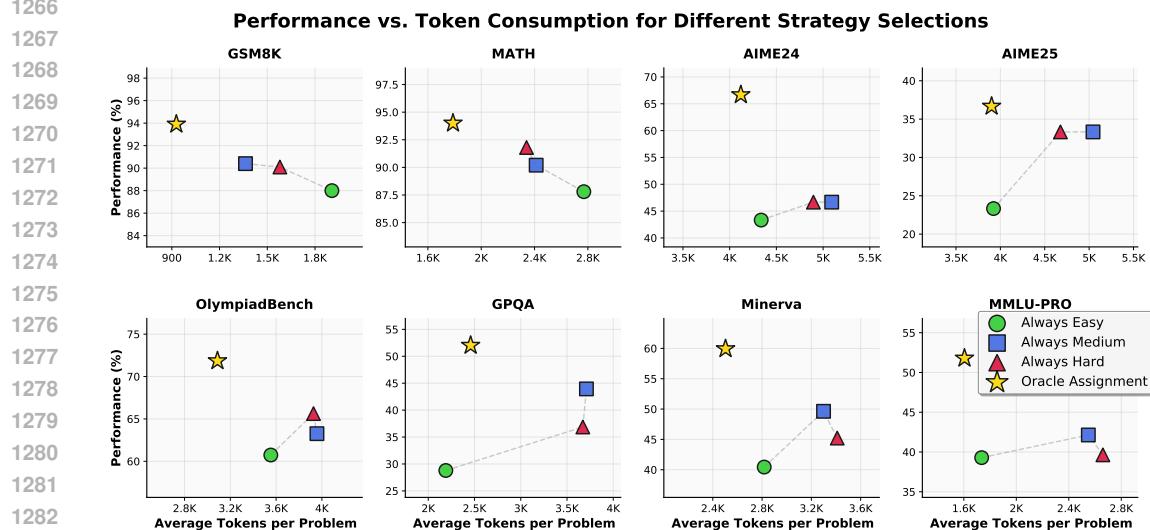


Figure 8: Nemotron-1.5B Oracle Analysis: Performance vs. Token Consumption Trade-offs. Even at smaller scale (1.5B parameters), the Oracle strategy demonstrates consistent advantages across all benchmarks, achieving +7.9% average accuracy improvement with efficient token utilization, confirming the scalability of adaptive reasoning approaches.

G.3 DEEPSEEK-R1-LLAMA-8B ORACLE ANALYSIS

Figure 9 shows the most compelling results from DeepSeek-R1-Llama-8B, which achieves the highest Oracle benefits with +16.2% average improvement. This model demonstrates exceptional token efficiency, with Oracle strategy consuming significantly fewer tokens while achieving superior performance across all benchmarks.

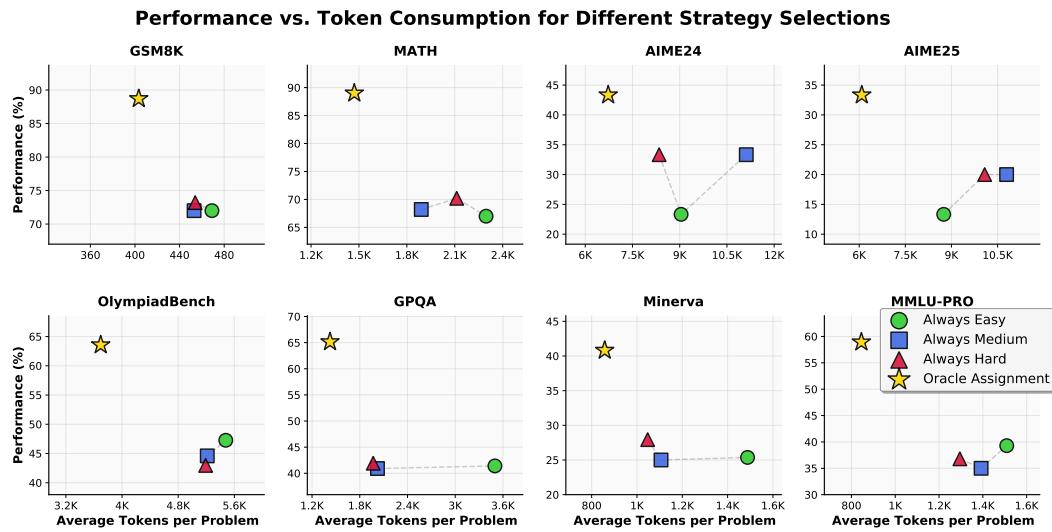


Figure 9: DeepSeek-R1-Llama-8B Oracle Analysis: Performance vs. Token Consumption Trade-offs. This model shows the strongest Oracle benefits with +16.2% average accuracy improvement and exceptional token efficiency. The Oracle strategy achieves superior performance while consuming 10-35% fewer tokens than fixed strategies, demonstrating optimal resource utilization.

G.4 CROSS-MODEL ORACLE ANALYSIS SUMMARY

Table 15 summarizes the Oracle analysis results across all four models, demonstrating the universal effectiveness of adaptive strategy selection.

Table 15: Cross-Model Oracle Analysis Summary

Model	Parameters	Avg. Accuracy Improvement	Dominance Rate	Token Efficiency
Qwen3-4B	4B	+7.2%	100%	Mixed
DS-Qwen-7B	7B	+12.3%	100%	Moderate
Nemotron-1.5B	1.5B	+7.9%	100%	High
DeepSeek-R1-Llama-8B	8B	+16.2%	100%	Excellent

Key Insights:

- Universal Dominance:** Oracle strategy achieves 100% dominance rate across all models and benchmarks
- Scalable Benefits:** Performance improvements scale with model capability, ranging from +7.2% to +16.2%
- Consistent Token Efficiency:** All models show improved resource utilization with adaptive strategy selection
- Robust Generalization:** Benefits span mathematical reasoning, competition problems, and out-of-domain tasks

These comprehensive results provide strong empirical evidence that adaptive reasoning strategies offer universal benefits across diverse model architectures, scales, and problem domains, directly motivating the design and deployment of our DiffAdapt framework.