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ABSTRACT

Anomaly detection is the task of identifying data that is different from what is
considered normal. Recent advances in deep learning have improved the perfor-
mance of anomaly detection and are used in many applications. However, it can
be difficult to create a model that reflects the desired normality due to various is-
sues, including lack of data and nuisance factors. To address this, there have been
studies that provide the desired knowledge to the model in various ways, but there
are limitations, such as the need to understand deep learning. In this work, we
propose a method to guide the desired normality boundary in an image anomaly
detection task using natural language. By leveraging the robust generalization ca-
pabilities of the vision-language model, we present Language-Assisted Feature
Transformation. LAFT transforms image features to suit the task through natural
language using the shared image-text embedding space of CLIP. We extensively
analyze the effectiveness of the concept on a toy dataset and show that it works
effectively on real-world datasets.

1 INTRODUCTION

1.1 MODELING NORMALITY FOR ANOMALY DETECTION

Anomaly detection is the task of distinguishing abnormal data that are different from normal data.
With the recent development of deep learning, the performance of anomaly detection has improved
considerably and is widely used in applications such as industrial anomaly detection and video
anomaly detection. To detect abnormalities effectively, deep learning models should be able to learn
the concept of normality. Typically, the user provides the model with normal samples to learn from.
However, it can be challenging to obtain all the possible variations of the samples and to differentiate
anomalies due to nuisance factors in the data (Cohen et al., 2022).

In practical applications, there are cases where the model should pay attention to or disregard certain
attributes. Here are some motivating examples. (1) When inspecting a product from an image, users
may only be interested in the shape of the product, not its position, angle, or setting in which it
was taken. In this situation, the model should focus solely on the shape of the product. (2) When
performing anomaly detection in CCTV, the change in brightness is irrelevant and only the content
such as the movement of the object is important. (3) There are also situations where it is difficult
to distinguish anomalies due to entangled attributes. For example, the background and birds are
entangled in the Waterbirds dataset (Sagawa et al., 2019).

In order to address this issue, there have been attempts to generate additional data through data
augmentation or data generation to better learn the decision boundary (Zavrtanik et al., 2021; Li
et al., 2021; Du et al., 2021). The aim of these methods is to create samples more diverse than
what is available, so that the model can more accurately distinguish between normal and abnormal
data. However, these methods should be able to generate the desired normality boundary by adding
the characteristics of outliers through appropriate augmentation or generation techniques. Further-
more, there have been attempts to make models learn task-specific feature representations (Chen
et al., 2020a;b; Caron et al., 2020) and apply them to anomaly detection to better learn normality
at the feature level (Hyun et al., 2023). To make use of pre-trained backbones that are trained task-
agnostic, there have been studies that involve fine-tuning the feature extraction backbone or creating
task-specific features through feature transformation (Caron et al., 2020; Reiss & Hoshen, 2023;
Tack et al., 2020). However, the downside is that it is costly to fine-tune the backbone or train the
transformation, and it is difficult to properly learn the desired anomaly at the feature level.
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Figure 1: High level overview of our goal. We want users to be able to give the model a sense of
normality through language.

1.2 VISION-LANGUAGE MODELS IN ANOMALY DETECTION

Research in the field of natural language processing has shown the effectiveness of training mod-
els with extensive, unlabeled Internet data, and this approach has also been applied to computer
vision (Radford et al., 2021; Jia et al., 2021; Desai et al., 2023). They demonstrated the effective-
ness of using image-text pairs obtained from the Internet to pre-train models, integrating natural
language description to enhance the quality of image representations. Models trained at scale in this
manner can establish connections between visual concepts in images and natural language descrip-
tions, aligning image and text features within a shared embedding space. These models can extract
remarkably general representations and show impressive performance in downstream tasks.

Many researchers are trying to use the powerful performance of vision-language models in the field
of image anomaly detection. In particular, there are studies that apply vision-language models to
industrial anomaly detection (Jeong et al., 2023; Cao et al., 2023; Chen et al., 2023), or general image
out-of-detection tasks by utilizing the characteristics that vision-language models can be applied to
downstream tasks with zero-shot using text prompts (Ming et al., 2022; Miyai et al., 2023). The
advantage is that human prior knowledge can be fed to the model using text prompts, allowing for
zero-shot use without training images. Models that take this approach usually define normality using
text prompts and calculate anomaly scores using the similarity of text and image features. However,
in some cases, it is difficult to define normality using natural language alone, and it is common to
use reference image features in conjunction with text features to define normality. Comparison of
the reference image and the target image is done at the feature level, which means that even a slight
difference between the two images can cause a drastic change in similarity and reduce scalability.

1.3 GUIDE YOUR ANOMALY WITH LANGUAGE

As discussed in subsection 1.1, it is difficult to define the boundary of in-distribution using only
images, and a thorough understanding of deep learning is also required. This includes the selec-
tion of expertly designed image transformations to reflect user knowledge. In subsection 1.2, we
discussed the difficulty in defining normality using only language or a few reference images. In
this paper, we propose a method that enables users to define the boundaries of normality for images
using language, taking advantage of the properties of CLIP (Radford et al., 2021). Our approach is
different from the majority of existing work, as it relies mainly on image features to define normal-
ity, with language playing a supporting role. By using language, users can “guide” normality, giving
them more flexibility to incorporate their knowledge of what is normal. Additionally, by setting the
boundaries of normality with the image features, we can accurately distinguish between normal and
abnormal images.

We summarize our contributions as follows:

1. We propose Language Assisted Feature Transformation (LAFT), a method that uses natural lan-
guage to transform image features to suit the task at hand. This is achieved by taking advantage
of the strong generalization capabilities of a vision-language model and an image-text aligned
embedding space.

2. We introduce LAFT AD, a method for anomaly detection that can focus or ignore image attributes
in natural language, using LAFT.

3. We extensively examine the performance of our method on a simple dataset and demonstrate that
it is successful on real-world datasets.
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2 RELATED WORK

Image anomaly detection with vision-language model Starting with Radford et al. (2021) as a
basic vision language model, the field of image anomaly detection has seen remarkable progress.
Ming et al. (2022) introduced a novel scoring method, which was refined in the updated version,
(Miyai et al., 2023), to improve the accuracy of anomaly detection. To address the challenge of
out-of-distribution detection, Ming & Li (2023) proposed a parameter-efficient training approach,
highlighting the nuances of fine-tuning for this task. In Fort et al. (2021), a method of feeding po-
tential out-of-distribution labels to the CLIP text encoder was introduced. In addition, Esmaeilpour
et al. (2022) presented a strategy for training a label generator based on the CLIP image encoder for
out-of-distribution detection, although it focused primarily on small inputs.

Anomaly detection with type control In addressing anomaly detection with type control prob-
lem, several methodologies have been explored. Wang et al. (2022) delves into disentangling the
factors of variation in the data. The with-language methodology, as illustrated in El Banani et al.
(2023) employs contrastive representation learning guided by a vision-language model, improving
feature learning for anomaly detection. Cohen et al. (2022) advocates for labeling all attributes,
providing a structured framework to potentially improve the robustness of anomaly detection mod-
els. However, Reiss et al. (2023) underscores an inherent limitation, emphasizing that no single
method can be universally applied to all anomaly detection problems, thus necessitating a nuanced,
problem-specific methodology in this domain.

Feature adaptation In the context of feature transformation for anomaly detection, several strate-
gies have been developed to enhance the adaptability and robustness of backbone models. Ruff
et al. (2018) have a different strategy, starting with the pre-training of a representation encoder
through autoencoding on regular data, creating a basis for subsequent anomaly detection activities.
Chen et al. (2020a;b) effectively employs contrastive pre-training to facilitate feature agreement,
particularly advantageous for downstream anomaly detection. Caron et al. (2020) utilizes prototype
vectors for contrastive training of similar features, leading to the refinement of feature representa-
tions. Subsequently, these approaches are adapted for One-Class Classification (OCC) objectives
using techniques such as those proposed by Reiss et al. (2021); Hyun et al. (2023); Reiss & Hoshen
(2023). However, the adaptation process often faces challenges, including the issue of catastrophic
collapse.

3 PRELIMINARIES

In our scenario, the training set, represented as Dtrain, comprises solely of normal samples. We
then define the normality within the image features. Our evaluation set Dtest consists of normal and
anomalous samples. The attribute labels (0 ≤ j < m) for a test image xi are denoted as yi =
(y0, · · · , ym−1)i. The m attributes can be divided into relevant (0 ≤ j < n) and irrelevant (n ≤
j < m) categories, with examples such as the object’s identity, color saturation, and background
noise representing different attributes. We assume that n is not a fixed number but uncertain and that
the anomaly label is always a function of (potentially) all relevant attributes yi = fa(y0, · · · , yn−1).
That is, the nuisance attribute yn, · · · , ym−1 never affects the anomaly label yi. We emphasize that
in our described setting, neither the relevant attribute labels nor the anomaly labels are given.

Our goal is to transform the feature vector T (fi) = T (f(xi)) ∈ Rd using the transformation func-
tion T into a target space that significantly distinguishes between normal and abnormal data, im-
plying that T distills the information of irrelevant features. That is, we desire our transformation
function to represent the relevant attributes in a manner unaffected by the nuisance attributes:

p(yn, · · · , ym−1) = p(yn, · · · , ym−1|T (fi)). (1)

We also wish our code to be informative - to represent sufficient information regarding our relevant
attributes (I(; ) is the mutual information between its two arguments):

I((y0, · · · , yn−1); fi) ∼ I((y0, · · · , yn−1);T (fi)). (2)
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Figure 2: Overview of our method.

In practice, invariance can be measured by the accuracy of predicting yi = (yn, · · · , ym−1)i from
the transformed code T (fi). But, we can assess the informativeness by measuring the accuracy of
predicting the relevant attribute utilized to define anomalies. Empirical evaluations of these measures
for our datasets can be found in the next section. With such a representation, we may later evaluate
anomalies independently, devoid of any bias caused by the irrelevant attribute we aim to disregard.

CLIP (Radford et al., 2021) embeds the features in a unit sphere subspace in Euclidean space Rn.
An embedding vector of an image is correlated to the text embedding describing the image. This
means that we can construct the transform with the CLIP text encoder Ttext. We assume that all
relevant and irrelevant features can be encoded with the text description, so that natural language
assists the manipulation of the vector in the CLIP space:

I((y0, · · · , yn−1); fi) ∼ I((y0, · · · , yn−1);Ttext(fi)). (3)

4 METHOD

Our main goal is to transform visual features with text guidance without any further training. Typical
learning-based methods need to collect data to get a feasible normality space and require many com-
puting powers to train deep neural networks. In this section, we describe a way to distill undesirable
attributes with vector projection with the help of provided text prompts.

4.1 TEXT PROMPT

To enable the model to focus on or ignore certain attributes of the image, it is necessary to provide
the model with proper textual prompts. Similar to (Ming et al., 2022), we assume that the text
contains the “concept prototype” for the attributes. So we give the model a list of prompts, each
prompt consisting of the following form: TEMPLATE + ATTRIBUTE VALUE. For example, if we
want to ignore the color of the hair, we can construct the prompt as follows:

• “a photo of a person with brown hair”
• “a photo of a person with black hair”
• “a photo of a person with blond hair”
• “a photo of a person with gray hair”
• . . .

Using the actual values of the desired attribute in the prompts, we want the model to know the
difference between the visual concepts associated with the attribute. Providing values corresponding
to this attribute that are not actually in the training set but are likely to appear at test time makes it
easier to construct a subspace for that concept. This would be prior user knowledge. As with other
language-based methods, you can use multiple types of template to mitigate the bias introduced by
the template itself.

4.2 FIND CONCEPT SUBSPACE

After the user gives a prompt, our method tries to find the subspace of visual concepts in which
the attribute exists from the given prompt. Specifically, we find the axis along which the variance
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between concepts is represented by the concept difference between prompts. For prompts ti and tj
where 1 ≤ i < j ≤ n, we compute the pairwise difference:

vij = Etext(ti)− Etext(tj)

where n is the number of prompts and Etext is the CLIP’s text encoder. We call these vectors
“concept axis”. But directly using these vectors as basis is not preferable because the text prompt
itself may contain irrelevant information about the target attribute. So, we extract the principle axis
from these vectors using PCA:

{gk} = PCA({vij}, d)

where d is the number of components and {gk} is the d principal axes and named a set of guidance
vectors. Throughout the paper, we typically choose d from 4 to 32 when guiding an attribute and
from 32 to 384 when ignoring an attribute. We construct the attribute subspace using these principal
axes as basis vectors.

4.3 FEATURE TRANSFORMATION WITH PROJECTION

For all image feature vectors fi = f(xi) encoded by the CLIP image encoder, we project the features
with the guidance vector gk:

f̂i =< fi, gk > gk, (4)
where the notation < ·, · > is the inner product. This projection cancels out the other direction in the
context of suppressing irrelevant attributes. Without loss of generality, we can further enlarge the
number of relevant attributes to two or more. Then from the attributes, we can generate the guidance
vectors gk. Then we can project on the space generated by the gk’s or write it:

f̂i =

m∑
k=1

< fi, gk > gk, (5)

where m is the number of guidance vectors.

On the other hand, we can also ‘relaxation’ to the irrelevant attributes using orthogonal projection.
Let ḡk be the guidance vectors generated by the irrelevant attributes. Then we can orthogonally
project onto the space generated by ḡk’s:

f̂i = fi −
m̄∑

k=1

< fi, ḡk > ḡk. (6)

Contrary to the inner project, we can manually cancel out the vectors of irrelevant attributes. By
doing so, the specification of the normality can be gained in our anomaly detection task.

4.4 DENSITY BASED ANOMALY SCORING

We operate under the assumption that the mapping will place anomalous samples in areas of sparse
concentration, while normal data will be allocated to areas of dense concentration, resembling the
behavior observed in other anomaly detection methodologies. In a scenario where the representa-
tion is exclusively composed of relevant attributes, it’s likely that regions exhibiting low density
would correspond to samples characterized by uncommon relevant attributes, which are likely to
be classified as anomalies. To numerically estimate the density of the normal data around each test
sample, we use the k-nearest-neighbors algorithm (kNN). We begin by extracting the representation
for each normal sample: f t

i = T (f(xi)), ∀xi ∈ Dtrain. Next, for each test sample, we infer its
latent f t

test = T (f(xtest)). Finally, we score it by the distance k NN from the normal data:

S(xt) =
1

k

∑
ft
i∈Nk(ft

t )

sim(f t
i , f

t
t ) (7)

where Nk(f
t
t ) denotes the k most similar relevant attribute transformed feature vectors in the normal

data. We use k = 30 throughout paper for kNN. We note that the high dimension of the latent space
allows us to distinguish between high and low-density areas of the distribution of normal data.
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Figure 3: The features of the train and test images are mapped linearly onto two sets of axes: (left)
the PCA axes and (right) the concept axes. We calculate both axes using image features from the
auxiliary train set (not plotted) and reduce attribute values for visualization.

5 EXPERIMENTS

5.1 SETUP

Models and Prompts Throughout the paper, we use the CLIP ViT-B/16 model with the pre-trained
checkpoint from OpenAI 1. For a fair comparison, we also adopted the CLIP ViT-B/16 image en-
coder as a feature extractor for the baseline methods. We also use the same text prompts for the
methods using the CLIP text encoder and our method. See Appendix A for details of the prompts
we used in the experiments.

Datasets To validate our approach, we employ the colored version of the MNIST (LeCun et al.,
2010), Waterbirds (Sagawa et al., 2019), and CelebA (Liu et al., 2015) datasets. We set the normal
and abnormal values for each attribute of the dataset and divide the train split into 2m subsets.
For instance, in the Colored MNIST dataset, we designate the numbers 0-4 as normal and 5-9 as
anomalous, and the color red as normal and the color green and blue as anomalous. We then use one
subset as a train set that is considered normal in all m attributes (e.g. 0-4 and red).

We consider two scenarios: a standard image anomaly detection task that does not have access to
abnormal or external samples, and a more relaxed setting that can use a few abnormal or external
samples. In other words, in the latter situation, the model can use a few samples from a different
subset in the training set (e.g. 0-4 and blue). This setting is similar to outlier exposure (Liznerski
et al., 2022). When using the auxiliary dataset of a few shots, we randomly sample the data of k in
each subset.

Baselines We use kNN for our method and as a baseline. We directly use image features from
the CLIP image encoder to compute kNN distances. For our method, LAFT AD, we transform the
image features as described in section 4 before kNN. Mean-Shifted Anomaly Detection (MSAD;
Reiss & Hoshen, 2023) transforms the pre-trained representations to better fit the anomaly detection
in an unsupervised manner. We also consider CLIP-based anomaly detection methods. Maximum
Concept Matching (MCM; Ming et al., 2022) is a CLIP based out-of-distribution detection method.
This only requires prompts for normal images for anomaly scoring. On the other hand, the method
proposed by Fort et al. (2021) and Zero-shot OOD detection based on CLIP (ZOC; Esmaeilpour
et al., 2022) uses candidate prompts for anomalous images. The main difference from the original
ZOC method is that we will provide prompts about unseen candidates of attributes instead of gen-
erating them using an image description generator. When we can use auxiliary samples, we train
Linear Probe as in Radford et al. (2021). Also, we compared our method with Red PANDA (Cohen
et al., 2022) which can learn to ignore specific attributes in the image.

Metrics We use three metrics to evaluate the performance of the methods: the Area Under Re-
ceiver Operating Characteristics (AUROC), the Area Under the Precision Recall Curve (AUPRC),
and the False Positive Rate at the 95% true positive rate (FPR95). AUROC and FPR95 are com-
monly used for the anomaly detection or out-of-distribution detection task (Ming et al., 2022). And
we also use AUPRC because some datasets are imbalanced, with a significant disparity between the
number of normal and abnormal examples.

1https://github.com/openai/CLIP
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Table 1: The anomaly detection performance on Colored MNIST dataset. We do not use additional
data other than normal training set. For details, please refer to the main text.

Method Anom. Number Color

Prompt AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

No guidance

kNN - 0.880 0.879 0.617 0.817 0.878 0.442
MSAD - 0.582 0.551 0.757 1.000 1.000 0.001

Guide

CLIP (MCM) × 0.549 0.499 0.877 0.892 0.942 0.460
CLIP (ZOC) � 0.981 0.982 0.112 1.000 1.000 0.000

△ 0.933 0.923 0.406 1.000 1.000 0.000
LAFT AD (ours) � 0.989 0.990 0.066 1.000 1.000 0.000

△ 0.984 0.985 0.089 1.000 1.000 0.000

Ignore

LAFT AD (ours) � 0.938 0.929 0.279 0.989 0.989 0.026
△ 0.935 0.925 0.293 0.991 0.991 0.024

5.2 RESULTS ON COLORED MNIST

We used the colored version of the MNIST dataset (LeCun et al., 2010), similar to Arjovsky et al.
(2019), to demonstrate our concept in the simplest way. We create a dataset that divides each digit
of the MNIST and colors each split with red, green, and blue. In this way, the image of a colored
MNIST consists of two attributes: number and color. We mark the numbers 0 to 4 as normal and
the numbers 5 to 9 as abnormal. In addition, we label red as normal and green and blue as abnormal
colors. In this setting, the training set consists of 0 to 4 and red images.

We assume that CLIP has learned visual concepts from a sufficiently large variety of image captions
so that it can place images according to their degree of concept for a given concept axis. While
MCM (Ming et al., 2022) assumes the text feature itself as “concept prototype”, we use the “pairwise
difference of concept prototypes” to find this axis. Figure 3 shows the brief overview of our desired
transformation using the concept axis. If we choose one axis (number or color), we can just use
kNN to detect anomaly with guidance to specific attributes.

Table 1 shows the main results on Colored MNIST. The table is divided into three groups: “no guid-
ance”, “guide”, and “ignore”. The “no guidance” group shows the performance of anomaly detection
methods that do not provide any guidance and can be thought of as the default performance for that
attribute. The “guide” group displays the performance of methods that can be directed to focus on
a particular attribute, so it shows the performance when guided to the attribute corresponding to the
label. The “ignore” group shows the performance of disregarding attributes other than the one to
be evaluated, so it shows the performance of ignoring attributes that do not correspond to the label.
For example, performance in the attributes “Number” means ignoring the attribute “Color” and vice
versa. And the “Anomaly Prompt” column indicates the method uses the text prompt for anomalous
attributes. The �means that the method uses exact anomaly prompts (in this case, ‘green’ and ‘blue’
for color attributes), and the △ means that the method also uses other candidate anomaly prompts
(e.g. ‘purple’, ‘orange’, ‘black’, etc.). This format is used throughout the paper.

As can be seen from the table, the performance of the guidable methods is generally higher than the
performance of the non-guidable methods, and our method has the best performance among them. It
is notable that ZOC’s performance drops significantly when given candiate anomaly prompts in addi-
tion to the exact anomaly prompts, while our method does not make much difference. This is a prob-
lem mentioned in Ming et al. (2022), where the performance of the methods that calculate anomaly
scores based on image-text similarity in CLIP is highly affected by inaccurate prompts. In contrast,
our method uses the prompt to calculate only the transformation of the image features(Equation 5),
and the normality is actually determined through the images, so we can see that the performance
is similar even with some inaccurate prompts. The important thing in image anomaly detection is
to find anomalies that are different from normal images, so we can verify that our approach works
effectively. We can also observe that when we use our method to guide one attribute, the other at-
tributes are actually ignored, which we summarize further in Appendix B. In the “ignore” group of
the table, it shows that ignoring one attribute increases the performance for the other attribute. This
is because the Colored MNIST very clearly consists of only two attributes. In real-world datasets,
the behavior is slightly different, which we discuss further in the following sections.

In summary, on the simple Colored MNIST dataset, we demonstrated that our method can leverage
language to provide guidance on normality without additional training.
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Table 2: The anomaly detection performance on Waterbirds dataset. We do not use additional data
other than normal training set. For details, please refer to the main text.

Method Anom. Bird Background

Prompt AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

No guidance

kNN - 0.772 0.893 0.618 0.704 0.651 0.849
MSAD - 0.615 0.275 0.833 0.855 0.826 0.504

Guide

CLIP (MCM) × 0.867 0.946 0.468 0.845 0.836 0.619
CLIP (ZOC) � 0.927 0.971 0.276 0.961 0.963 0.231

△ 0.920 0.966 0.363 0.951 0.952 0.315
LAFT AD (ours) � 0.945 0.981 0.242 0.970 0.973 0.179

△ 0.933 0.972 0.267 0.962 0.966 0.213

Table 3: The anomaly detection performance on Waterbirds dataset. We use a few or full additional
data other than normal training set for training. For details, please refer to the main text.

Method # Shots Bird Background

/ Subset AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

Guide

Linear Probe Full 0.756 0.555 0.714 0.969 0.973 0.136

LAFT AD (ours) 0 0.945 0.981 0.242 0.970 0.973 0.179

+ CoOp 1 0.934 0.974 0.259 0.953 0.961 0.288
4 0.943 0.982 0.203 0.976 0.976 0.126
8 0.945 0.980 0.207 0.981 0.983 0.097

16 0.947 0.980 0.201 0.983 0.984 0.084
128 0.954 0.983 0.177 0.991 0.992 0.034

Ignore

Red PANDA Full 0.612 0.610 0.882 0.717 0.722 0.824

LAFT AD (ours) 0 0.773 0.889 0.559 0.693 0.856 0.735

+ CoOp 1 0.852 0.941 0.505 0.673 0.609 0.789
4 0.885 0.947 0.389 0.891 0.897 0.523
8 0.903 0.958 0.326 0.932 0.935 0.344

16 0.918 0.969 0.305 0.952 0.955 0.258
128 0.932 0.976 0.252 0.971 0.974 0.167

5.3 RESULTS ON WATERBIRDS

The Waterbirds dataset (Sagawa et al., 2019) is commonly used in studies focused on spurious cor-
relation and representation disentanglement. The dataset consists of two primary attributes: bird
(waterbird / landbird) and background (water / land). Naturally, the training set has a very strong
correlation between birds and backgrounds, whereas the test set has an equal ratio of birds to back-
grounds. We specify waterbirds and water backgrounds as a normal training set. Table 2 summarizes
the results for the dataset. The trends observed in the Colored MNIST experiment remain consistent
in the results, demonstrating that our method is applicable to real-world datasets. The one difference
is that ignoring one attribute does not directly improve the performance of other attributes, as shown
in the ignore group of Table 3.

To improve performance, we employ the prompt learning technique Context Optimization (CoOp;
Zhou et al., 2022), in order to accurately capture the concept difference without prompt bias. See
Appendix A for the details of CoOp. To train the prompt, we randomly select a few auxiliary samples
from each train subset. In the practical application, we are often able to acquire samples that are not
in the training set, and we can benefit from this. The results are summarized in Table 3. To use as a
baseline, we trained Linear Probe and Red PANDA using all the data in the train set.

Based on our findings, it is clear that using the image features directly from CLIP and training a
linear classifier does not outperform our model. This demonstrates that properly transforming the
features is more effective for the desired downstream task. Furthermore, we observed that with
only four samples for each subset, we are able to effectively learn the prompt to further improve
the performance. These findings are consistent with those reported in (Zhou et al., 2022), thus
highlighting the effectiveness of combining CoOp with our method. Additionally, as addressed in
(Cohen et al., 2022), fine-tuning of the feature extractor is limited in real-world datasets.
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Table 4: The anomaly detection performance on CelebA dataset. We do not use additional data other
than normal training set. For details, please refer to the main text.

Method Anom. Blond Eyeglasses Young

Prompt AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

No guidance

kNN - 0.865 0.974 0.541 0.778 0.185 0.677 0.701 0.477 0.863
MSAD - 0.827 0.964 0.637 0.742 0.969 0.659 0.528 0.291 0.974

Guide

CLIP (MCM) × 0.848 0.972 0.709 0.323 0.044 0.989 0.460 0.234 0.967
CLIP (ZOC) △ 0.908 0.980 0.642 0.989 0.963 0.003 0.760 0.592 0.713
LAFT AD (ours) △ 0.930 0.987 0.351 0.989 0.923 0.038 0.798 0.634 0.748

Table 5: The anomaly detection performance on CelebA dataset. We transform the image fea-
tures using LAFT to ignore the Male attribute. Then, we use the transformed features for the ZOC
anomaly detection. For details, please refer to the main text.

Method Blond Eyeglasses Male

AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

CLIP (ZOC) 0.908 0.980 0.642 0.989 0.963 0.003 0.996 0.997 0.010
+ LAFT 0.916 0.982 0.531 0.989 0.957 0.008 0.508 0.618 0.996

5.4 RESULTS ON CELEBA

To verify that our method works in multi-attribute settings, we use the CelebA dataset (Liu et al.,
2015), which contains over 200K celebrity images with 40 attribute labels. For the normal training
set, we select three attributes: Blonde Hair, (No) Eyeglasses, and Young. The results are displayed
in Table 4. While the tendencies of Blond Hair and Young are similar to previous experiments,
the results of Eyeglasses are slightly different. This is because CLIP can classify almost perfectly
whether a person is wearing glasses or not. Therefore, using images to define normality provides
disturbing information for the attribute. And, notably, the performance for the Young attribute is not
good for all models. Similar results are also reported in Gannamaneni et al. (2023). This suggests
that CLIP may have difficulty conceptualizing age, a limitation that also affects our method, which
relies on CLIP’s image-text alignment.

6 LIMITATIONS AND DISCUSSION

Ignore attributes using LAFT Unlike in a simple Colored MNIST dataset, we observe that ignor-
ing one attribute using LAFT without CoOp does not improve the anomaly detection performance
of the other attribute in real-world datasets. However, as seen in Appendix B, the LAFT actually
suppresses the attribute to be ignored. We hypothesize this phenomenon because it is difficult to
remove all attribute-related information in the embedding space using only text prompts. On the
other hand, guiding the attribute is relatively easy, because LAFT only needs to capture the primary
information about the attribute. We found that performance improved when we used a genetic algo-
rithm to select the appropriate pair from the given prompt pairs. Selecting the appropriate prompt
pair would be our future work.

Using LAFT with other methods Our proposed LAFT method can be used as a feature transfor-
mation module in other tasks or methods. Basically, we expect that it can be applied to any vision
model that requires a feature extractor. As a simple proof of concept, we apply the LAFT method
to ZOC for anomaly detection. The results in Table 5 show that we can suppress Male attribute
from the image features without significant impact on other attributes. Applying LAFT to other
downstream tasks would be an interesting future work.

7 CONCLUSION

In this paper, we propose the novel feature transformation method LAFT to adapt pre-trained CLIP
image features for the target task. Our LAFT AD approach demonstrates how language can guide
normality detection by combining LAFT with kNN for anomaly detection. We show that defining
normality through image features is crucial for image anomaly detection and outperforms language-
based methods across various datasets.
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A EXPERIMENTAL DETAILS

Candidate attribute values We use the actual class names from the dataset, if available. For
example, for the number attribute in the Colored MNIST dataset, we can give exactly ‘0’ to ‘9’ and
‘zero’ to ‘nine’. And for the Waterbirds dataset, we use 200 bird class names provided by the dataset.
However, for attributes that cannot get exact or few labels (e.g., blonde hair), we get candidate labels
from the Internet.

Details of CoOp We use context length M = 16 for learning the CoOp prompt. To train the
prompt, we train 3000 steps with the Adam optimizer at a learning rate of 1e − 3 and do not use
the learning rate scheduler.

B ADDITIONAL EXPERIMENTS

Table 6: The anomaly detection performance of LAFT AD on Colored MNIST dataset. We do not
use any additional data other than the normal training set. Bold text indicates that the performance
should be high, and underlined text indicates that the performance should be low.

Attribute Anom. Number Color

Prompt AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

No guidance

kNN - 0.880 0.879 0.617 0.817 0.878 0.442

Guide

Number � 0.989 0.990 0.066 0.543 0.644 0.735
△ 0.984 0.985 0.089 0.553 0.654 0.721

Color � 0.515 0.506 0.878 1.000 1.000 0.000
△ 0.519 0.513 0.770 1.000 1.000 0.000

Ignore

Number � 0.619 0.600 0.743 0.989 0.989 0.026
△ 0.586 0.562 0.747 0.991 0.991 0.024

Color � 0.938 0.929 0.279 0.654 0.738 0.596
△ 0.935 0.925 0.293 0.698 0.782 0.565

Table 7: The anomaly detection performance of LAFT AD on Waterbirds dataset. We do not use any
additional data other than the normal training set. Bold text indicates that the performance should
be high, and underlined text indicates that the performance should be low.

Attribute Anom. Bird Background

Prompt AUROC ↑ AUPRC ↑ FPR95 ↓ AUROC ↑ AUPRC ↑ FPR95 ↓

No guidance

kNN - 0.772 0.893 0.618 0.704 0.651 0.849

Guide

Bird � 0.945 0.981 0.242 0.662 0.655 0.855
△ 0.929 0.975 0.303 0.661 0.650 0.847

Background � 0.641 0.857 0.856 0.970 0.973 0.179
△ 0.658 0.866 0.854 0.962 0.966 0.213

Ignore

Bird � 0.678 0.615 0.796 0.693 0.856 0.735
△ 0.675 0.612 0.800 0.693 0.856 0.737

Background � 0.773 0.889 0.559 0.604 0.562 0.914
△ 0.769 0.888 0.576 0.605 0.561 0.904

The results in Table 6 and Table 7 show that when we guide one attribute, the other is implicitly
ignored, and vice versa.
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C ALGORITHM

# model: the CLIP model
# prompts: the list of prompts provided by the user
# train_images: the collection of normal images
# test_images: the collection of images to be tested
# d: the number of principle axis

# Compute attribute subspace
text_features = model.encode_text(prompts)
pair_diffs = pairwise_difference(text_features)
basis = pca(pair_diffs, d)

# Encode images
train_features = model.encode_image(train_images)
test_features = model.encode_image(test_images)

# Guide
train_laft_features = inner_projection(train_features, basis)
test_laft_features = inner_projection(test_features, basis)

anomaly_scores = knn(train_laft_features, test_laft_features)

# Ignore
train_laft_features = orthogonal_projection(train_features, basis)
test_laft_features = orthogonal_projection(test_features, basis)

anomaly_scores = knn(train_laft_features, test_laft_features)
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