
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329000519

Python Source Code De-Anonymization Using Nested Bigrams

Conference Paper · November 2018

DOI: 10.1109/ICDMW.2018.00011

CITATION

1
READS

464

3 authors:

Some of the authors of this publication are also working on these related projects:

Python Source Code De-Anonymization Using Nested Bigrams View project

Engineering Education View project

Pegah Hozhabrierdi

Syracuse University

2 PUBLICATIONS 0 CITATIONS

SEE PROFILE

Dunai Fuentes

École Polytechnique Fédérale de Lausanne

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Chilukuri Mohan

Syracuse University

34 PUBLICATIONS 97 CITATIONS

SEE PROFILE

All content following this page was uploaded by Pegah Hozhabrierdi on 16 November 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/329000519_Python_Source_Code_De-Anonymization_Using_Nested_Bigrams?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/329000519_Python_Source_Code_De-Anonymization_Using_Nested_Bigrams?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Python-Source-Code-De-Anonymization-Using-Nested-Bigrams?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Engineering-Education-75?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pegah_Hozhabrierdi2?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pegah_Hozhabrierdi2?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Syracuse_University?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pegah_Hozhabrierdi2?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dunai_Fuentes?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dunai_Fuentes?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole_Polytechnique_Federale_de_Lausanne?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dunai_Fuentes?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chilukuri_Mohan2?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chilukuri_Mohan2?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Syracuse_University?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chilukuri_Mohan2?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pegah_Hozhabrierdi2?enrichId=rgreq-fb1f251f29d5f56ea2014dc12817e576-XXX&enrichSource=Y292ZXJQYWdlOzMyOTAwMDUxOTtBUzo2OTM2NjM0ODMwNjAyMzBAMTU0MjM5MzY3MDY0NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Python Source Code De-Anonymization
Using Nested Bigrams

Pegah Hozhabrierdi
EECS Department
Syracuse University

Syracuse, USA
phozhabr@syr.edu

Dunai Fuentes Hitos
Matilock, Inc.

Huelva, Spain
dunai.ianud@gmail.com

Chilukuri K. Mohan
EECS Department
Syracuse University

Syracuse, USA
mohan@syr.edu

Abstract—An important issue in cybersecurity is the insertion
or modification of code by individuals other than the original
authors of the code. This motivates research on authorship
attribution of unknown source code. We have addressed the
deficiencies of previously used feature extraction methods and
propose a novel approach: Nested Bigrams. Such features are easy
to extract and carry substantial information about the intercon-
nections between the nodes of the abstract syntax tree. We also
show that for large number of authors, a Strongly Regularized
Feed-forward Neural Network outperforms the Random Forest
Classifier used in many code stylometric studies. A new ranking
system for reducing the number of features is also proposed, and
experiments show that this approach can reduce the feature set
to 98 nested bigrams while maintaining a classification accuracy
above 90 percent.

Index Terms—source code de-anonymization, source code sty-
lometry, abstract syntax tree, feature extraction, feature ranking

I. INTRODUCTION

Stylistic analysis has long been used to answer questions
concerning the authorship of articles and books. Recent re-
search has attempted to determine whether a similar analy-
sis can be applied to computer source code for authorship
attribution. This has considerable application to the field
of cybersecurity, in identifying whether a small part of a
computer program may have been authored with malicious
intent by someone other than the main author. In addition to
the applications in security (e.g., malware authorship [1]) and
copyright (e.g., plagiarism detection [2]), source code author-
ship attribution addresses well-known challenges in software
engineering such as code clone detection [3].

Over time, improvements have been made in identifying
source code authorship, from Oman and Cook’s [4] use of
formatting features to the extensive study of Caliskan-Islam
et al. [5], using a more comprehensive feature-set (including
lexical, layout and syntactic features). Our study is motivated
by several potential improvements and extensions that remain
to be investigated:
• Many of the previous studies focus on C/C++ and Java

samples due to the abundance of the available data.
Some methods (e.g., [5]) achieve high accuracy levels
on such code, but do not generalize well to other lan-
guages.Thanks to the steady increase in the usage of

Python since 2012, a substantial amount of data is now
available so that we can examine Python code stylometric
features. A few recent studies have tackled this issue [5],
[6], but the performance of the Python code classifier
in [5] is relatively poor, while [6] uses a very complex
model.

• Previous methods often used thousands of features for
training the classifiers that leads to over-fitting, motivat-
ing feature set reduction techniques. The previous use of
information gain to reduce the number of features has
lead to significantly worse performance, for Python code
as in [5].

• Regarding the usage of the information gain criterion,
several questions remain unexplored, such as: (1) What is
the appropriate threshold of information gain (to capture
the key features)? (2) Does information gain truly capture
the hidden “signature” in each code? (3) How does it
compare to other commonly used methods?

In this study, we address the above issues and obtain insight
into useful properties of the feature-set. We have relied
on data available from Google Code Jam (GCJ) annual
competitions, facilitating a fair and meaningful comparison
with the previous stylometric studies of Python source code
that used the same dataset.

We begin with a brief review of the literature in Section
II. The proposed features (nested bigrams) are introduced
in Section III. In Section IV-A, we show our classification
results using only the AST nested bigrams as the feature-
set, experimenting with both random forest and neural net-
work classifiers. The results are compared to previous studies
(Section IV-B). Next, we address feature ranking in Section
IV-C, and examine two measures: information gain ranking
and correlation-based ranking. Section V summarizes our
conclusions.

II. RELATED WORK

Author de-anonymization has been mostly studied from the
perspective of plagiarism detection, as reviewed in [7] and [6].
Advances in this field are mostly owing to improvements in
the features used for author identification. Hence we categorize
these studies by their selected features:

Layout features. Pioneering studies ([4] and [8]) focus on
extracting the format of the source codes; but these features
are prone to error and vulnerable to obfuscation attacks.
Lexical features. These include quantitative variables such
as the number of occurrences of specific keywords, propor-
tion of lines that include comments, the average length of
identifiers, number of strings, chars and literals, etc. These
features combined with n-grams have been used for author
de-anonymization [2], [9], [10].
Syntactic features. The vulnerability of layout and lexical
features to obfuscation attacks motivated the attempts towards
a more robust set of features. Pellin [11] introduced a new
set of features obtained by parsing the abstract syntax tree
of the source code, further improved by Caliskan-Islam et al.
[5]. Such features depend only on the syntax of the code and
are more resistant to attack. Height of the AST, n-grams of
the nodes, the depth of the tree and the number of leaf nodes
are examples of syntactic features. Alsulami et al. [6] use an
LSTM-based neural network to extract informative features
from AST. In their method, they preserve the information
between two nodes that don’t have immediate parent-child
relationship.

III. FEATURE EXTRACTION

The main contribution of our work is to introduce an
efficient and smaller feature-set that captures the signature
of an author. Nested Bigrams retain information contained in
the relationships between non-adjacent nodes, with the nesting
of subtrees. To take the non-immediate relationships (siblings
and non-immediate descendants) into account, we associate
each node with the information of its descendants. Nested
bigrams can be extracted rapidly while retaining long-distance
connection information (throughout the AST) without the use
of complicated encoding mechanisms. Our experiments show
that these bigrams (tuples) preserve author signatures as well
as or better than the representations learned by the LSTM and
biLSTM encoders.

Figure 1 illustrates a code snippet and its corresponding
abstract syntax tree. Each of the circles drawn in Figure 1
represents the information of the top most node in that circle
(only four nodes are depicted by circles for clarity). For
example, the If node carries all the information of all the
nodes enclosed in the red circle, expressed as follows:

I f (t e s t =Compare (l e f t =Num(n =1) , ops [Eq ()] ,
c o m p a r a t o r s =[Num(n = 1)]) , body [Exp (
v a l u e = C a l l (func =Name (id = ’ foo ’ ,
c t x =Load ()) , a r g s = [] , keywords = [] ,
s t a r a r g s =None , kwargs=None))] , o r e l s e = [])

All the nodes within the red circle (i.e. Compare, Eq,
Num, Exp, Call, Name, Load) are stored as the pa-
rameters of the If node. The blue circle shows the information
held by the Exp node (i.e. the nodes Call, Name, Load):

Exp (v a l u e = C a l l (func =Name (id = ’ foo ’ ,
c t x =Load ()) , a r g s = [] , keywords = [] ,
s t a r a r g s =None , kwargs=None))

import foo
i f 1==1:
foo ()

(a)

(b)

Fig. 1: The abstract syntax tree of a Python code snippet. (a) Code snippet (b) The
corresponding AST. Each circle represents the information stored by one node (the top
most node in each circle circle).

The same holds for the green and purple circles as well. Each
circle represents a node in our AST. The connection of If
and Exp nodes (the red and blue circles) is a sample of our
nested bigrams. Relationships are preserved between ancestors
and descendants (e.g., If and Name), as well as siblings (e.g.,
Eq and Name).

IV. CLASSIFICATION

In this section, we introduce the structure of a Strongly Reg-
ularized Feed-forward Neural Network (SRFNN) and evaluate
its performance when trained with nested bigram features.
Data. Following the previous studies in this field, we choose
Google Code Jam (GCJ) dataset1 to compare the results. GCJ
is an annual programming competition and consists of several
rounds of questions. The participants may submit their answers
in any language. The questions and the submitted codes are
made available in their website.
Features. The AST was extracted with the help of the ast
built-in module in Python 2.7 2. Only the nested bigrams used
by at least two users are selected to ensure that the classifier
is not biased towards the specific names of variables used by
only one user. Nested bigrams extracted from the (AST) of a
python source code are one-hot encoded and multiplied by the
frequency of appearance. To facilitate future research, all our
source code is publicly available online3.

A. SRFNN vs. RFC

[5] and [6] used data with 9-10 code samples for each
author. We have experimented with different number of code
samples, and have found that even with only three code

1https://code.google.com/codejam/past-contests
2We choose Python 2.7 rather than 3.x as our platform because our dataset

contains source code as old as 2012 and mostly written in Python 2.x.
3https://github.com/Pegayus/nested-bigrams

https://code.google.com/codejam/past-contests
https://github.com/Pegayus/nested-bigrams
https://code.google.com/codejam/past-contests
https://github.com/Pegayus/nested-bigrams

Layers Output Size
Dropout (0.5) number of features

Fully-connected 500
ReLU 500

Batch-normalization 500
Dropout (0.5) 500

Fully-connected number of classes
Softmax number of classes

TABLE I: SRFNN Architecture

samples per user, we can achieve higher accuracy with SRFNN
than the previous studies while increasing the number of
classes. For both classifiers, we use stratified 3-fold cross-
validation for the evaluation of the training model; i.e., for
each user, we train with only two code samples and evaluate
on the third. We report the average accuracy across all folds.

RFC. By tuning the hyper-parameters of this model among
all our experiments, we fix the number of trees to 500 and let
the trees grow to their maximum height (our tuning results
showed that limiting the height of the trees has negligible
impact on the accuracy). We choose entropy as splitting
criterion, to keep the model closer to that of previous studies;
similar results were obtained with Gini.

SRFNN. Our target tasks train on as few as two code
samples per user (testing on a third), with up to 7099 non-
user specific or problem-specific features per code sample. The
scarcity of training data per class makes the tasks comparable
to applications such as Omniglot [12] or Mini-Imagenet [13].
Instead of using the complex procedures proposed in such
literature, we regularize our network and training procedure to
generalize effectively from a few examples. We use Dropout
[14] to model the fact that a user’s style may be composed of
multiple stylometric indicators that may appear independently.
We find that randomly dropping up to 75% of the input
features helps to avoid over-fitting, forcing our model to learn
the multiplicity of informative features. To prevent over-fitting,
our network architecture is kept simple, as shown in Table I.
Finally, our training schedule consists of a sequence of steps
with progressively decreasing learning rate, with warm restarts
[15], and paired decreasing weight decay [16], which helps us
regularize parameters while maintaining low bias towards the
end of the training phase. They decrease from 0.1 to 10−5 and
from 0.1 to 10−7 respectively. We train with small batches of
size 20, preserving high stochasticity.

Experiments. Our optimizer of choice is Adam [17], and
our implementation uses the PyTorch4 platform. We have used
two different splits of the data: (1) users who have solved a
mixture of different and similar problems, and (2) those who
have the same set of problems. In case of the mixed problem-
sets, the classifier has an advantage as more information is
provided (the difference in the coding style and the difference
in the problem addressed). The nested bigrams are extracted
from all codes in the dataset. Then, for each source code, the
normalized frequencies are calculated (the frequency of each
bigram is divided by the length of the source code).

4https://pytorch.org/

Discussion. Table II compares the performance of RFC and
SRFNN on different datasets. The results of the first column
can be compared to those of [5]: for 229 users with nine
codes each who solved different problems, their accuracy was
53.91%, and for 23 users who solved the same problems, they
achieved 87.93%. Considering the higher difficulty of classifi-
cation for the same set of problems, their higher accuracy for
users with same problem-set can only mean that the number
of classes (users) has had a powerful impact.

The largest set of users who solved the same set of problems
in our dataset consist of 249 users with three codes each. The
total number of users with three codes was 478. The second
and fourth columns of Table II show the accuracies for these
two groups. To compare the performance of the classifiers for
the mixed and same set of problems, we also train on a subset
of 249 users with three codes each who have solved different
problems.

Comparing the third and fourth column of the table, the
RFC appears to capture the difference in the problem-sets than
the difference in the style of coding (nine percent decrease
in accuracy) while SRFNN does the opposite (five percent
increase in accuracy). Adding the second column to this
observation, RFC appears to be more sensitive to the number
of classes than SRFNN. To study the effect of (1) the number
of users (classes) and (2) the number of codes per user on the
accuracy in a more systematic way, we repeated the training
on subsets of the users who solved the same three problems
(cf. Figure 2). We also used a dataset of 13 users who have
exactly six problems in common, with results shown in Figure
3.

mix 81u 9c
(7,269)

mix 478u 3c
(14,480)

mix 249u 3c
(7,389)

same 249u 3c
(7,098)

RFC 97.67% 66.67% 72.30% 65.19%
SRFNN 95.6% 71.6% 73.5% 77.5%

TABLE II: Classification accuracies of RFC vs. SRFNN using nested bigrams. From
left to right, the meaning of the columns are: {81, 478, 249, 249} users with {9, 3,
3, 3} codes each and {mixed, mixed, mixed, same} set of problems. The numbers in
parentheses show the number of extracted features(bigrams) used by at least two users.

Figures 2 and 3 capture the effects of the number of authors
(classes) and the number of codes per author. The points are
the average of the cross-validation accuracies and the standard
deviation of the results is overlaid. Together, Table II and the
two figures suggest a tradeoff between these two parameters.
It is clear that SRFNN surpasses RFC when the number of
users is large, with a sharp decrease of accuracy in RFC from
20 users to 200 users in Figure 2. However, Figure 3 suggests
that for a few code samples per author, RFC performs better
than SRFNN. For users with five or more code samples, this
difference is negligible. As shown, for two codes per author,
SRFNN seems to be performing slightly better. This can be
due to the effect of the small number of users (classes). Here,
the impact of the number of classes has been stronger than
that of number of codes per author. The same behavior is
observed from Figure 2 in which for the small number of
codes per user (three) and smaller number of classes (20),
the effect of the number of classes appears to be greater, and

https://pytorch.org/
https://pytorch.org/

20 40 60 80 100 120 140 160 180 200
Number of users

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Acc dependency on the number of users
Neural Network
Random Forest

Fig. 2: The classification accuracy (Acc) for different class sizes. Each
user has 3 code samples.

2 3 4 5 6
Number of codes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Acc dependency on the number of codes per user

Neural Network
Random Forest

Fig. 3: The classification accuracy (Acc) for different number of codes
per user for 13 users.

Small C Large C
Small A RFC RFC/SRFNN
Large A SRFNN SRFNN

TABLE III: Choice of better classifier, depending on the number of authors (A) and the
number of codes per author (C)

SRFNN outperforms RFC by a large margin.
Summary. These results can be summarized as follows:
• RFC is more sensitive to the type of problems a code aims

to solve, but cannot learn the full difference in the coding
style of the programmers and is not a good option for
classifying authors who solve the same set of problems.
SRFNN is a better classifier for such problems.

• There is a tradeoff between the number of classes and the
number of sample codes per user. RFC tends to perform
worse for the larger number of users while it does a better
job for the users with smaller number of code samples,
as shown in Table III.

• The SRFNN performs significantly better for large num-
ber of classes and large number of codes per author, sug-
gesting higher generalization capacity to accommodate a
diversity of styles than the RFC. This paves the way to
even larger classifiers to be used on massive datasets.

B. Comparison with Previous Results

Among the literature on author de-anonymization so far,
only [5] and [6] have offered competitive results for Python
source code. The feature-sets in these two studies consist
of all syntactic features drawn from AST. We train our two
classifiers, RFC and SRFNN, on the same number of authors
with mixed/same set of problems, using nested bigrams. Table
IV compares the result of our experiments with the two other
works. We executed each classifier five times and reported the
average of the accuracies. We also repeated the experiments
with fewer code samples per user. Therefore, our classifiers
have the disadvantage of less training data to capture the
coding styles. For each problem, [5] uses nine and [6] uses
10 different coding styles. We only used four for the same
number of authors and, still, obtained a better accuracy.

Table IVa illustrates the superiority of the nested bigrams
over the code stylometric features used by [5]. Table IVb

Features 23 authors [same] 229 authors [mixed]
RFC [5] all AST 87.93 [9 codes] 53.91 [9 codes]
RFC [this work] AST nested bigrams 93.47 [4 codes] 83.29 [4 codes]
SRFNN [this work] AST nested bigrams 88.04 [4 codes] 86.20 [4 codes]

(a)

Features 25 authors [same] 70 authors [same]
LSTM [6] all AST 92.00 [10 codes] 86.36 [10 codes]
biLSTM [6] all AST 96.00 [10 codes] 88.86 [10 codes]
RFC [6] all AST 86.00 [10 codes] 72.90 [10 codes]
RFC [this work] AST nested bigrams 95.56 [4 codes] 89.35 [4 codes]
SRFNN [this work] AST nested bigrams 88.00 [4 codes] 86.40 [4 codes]

(b)

TABLE IV: Comparison with existing literature: “all AST” means that all the possible
features for AST have been used (such as height of the tree, count on leaf nodes, n-
grams, etc.) (a) Comparison with Caliskan et al. [5]. (b) Comparison with Alsulami et
al. [6].

shows that with fewer training data, nested bigrams can
surpass LSTM based networks for larger number of classes,
with similar results for smaller datasets. Another interesting
observation is the slope of decrease in accuracy from 25 users
to 70 users. LSTM’s and biLSTM’s accuracies are decreased
by 6.1% and 7.43% respectively while this number for RFC
and SRFNN is 6% and 1.8% accordingly. This demonstrates
the robustness of SRFNN model with increases in the number
of classes.

C. Feature Ranking

The major differences between our study and [5] are the
type and the size of the feature-set. Their initial feature-set
contains thousands of redundant lexical, layout and syntactic
features (120,000 for their C/C++ experiments) which result
in over-fitting. Their approach for extracting more informa-
tive feature-set was to choose those features with positive
information gain. They reduced the number of their C/C++
features to 928 from 120,000 and improved the result of their
classification. Use of their selection criteria had little effect
on the results with nested bigrams; for example, in one of our
experiments, it reduced the size of our features from 1,830 to
1,829, with no change in accuracy.

In our experiments, decreasing the number of our nested
bigrams via information gain decreased the classification ac-
curacy, with a slow drop. However, if we don’t seek the

Accuracy > 80% Accuracy > 90%
Ranking Methods optimized threshold number of features accuracy(%) compression(%) optimized threshold number of features accuracy(%) compression(%)
IG[mix] 1.2 21 83.70 97.38 0.5 98 92.39 87.78
Corr[mix] 0.5 117 82.62 85.41 0.7 218 90.22 72.82
IG[same] 0.5 76 82.61 90.88 0.1 519 91.30 37.77
Corr[same] 0.5 115 83.68 86.21 0.7 221 91.30 73.50

TABLE V: The results of feature pruning by two different metrics; information gain ranking and correlation based ranking. The first test captures the minimum feature-set by each
of the ranking measures that gives accuracies above 80%. The second test is for accuracies above 90%.

45025010050255
Number of features

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

IG ranking vs. Correlation ranking for Same-Problems

IG ranking
Correlation ranking

(a)

45025010050255
Number of features

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

IG ranking vs. Correlation ranking for Mixed-Problems

IG ranking
Correlation ranking

(b)

Fig. 4: The decrease in the size of feature-set affects the accuracy differently for IG and correlation based rankings. (a) shows this difference for the dataset of 23 authors with
four sample codes per author who solved the same set of problems. (b) depicts the same results for the dataset of 23 authors with four codes and a set of different problems. The
correlation thresholds are chosen from [0.1,0.3,0.5,0.9] with 0.1 giving the minimum results in the figures. That explains the sudden truncation of the correlation plots .

“best” possible accuracy and accept accuracies above a certain
threshold, a very small subset of our features can suffice.

In Section IV-B, we compare our “best” possible results
with the best achieved by other studies, using our complete
feature-set. Here, we propose a tuning procedure which gives
us the minimum set of nested bigrams that satisfy a minimum
accuracy required. Our tuner is based on the information gain/-
correlation of feature vectors. In the end, we also rank those
selected features by the tuner through a one-out (or leave-one-
out) ranking procedure. We also compared our results with a
correlation based measure between the feature vectors.

Information Gain Ranking. The ranking of the features
utilizes two steps: (1) Tuning the information gain threshold
from which the minimal set of features satisfying a fixed ac-
curacy threshold is obtained, and (2) Ranking the importance
of those selected features by one-out approach. We choose
80% and 90% as our fixed accuracy thresholds. In the tuning
process, we also investigate how accuracy varies with the
number of features.

Tuning: For each threshold t of a set of information gain
thresholds, we drop the features whose mutual information
with the true classes is below t. Then, RFC is run through
the dataset using the new features to get the accuracy. The
RFC specifications are the same as in Section IV. Ultimately,
we pick the t that gives the minimum set of features for an
accuracy above a fixed threshold.

Ranking: All the pruned features are fed to a one-out
ranking system that calculates the “importance-score” of each
feature. The one-out approach removes one feature at a time,
obtains RFC accuracy using all remaining features, and assigns
1− accuracy as the score of that feature.

Correlation-Based Ranking. Here, out of the pairs of

features with a higher correlation than the specified correlation
threshold t, one is removed as redundant. The same tuning and
ranking procedure as IG based ranking is adopted.

We employ the two ranking measures on two sets of data:
(1) 23 authors solving a mixed set of problems with four
sample codes per author, and (2) 23 authors solving the same
set of problems with four sample codes per author. We look
for the minimum feature-set that provides accuracy above 80%
and 90%. The total number of features for dataset (1) and (2)
are 802 and 834 respectively. As shown in Table V, 21 and
76 features are sufficient to obtain accuracy above 80 percent,
with information gain ranking. The complete list of these
features can be found in our repository. IG and Correlation
measures differ in the resulting top selected features.

Discussion. IG ranking method extracts fewer features
while giving higher accuracies than that of correlation based
ranking. However, with a higher accuracy threshold, IG rank-
ing has larger jumps in the number of features. The perfor-
mance of correlation based ranking is comparable between the
two datasets when IG ranking is more sensitive; IG performs
considerably better for a dataset of different problems. The
classification accuracy using the full feature-set is 93.45%
(for mixed set) and 92.39% (for same set) respectively. Both
the ranking methods get a comparable accuracy to that of
the complete feature set with fewer features. To investigate
the effect of the decrease in feature size on the accuracy, we
generate the plots in Figure 4, with points generated during
the tuning procedure of Table V. Correlation based measure,
with more fluctuations, seems to be unpredictable for ranking
purposes. The higher number of features does not necessarily
mean higher accuracy by correlation ranking. However, IG
shows a smooth increase and an actual saturation point.

Although higher accuracies can be achieved by correlation
ranking measure, the sharp drop in accuracy for less than
100 features indicate the superiority of IG based ranking
for the case of limited number of features. For achieving
higher accuracies, correlation measure offers smaller steps in
increasing the number of features whereas IG ranking suffers
from the sudden leap in the number of features to achieve the
same accuracy.

V. CONCLUSIONS

We have addressed several existing problems in source code
de-anonymization. We have shown that Python source codes
preserve the hidden signature of the authors in their Nested
Bigrams. This shows the importance of syntactic features
to evaluate author styles in Python source code. A Neural
Network based classifier, SRFNN, was introduced to overcome
the deficiencies of the Random Forest for large sets of authors.
Comparison of our results with previous works indicates the
superiority of our feature-set and the relative robustness of
SRFNN. From an original feature space of more than 800
dimensions, our IG-Ranking method could capture, with 90%
accuracy, the signature of 23 authors with only 98 nested
bigrams. In future work, we plan to focus on evaluating our
method against obfuscation attacks as well as new methods of
feature reduction (e.g. compression methods) and interpretable
embeddings.

Our main contributions can be summarized as follows:

1) We proposed the use of an unexplored encoding of the
abstract syntax tree (AST) for our classifiers: nested
bigrams. Nested bigrams hold the information between
any two nodes that are vertically or horizontally con-
nected in the tree, keeping long-distance relations avail-
able to the classifier. Because these features are extracted
from the AST, they are also robust to obfuscation, as
noted by [6], making them preferable to layout and
lexical features.

2) Random Forest Classifiers (RFC) have been used in
many recent studies on source code de-anonymization
[5], [6]. However, our experiments indicated that the
RFC results worsen rapidly as the number of classes
increases. We proposed a Strongly Regularized Feed-
forward Neural Network (SRFNN) model that can
achieve higher accuracy than an RFC when the number
of classes is large. We discuss conditions appropriate for
the use of each of these classifiers.

3) Our feature-set, without information gain pruning, sur-
passes the previous results in [5], but leaves open the
question of whether good performance can be obtained
with fewer features. We introduced a method that shrinks
the size of our feature-set by 88 percent and still retains
the accuracy above 90 percent. We use an information
gain ranker which gives us the top 98 features with
high classification accuracy, outperforming a correlation
ranker.

REFERENCES

[1] S. Alrabaee, P. Shirani, M. Debbabi, and L. Wang, “On the feasibility
of malware authorship attribution,” in International Symposium on
Foundations and Practice of Security, pp. 256–272, Springer, 2016.

[2] S. Burrows and S. M. Tahaghoghi, “Source code authorship attribution
using n-grams,” in Proceedings of the Twelth Australasian Document
Computing Symposium, Melbourne, Australia, RMIT University, pp. 32–
39, Citeseer, 2007.

[3] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of computer programming, vol. 74, no. 7, pp. 470–495, 2009.

[4] P. W. Oman and C. R. Cook, “Programming style authorship analysis,” in
Proceedings of the 17th conference on ACM Annual Computer Science
Conference, pp. 320–326, ACM, 1989.

[5] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” in 24th USENIX Security Symposium (USENIX Security),
Washington, DC, 2015.

[6] B. Alsulami, E. Dauber, R. Harang, S. Mancoridis, and R. Greenstadt,
“Source code authorship attribution using long short-term memory based
networks,” in European Symposium on Research in Computer Security,
pp. 65–82, Springer, 2017.

[7] O. Mirza and M. Joy, “Style analysis for source code plagiarism
detection,” in Plagiarism across Europe and Beyond: Conference Pro-
ceedings. Brno: MENDELU Publishing Centre, pp. 53–61, 2015.

[8] E. H. Spafford and S. A. Weeber, “Software forensics: Can we track
code to its authors?,” 1992.

[9] R. Kilgour, A. Gray, P. Sallis, and S. MacDonell, “A fuzzy logic
approach to computer software source code authorship analysis,” 1998.

[10] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-gram-
based detection of new malicious code,” in Computer Software and
Applications Conference, 2004. COMPSAC 2004. Proceedings of the
28th Annual International, vol. 2, pp. 41–42, IEEE, 2004.

[11] B. N. Pellin, “Using classification techniques to determine source code
authorship,” White Paper: Department of Computer Science, University
of Wisconsin, 2000.

[12] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332–1338, 2015.

[13] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” 2016.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[15] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[16] A. Krogh and J. A. Hertz, “A simple weight decay can improve
generalization,” in Advances in neural information processing systems,
pp. 950–957, 1992.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

View publication statsView publication stats

https://www.researchgate.net/publication/329000519

