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Abstract
Extracting information from large corpora of001
unstructured text using computational meth-002
ods presents a challenge. Tshitoyan et al.003
(2019) demonstrated that unsupervised math-004
ematical word-embeddings produced by a005
static language model could be utilized to006
uncover ‘latent knowledge’ within a materi-007
als science corpus. The rise of contextual-008
ized and massively pre-trained language mod-009
els like BERT have seen static models becom-010
ing surpassed for most NLP tasks. Neverthe-011
less, due to innate architectural and use dif-012
ferences, BERT requires adaptation for knowl-013
edge mining. This study tests the suitability014
of BERT-derived word embeddings for knowl-015
edge mining purposes. It utilizes a variation016
of the approach described by Bommasani et al.017
(2020) for creating static-equivalent vectors018
from multiple contextualized word represen-019
tations. It is conducted using a biomedical020
corpus, a biomedical BERT variation and val-021
idated using domain-specific intrinsic bench-022
marking tools. Novel, layer-wise BERT per-023
formance characteristics are demonstrated. A024
key finding is that layer-wise intrinsic per-025
formance differs for nouns and verbs. Per-026
formance also varies according to whether a027
word of interest belongs to BERT’s native vo-028
cabulary or is built from sub-word represen-029
tations: BERT-native representations perform030
best when extracted from earlier layers, while031
representations requiring multiple tokens per-032
form best when extracted from the middle-to-033
latter model layers.034

1 Introduction035

A vast amount of biomedical knowledge exists as036

unstructured text within journals, books and ab-037

stracts among other formats. This knowledge exists038

as relationships and connections between described039

concepts, objects and events. Information extrac-040

tion from such corpora using supervised methods041

requires large, manually-labelled datasets. Conse-042

quently, these methods do not readily scale.043

Recently, Tshitoyan et al. (2019) demonstrated 044

that known and novel relationships between en- 045

tities described within a materials science cor- 046

pus could be discovered using unsupervised, high- 047

dimensional word embeddings (Bengio et al., 2003; 048

Collobert and Weston, 2008; Collobert et al., 2011). 049

Here, the authors trained a skip-gram variant of 050

the Word2Vec neural language model (Mikolov 051

et al., 2013) on a corpus of 3.3 million materials 052

science abstracts to produce 200-dimensional em- 053

beddings for each word in the corpus vocabulary. 054

Remarkably, when the embeddings representing 055

material names (e.g. ‘Bi2Te3’) were ranked by 056

their cosine similarity to the representation of ‘ther- 057

moelectric,’ several novel thermoelectric conduc- 058

tors were identified. Despite the material name 059

never having appeared alongside, or within the 060

same document as ‘thermoelectric,’ the direct rela- 061

tionship between the novel material’s word repre- 062

sentation and ‘thermoelectric’ was permitted due to 063

indirect relationships between the material’s name 064

and other words/phrases such as ‘chalcogenide’ 065

(chalcogenides are good thermoelectrics) and ‘band 066

gap’ (which determines thermoelectric properties) 067

within the vector space (Tshitoyan et al., 2019). 068

Venkatakrishnan et al. (2020) subsequently applied 069

the same Word2Vec skip-gram technique to an un- 070

structured text corpus of over 100 million biomedi- 071

cal documents, discovering novel tissue-reservoirs 072

of the ACE2 receptor used by SARS-CoV-2 to in- 073

fect a host organism. 074

Both Tshitoyan et al. (2019) and Venkatakrish- 075

nan et al. (2020) postulated that context-aware em- 076

beddings, such as those from the bidirectional en- 077

coder representation from transformers (BERT) 078

model (Devlin et al., 2018) could outperform 079

static models at these tasks. Aside from funda- 080

mentally different architecture, BERT produces 081

‘just-in-time’ contextualized embeddings from pre- 082

tokenized sequences fed into the model individu- 083

ally. Moreover, unlike static models like Word2Vec 084
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and GloVe (Pennington et al., 2014) which build085

corpus-specific vocabularies, BERT possesses an086

innate vocabulary of approximately 30,000 words087

and handles extra-vocabulary words by decomposi-088

tion into constituent sub-words. As such, a method089

of leveraging BERT’s unique architecture and train-090

ing on massive text corpora to ultimately yield091

word representations capable of use in knowledge092

mining is lacking. Bommasani et al. (2020) de-093

scribed a method for reducing contextualized word094

representations to static-equivalents by aggregating095

contextualized word representations from BERT096

over a number of contexts: These aggregated rep-097

resentations outperformed static ones in general098

domain intrinsic benchmarking tasks.099

Much like static word representations, BERT-100

derived equivalents can subsequently be adapted101

for knowledge discovery by ranking geometric sim-102

ilarity between represented concepts, objects or103

processes. Nevertheless, as ‘latent knowledge’ re-104

quires physical validation, the quality of novel lan-105

guage model suggestions cannot easily be assessed.106

Domain-specific intrinsic benchmarks which assess107

semantic similarity and relatedness between word108

representations using geometric measures (Chiu109

et al., 2018) may be utilized as an appropriate surro-110

gate: Higher-fidelity mathematical representations111

of described reality are expected to approximate hu-112

man user similarity ratings between concepts and113

objects. This study subsequently tests the hypothe-114

sis of both Tshitoyan et al. (2019) and Venkatakrish-115

nan et al. (2020) that contextual language models116

yield word representations for knowledge mining117

that are superior to those produced by static model118

in a biomedical domain and therefore suitable for119

knowledge mining. Using a corpus of 500,000 ab-120

stracts and full-text articles (Wang et al., 2020),121

embeddings produced by a series of static models122

are tested against aggregated contextual representa-123

tions sampled from the corpus and passed through124

a biomedically-trained BERT variant, and assessed125

using domain-specific intrinsic benchmarks.126

2 Methods127

2.1 Dataset and Text Preprocessing128

In response to the COVID-19 pandemic, the Coro-129

navirus Open Research Dataset (CORD-19) was130

released by governmental and academic institu-131

tions. It consists of over 500,000 scholarly articles132

(with over 200,000 full text articles and preprints)133

and abstracts pertaining to COVID-19 (Wang et al.,134

2020)1. Corpus metadata was removed and articles 135

aggregated into a single file. All numbers were 136

replaced with a special token and selective lower- 137

casing was performed to preserve abbreviations. 138

For the Word2Vec and GloVe models, common 139

terms and punctuation were removed. 140

The BERT approach was informed by results 141

of an initial pilot study (see Appendix for prelim- 142

inary data). Two approaches were adopted, in- 143

volving extracting n long or short contextual sen- 144

tence samples from the corpus: Long sequences 145

were created by splitting on periods into constituent 146

sentences. Short context sequences were created 147

by further splitting on commas into constituent 148

phrases. When selecting examples containing each 149

word, the maximum sequence length for both long 150

and short sequences was limited to 512, the maxi- 151

mum sequence length allowed by BERT, assuming 152

each word in the sequence is represented by a sin- 153

gle token. 154

2.2 BERT Approach 155

BioBERT is a variation of the original BERT model 156

which has been further pre-trained on PubMed ab- 157

stracts and PubMed Central full-text articles. It 158

outperforms general models at various biomedical 159

NLP tasks (Lee et al., 2020). The open source 160

HuggingFace (Wolf et al., 2020)2 implementation 161

of BioBERT v1.1 was utilized without any further 162

pre-training or fine-tuning based upon results of 163

the preliminary study (B). Depending on approach, 164

long and short sequences containing words of in- 165

terest (from the benchmarking vocabulary) were 166

selected. In order to ensure consistency between 167

static and contextual test vocabularies, as BERT is 168

able to use subword pooling for words outside its 169

native vocabulary, only words that were in both the 170

benchmarking vocabulary (see 2.4) and the CORD- 171

19 vocabulary were selected for sampling. 172

For both long and short sequence approaches, 173

n = 500, 1000 or 5000 samples were extracted 174

from the pre-processed corpus for tokenization. 175

Sequences were selected only if they contained 176

a single instance of the word of interest and were 177

discarded if their pre- or post-tokenized length ex- 178

ceeded 512. Here, for each word w in context c, 179

BERT’s tokenizer will either yield a single token 180

or decompose w into k sub-word tokens, where 181

1https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge

2https://huggingface.co/
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{w1
c , ...,wk

c} 7−→ wc. Tokenized sequences were182

then fed into the model and the sequence represen-183

tations were extracted from all 13 model layers. For184

words represented by a single 1x768 representation,185

this was extracted without further operations. For186

decomposed words, the arithmetic mean of all wk
c187

was taken to yield a single 1x768 representation188

from k sub-word representations, per context:189

wc = mean(w1
c , ...,w

k
c )190

The arithmetic mean of the n contextual exam-191

ples of each wordw, wc1, ...,wcn was then taken. If192

n examples meeting the inclusion criteria were not193

available, then the maximum number were taken:194

w =

{
mean(wc1, ...,wcn) n = 500, 1000, 5000

mean(wc1, ...,wcmax(n)) n < 500, 1000, 5000
195

Decision to take arithmetic mean of both sub-196

word representations and take either n was based197

on the results of Bommasani et al. (2020), where198

they found this operation outperformed other pos-199

sible operations (e.g. max., min., last) for both200

sub-word pooling and contextual aggregation (see201

also (Ács et al., 2021)). The present approach also202

differed from Bommasani et al. (2020) who instead203

took the representation produced by feeding the204

word in isolation into the model3.205

2.3 Static Models206

The aggregated embeddings obtained from 2.2207

were compared against several static baseline mod-208

els including 200 and 300-dimensional Word2Vec209

skip-gram models, and a 300-dimensional GloVe210

model all trained from scratch on only CORD-211

19, using default hyperparameters. Addition-212

ally, pre-trained 200-dimensional embeddings from213

BioWordVec (Zhang et al., 2019)4 were also214

obtained and used for benchmarking. Briefly,215

BioWordVec is an open set of static biomedical216

word vectors trained on a corpus of over 27 million217

articles, that additionally combine sub-word infor-218

mation from unlabelled biomedical text together219

with a biomedical controlled vocabulary.220

3A single word (rather than a sequence) is an ‘unnatural’
input for BERT, yielding a poorly-performing ‘decontextual-
ized’ word representation (see (Bommasani et al., 2020) for
more detail).

4https://github.com/ncbi-nlp/
BioWordVec

2.4 Benchmarking 221

Bio-SimVerb and Bio-SimLex (Chiu et al., 2018) 222

are benchmarking resources for the biomedical do- 223

main that offer 988 and 1000 test verb and noun 224

pairs, respectively. These word-pairs have been 225

extracted from 14 open biomedical ontologies and 226

over 14,000 biomedical journals covering over 120 227

areas of biomedicine. Additionally, some of the test 228

word pairs are from the general domain. These re- 229

sources address shortcomings of previous biomed- 230

ical benchmarks such as MayoSRS (Pakhomov 231

et al., 2011) and UMNSRS (Pakhomov et al., 2010) 232

which only test nouns, and fail to distinguish be- 233

tween semantic relatedness and similarity (Chiu 234

et al., 2018). The CORD-19 vocabulary covered 235

97% of BioSimVerb and 94.43% of BioSimLex 236

test pairs, respectively. 237

3 Results 238

3.1 Verb Benchmarks 239

The left sub-plot of Figure 3 and left column of 240

Table 1 demonstrates the layer-wise performance 241

of n = 500, 1000 and 5000 aggregated contextual- 242

ized verb representations across all BERT layers. 243

Performance is generally preserved regardless of 244

sequence lengths/number of aggregated contexts. 245

Embeddings extracted and distilled from the 7th 246

and 8th layers performed best for all combinations. 247

Short contexts marginally outperform longer con- 248

texts at most layers. The best performing represen- 249

tations for all combinations were extracted from 250

layer 8 and distilled from 1000 contexts, though 251

these representations did not substantially outper- 252

form those distilled from other n. In general, repre- 253

sentations extracted from the latter 6 layers (with 254

the exception of layer 11) outperform the best- 255

performing static embeddings at verb benchmark- 256

ing. 257

3.2 Noun Benchmarks 258

The right sub-plot of 3 and right column of Ta- 259

ble 1 demonstrates layer-wise performance of n 260

= 500, 1000 and 5000 aggregated contextualized 261

noun representations extracted from all BERT lay- 262

ers. Unlike Bio-SimVerb, static models (with the 263

exception of GloVe) outperformed aggregated noun 264

representations from all layers and for all n. The 265

plotted line demonstrates different morphology 266

compared to verb benchmarks: Here, representa- 267

tions distilled from the first 8 BERT layers out- 268

performed those from the latter layers, increasing 269
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Figure 1: Layer-wise performance of BERT embeddings (0 corresponds to input layer) at both Bio-SimVerb and
Bio-SimLex benchmarks. Horizontal dashed lines correspond to performance of static models.

until and then peaking at layer 6 before declining270

thereafter. Unlike verbal performance, however,271

embeddings extracted and distilled from shorter272

sequences demonstrated discernible improvement273

relative to those from long sequences. The best274

performance achieved was from n = 1000 embed-275

dings, however overall, n made little difference.276

Method Bio-SimVerb Bio-SimLex
Long 500 0.5504 (7=8) 0.7072 (6)
Long 1000 0.5504 (8) 0.7044 (6)
Long 5000 0.5502 (8) 0.7061 (6)
Short 500 0.5516 (8) 0.7105 (6)
Short 1000 0.5526 (8) 0.7103 (6)
Short 5000 0.5513 (8) 0.7114 (6)
w2v 300 0.5260 0.7341
w2v 200 0.5237 0.7310
GloVe 300 0.5051 0.6253
BWV 200 0.4923 0.7213

Table 1: Top performing (Spearman’s ρ) distilled
BERT embeddings and static embeddings. ‘Long/Short
n’ indicates embeddings distilled from n example se-
quences of each word. Number in brackets indicates
layer. w2v200/300 = Word2Vec 200/300 dimensional
embeddings. BWV = BioWordVec 200 dimensional
embeddings. Bold entries indicate best overall perfor-
mance.

3.3 Effect of Sub-Word Pooling 277

In an attempt to explain observed performance and 278

explore the effects of sub-word pooling, test word- 279

pairs from Bio-SimVerb and Bio-SimLex were sep- 280

arated into two groups using a criteria of whether 281

both words in a respective test pair existed in 282

BioBERT’s native vocabulary or not. This yielded 283

test word pairs where both were BERT-native and 284

had a single representation, or where at least one of 285

the words in the pair required a sub-word pooling 286

operation before the n contextual representations 287

could be averaged. Representations from all BERT 288

layers using short contexts and the top perform- 289

ing static model representations (300-dimensional 290

Word2Vec) were then subjected to Spearman’s rank 291

testing as per the Bio-Simverb methodology (Chiu 292

et al., 2018), albeit using the modified, separated 293

test pair rankings. 294

For both verbs and nouns, general and layer-wise 295

native word performance differed to words requir- 296

ing sub-word pooling prior to context aggregation. 297

Moreover, it is apparent that when test-vocabulary 298

is stratified in this regard, n has little to no bear- 299

ing upon overall performance of the BERT em- 300

beddings. Verbs native to BERT’s vocabulary gen- 301

erally outperform those from the top-performing 302

static model at all layers (see left side of Figure 2 303

and Table 2). Performance declines steadily from 304

layer 0-12. Performance of word representation for 305
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verbs requiring sub-word pooling is overall lower306

than single-token representations, demonstrating307

performance increase from layers 0-8. It is only308

at layers 7-8 where performance slightly exceeds309

performance of static representations.310

Only BERT-native noun representations ex-311

tracted from the first 4 layers demonstrated supe-312

rior performance to the corresponding static em-313

beddings. Similar to the BERT-native verbs, per-314

formance decreased from layer 0-12, reaching a315

trough at layer 10, before slightly increasing there-316

after. Moreover, sub-word pooled noun representa-317

tion performance increased substantially from lay-318

ers 0-6 before declining thereafter. These represen-319

tations never outperformed the static embeddings320

(see Figure 2 and Table 2).321

Method Bio-SimVerb Bio-SimLex
Short 500 (S) 0.6691 (1) 0.7255 (1)
Short 500 (M) 0.4603 (8) 0.7417 (6)
Short 1000 (S) 0.6685 (1) 0.7255 (1)
Short 1000 (M) 0.4629 (8) 0.7420 (6)
Short 5000 (S) 0.6688 (1) 0.7256 (1)
Short 5000 (M) 0.4621 (8) 0.7418 (6)
Static (S) 0.5255 0.6959
Static (M) 0.4545 0.7628

Table 2: Performance of BERT embeddings aggre-
gated from short contextual examples and with n =
500, 1000, 5000. S or M in brackets indicate whether
representations were for words native to BERT i.e. us-
ing a single token to represent or those requiring sub-
word pooling, respectively. Static representations were
from a 300-dimensional Word2Vec model. Bold entries
indicate best overall performance.

4 Discussion322

This study demonstrates the feasibility of using323

BERT-derived word representations for knowledge324

mining purposes, however their benefit over static325

representations as used by Tshitoyan et al. (2019)326

and Venkatakrishnan et al. (2020) is less clear.327

Overall, this study demonstrates that relatively328

few, short-sequence contextual word-examples ex-329

tracted from a corpus can be aggregated and uti-330

lized to yield embeddings that can outperform in331

the case of verbs, or approximate (in the case332

of nouns) those from the best performing static333

models trained on entire corpora. Practically this334

sampling-based approach may offer time and cost335

savings over training entire static models from336

scratch, when dealing with large corpora. More-337

over, due to the superior performance of the BERT 338

representations for verbs, aggregated contextual- 339

ized embeddings may even be preferable when 340

mining verb-rich text (e.g. clinical notes). 341

BERT’s pre-training on massive text corpora 342

may be responsible for performance characteristics 343

observed: Evidence is provided by the differing 344

performance of representations innate to BERT’s 345

vocabulary compared to representations built from 346

multiple sub-words. It appears that n is less im- 347

portant than whether the word belongs to BERT’s 348

innate vocabulary or not: For both nouns and verbs, 349

if the word of interest is BERT-native then it is 350

preferable to utilize representations from the earlier 351

layers and these are superior to static ones, while 352

if a word requires sub-word decomposition then 353

layers 6-8 seem to be optimal. Nevertheless, more 354

work is required to quantify the effect of multiple 355

subwords on performance, as the split vocabulary 356

in this study utilized a relatively imprecise criteria 357

of k > 1 for test-pairs where at least one word 358

was non-native to BERT. Moreover, though Bom- 359

masani et al. (2020) demonstrated that taking the 360

arithmetic mean of k sub-words was the best per- 361

forming method on their general-domain intrinsic 362

benchmarking, a later study by Ács et al. (2021) 363

showed that sub-word pooling approach mattered 364

depending on desired downstream NLP tasks. Con- 365

sequently, further exploration into both k and n 366

parameters should be conducted. 367

Based on the observed performance, it might 368

also benefit to expand BERT’s native vocabulary 369

with domain-specific words prior to conducting 370

pre-training. Though the pilot study showed that 371

further-pretraining was detrimental to performance 372

(see Appendix B), this method utilized BERT’s na- 373

tive vocabulary and was only tested using long se- 374

quences (which themselves underperform relative 375

to short sequences) before being abandoned. An- 376

other consideration is that further pre-training steps 377

are necessary to improve sub-word performance 378

(Liu et al., 2019), which could be important for 379

non-general domains. Moreover, as the benchmark- 380

ing vocabularies incorporate both general-domain 381

and biomedical-domain word pairs (Chiu et al., 382

2018), it may also be that the general domain test 383

pairs are contributing disproportionately to perfor- 384

mance boosts. Another area for exploration is the 385

comparatively different layer-wise performance for 386

BERT-native words versus extra-vocabulary words, 387

with the former’s performance generally decreasing 388
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Figure 2: Layer-wise performance of BERT embeddings (0 corresponds to input layer) at both Bio-SimVerb and
Bio-SimLex benchmarks. Horizontal dashed lines correspond to performance of static models.

and the latter’s increasing.389

A working knowledge-mining framework uti-390

lizing BERT might consist of first extracting the391

vocabulary of the corpus upon which mining will392

be conducted and removing any irrelevant words393

(e.g. stop words). Then, n samples for each word394

in the vocabulary may be taken from the corpus395

and tokenized. As BERT’s attention is quadratic to396

the sequence (Devlin et al., 2018), and representa-397

tions extracted from short sequences perform better,398

shorter sample sequences are desirable. Tokenized399

sequences can then be encoded, and representa-400

tions extracted, with sub-word pooling performed401

if necessary. The n contextual examples of each402

word representation can then be averaged to yield403

a 1x768 dimensional representation for each word404

in the corpus vocabulary. It is this collection of405

vocabulary embeddings that can be subsequently406

used for mining as per Tshitoyan et al. (2019).407

5 Conclusions408

This study has successfully demonstrated feasibil-409

ity of aggregated contextual word representations410

derived from BERT for biomedical knowledge min-411

ing tasks. It has also uncovered several technical412

and performance-related idiosyncrasies of BERT413

and BioBERT that require further investigation.414
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Figure 3: Distributions of log sentence lengths for long
and short contextual sequences.

A Corpus Sampling Characteristics523

Figure 2 demonstrates the distribution of log se-524

quence lengths for long and short sequences, re-525

spectively. Figure 3 demonstrates the distribution526

of log number of sequences for long and short se-527

quences, respectively. As one of the sampling cri-528

teria was that sequences could only have a single529

instance of the word and had to be less than 512530

words in length, together with the fact that the to-531

kenized sequence could not exceed 512 in length,532

there are consequently fewer long sequence sam-533

ples per word compared to short sequence exam-534

ples. The mean long sequence length was 46.8535

words (σ = 29.5) while the mean short sequence536

length was 26.3 words (σ = 16.7) (2). For long se-537

quences, the mean number of contextual examples538

per word was 2330.2 (σ = 2194.8). For short se-539

quences, the mean number of contextual examples540

per word was 3632.2 (σ = 1948.7) (Figure 3).541

B Effect of Further Pre-Training on542

Word Representation Quality543

An initial approach attempted was to further pre-544

train BioBERT using the entire CORD-19 cor-545

pus and compare performance of the contextual-546

ized word representations at Bio-SimVerb and Bio-547

SimLex intrinsic benchmarking tasks, with the base548

BioBERT model and the static baseline models.549

This approach used only long corpus sequences550

and the base BioBERT vocabulary (which itself is551

identical to BERT vocabulary). Pre-training was552

Figure 4: Distributions of log number of aggregated
contexts for long and short sequence lengths. There
are substantially more examples meeting n = 5000 for
short sentences

achieved using the scripts supplied with the Tensor- 553

Flow implementation of the model (https:// 554

github.com/dmis-lab/biobert) and in- 555

volved first creating pre-training data using sen- 556

tence examples from the corpus, before running 557

further pre-training for 100,000 epochs. Default 558

hyperparameters were used. For this pilot study, n 559

= 10, 50, 100, 500 and 1000. The n selected ex- 560

amples were then all tokenized and passed through 561

either the further-pretrained BioBERT model or the 562

base Bio-BERT model. For either approach, rep- 563

resentations corresponding to the word of interest 564

were then extracted wholly (i.e. as a single 1x768 565

word representation, or k individual sub-word rep- 566

resentations) and added to the list of n (explained 567

further in 2.2). Benchmarking was performed as 568

described in 2.4. 569

For the Bio-SimVerb benchmarks (Left side of 570

Figure 4), there is a clear increase in performance 571

by increasing n from 10 to 1000 contexts. Also 572

apparent is that the representations extracted from 573

the further pre-trained model underperform relative 574

to those extracted from the base model for the same 575

n. Biggest increases in performance are seen going 576

from n = 10 to n = 100. Increasing n beyond 577

this begins to demonstrate smaller performance 578

boosts. Interestingly, best performing verb embed- 579

dings from the further pre-trained model were taken 580

from layer 12 (see 3) while for the base model, per- 581

formance peaked at embeddings extracted from 582
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Figure 5: Layer-wise performance of BERT embeddings (0 corresponds to input layer) at both Bio-SimVerb and
Bio-SimLex benchmarks. Pretrained n/Base n refer to either the further-pretrained model or the base model,
respectively, followed by the n aggregated contexts. Horizontal dashed lines correspond to performance of static
models.

layer 8. In some cases, embeddings taken from583

layer 12 of the further pre-trained model almost584

reached peak performance from embeddings taken585

from layer 8 of the base model.586

For the Bio-SimLex benchmarks (Right side of587

Figure 4), though there was a general performance588

increase between representations extracted from589

the further-pretrained model and the base BioBERT590

model, it was less pronounced as it was for the verb591

benchmarks, with performance for the first 6 lay-592

ers approximately equal before diverging thereafter.593

Moreover, a substantial boost is seen going from594

n = 10 to n = 50, becoming less pronounced as595

n increases. Again, performance for the represen-596

tations extracted from a further pre-trained model597

demonstrate a trough following their maximum598

performance at layer 8, but increase substantially599

thereafter going from layer 11 to 12, though with-600

out reaching their layer 6 peak. This characteristic601

was not observed with the base model represen-602

tations. Finally, representations from either the603

further-pretrained or base models did not outper-604

form either Word2Vec 200 or 300 dimensional rep-605

resentations, or the BioWordVec representations.606

Method Bio-SimVerb Bio-SimLex
Pre-Trained 10 0.5169 (12) 0.6770 (1)
Pre-Trained 50 0.5351 (12) 0.6991 (6)
Pre-Trained 500 0.5440 (12) 0.7004 (6)
Pre-Trained 1000 0.5487 (12) 0.7008 (6)
Base 10 0.5229 (8) 0.6744 (5)
Base 50 0.5415 (8) 0.7054 (6)
Base 500 0.5494 (8) 0.7072 (6)
Base 1000 0.5504 (8) 0.7078 (6)
w2v 300 0.5260 0.7341
w2v 200 0.5237 0.7310
GloVe 300 0.5051 0.6253
BWV 200 0.4923 0.7213

Table 3: Top performing (Spearman’s ρ) distilled
BERT embeddings and static embeddings from pilot
study. ‘Pre-Trained/Base n’ indicates embeddings ex-
tracted from n examples taken from the distilled pre-
trained or base model, respectively. Number in brack-
ets indicates layer. w2v200/300 = Word2Vec 200/300
dimensional embeddings. BWV = BioWordVec 200 di-
mensional embeddings. Bold entries indicate best over-
all performance.
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