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Abstract

Extracting information from large corpora of
unstructured text using computational meth-
ods presents a challenge. Tshitoyan et al.
(2019) demonstrated that unsupervised math-
ematical word-embeddings produced by a
static language model could be utilized to
uncover ‘latent knowledge’ within a materi-
als science corpus. The rise of contextual-
ized and massively pre-trained language mod-
els like BERT have seen static models becom-
ing surpassed for most NLP tasks. Neverthe-
less, due to innate architectural and use dif-
ferences, BERT requires adaptation for knowl-
edge mining. This study tests the suitability
of BERT-derived word embeddings for knowl-
edge mining purposes. It utilizes a variation
of the approach described by Bommasani et al.
(2020) for creating static-equivalent vectors
from multiple contextualized word represen-
tations. It is conducted using a biomedical
corpus, a biomedical BERT variation and val-
idated using domain-specific intrinsic bench-
marking tools. Novel, layer-wise BERT per-
formance characteristics are demonstrated. A
key finding is that layer-wise intrinsic per-
formance differs for nouns and verbs. Per-
formance also varies according to whether a
word of interest belongs to BERT’s native vo-
cabulary or is built from sub-word represen-
tations: BERT-native representations perform
best when extracted from earlier layers, while
representations requiring multiple tokens per-
form best when extracted from the middle-to-
latter model layers.

1 Introduction

A vast amount of biomedical knowledge exists as
unstructured text within journals, books and ab-
stracts among other formats. This knowledge exists
as relationships and connections between described
concepts, objects and events. Information extrac-
tion from such corpora using supervised methods
requires large, manually-labelled datasets. Conse-
quently, these methods do not readily scale.

Recently, Tshitoyan et al. (2019) demonstrated
that known and novel relationships between en-
tities described within a materials science cor-
pus could be discovered using unsupervised, high-
dimensional word embeddings (Bengio et al., 2003;
Collobert and Weston, 2008; Collobert et al., 2011).
Here, the authors trained a skip-gram variant of
the Word2Vec neural language model (Mikolov
et al., 2013) on a corpus of 3.3 million materials
science abstracts to produce 200-dimensional em-
beddings for each word in the corpus vocabulary.
Remarkably, when the embeddings representing
material names (e.g. ‘BipTes’) were ranked by
their cosine similarity to the representation of ‘ther-
moelectric,” several novel thermoelectric conduc-
tors were identified. Despite the material name
never having appeared alongside, or within the
same document as ‘thermoelectric,” the direct rela-
tionship between the novel material’s word repre-
sentation and ‘thermoelectric’ was permitted due to
indirect relationships between the material’s name
and other words/phrases such as ‘chalcogenide’
(chalcogenides are good thermoelectrics) and ‘band
gap’ (which determines thermoelectric properties)
within the vector space (Tshitoyan et al., 2019).
Venkatakrishnan et al. (2020) subsequently applied
the same Word2Vec skip-gram technique to an un-
structured text corpus of over 100 million biomedi-
cal documents, discovering novel tissue-reservoirs
of the ACE2 receptor used by SARS-CoV-2 to in-
fect a host organism.

Both Tshitoyan et al. (2019) and Venkatakrish-
nan et al. (2020) postulated that context-aware em-
beddings, such as those from the bidirectional en-
coder representation from transformers (BERT)
model (Devlin et al., 2018) could outperform
static models at these tasks. Aside from funda-
mentally different architecture, BERT produces
‘just-in-time’ contextualized embeddings from pre-
tokenized sequences fed into the model individu-
ally. Moreover, unlike static models like Word2Vec



and GloVe (Pennington et al., 2014) which build
corpus-specific vocabularies, BERT possesses an
innate vocabulary of approximately 30,000 words
and handles extra-vocabulary words by decomposi-
tion into constituent sub-words. As such, a method
of leveraging BERT’s unique architecture and train-
ing on massive text corpora to ultimately yield
word representations capable of use in knowledge
mining is lacking. Bommasani et al. (2020) de-
scribed a method for reducing contextualized word
representations to static-equivalents by aggregating
contextualized word representations from BERT
over a number of contexts: These aggregated rep-
resentations outperformed static ones in general
domain intrinsic benchmarking tasks.

Much like static word representations, BERT-
derived equivalents can subsequently be adapted
for knowledge discovery by ranking geometric sim-
ilarity between represented concepts, objects or
processes. Nevertheless, as ‘latent knowledge’ re-
quires physical validation, the quality of novel lan-
guage model suggestions cannot easily be assessed.
Domain-specific intrinsic benchmarks which assess
semantic similarity and relatedness between word
representations using geometric measures (Chiu
et al., 2018) may be utilized as an appropriate surro-
gate: Higher-fidelity mathematical representations
of described reality are expected to approximate hu-
man user similarity ratings between concepts and
objects. This study subsequently tests the hypothe-
sis of both Tshitoyan et al. (2019) and Venkatakrish-
nan et al. (2020) that contextual language models
yield word representations for knowledge mining
that are superior to those produced by static model
in a biomedical domain and therefore suitable for
knowledge mining. Using a corpus of 500,000 ab-
stracts and full-text articles (Wang et al., 2020),
embeddings produced by a series of static models
are tested against aggregated contextual representa-
tions sampled from the corpus and passed through
a biomedically-trained BERT variant, and assessed
using domain-specific intrinsic benchmarks.

2 Methods

2.1 Dataset and Text Preprocessing

In response to the COVID-19 pandemic, the Coro-
navirus Open Research Dataset (CORD-19) was
released by governmental and academic institu-
tions. It consists of over 500,000 scholarly articles
(with over 200,000 full text articles and preprints)
and abstracts pertaining to COVID-19 (Wang et al.,

2020)'. Corpus metadata was removed and articles
aggregated into a single file. All numbers were
replaced with a special token and selective lower-
casing was performed to preserve abbreviations.
For the Word2Vec and GloVe models, common
terms and punctuation were removed.

The BERT approach was informed by results
of an initial pilot study (see Appendix for prelim-
inary data). Two approaches were adopted, in-
volving extracting n long or short contextual sen-
tence samples from the corpus: Long sequences
were created by splitting on periods into constituent
sentences. Short context sequences were created
by further splitting on commas into constituent
phrases. When selecting examples containing each
word, the maximum sequence length for both long
and short sequences was limited to 512, the maxi-
mum sequence length allowed by BERT, assuming
each word in the sequence is represented by a sin-
gle token.

2.2 BERT Approach

BioBERT is a variation of the original BERT model
which has been further pre-trained on PubMed ab-
stracts and PubMed Central full-text articles. It
outperforms general models at various biomedical
NLP tasks (Lee et al., 2020). The open source
HuggingFace (Wolf et al., 2020)? implementation
of BioBERT v1.1 was utilized without any further
pre-training or fine-tuning based upon results of
the preliminary study (B). Depending on approach,
long and short sequences containing words of in-
terest (from the benchmarking vocabulary) were
selected. In order to ensure consistency between
static and contextual test vocabularies, as BERT is
able to use subword pooling for words outside its
native vocabulary, only words that were in both the
benchmarking vocabulary (see 2.4) and the CORD-
19 vocabulary were selected for sampling.

For both long and short sequence approaches,
n = 500, 1000 or 5000 samples were extracted
from the pre-processed corpus for tokenization.
Sequences were selected only if they contained
a single instance of the word of interest and were
discarded if their pre- or post-tokenized length ex-
ceeded 512. Here, for each word w in context c,
BERT’s tokenizer will either yield a single token
or decompose w into k sub-word tokens, where

"https://www.kaggle.com/
allen-institute-for—-ai/
CORD-19-research-challenge

https://huggingface.co/
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{wl, ..., wk} —— w,.. Tokenized sequences were
then fed into the model and the sequence represen-
tations were extracted from all 13 model layers. For
words represented by a single 1x768 representation,
this was extracted without further operations. For
decomposed words, the arithmetic mean of all w”
was taken to yield a single 1x768 representation
from k sub-word representations, per context:

w, = mean(w., ..., w¥)

The arithmetic mean of the n contextual exam-

ples of each word w, w1, ..., W., was then taken. If

n examples meeting the inclusion criteria were not
available, then the maximum number were taken:

W mean(Wep, ..., Wep) n = 500, 1000, 5000
| mean(Wer, ..o, Wemax(ny) 7 < 500, 1000, 5000
Decision to take arithmetic mean of both sub-

word representations and take either n was based
on the results of Bommasani et al. (2020), where
they found this operation outperformed other pos-
sible operations (e.g. max., min., last) for both
sub-word pooling and contextual aggregation (see
also (Acs et al., 2021)). The present approach also
differed from Bommasani et al. (2020) who instead
took the representation produced by feeding the
word in isolation into the model?.

2.3 Static Models

The aggregated embeddings obtained from 2.2
were compared against several static baseline mod-
els including 200 and 300-dimensional Word2Vec
skip-gram models, and a 300-dimensional GloVe
model all trained from scratch on only CORD-
19, using default hyperparameters. Addition-
ally, pre-trained 200-dimensional embeddings from
BioWordVec (Zhang et al., 2019)* were also
obtained and used for benchmarking. Briefly,
BioWordVec is an open set of static biomedical
word vectors trained on a corpus of over 27 million
articles, that additionally combine sub-word infor-
mation from unlabelled biomedical text together
with a biomedical controlled vocabulary.

3A single word (rather than a sequence) is an ‘unnatural’
input for BERT, yielding a poorly-performing ‘decontextual-
ized” word representation (see (Bommasani et al., 2020) for
more detail).

*https://github.com/ncbi-nlp/
BioWordVec

2.4 Benchmarking

Bio-SimVerb and Bio-SimLex (Chiu et al., 2018)
are benchmarking resources for the biomedical do-
main that offer 988 and 1000 test verb and noun
pairs, respectively. These word-pairs have been
extracted from 14 open biomedical ontologies and
over 14,000 biomedical journals covering over 120
areas of biomedicine. Additionally, some of the test
word pairs are from the general domain. These re-
sources address shortcomings of previous biomed-
ical benchmarks such as MayoSRS (Pakhomov
etal., 2011) and UMNSRS (Pakhomov et al., 2010)
which only test nouns, and fail to distinguish be-
tween semantic relatedness and similarity (Chiu
et al., 2018). The CORD-19 vocabulary covered
97% of BioSimVerb and 94.43% of BioSimLex
test pairs, respectively.

3 Results

3.1 Verb Benchmarks

The left sub-plot of Figure 3 and left column of
Table 1 demonstrates the layer-wise performance
of n =500, 1000 and 5000 aggregated contextual-
ized verb representations across all BERT layers.
Performance is generally preserved regardless of
sequence lengths/number of aggregated contexts.
Embeddings extracted and distilled from the 7th
and 8th layers performed best for all combinations.
Short contexts marginally outperform longer con-
texts at most layers. The best performing represen-
tations for all combinations were extracted from
layer 8 and distilled from 1000 contexts, though
these representations did not substantially outper-
form those distilled from other n. In general, repre-
sentations extracted from the latter 6 layers (with
the exception of layer 11) outperform the best-
performing static embeddings at verb benchmark-
ing.

3.2 Noun Benchmarks

The right sub-plot of 3 and right column of Ta-
ble 1 demonstrates layer-wise performance of n
= 500, 1000 and 5000 aggregated contextualized
noun representations extracted from all BERT lay-
ers. Unlike Bio-SimVerb, static models (with the
exception of GloVe) outperformed aggregated noun
representations from all layers and for all n. The
plotted line demonstrates different morphology
compared to verb benchmarks: Here, representa-
tions distilled from the first 8 BERT layers out-
performed those from the latter layers, increasing


https://github.com/ncbi-nlp/BioWordVec
https://github.com/ncbi-nlp/BioWordVec

Bio-SimVerb

Performance (p)

o 1 2 3 4 s 6 7 8 9 10 11 12
BERT Layer

—— Long, 500 Contexts —— Long, 5000 Contexts
Long, 1000 Contexts ~ ---- Short, 500 Contexts

Bio-SimLex

Performance (p)

0.62

o 1 2 3 4 s 6 7 8 9 10 11 12
BERT Layer

--- Short, 1000 Contexts -+ BioWordVec -+ w2v_200
-- Short, 5000 Contexts =~ -+ w2v_300

GloVe

Figure 1: Layer-wise performance of BERT embeddings (0 corresponds to input layer) at both Bio-SimVerb and
Bio-SimLex benchmarks. Horizontal dashed lines correspond to performance of static models.

until and then peaking at layer 6 before declining
thereafter. Unlike verbal performance, however,
embeddings extracted and distilled from shorter
sequences demonstrated discernible improvement
relative to those from long sequences. The best
performance achieved was from n = 1000 embed-
dings, however overall, n made little difference.

Method Bio-SimVerb | Bio-SimLex
Long 500 | 0.5504 (7=8) | 0.7072 (6)
Long 1000 | 0.5504 (8) 0.7044 (6)
Long 5000 | 0.5502 (8) 0.7061 (6)
Short 500 | 0.5516 (8) 0.7105 (6)
Short 1000 | 0.5526 (8) 0.7103 (6)
Short 5000 | 0.5513 (8) 0.7114 (6)
w2v 300 0.5260 0.7341

w2v 200 0.5237 0.7310
GloVe 300 | 0.5051 0.6253
BWV 200 | 0.4923 0.7213

Table 1: Top performing (Spearman’s p) distilled

BERT embeddings and static embeddings. ‘Long/Short
n’ indicates embeddings distilled from n example se-
quences of each word. Number in brackets indicates
layer. w2v200/300 = Word2Vec 200/300 dimensional
embeddings. BWV = BioWordVec 200 dimensional
embeddings. Bold entries indicate best overall perfor-
mance.

3.3 Effect of Sub-Word Pooling

In an attempt to explain observed performance and
explore the effects of sub-word pooling, test word-
pairs from Bio-SimVerb and Bio-SimLex were sep-
arated into two groups using a criteria of whether
both words in a respective test pair existed in
BioBERT"s native vocabulary or not. This yielded
test word pairs where both were BERT-native and
had a single representation, or where at least one of
the words in the pair required a sub-word pooling
operation before the n contextual representations
could be averaged. Representations from all BERT
layers using short contexts and the top perform-
ing static model representations (300-dimensional
Word2Vec) were then subjected to Spearman’s rank
testing as per the Bio-Simverb methodology (Chiu
et al., 2018), albeit using the modified, separated
test pair rankings.

For both verbs and nouns, general and layer-wise
native word performance differed to words requir-
ing sub-word pooling prior to context aggregation.
Moreover, it is apparent that when test-vocabulary
is stratified in this regard, n has little to no bear-
ing upon overall performance of the BERT em-
beddings. Verbs native to BERT’s vocabulary gen-
erally outperform those from the top-performing
static model at all layers (see left side of Figure 2
and Table 2). Performance declines steadily from
layer 0-12. Performance of word representation for



verbs requiring sub-word pooling is overall lower
than single-token representations, demonstrating
performance increase from layers 0-8. It is only
at layers 7-8 where performance slightly exceeds
performance of static representations.

Only BERT-native noun representations ex-
tracted from the first 4 layers demonstrated supe-
rior performance to the corresponding static em-
beddings. Similar to the BERT-native verbs, per-
formance decreased from layer 0-12, reaching a
trough at layer 10, before slightly increasing there-
after. Moreover, sub-word pooled noun representa-
tion performance increased substantially from lay-
ers 0-6 before declining thereafter. These represen-
tations never outperformed the static embeddings
(see Figure 2 and Table 2).

Method Bio-SimVerb | Bio-SimLex
Short 500 (S) 0.6691 (1) 0.7255 (1)
Short 500 (M) | 0.4603 (8) 0.7417 (6)
Short 1000 (S) | 0.6685 (1) 0.7255 (1)
Short 1000 (M) | 0.4629 (8) 0.7420 (6)
Short 5000 (S) | 0.6688 (1) 0.7256 (1)
Short 5000 (M) | 0.4621 (8) 0.7418 (6)
Static (S) 0.5255 0.6959
Static (M) 0.4545 0.7628

Table 2: Performance of BERT embeddings aggre-
gated from short contextual examples and with n =
500, 1000, 5000. S or M in brackets indicate whether
representations were for words native to BERT i.e. us-
ing a single token to represent or those requiring sub-
word pooling, respectively. Static representations were
from a 300-dimensional Word2Vec model. Bold entries
indicate best overall performance.

4 Discussion

This study demonstrates the feasibility of using
BERT-derived word representations for knowledge
mining purposes, however their benefit over static
representations as used by Tshitoyan et al. (2019)
and Venkatakrishnan et al. (2020) is less clear.
Overall, this study demonstrates that relatively
few, short-sequence contextual word-examples ex-
tracted from a corpus can be aggregated and uti-
lized to yield embeddings that can outperform in
the case of verbs, or approximate (in the case
of nouns) those from the best performing static
models trained on entire corpora. Practically this
sampling-based approach may offer time and cost
savings over training entire static models from
scratch, when dealing with large corpora. More-

over, due to the superior performance of the BERT
representations for verbs, aggregated contextual-
ized embeddings may even be preferable when
mining verb-rich text (e.g. clinical notes).

BERT’s pre-training on massive text corpora
may be responsible for performance characteristics
observed: Evidence is provided by the differing
performance of representations innate to BERT s
vocabulary compared to representations built from
multiple sub-words. It appears that n is less im-
portant than whether the word belongs to BERT’s
innate vocabulary or not: For both nouns and verbs,
if the word of interest is BERT-native then it is
preferable to utilize representations from the earlier
layers and these are superior to static ones, while
if a word requires sub-word decomposition then
layers 6-8 seem to be optimal. Nevertheless, more
work is required to quantify the effect of multiple
subwords on performance, as the split vocabulary
in this study utilized a relatively imprecise criteria
of k£ > 1 for test-pairs where at least one word
was non-native to BERT. Moreover, though Bom-
masani et al. (2020) demonstrated that taking the
arithmetic mean of k sub-words was the best per-
forming method on their general-domain intrinsic
benchmarking, a later study by Acs et al. (2021)
showed that sub-word pooling approach mattered
depending on desired downstream NLP tasks. Con-
sequently, further exploration into both k£ and n
parameters should be conducted.

Based on the observed performance, it might
also benefit to expand BERT’s native vocabulary
with domain-specific words prior to conducting
pre-training. Though the pilot study showed that
further-pretraining was detrimental to performance
(see Appendix B), this method utilized BERT’s na-
tive vocabulary and was only tested using long se-
quences (which themselves underperform relative
to short sequences) before being abandoned. An-
other consideration is that further pre-training steps
are necessary to improve sub-word performance
(Liu et al., 2019), which could be important for
non-general domains. Moreover, as the benchmark-
ing vocabularies incorporate both general-domain
and biomedical-domain word pairs (Chiu et al.,
2018), it may also be that the general domain test
pairs are contributing disproportionately to perfor-
mance boosts. Another area for exploration is the
comparatively different layer-wise performance for
BERT-native words versus extra-vocabulary words,
with the former’s performance generally decreasing
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Figure 2: Layer-wise performance of BERT embeddings (0 corresponds to input layer) at both Bio-SimVerb and
Bio-SimLex benchmarks. Horizontal dashed lines correspond to performance of static models.

and the latter’s increasing.

A working knowledge-mining framework uti-
lizing BERT might consist of first extracting the
vocabulary of the corpus upon which mining will
be conducted and removing any irrelevant words
(e.g. stop words). Then, n samples for each word
in the vocabulary may be taken from the corpus
and tokenized. As BERT’s attention is quadratic to
the sequence (Devlin et al., 2018), and representa-
tions extracted from short sequences perform better,
shorter sample sequences are desirable. Tokenized
sequences can then be encoded, and representa-
tions extracted, with sub-word pooling performed
if necessary. The n contextual examples of each
word representation can then be averaged to yield
a 1x768 dimensional representation for each word
in the corpus vocabulary. It is this collection of
vocabulary embeddings that can be subsequently
used for mining as per Tshitoyan et al. (2019).

5 Conclusions

This study has successfully demonstrated feasibil-
ity of aggregated contextual word representations
derived from BERT for biomedical knowledge min-
ing tasks. It has also uncovered several technical
and performance-related idiosyncrasies of BERT
and BioBERT that require further investigation.

6 Acknowledgements

Thanks to redacted and redacted for their assis-
tance with this study.

References

Judit Acs, Akos Kadar, and Andras Kornai. 2021.
Subword pooling makes a difference. In Pro-
ceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume. Association for Com-
putational Linguistics, Online, pages 2284-2295.
https://doi.org/10.18653/v1/2021.eacl-main.194.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research
3(Feb):1137-1155.

Rishi Bommasani, Kelly Davis, and Claire Cardie.
2020. Interpreting pretrained contextualized repre-
sentations via reductions to static embeddings. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics. pages 4758—
4781.

Billy Chiu, Sampo Pyysalo, Ivan Vuli¢, and Anna
Korhonen. 2018.  Bio-simverb and bio-simlex:
wide-coverage evaluation sets of word similarity in
biomedicine. BMC bioinformatics 19(1):1-13.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on Ma-
chine learning. pages 160-167.


https://doi.org/10.18653/v1/2021.eacl-main.194
https://doi.org/10.18653/v1/2021.eacl-main.194

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch.  Journal of machine learning research

12(ARTICLE):2493-2537.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805 .

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2020. Biobert: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics 36(4):1234—
1240.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692 .

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word

representations in vector space. arXiv preprint
arXiv:1301.3781 .

Serguei Pakhomov, Bridget McInnes, Terrence Adam,
Ying Liu, Ted Pedersen, and Genevieve B Melton.
2010. Semantic similarity and relatedness between
clinical terms: an experimental study. In AMIA an-
nual symposium proceedings. American Medical In-
formatics Association, volume 2010, page 572.

Serguei VS Pakhomov, Ted Pedersen, Bridget McInnes,
Genevieve B Melton, Alexander Ruggieri, and
Christopher G Chute. 2011. Towards a framework
for developing semantic relatedness reference stan-
dards. Journal of biomedical informatics 44(2):251—
265.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1532-1543.
https://doi.org/10.3115/v1/D14-1162.

Vahe Tshitoyan, John Dagdelen, Leigh Weston,
Alexander Dunn, Ziqin Rong, Olga Kononova,
Kristin A Persson, Gerbrand Ceder, and Anubhav
Jain. 2019. Unsupervised word embeddings capture
latent knowledge from materials science literature.
Nature 571(7763):95-98.

AJ Venkatakrishnan, Arjun Puranik, Akash Anand,
David Zemmour, Xiang Yao, Xiaoying Wu, Ra-
makrishna Chilaka, Dariusz K Murakowski, Kristo-
pher Standish, Bharathwaj Raghunathan, et al. 2020.
Knowledge synthesis of 100 million biomedical doc-
uments augments the deep expression profiling of
coronavirus receptors. Elife 9:e58040.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn
Funk, Rodney Kinney, Ziyang Liu, William Merrill,
et al. 2020. Cord-19: The covid-19 open research
dataset. ArXiv .

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations. Association for
Computational Linguistics, Online, pages 38-45.
https://doi.org/10.18653/v1/2020.emnlp-demos.6.

Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin,
and Zhiyong Lu. 2019. Biowordvec, improving
biomedical word embeddings with subword infor-
mation and mesh. Scientific data 6(1):1-9.


https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Distribution of Sequence Lengths

800000 - —== Mean (Long Contexts)

—=- Mean (Short Contexts)
Long Contexts
Short Contexts

700000 -

600000 -

500000 -

Count

400000 -

300000 A

200000 A

100000 -

0

1 2 3 4 5 6
log(Sequence Length)

Figure 3: Distributions of log sentence lengths for long
and short contextual sequences.

A Corpus Sampling Characteristics

Figure 2 demonstrates the distribution of log se-
quence lengths for long and short sequences, re-
spectively. Figure 3 demonstrates the distribution
of log number of sequences for long and short se-
quences, respectively. As one of the sampling cri-
teria was that sequences could only have a single
instance of the word and had to be less than 512
words in length, together with the fact that the to-
kenized sequence could not exceed 512 in length,
there are consequently fewer long sequence sam-
ples per word compared to short sequence exam-
ples. The mean long sequence length was 46.8
words (o = 29.5) while the mean short sequence
length was 26.3 words (o = 16.7) (2). For long se-
quences, the mean number of contextual examples
per word was 2330.2 (o = 2194.8). For short se-
quences, the mean number of contextual examples
per word was 3632.2 (o = 1948.7) (Figure 3).

B Effect of Further Pre-Training on
Word Representation Quality

An initial approach attempted was to further pre-
train BioBERT using the entire CORD-19 cor-
pus and compare performance of the contextual-
ized word representations at Bio-SimVerb and Bio-
SimLex intrinsic benchmarking tasks, with the base
BioBERT model and the static baseline models.
This approach used only long corpus sequences
and the base BioBERT vocabulary (which itself is
identical to BERT vocabulary). Pre-training was
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Figure 4: Distributions of log number of aggregated
contexts for long and short sequence lengths. There
are substantially more examples meeting n = 5000 for
short sentences

achieved using the scripts supplied with the Tensor-
Flow implementation of the model (https://
github.com/dmis—-lab/biobert) and in-
volved first creating pre-training data using sen-
tence examples from the corpus, before running
further pre-training for 100,000 epochs. Default
hyperparameters were used. For this pilot study, n
=10, 50, 100, 500 and 1000. The n selected ex-
amples were then all tokenized and passed through
either the further-pretrained BioBERT model or the
base Bio-BERT model. For either approach, rep-
resentations corresponding to the word of interest
were then extracted wholly (i.e. as a single 1x768
word representation, or k individual sub-word rep-
resentations) and added to the list of n (explained
further in 2.2). Benchmarking was performed as
described in 2.4.

For the Bio-SimVerb benchmarks (Left side of
Figure 4), there is a clear increase in performance
by increasing n from 10 to 1000 contexts. Also
apparent is that the representations extracted from
the further pre-trained model underperform relative
to those extracted from the base model for the same
n. Biggest increases in performance are seen going
from n = 10 to n = 100. Increasing n beyond
this begins to demonstrate smaller performance
boosts. Interestingly, best performing verb embed-
dings from the further pre-trained model were taken
from layer 12 (see 3) while for the base model, per-
formance peaked at embeddings extracted from
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Figure 5: Layer-wise performance of BERT embeddings (0 corresponds to input layer) at both Bio-SimVerb and
Bio-SimLex benchmarks. Pretrained n/Base n refer to either the further-pretrained model or the base model,
respectively, followed by the n aggregated contexts. Horizontal dashed lines correspond to performance of static

models.

layer 8. In some cases, embeddings taken from
layer 12 of the further pre-trained model almost
reached peak performance from embeddings taken
from layer 8 of the base model.

For the Bio-SimLex benchmarks (Right side of
Figure 4), though there was a general performance
increase between representations extracted from
the further-pretrained model and the base BioBERT
model, it was less pronounced as it was for the verb
benchmarks, with performance for the first 6 lay-
ers approximately equal before diverging thereafter.
Moreover, a substantial boost is seen going from
n = 10 to n = 50, becoming less pronounced as
n increases. Again, performance for the represen-
tations extracted from a further pre-trained model
demonstrate a trough following their maximum
performance at layer 8, but increase substantially
thereafter going from layer 11 to 12, though with-
out reaching their layer 6 peak. This characteristic
was not observed with the base model represen-
tations. Finally, representations from either the
further-pretrained or base models did not outper-
form either Word2Vec 200 or 300 dimensional rep-
resentations, or the BioWordVec representations.

Method Bio-SimVerb | Bio-SimLex
Pre-Trained 10 0.5169 (12) 0.6770 (1)
Pre-Trained 50 0.5351 (12) 0.6991 (6)
Pre-Trained 500 | 0.5440 (12) 0.7004 (6)
Pre-Trained 1000 | 0.5487 (12) 0.7008 (6)
Base 10 0.5229 (8) 0.6744 (5)
Base 50 0.5415 (8) 0.7054 (6)
Base 500 0.5494 (8) 0.7072 (6)
Base 1000 0.5504 (8) 0.7078 (6)
w2v 300 0.5260 0.7341
w2v 200 0.5237 0.7310
GloVe 300 0.5051 0.6253
BWY 200 0.4923 0.7213

Table 3: Top performing (Spearman’s p) distilled
BERT embeddings and static embeddings from pilot
study. ‘Pre-Trained/Base n’ indicates embeddings ex-
tracted from n examples taken from the distilled pre-
trained or base model, respectively. Number in brack-
ets indicates layer. w2v200/300 = Word2Vec 200/300
dimensional embeddings. BWV = BioWordVec 200 di-
mensional embeddings. Bold entries indicate best over-
all performance.
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