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Abstract

Data augmentation improves the generalization power of deep learning models by synthe-
sizing more training samples. Sample-mixing is a popular data augmentation approach that
creates additional data by combining existing samples. Recent sample-mixing methods, like
Mixup and Cutmix, adopt simple mixing operations to blend multiple inputs. Although such
a heuristic approach shows certain performance gains in some computer vision tasks, it mixes
the images blindly and does not adapt to different datasets automatically. A mixing strategy
that is effective for a particular dataset does not often generalize well to other datasets. If
not properly configured, the methods may create misleading mixed images, which jeopardize
the effectiveness of sample-mixing augmentations. In this work, we propose an automated
approach, TransformMix, to learn better transformation and mixing augmentation strate-
gies from data. In particular, TransformMix applies learned transformations and mixing
masks to create compelling mixed images that contain correct and important information
for the target tasks. We demonstrate the effectiveness of TransformMix on multiple datasets
in transfer learning, classification, object detection, and knowledge distillation settings. Ex-
perimental results show that our method achieves better performance as well as efficiency
when compared with strong sample-mixing baselines.

1 Introduction

Modern deep learning models achieve remarkable success in important computer vision tasks, like object
classification (Krizhevsky et al., 2012; He et al., 2016b; Zagoruyko & Komodakis, 2016) and semantic seg-
mentation (Ren et al., 2015; Bochkovskiy et al., 2020). Despite these reported successes, deep learning
models can easily overfit when the training set is quantitatively deficient. To generalize deep learning mod-
els beyond finite training sets, data augmentation is a widely adopted approach that synthesizes additional
samples to expand the training sets (Shorten & Khoshgoftaar, 2019). Conventional data augmentation ap-
plies pre-defined image processing functions, such as random cropping, flipping and color adjustment, to
create additional views of the same data. To reduce the manual effort in searching for the appropriate aug-
mentation configuration, automated data augmentation (AutoDA) methods have been proposed to search for
the optimal augmentation policy for a dataset (Cubuk et al., 2019; Ho et al., 2019; Lim et al., 2019; Cheung
& Yeung, 2021; 2022). Given the right choice of augmentation, these transformation-based techniques induce
constructive inductive biases in the dataset, thereby improving the generalization power of machine learning
models.

Sample-mixing is a different data augmentation approach that synthesizes additional samples by combining
multiple images. Unlike conventional data augmentation, sample-mixing does not require the specification
of domain-specific transformations, allowing it to be flexibly deployed to other data domains. The seminal
work Mixup interpolates two training images with their one-hot-encoded label proportionally (Zhang et al.,
2018), while CutMix randomly replaces a patch of an image with another image (Yun et al., 2019). Although
these mixing strategies can bring slight improvements in some computer vision tasks (Bochkovskiy et al.,
2020), images are combined without considering their content. Consequently, the mixed images may contain
misleading training signals and undermine the model performance. Specifically, Mixup may lead to the
manifold collision problem where an interpolated image sits on the real data manifold (Guo et al., 2019);
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Figure 1: Visual comparison of different sample-mixing methods on a dog and bear image. Our method
better preserves the important region of the input images.

the random replacement in CutMix may remove important regions that are crucial in identifying an object
instance in classification tasks. To this end, recent works apply additional saliency constraints to avoid the
crucial information being removed during the mixing process (Kim et al., 2020; Dabouei et al., 2021; Kim
et al., 2021; Liu et al., 2021; Uddin et al., 2021).

Inspired by recent AutoDA advancements and saliency-aware mixing methods, we develop an automated
method, named TransformMix, that learns a better mixing strategy from a dataset with two criteria: (1)
the mixing strategy should create mixed outputs that maximally preserve the visual saliency of the input
images; (2) the mixing strategy should be learned from the dataset automatically. For more practical usage
in transfer learning, we also investigate whether a discovered mixing strategy can be transferred to create
new augmented images on unseen datasets. At a high level, TransformMix exploits self-supervision signals
from a pre-trained teacher network to learn a mixing module for predicting the transformations and mixing
masks to create mixed images that preserve the salient information of the input images. To summarize, we
make four major contributions.

• We propose TransformMix, which employs a novel mixing module that predicts the transformations
and mixing masks to create more advantageous mixed images with maximal preservation of visual
saliency.

• We introduce an automated framework that trains the mixing module on a given dataset efficiently.

• We demonstrate that our method improves state-of-the-art results on several popular classification
benchmarks and achieves 4× to 18× speed-up compared to other saliency-aware sample-mixing
baselines.

• We demonstrate that our method can be transferred to augment new unseen datasets. The trans-
ferred method provides non-trivial improvements over other sample-mixing methods. We also show
the effectiveness of TransformMix on classification, object detection, and knowledge distillation
tasks.

2 Related Works

Automated Data Augmentation. Conventional data augmentation applies label-preserving transforma-
tions to augment data. However, the specification and choice of data augmentation functions rely heavily
on expert knowledge or repeated trials. To address this shortcoming, AutoDA learns the optimal policy to
augment the target dataset (Cheung & Yeung, 2023). AutoAugment takes a reinforcement learning approach
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to learn the probability and magnitude of applying different transformations to the target dataset (Cubuk
et al., 2019). PBA (Ho et al., 2019) and RandAugment (Cubuk et al., 2020) study more efficient search meth-
ods to reduce the expensive search effort of AutoAugment. Inspired by AutoAugment, AdaAug (Cheung
& Yeung, 2022) learns an adaptive augmentation strategy for each data instance, while MODALS (Che-
ung & Yeung, 2021) learns the optimal augmentation strategy to apply four transformations in the latent
space, thereby allowing the method to be deployed to multiple modalities. Despite the successes reported
by these AutoDA methods, they require domain knowledge in designing domain-specific label-preserving
transformations. Moreover, they have not studied the optimal way to mix multiple images.

MixUp. MixUp (Zhang et al., 2018) uses the convex combination of input images as new augmented images:
x′ = λx1 + (1 − λ)x2, where x1 and x2 are two training images, λ is the mixing coefficient and x′ is the
augmented image. Following Mixup, Manifold Mixup (Verma et al., 2019) applies Mixup to mix the latent
representations, while CutMix (Yun et al., 2019) replaces a random patch of an image with another image.
These techniques disregard the image content and may dilute or occlude the salient information, which is
crucial for the target task. To preserves all saliency information, StackMix (Chen et al., 2022) concatenates
two input images as the augmented data. Apart from studying new ways to mix the input images, other
attempts have been made to prevent MixUp from creating out-of-distribution images. Specifically, Local
MixUp (Baena et al., 2022) considers the locality of input samples and assigns lower loss weightings for distant
samples; GAN-MixUp (Sohn et al., 2020) generates synthetic data that are close to the class boundaries and
applies MixUp between the real and generated samples. On the other hand, k-MixUp (Greenewald et al.,
2023) and Co-MixUp (Kim et al., 2021) extend the standard MixUp procedure to mix more than two inputs
at a time. NEW

Saliency-aware Sample-mixing. To mitigate the mentioned problem, several recent works attempted to
create more advantageous mixed images by preserving the salient information in the mixed image. Salien-
cyMix (Uddin et al., 2021) and ResizeMix (Qin et al., 2020) detect the saliency information and prevent
CutMix from replacing the image patch that contains rich information. SuperMix utilizes a teacher model to
optimize some mixing masks applied to the input images: x′ = m1 ⊙ x1 + m2 ⊙ x2, where m1 and m2 denote
the mixing masks and ⊙ denotes the elementwise multiplication. In AutoMix (Liu et al., 2021), the mixing
masks are computed by a mix block based on the image features. However, consider two input images having
the salient information at the same pixel location, for example, the face of a dog in input image xi and the
face of a bear in input image xj as illustrated in Figure 1, optimizing a mixing mask alone cannot prevent
the two faces being blended in the mixed results. Hence, PuzzleMix (Kim et al., 2020) optimizes the mixing
masks together with transport plans Π1 and Π2 that specify the mass to be transported between different
pixel locations: x′ = m1 ⊙ Π1x1 + m2 ⊙ Π2x2. Although the method avoids the overlapping of the salient
regions to a certain degree, the method splits the input images into different blocks and shifts their locations.
This creates puzzle-like artifacts in the resulting image, violating the natural image prior (see Figure 1).

TransformMix aims to learn the transformation and mixing strategies that generate more advantageous
mixed data automatically. Learning such strategies poses two major challenges. First, a mixing strategy
needs to decide the output of every pixel location, which is harder than learning an augmentation policy
from a set of 10 to 20 augmentation functions in previous AutoDA works. Therefore, formulating the
transformation and mixing strategy and optimizing it efficiently is a challenging problem. Second, previous
works create mixed input with unnatural mixing boundaries or require manual specification of additional
constraints to create more realistic outputs. Designing an automated approach to generate more natural
blends of images is non-trivial. Hence, developing a transferable mixing strategy like TransformMix to reduce
the computation efforts on new datasets is a favorable solution for data practitioners.

3 Methodology

TransformMix first learns a mixing strategy from a dataset under the supervision of a pre-trained teacher
model and then creates mixed data to train some end task networks. We formulate the mixing strategy
by predicting some transformations and mixing masks applied to the input images. Given two distinct
instances (xi, yi) and (xj , yj), where xi ∈ RC×W ×H is the i-th training sample with class label yi, C channels
and W × H dimension, TransformMix aims to find the effective transformations φi, φj and mixing masks
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mi, mj ∈ [0, 1]W ×H applied to xi and xj for creating better mixed images x′ according to:

x′ = mi ⊙ φi(xi) + mj ⊙ φj(xj), y′ = λyi + (1 − λ)yj , (1)

where λ is a mixing coefficient for mixing xi and xj . Under this formulation, the transformations help to
separate the salient regions even if they completely overlap in the input images, while the mixing masks
help to reveal the more important regions of the candidate images with respect to the target task. To better
preserve visual saliency, TransformMix utilizes the class activation maps (CAMs) of the input images when
predicting the mixing strategy. The intermediate visual illustrations of the input images, saliency maps,
transformations and predicted mixing masks are presented in Figure 2. In the following section, we explain
the details of each component and then the training framework of TransformMix.
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Figure 2: Illustrations of the intermediate results during mixing. From left to right, the columns show the
visualizations of the input images, CAMs, transformed images and predicted masks.

3.1 TransformMix

TransformMix comprises three components: a pre-trained teacher model, a saliency detector and a mixing
module. TransformMix first trains the mixing module under the supervision of the teacher model. Once the
mixing module is trained, it is used to create mixed images to train a new task network. The overview of
TransformMix is shown in Figure 3.

Saliency Detector. It was previously suggested that considering the image saliency during mixing can
improve the quality of mixed images (Kim et al., 2020; Uddin et al., 2021). In our method, we adopt a neural
network approach, which takes visual saliency as input features to make a prediction of a mixing strategy.
We propose to condition on the visual saliency rather than the image or latent image representation because
visual saliency is a generic measure applicable to all images, whereas the image or latent image representation
is mostly restricted to a dataset. Therefore, learning from visual saliency facilitates transferring the trained
mixing module to unseen data.

Typically, a saliency detector generates a heatmap si ∈ [0, 1]W ×H that highlights the important regions of
xi. In practice, we can use any saliency detection algorithms or explainable AI methods to extract salient
information from input images. As TransformMix employs a pre-trained teacher network in the later training
stage, we exploit the readily available pre-trained weights and use CAMs (Zhou et al., 2016) to estimate the
salient regions of an image. In essence, CAMs are the summation of global averaged features weighted by
the weights learned by the classification layer. The pixel location that is more important to the classification
task will be assigned a larger value in the heatmap.

Spatial Transformer Network. Unlike PuzzleMix (Kim et al., 2020) which divides the input images into
multiple blocks and re-organizes them to avoid overlapping salient regions, TransformMix encompasses a
more comprehensive set of transformations and creates mixed outputs complying with the natural image
prior. As a learnable transformation method, Spatial Transformer Network (STN) is a convolutional neural
network module that spatially transforms an image by predicting the appropriate transformation for each
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Figure 3: Overview of TransformMix. The black arrows indicate the forward pass; the red arrows indicate
the gradient flow when training the spatial transformation network fs and mask prediction network fm; the
blue arrow indicates the gradient flow when training the task network g. Step 1&2: the CAMs of the input
images (xi, xj) are extracted from the pre-trained teacher ft. Step 3: the CAMs, input images and sampled
mixing coefficient λ are supplied to the mixing module to compute the transformations (φi, φj) and mixing
masks (mi, mj) to create the mixed image x′, which is used in step 4a: training the mixing module, or step
4b: training the the task network.

data instance (Jaderberg et al., 2015). Different from the previous works that predict the transformation
based on a single image, we propose a novel approach using an STN to predict 6 affine parameters for each
of the two input images based on their CAMs, a mixing coefficient λ and a sampled noise z. Specifically, the
6 affine parameters include a 2 × 2 sub-matrix that defines the linear transformation and 2 parameters that
define the horizontal and vertical translations. The mixing coefficient λ allows more emphasis on different FIX
proportions of mixing and is sampled from the Beta distribution with parameter α. Sampled from the
Normal distribution, z adds certain diversity when transforming the images. The mixing coefficient and
sampled noise are resized and appended to the CAMs as additional channels. We use fs : R4×W ×H → R2×6

to denote the STN and θ to denote the predicted affine parameter, which is given by:

θi, θj = fs(si, sj , λ, z), λ ∼ Beta(α, α), z ∼ N(0, I) (2)

Using the affine parameters predicted by fs, the transformations are then performed on the input images
accordingly to avoid overlapping of salient regions. Although recent AutoDA methods can search in a
larger set of transformations, like color adjustments and other non-differentiable operations, the spatial
transformations, including scaling, cropping, rotations, as well as non-rigid deformations, are sufficient to
tackle the saliency overlapping issue. Therefore, we opt for the differentiable STN approach, which can be
optimized efficiently using gradient-based methods, instead of costly AutoDA search methods, to characterize
φ in equation 1.

Mask Prediction Network. The mask prediction network fm receives the transformed CAMs and mixing
coefficient λ to predict the mixing masks (mi, mj). We implement fm as a spatial-preserving convolutional
neural network, i.e., fm : R3×W ×H → [0, 1]2×W ×H . The softmax function is applied to the output layer to
ensure that the mixing masks sum to 1 at each pixel location (w, h). In addition, a learnable temperature
parameter τ is introduced to control the smoothness of the mixing boundary. Specifically, a lower temperature
value will result in a sharper blending boundary (see Figure 4). With o denoting the hidden feature before
the softmax layer and ϕ(·; θ) denoting the affine transformation with parameter θ, the mixing masks are
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computed as:

mi, mj = fm(ϕ(si; θi), ϕ(sj ; θj), λ), m
(w,h)
i = exp(o(w,h)

i /τ)
!

k∈{i,j} exp(o(w,h)
k /τ)

(3)

! = 0.1! = 1.0 ! = 0.01! = 0.08

Figure 4: Illustrations of the effect when using different temperature values τ . The third image is the mixed
result with learned τ = 0.08.

3.2 Training

TransformMix employs a two-stage training process. At the search stage, the mixing module is trained to
learn the transformation and mixing strategy from a dataset. At inference time, the learned mixing module
will generate new mixed images for training a new classifier on the dataset.

In AutoDA, augmentation policies are optimized with the goal to maximize the validation performance on a
hold-out dataset directly. The process requires the training of multiple child models, which is computationally
expensive to achieve. Specifically, AutoAugment spends over 5,000 GPU hours learning the augmentation
policy on CIFAR-10 (Cubuk et al., 2019). To this end, we adopt a surrogate objective that correlates to the
effectiveness of mixed training images. Inspired by SuperMix (Dabouei et al., 2021), we utilize a pre-trained
teacher model ft to guide the learning of the mixing module. Specifically, we update the mixing module
to minimize the classification loss on the mixed input x′ with label y′ in equation 4. With the supervision
signals given by the pre-trained network, the mixing module (fs, fm) learns to construct mixed images such
that ft can uncover the constituting objects in x′. This encourages the mixing module to fit more important
information in the mixed results, avoiding the salient information being diluted implicitly.

x′ = mi ⊙ ϕ(xi; θi) + mj ⊙ ϕ(xj ; θj), y′ = λyi + (1 − λ)yj (4)

At inference time, the trained mixing module creates mixed images to train a new classifier following the
standard model training process. In the previous sections, we explained the details of TransformMix to mix
two input images. In practice, TransformMix can be generalized to mix more images by replacing the Beta
distribution with Dirichlet distribution and modifying the input and output sizes of fs and fm accordingly.
The general training step to mix k images by TransformMix is depicted in Algorithm 1.

4 Experiments and Results

4.1 Experiment Setup

Mixing Module. The mixing module comprises a spatial transformer network and a mask prediction
network. We follow the implementation of the spatial transformer network (Jaderberg et al., 2015) except
the last layer is modified for additional outputs to predict the transformation parameters for two images.
The mask prediction network has three convolution layers with 3×3 kernel size, 32 channels and ReLU
activation, followed by a 1×1 convolution layer. Padding is applied to ensure that the mixing masks share
the same spatial dimension as the input images. The mixing module is trained using SGD with a 0.0005
learning rate and 0.01 weight decay for 100 epochs using a batch size of 128.

Teacher Network. In our experiments, the teacher networks are trained on the target datasets following
the simple baseline methods. Specifically, the teacher network uses the same network architecture and is
trained using the same configurations as the task networks. The test accuracy of the teacher networks on
each dataset is the same as the “Simple” baseline listed in Table 1 and 2.
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Algorithm 1 Training of TransformMix
1: procedure Train(input images {xi}k

i=1, teacher network ft, spatial transformer network fs, mask
prediction network fm, task network g, mixing parameter α)

2: S = {CAM (xi; ft)}k
i=1

3: Sample Λ = (λ1, . . . , λk) from Dir(α)
4: Sample z from N(0, I)
5: Θ = fs(S, Λ, z)
6: M = fm({ϕ(si; θi)}k

i=1, Λ)
7: x′ =

!k
i=1 mi ⊙ ϕ(xi; θi)

8: y′ =
!k

i=1 λiyi

9: if SEARCH then # Training the mixing module
10: L = CrossEntropyLoss(ft(x′), y′)
11: Update fs, fm

12: else # Training the task network
13: L = CrossEntropyLoss(g(x′), y′)
14: Update g

4.2 Transfer Classification

We study whether a mixing module trained on a dataset can be exploited to create effective mixed data
for other datasets. We consider a realistic scenario where a pre-trained classifier is fine-tuned on some
downstream tasks. We follow the transfer setting in (Cheung & Yeung, 2022) to fine-tune an ImageNet pre-
trained network on four classification datasets: Oxford Flowers (Nilsback & Zisserman, 2008), Oxford-IIIT
Pets (Em et al., 2017), FGVC Aircraft (Maji et al., 2013) and Stanford Cars (Krause et al., 2013).

Fine-tuning ImageNet pre-trained model is one of the most promising transfer-learning techniques nowadays.
Here, we use ResNet-50 with pre-trained IMAGENET1K_V1 weights provided by torchvision1. We extract
the CAMs of input images from the pre-trained model and fine-tune the model on four downstream datasets:
Oxford Flowers (Nilsback & Zisserman, 2008), Oxford-IIIT Pets (Em et al., 2017), FGVC Aircraft (Maji
et al., 2013) and Stanford Cars (Krause et al., 2013). Compared to Tiny-ImageNet and ImageNet, these
datasets have a larger number of classes but few samples per class. To obtain the CAMs for a new unseen
dataset, we use the predictions from the pre-trained teacher network directly as the target class. FIX

We apply the mixing module pre-trained on TinyImageNet for the TransformMix baseline. For the other
baselines, we use the optimal hyperparameters for Tiny-ImageNet suggested by the original papers. The
pre-trained model is fine-tuned on the downstream datsets for 100 epochs using a learning rate of 0.001 and
batch size of 64. We report the average accuracy and sample standard deviation of our method over five
trials. The results in Table 1 demonstrate that TransformMix outperforms Mixup, CutMix, SaliencyMix NEW
and PuzzleMix on the Pet, Car and Aircraft datasets and achives similar performance on the Flower datsaet
in terms of top-1 and top-5 accuracy.

4.3 Direct Classification

Following the line of sample-mixing research, we evaluate TransformMix on CIFAR-100 (Krizhevsky &
Hinton, 2009), Tiny-ImageNet (Chrabaszcz et al., 2017) and ImageNet (Deng et al., 2009) using WideResNet-
28×10 (Zagoruyko & Komodakis, 2016), PreActResNet-18 (He et al., 2016a) and ResNet-50 (He et al.,
2016b). We compare our results with simple sample-mixing methods: Mixup (Zhang et al., 2018), Manifold
Mixup (Verma et al., 2019), CutMix (Yun et al., 2019) and AugMix (Hendrycks et al., 2020) as well as
saliency-aware mixing methods: PuzzleMix (Kim et al., 2020) and SuperMix (Dabouei et al., 2021). In the
direct classification experiment, we first train the mixing module (i.e., the spatial transformer network and
mask prediction network) on the target dataset, and then utilize the mixing module to create new mixed

1https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
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Table 1: Test-set Top-1 / Top-5 accuracy (%) for fine-tuning a pre-trained network to the Flower, Pet, Car
and Aircraft datasets using the mixing module learned from CIFAR-100.

Method Flower Pet Car Aircraft
Simple 97.55 / 99.87 92.88 / 99.48 79.43 / 95.52 68.79 / 92.34
Mixup 97.92 / 99.75 93.04 / 99.31 80.84 / 95.77 70.83 / 93.00
CutMix 97.67 / 99.63 92.09 / 99.20 80.91 / 95.94 69.63 / 93.06
SaliencyMix 98.16 / 99.75 92.83 / 99.34 78.90 / 95.32 69.42 / 92.25
PuzzleMix 98.28 / 99.75 92.66 / 99.50 80.62 / 95.87 70.89 / 92.97
TransformMix 98.06 / 99.71 93.32 / 99.51 82.27 / 96.27 72.33 / 93.47
(ours) ±0.09 / ±0.05 ±0.30 / ±0.05 ±0.21 / ±0.13 ±0.24 / ±0.39

Table 2: Test-set Top-1 / Top-5 accuracy (%) on CIFAR-100, Tiny-ImageNet and ImageNet datasets.

CIFAR-100 Tiny-ImageNet ImageNet
Method WRN-28 × 10 PreActResNet-18 PreActResNet-18 ResNet-50
Simple 78.86 / 93.67 76.33 / 91.02 57.23 / 73.65 75.69 / 92.66
Mixup 81.73 / 95.02 76.84 / 92.42 56.59 / 73.02 77.01 / 93.52
Manifold MixUp 82.60 / 95.63 79.02 / 93.37 58.01 / 74.12 76.85 / 93.50
CutMix 82.50 / 95.31 76.80 / 91.91 56.67 / 75.52 77.08 / 93.45
AugMix 79.56 / 94.26 75.31 / 91.62 55.97 / 74.68 76.75 / 93.30
PuzzleMix 84.05 / 96.08 80.38 / 94.15 63.48 / 81.05 77.51 / 93.76
SuperMix 83.60 / - - / - - / - 77.60 / 93.70
TransformMix 84.07 / 96.97 80.39 / 95.37 65.72 / 85.01 77.60 / 93.89
(ours) ±0.05 / ±0.07 ±0.04 / ±0.05 ±0.16 / ±0.25 ±0.04 / ±0.06

images for training a task classifier from scratch. We repeat the experiments with three random seeds and
report the averaged top-1 and top-5 test-set accuracy together with the sample standard deviation in Table 2. FIX

CIFAR-100. Following the experiment setting in PuzzleMix (Kim et al., 2020), we train WRN-
28×10 (Zagoruyko & Komodakis, 2016) and PreActResNet-18 (He et al., 2016a) on CIFAR-100. We follow
the training protocol in (Kim et al., 2020) to train WRN-28×10 for 400 epochs and PreActResNet-18 for
1200 epochs. We use an initial learning rate of 0.1 and decay it by a factor of 0.1 at the 200th and 300th

epochs for WRN-28×10 and at the 400th and 800th epochs for PreActResNet-18. We adopt the reported
baseline performances from (Kim et al., 2020), which are tested under the same experiment setup.

Experimental results show that our method achieves comparable top-1 accuracy as state-of-the-art methods.
In addition, TransformMix achieves greater gains in the top-5 accuracy with 0.89% and 1.22% improvements
over the best performed baseline on WRN-28×10 (Zagoruyko & Komodakis, 2016) and PreActResNet-18 (He
et al., 2016a), respectively. This provides evidence that TransformMix can preserve more object information,
facilitating the task network to learn more effectively.

Tiny-ImageNet. Tiny-ImageNet contains 500 training images of 200 classes with a resolution of 64 ×
64 (Chrabaszcz et al., 2017). We follow PuzzleMix (Kim et al., 2020) to train the PreActResNet18 network
on the Tiny-ImageNet dataset for 1,200 epochs with an initial learning rate of 0.2 and decay it by a factor
of 0.1 at the 600th and 900th epochs. As shown in Table 2, TransformMix outperforms PuzzleMix by 2.24%
and 3.96% in terms of top-1 and top-5 accuracy, respectively.

ImageNet. We also evaluate our methods on the ImageNet dataset with ResNet-50. The dataset contains
1,281,167 training images in 1,000 categories. Following the experiment setup prescribed in (Kim et al.,
2020), we train ResNet-50 on the ImageNet for 100 epochs using an initial learning rate of 0.5 with learning
rate warm-up and weight decay on resized ImageNet images. Similar to the CIFAR-100 experiment, our
method achieves comparable top-1 accuracy and better top-5 accuracy than other baselines (see Table 2).
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4.4 Object Detection

This section compares TransformMix with other mixing baselines on the Pascal VOC and MS-COCO object
detection tasks (Everingham et al., 2010). We follow SaliencyMix (Uddin et al., 2021) to use the ResNet-50
pre-trained on ImageNet with different mixing strategies as the backbone network of Faster RCNN (Ren
et al., 2015). In the Pascal VOC experiment, we fine-tune the last 5 layers of the backbone networks with
the Region Proposal Network and RoI Heads on Pascal VOC 2007 and 2012 data and test on the VOC 2007
test data. Following the same protocol, we fine-tune the model with a batch size of 8 and a learning rate
of 0.0004 for 41,000 iterations. We decay the learning rate by a factor of 0.1 at the 33,000th iteration. For
the COCO dataset, we train and test on the MS-COCO 2017 dataset. We fine-tune the model with a batch
size of 8 and a learning rate of 0.02 for 12 epochs. We decay the learning rate by a factor of 0.1 at the 8th

and 11th epochs. As foreground objects are more important than the backgrounds in object detection tasks,
saliency-preserving mixing strategies can create more advantageous augmented images to improve detection
performance. Specifically, Table 3 shows that TransformMix outperforms the simple baseline. Our method
also leads other mixing methods in terms of the mAP score on the Pascal VOC dataset and is comparable
to other methods on the MS-COCO dataset.

Table 3: Comparison of MixUp, SaliencyMix, PuzzleMix, and TransformMix on Pascal VOC object detection
task.

Simple SaliencyMix PuzzleMix TransformMix
Pascal VOC (mAP) 74.2 75.3 75.6 75.7
MS-COCO (mAP) 35.9 36.5 36.5 36.5

NEW

4.5 Execution Time

Similar to SuperMix, TransformMix uses a pre-trained teacher network. Although TransformMix requires
the training of the teacher network and the mixing module during the search phase, TransformMix is fast at
the inference time. At inference time, our method uses a single forward pass to predict the mixing mask and FIX
transformation, while PuzzleMix and SuperMix iteratively compute the optimal mixing masks and transport
plans. We test the average processing time to generate a batch of 128 mixed images for 10 trials. All the
experiments are conducted using an NVIDIA RTX3090 GPU card. It is found that TransformMix is 3.61×
faster than PuzzleMix and 3.97× faster than SuperMix on CIFAR-10 and 2.08× faster than PuzzleMix and
18.51× faster than SuperMix on ImageNet (see Table 4).

Table 4: Comparsion between the execution time of PuzzleMix, SuperMix and TransformMix. The execution
time of PuzzleMix and SuperMix is represented as the multiply of TransformMix execution time.

TransformMix PuzzleMix SuperMix
CIFAR-10 1× 3.61× 3.97×
ImageNet 1× 2.08× 18.51×

4.6 Ablation Study

In this section, we show the improvements of TransformMix over pre-defined transformations and heuristic
ways to stack the saliency regions. Additionally, we investigate the effectiveness of different components in
TransformMix. The details of the ablation baselines are described as follows:

• Softmax+CAM: Apply pixel-wise softmax operation to the two extracted CAMs as the mixing
masks, and use the mixing masks to combine the two input images.

9
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• LR: Move one image to the left and another image to the right. Specifically, we horizontally translate
the first image by λw pixels and the second image by −(1 − λ)w pixels and stack the two images
together. λ is the mixing coefficient sample from β(α, α) and w is the width of the image.

• w/o STN: TransformMix without learned transformations. The mixing mask is computed in the
same way as the Softmax+CAM baseline.

• w/o MPN: TransformMix without learned mixing masks. The two transformed images are stacked
together directly.

Table 5: Test-set accuracy (%) on CIFAR-10 and CIFAR-100 with different mixing configurations.

Simple Mixup LR softmax+CAM w/o MPN w/o STN TransformMix
CIFAR-10 95.28 95.55 95.74 95.62 96.03 96.02 96.40
CIFAR-100 78.86 81.73 80.09 82.66 83.79 83.52 84.07
TinyImageNet 57.23 57.05 56.59 63.69 63.78 64.17 65.72

The ablation results in Table 5 show that our method is better than the pre-defined left and right translation
of images and simple stacking using CAMs as the mixing masks. The results also reveal that the mask
prediction network and spatial transformer network contribute to the improvements in TransformMix. NEW

4.7 Qualitative Analysis

We illustrated the learned mixing strategy in Figure 2 from Section 3. Apparently, the spatial transformer
network learns to separate the salient regions of the two input images by squeezing one image to the left
and another to the right. Based on the transformed images, the mask prediction network applies the mixing
masks that reveal the important areas of the input images. Moreover, the learned temperature value τ results
in a smooth mixing boundary between two objects (see Figure 4). We further validate that TransformMix
adapts to the mixing coefficient λ well in Figure 5. The mask prediction model learns to better reveal the
second image (the dog) with the increased value of λ.

! = 0.1 ! = 0.3 ! = 0.5 ! = 0.7 ! = 0.9

Figure 5: Illustration of the mixed outputs with increasing value of the mixing coefficient λ.

4.8 Mixing More Images

TransformMix can be generalized to mix more than 2 images. Figure 6 visualizes the learned mixing strategy
when mixing 3 input images on Tiny-ImageNet. The spatial transformer network learns to squeeze the input
images to different corners so that the salient regions do not overlap in the mixed results. We compare
the end classification performance of TransformMix mixing 3 input images on Tiny-ImageNet with Mixup,
CutMix and Co-mixup (Kim et al., 2021) in Table 6. Our method achieves higher top-1 and top-5 accuracy
scores over other baselines. Using the learned mixing strategy with 3 inputs also achieves slightly better
performance than 2 inputs on Tiny-ImageNet.

10
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Figure 6: Illustration of the mixing strategy for mixing 3 images from Tiny-ImageNet.

Table 6: The top-1 / top-5 accuracy (%) of different baselines and TransformMix with 2 and 3 input images
on Tiny-ImageNet.

Tiny-
ImageNet Simple Mixup Cutmix Co-Mixup TransformMix

(k = 2)
TransformMix

(k = 3)
top-1 57.23 56.59 56.67 64.15 65.72 66.03
top-5 73.65 73.02 75.52 - 85.0 85.16

5 Conclusion

This paper proposes an automated approach, TransformMix, to learn transformation and mixing augmenta-
tion strategies from data. Based on the class activation maps of the input images, TransformMix employs a
spatial transformer network to predict the transformation and a mask prediction network to blend the input
images. The mixing module is optimized through self-supervision signals given by a pre-trained teacher
network efficiently. Through qualitative and quantitive analysis, we demonstrate the effectiveness of Trans-
formMix in preserving the salient information and improving the end classification performance on multiple
datasets under the direct and transfer settings. As our method does not rely on transformations defined in a
specific domain, it is beneficial to study whether the method can be modified and deployed to other domains
and data modalities in the future.
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A Appendix

A.1 Comparing the features between various mixing methods

Table 7: Comparison between the properties of various sample-mixing data augmentation methods.

Mixup Cutmix SaliencyMix PuzzleMix SuperMix TransformMix

Saliency-aware
mixing

Saliency-aware
transformation

Natural blend of
images

Effective for image
classification

Fast inference time

Transferable
augmentation policy

= provides property; = partially provides property; = Not tested or does not provide property

A.2 Experiment on CIFAR-10

We test the effectiveness of TransformMix on the smaller CIFAR-10 dataset and compare the results with
Mixup and CutMix. Table 8 shows that TransformMix achieves higher top-1 accuracy than the other
baselines.

Table 8: Test-set Top-1 accuracy (%) on CIFAR-10 with ResNet-18 and WRN28-10

Simple Mixup Cutmix Transform-Mix
ResNet-18 95.28 95.55 96.22 96.40±0.026
WideResNet28-10 96.13 96.9 97.13 97.21±0.016

A.3 Additional experiment on Tiny-ImageNet

We compare the classification accuracy with strong baselines using the training protocol prescribed in Liu
et al. (2021). Table 9 shows that our proposed TransformMix is a strong method when compared with the
AutoMix baseline on Tiny-ImageNet.

A.4 Comparing Direct and Transfer classification

In this section, we compare the effectiveness between direct TransformMix and transfer TransformMix.
Specifically, we utilize the mixing module trained on CIFAR-10 to create new augmented images from unseen
CIFAR-100 and TinyImageNet. These new images are used to train a WRN-28×10 model on CIFAR-100
and a PreActResNet-18 model on Tiny-ImageNet from scratch using the same training protocol in the direct
classification experiments. Since Tiny-ImageNet has a larger image size than CIFAR-10, we resize the CAMs

14
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Table 9: Test-set Top-1 accuracy (%) for training ResNet-18 network on Tiny-ImageNet.

Simple MixUp CutMix ManifoldMix SaliencyMix
Tiny-ImageNet 61.68 63.86 65.53 64.15 64.60

PuzzleMix Co-Mixup ResizeMix AutoMix TransformMix
(Cont.) 65.81 65.92 63.74 67.33 67.65

to match the CIFAR-10 images before inputting them into the spatial transformer network. Table 10 shows
that the task models trained with TransformMix images outperform those with Input Mixup, Manifold
Mixup, and CutMix by a large margin. The experiment results of the transfer mixing module degrade only
slightly when compared to the direct mixing module, which is trained on the target datasets.

Table 10: Test-set Top-1 accuracy (%) for training the task network on CIFAR-100 and Tiny-ImageNet
datasets using the mixing module learned from CIFAR-10.

Simple Mixup Manifold
Mixup CutMix TransformMix

(transfer)
TransformMix

(direct)
CIFAR-100 78.86 81.73 82.60 82.50 84.02±0.045 84.07±0.05
Tiny-ImageNet 57.23 56.59 58.01 56.67 65.62±0.29 65.72±0.16

A.5 Knowledge Distillation

Table 11 compares TransformMix with SuperMix on the knowledge distillation task. We follow the Su-
perMix experiment, which uses a WRN-40-2 teacher model to provide the supervision signals for training
a ShuffleNetV1 student model on the CIFAR-100 dataset with TransformMix augmentation. Despite the
efforts to reproduce the results, we could not fully replicate the baseline performance reported by (Dabouei
et al., 2021). In our experiments, TransformMix improves the accuracy by 7.52% and 0.52% over the student
model trained with no sample-mixing and MixUp, respectively. The gains are comparable to the reported
results in SuperMix. This demonstrates the effectiveness of TransformMix beyond standard classification
and object detection tasks.

Table 11: Top-1 test accuracy of the student model trained using knowledge distillation method on CIFAR-
100. ∗Reported results from (Dabouei et al., 2021). †Reproduced results.

SuperMix∗ TransformMix†

Teacher Acc. 75.61 75.59
Student Acc. 70.50 69.24
w/ MixUp 77.44 76.24
w/ Method 78.07 76.76
Gain over Student +7.57 +7.52
Gain over MixUp +0.63 +0.52

A.6 Sensitivity analysis on network configurations

In TransformMix, the mask prediction network is implemented as a 3-layer convolutional neural network,
where each layer has a channel size of 32 and kernel size of 3x3. We test the sensitivity of our method to the
network configurations. Specifically, we compare the end performance of the ResNet-18 models trained on the
images created by TransformMix with different implementations of the mask prediction network. The task
model is trained on the CIFAR-100 dataset for 200 epochs, and the mask prediction network uses a different
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number of layers, channel size, and kernel size from {2, 3, 4}, {8, 16, 32, 64} and {3, 5, 7}, respectively.
We also explore the effect of using different α values in {0.2, 0.5, 1, 2, 3, 4} when sampling the mixing
coefficients. The experimental results illustrated in Figure 7a, 7b, 7c and 7d show that TransformMix is not
sensitive to the neural architecture design and the α parameter. It is also worth noting that our method does
not require fine-tuning additional parameters on new datasets. This is an advantage over existing methods
that require manual specification of additional hyperparameters, such as the label smoothness, data local
smoothness, transport cost, and neighbor size in PuzzleMix Kim et al. (2020); the roughness and sparsity
coefficients in SuperMix Dabouei et al. (2021).

(a) (b) (c) (d)

Figure 7: Sensitivity to different choices of (a) number of layers, (b) number of channels, (c) kernel size of the
mask prediction network and (d) mixing parameter α. The vertical axis shows the top-1 test-set accuracy
(%) and the horizontal axis shows the values of the tested configuration.

A.7 More visual illustrations of mixed output generated by TransformMix

We present more visualizations of the intermediate results and mixed images generated by TransformMix
on different datasets in Figure 8 and Figure 9. The illustrations show that TransformMix learns to separate
the salient regions of the input images and apply appropriate mixing masks to expose the salient regions on
the mixed results.
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Figure 8: More illustration of the mixed outputs from a non-curated set of eight images. From top to bottom,
the row indicates input image 1, input image 2, CAM of input image 1, input image 2, transformed input
image 1, transformed input image 2, predicted mask of input image 1, the predicted mask of input image 2,
and mixed result.
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Figure 9: More illustration of the mixed outputs from a non-curated set of eight images. From top to bottom,
the row indicates input image 1, input image 2, CAM of input image 1, input image 2, transformed input
image 1, transformed input image 2, predicted mask of input image 1, the predicted mask of input image 2,
and mixed result.
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