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ABSTRACT

A common way to defend models against adversarial examples (AEs) is to detect
them based on their different properties from normal examples (NEs). However,
current detection methods often suffer from poor generalization across model types
or attack algorithms. In this work, we observe that an auxiliary model, with a
different training strategy or architecture from the (target) primal model, tends
to predict differently on the primal model’s AEs but similarly on NEs. To this
end, we propose Prediction Inconsistency Detection (PID), which simply leverages
the above model prediction inconsistency, without training any detector. Experi-
ments on CIFAR-10 and ImageNet demonstrate the superiority of our PID over 5
state-of-the-art detection methods. Specifically, PID achieves an improvement of
4.70%∼8.44%, no matter whether the primal model is naturally or adversarially
trained, and across 3 white-box, 3 black-box, and 1 mixed attack algorithms. We
also show that using a naturally trained primal model and adversarially trained
auxiliary model in PID yields a high AUC of 91.92% (84.43%) against strong,
adaptive attacks on CIFAR-10 (ImageNet).

1 INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial examples (AEs) (Goodfellow et al., 2015;
Carlini & Wagner, 2017), which consist of carefully crafted imperceptible adversarial perturbations
and normal examples (NEs). AEs can mislead DNNs to output wrong predictions with high confidence
regardless of original classification accuracy. As a common way of defense against AEs, detection
methods aim to identify and reject AEs by leveraging their different properties from NEs (Xu et al.,
2018; Monteiro et al., 2019; Tian et al., 2021; Zhang et al., 2023).

AE detection has been extensively studied, in both white-box (Ma et al., 2018; Monteiro et al., 2019;
Tian et al., 2021; Zhang et al., 2023) and black-box (Xu et al., 2018; Tian et al., 2018) settings, based
on whether the defended model is known to the detector. However, existing methods still suffer
from poor generalization across model types or attack algorithms: (1) Most methods only consider
naturally trained models, but turn out to perform poorly on adversarially trained models. This largely
limits the potentially promising integration of AE detection and adversarial training techniques. (2)
Most methods only consider white-box attacks, but turn out to perform poorly on other (unseen)
black-box attacks (Aldahdooh et al., 2022).

To mitigate the above limitations, this paper proposes a black-box detection method exploiting the
prediction inconsistency of models on AEs vs. NEs. Specifically, we observe a clear discrepancy in
prediction results from the primary and auxiliary models on AEs, whereas their predictions remain
consistent on NEs. When the auxiliary model differs from the primal model, either due to variations
in training methods or differences in model architectures, it becomes more challenging for AEs
to cross the decision boundary of the auxiliary model, as illustrated in Figure 1. As a result, the
auxiliary model tends to assign low confidence scores to the labels predicted by the primal model. In
contrast, both primal and auxiliary models typically maintain consistent predictions on NEs. Based
on the above model prediction inconsistency, we design a simple yet flexible detection method named
Prediction Inconsistency Detection (PID).

Specifically, we design four metrics for PID to measure the prediction inconsistency Ipred between
the primal and auxiliary models. Among these metrics, the most effective one works as follows: first,
the primal model assigns a predicted hard label to the test sample; then, the confidence score on

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Adversarial examples against one (primal) model may not be adversarial against another
(auxiliary) model, leading to prediction inconsistency that can be exploited for detection.

the same label from the auxiliary model is acquired, which is then employed to calculate prediction
inconsistency Ipred. The higher the Ipred, the more likely the test sample is an AE. In addition to this
new metric, our PID does not need to train a separate detector, as in existing methods that also rely
on prediction inconsistency (Monteiro et al., 2019; Tian et al., 2021).

To summarize, our work makes the following contributions:

• We identify the significant prediction inconsistency between (the defended) primal model
and a different auxiliary model on AEs vs. NEs, motivating our novel black-box detection
method named PID without knowledge about the primal model and training any detector. In
particular, we design a new metric for measuring prediction inconsistency based on the hard
label from the primal model and that label’s confidence score from the auxiliary model.

• We conduct extensive experiments on CIFAR-10 and ImageNet, which demonstrate the
superior generalization of PID across different 2 model types (i.e., naturally and adversarially
trained models) and 7 attack algorithms (i.e., 3 white-box, 3 black-box, and 1 mixed attacks),
with an improvement of 4.70%∼8.44%.

• We demonstrate that using adversarially trained primal and/or auxiliary models yields better
robustness than using only naturally trained models. In particular, using a naturally trained
primal model and adversarially trained auxiliary model yields a high AUC of 91.92%
(84.43%) against strong, adaptive attacks on CIFAR-10 (ImageNet).

2 RELATED WORK

Adversarial Attacks. Adversarial attacks aim to mislead DNNs by adding imperceptible perturba-
tions to NEs. Based on the attackers’ knowledge, adversarial attacks can be roughly divided into
two categories, i.e., white-box adversarial attacks and black-box adversarial attacks. White-box
attacks assume full knowledge of the target model and include methods such as FGSM (Goodfellow
et al., 2015), PGD (Madry et al., 2018), AutoAttack (AA) (Croce & Hein, 2020), C&W (Carlini
& Wagner, 2017), and DeepFool (Moosavi-Dezfooli et al., 2016). Black-box attacks operate under
limited knowledge and can be classified into decision-based, score-based, and transfer-based methods.
Representative examples include Triangle Attack (TA) (Wang et al., 2022), Square (Andriushchenko
et al., 2020), and VNI-FGSM (Wang & He, 2021).

Detection of AEs. In contrast to defense methods, which focus on enhancing robust test accuracy,
detection methods identify and reject AEs by distinguishing them from NEs, thereby safeguarding
the model. Most detection methods treat the protected model as a white-box model, generating
AEs against the model to train the detector or extracting the features from the intermediate layers
to analyze the differences between AEs and NEs. Monteiro et al. (2019) proposed the Bi-model
Decision Mismatch Detector (BDMD), which uses the predicted soft labels from two models with
different architectures on AEs as features to train a detector for AE identification. Similarly, Tian
et al. (2021) introduced the Sensitivity Inconsistency Detector (SID), which trains a dual classifier
with an additional Weighted Average Wavelet Transform layer. Combined with the primary classifier,
the prediction inconsistency between the two classifiers is then used to train a detector to detect
AEs. In Zhang et al. (2023), EPS-AD was developed, where the pre-trained diffusion model (Song
et al., 2021) was adopted to estimate the expected perturbation score (EPS) of test samples, and
EPS-based maximum mean discrepancy was used as the metric to measure the discrepancy between
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(a) (b) (c) (d)

Figure 2: Confidence score distribution for “Airplane” label across primal and auxiliary models on
(a) NEs classified by the naturally trained VGG19, (b) AEs classified by the naturally trained VGG19,
(c) NEs classified by the adversarially trained VGG19, (d) AEs classified by the adversarially trained
VGG19, respectively. It can be observed that an auxiliary model, differing from the primary model
in training strategy or model architecture, tends to assign low confidence to the primary model’s
predictions on AEs, while preserving high confidence on NEs.

NEs and AEs. There are also some detection methods using the input transformation to disrupt the
perturbations to cause the prediction fluctuation, which treats the protected model as a black-box
model. Xu et al. (2018) proposed Feature Squeezing (FS), which reduces the perturbation space
via several feature squeezers. Inputs showing significant prediction inconsistency before and after
squeezing are flagged as adversarial.

3 METHOD

3.1 MOTIVATION

It is pointed out in Tian et al. (2021) that, AEs are sensitive to the fluctuation of the highly-curved
region of the decision boundary, which can be exposed by training a dual classifier having dissimilar
structures at the highly-curved regions with the original classifier while maintaining similar structures
at the other regions. Inspired by this phenomenon, we explore whether AEs are sensitive to the
fluctuation of decision boundaries caused by introducing auxiliary models, either with different
training methods or in different model architectures compared to the primal model.

Specifically, we adopt the naturally trained VGG19 (denoted as VGG19) as the primal model on
CIFAR-10 and select NEs that are correctly classified as “Airplane” by VGG19. Then four models
are used as auxiliary models: the naturally trained ResNet34 (denoted as ResNet34), the adversarially
trained ResNet34 (denoted as ResNet34 ADV), the naturally trained Vision Transformer (ViT)-
L/16 (Dosovitskiy et al., 2021) (denoted as ViT), and the naturally trained Contrastive Language-
Image Pre-Training (CLIP) model (Radford et al., 2021) (denoted as CLIP). Each auxiliary model
is used to classify these NEs, and the confidence scores for the “Airplane” label serve as an
intuitive indicator of sensitivity to decision boundary fluctuations, where lower scores indicate greater
sensitivity. Furthermore, we choose AEs (generated by PGD attack with perturbation size of 8/255)
that are wrongly classified as “Airplane” by VGG19 and use the same four auxiliary models to
classify them and obtain the corresponding confidence scores for the “Airplane” label.

The confidence score distributions for “Airplane” label across primal and auxiliary models on NEs
and AEs are depicted in Figure 2a and 2b, respectively. From these figures, we observe that for these
NEs classified as “Airplane” by the primal model, all four auxiliary models output high confidence
scores on the same label, with the CLIP model being slightly less confident. In contrast, for AEs
labeled as “Airplane” by VGG19, ResNet34 ADV, ViT, and CLIP assign notably low confidence
scores, while ResNet34 still gives high scores due to the transferability of AEs across Convolutional
Neural Networks (CNNs).

Similar experiments are implemented using the adversarially trained VGG19 (denoted as
VGG19 ADV) as the primal model on CIFAR-10. NEs and AEs predicted as “Airplane” by
VGG19 ADV are selected, and their confidence score distributions across primal and auxiliary
models are presented in Figure 2c and Figure 2d, respectively. It can be observed that four auxiliary
models still assign low confidence scores for the AEs labeled as “Airplane” by VGG19 ADV. Fur-
thermore, among the auxiliary models working with both naturally and adversarially trained models,
ViT tend to assign the lowest confidence scores to the labels predicted by the primal model for AEs.
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Based on the observations from our motivation experiments, we propose a detection method named
Prediction Inconsistency Detection (PID), which can work with both naturally and adversarially
trained models by introducing an auxiliary model and exploiting the model prediction inconsistency
to tell NEs and AEs apart. The experiments above show that AEs are sensitive to decision boundary
fluctuations caused by introducing auxiliary models, whether trained using different approaches (e.g.,
natural vs. adversarial training) or featuring distinct architectures (e.g., CNN vs. ViT). This sensitivity
manifests as a noticeable drop in the confidence scores assigned by the auxiliary model to the hard
labels predicted by the primary model. As illustrated in Figure 2, this prediction inconsistency is
minimal for NEs but pronounced for AEs, making it an intuitive and effective signal for detection.
The details of PID are given as follows.

3.2 DESIGN OF PID

Preliminaries. Let f(·) denote the primal model, which is the k-class classifier, and its output is
hard label y = argmaxi{fi(x)}, where fi(x) ∈ [0, 1] is the i-th class confidence score of the input
x, and i = 1, 2, · · · , k. Since our detection method is designed to work with both naturally and
adversarially trained models, the primal model f(·) can also be obtained through adversarial training
and its variants (Wong et al., 2020; Jia et al., 2024). g(·) represents the other k-class classifier used as
the auxiliary model, and it outputs the confidence score g(x) = {g1(x), g2(x), · · · , gk(x)}, where
gj(x) ∈ [0, 1] is the j-th class confidence score of the input x, and j = 1, 2, · · · , k.

Figure 3: Overview of the proposed Prediction
Inconsistency Detection (PID) for detecting AEs.
The test sample are fed into primal and auxiliary
models, respectively, to obtain the prediction in-
consistency Ipred by using the designed metrics. If
Ipred exceeds a threshold value, the test sample is
judged to be adversarial.

Metrics for Quantifying Prediction Inconsis-
tency. The process of PID is illustrated in Figure
3, where 4 metrics are designed for measuring
the prediction inconsistency.

Metric 1. First, the test sample x is input into the
primal model f(·) and the assigned label y can
be acquired. Then x is input into the auxiliary
model g(·), and the confidence score gy(x) cor-
responding to label y is obtained. Metric 1 for
quantifying the prediction inconsistency Ipred
can be calculated as,

y = argmaxi{fi(x)},
Ipred = 1− gy(x). (1)

If x is an NE, Ipred tends to be small (approach-
ing 0), as a model trained on the same dataset is likely to classify it correctly with high confidence.
Conversely, if x is an AE, Ipred can be large (approaching 1), especially when the attack fails to fool
the auxiliary model g(·). Even when x successfully misleads g(·), a low confidence score can still
result in a high Ipred, making the AE more detectable.

Many detection methods (Xu et al., 2018; Tian et al., 2021) leverage differences between soft labels
to estimate the likelihood of a test sample being adversarial. Following this idea, we propose metrics
based on the soft label discrepancies between the primal and auxiliary models to quantify prediction
inconsistency and detect AEs. For the rest of other metrics described in this subsection, both k-
class classifiers f(·) and g(·) output confidence scores, where f(x) = {f1(x), f2(x), · · · , fk(x)},
g(x) = {g1(x), g2(x), · · · , gk(x)}.

Metric 2. We define Metric 2 as follows,

y = argmaxi{fi(x)},
Ipred = fy(x)− gy(x), (2)

where fy(x) and gy(x) denote the confidence scores for label y from f(·) and g(·), respectively.

Metric 3. In Metric 3, prediction inconsistency is calculated using the ℓ1 norm of the differ-
ence between selected components of two prediction vectors. Specifically, we first sort confi-
dence scores f(x) in descending order and select the n highest confidence scores f(x)top−n =
{fy1

(x), fy2
(x), · · · , fyn

(x)} and corresponding labels {y1, y2, · · · , yn}. Then we obtain the
confidence scores from g(x) corresponding to labels {y1, y2, · · · , yn}, which are denoted as
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g(x)top−n = {gy1
(x), gy2

(x), · · · , gyn
(x)}, and the prediction inconsistency is represented by

Ipred = ∥f(x)top−n − g(x)top−n∥1. (3)

Metric 4. In Metric 4, we use the ℓ1 norm of the difference between the entire prediction vectors f(x)
and g(x) to measure the prediction inconsistency, which can be described as

Ipred = ∥f(x)− g(x)∥1. (4)

A test sample is identified to be adversarial if the calculated Ipred exceeds the pre-defined threshold.
Note that although we evaluate all four metrics, Metric 1 is ultimately adopted for implementing the
proposed PID, while the results for the remaining three are presented and discussed in Section 4.4.

Choice of Auxiliary Models. Previous studies have explored improving the transferability of
AEs (Wang & He, 2021; Lin et al., 2019), showing that well-crafted AEs can often transfer between
naturally trained CNN models. However, transferring AEs from a naturally trained CNN to an
adversarially trained CNN remains challenging, which is also verified by our exploration shown
in Figure 2b and 2d. This observation suggests that adversarially trained CNN models can serve
as effective candidates for the auxiliary model in the proposed PID. Additionally, Mahmood et al.
(2021) reported that AEs generated for CNNs struggle to fool ViT models (Dosovitskiy et al., 2021),
potentially due to architectural differences. This makes ViTs another strong candidate for the auxiliary
model, as they can effectively reveal prediction inconsistencies when facing AEs. Furthermore, pre-
trained foundation models trained on large-scale datasets using self-supervised or weakly supervised
learning can generalize across multiple downstream tasks (Awais et al., 2025), including the image
classification task. Among them, the CLIP model (Radford et al., 2021), with its distinct architecture
and outstanding zero-shot ability, can also be adopted as the auxiliary model to expose AEs.

Although several options are available for auxiliary models, as observed in Figure 2, ViT-L/16
exhibits the most significant prediction inconsistency from the primal model for AEs. As a result, we
adopt ViT-L/16 as the default auxiliary model in our experiments to demonstrate the effectiveness of
our black-box detection method. Results using adversarially trained CNNs and CLIP as auxiliary
models are provided and analyzed in Section 4.4. Specifically, on CIFAR-10, we use adversarially
trained ResNet34 (denoted as ResNet34 ADV) and CLIP-ViT-L/14, while on ImageNet, we employ
adversarially pre-trained ConvNeXt-S (Liu et al., 2022) (denoted as ConvNeXt-S ADV) and CLIP-
ViT-L/14.

4 EVALUATION

4.1 EXPERIMENTAL SETTINGS

Datasets and Models. Two datasets, CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng et al.,
2009), are adopted. For inference, we use the full test set of CIFAR-10, where images correctly
classified by primal models are selected and attacked. On ImageNet, we randomly select 1000
correctly classified images (one per class) from the validation set for each primal model.

On CIFAR-10, we train the VGG19 model (Simonyan & Zisserman, 2015) under both natural and
adversarial settings. On ImageNet, we use the ResNet50 model (He et al., 2016), and adopt pre-
trained versions from both training settings. We adopt the ViT-L/16 model (Dosovitskiy et al., 2021)
pre-trained on ImageNet as the auxiliary model in our PID. When evaluating on CIFAR-10, we
fine-tune ViT-L/16 on the same dataset. Details of the primal and auxiliary models, as well as models
used for implementing transfer-based black-box attacks, are provided in Section A.1.

Attack Algorithms. To comprehensively verify the effectiveness of PID, we adopt white-box, black-
box, and mixed adversarial attacks. Particularly, to simulate a challenging adversarial environment,
we (1) employ three types of black-box adversarial attacks, given their growing threat in real-world
applications, and (2) vary attack parameters to generate perturbations of different magnitudes.

Table 1 summarizes the specific perturbation constraints for three types of attacks. Specifically, for
PGD and AA, we set the ℓ∞-constraint to ϵ = 1/255 and 8/255. For C&W, we choose κ = 0 and 1,
where κ controls the confidence level of AEs. For VNI-FGSM, we set ℓ∞-constraint to ϵ = 8/255
on CIFAR-10 and ϵ = 16/255 on ImageNet, respectively. More details of each implemented attack
are given in Section A.2.
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Table 1: Parameters of the implemented attack algorithms.

Types Attack Norm Constraint

White-box PGD ℓ∞ 1/255, 8/255
White-box C&W ℓ2 -
White-box DeepFool ℓ2 -

Score-based black-box Square ℓ∞ 8/255
Decision-based black-box TA ℓ2 -
Transfer-based black-box VNI-FGSM ℓ∞ 8/255 or 16/255

Mixed AA ℓ∞ 1/255, 8/255

Baseline Detections. We compare
our PID with 5 detection methods,
namely FS (Xu et al., 2018), Diff-
Pure (Nie et al., 2022), BDMD (Mon-
teiro et al., 2019), SID (Tian et al.,
2021), and EPS-AD (Zhang et al.,
2023). Among them, FS and Diff-
Pure are black-box detection methods,
while BDMD, SID, and EPS-AD are
white-box detection methods. Each method is combined with the naturally and adversarially trained
models, respectively.

FS and DiffPure serve as baselines on both the CIFAR-10 and ImageNet datasets. Notably, DiffPure
is originally designed as a defense method, and we modify it as a black-box detection method
considering the superior performance of the diffusion model on denoising images (Song et al., 2021;
Ho et al., 2020). BDMD is evaluated on both CIFAR-10 and ImageNet, whereas SID is only applied
to CIFAR-10, as training the dual classifier with the Weighted Average Wavelet Transform layer (Tian
et al., 2021) on large-scale datasets like ImageNet is computationally expensive. Consistent with the
original evaluation (Tian et al., 2021), we do not apply SID to ImageNet. Meanwhile, we compare
PID with EPS-AD on ImageNet instead. Additionally, these three white-box detection methods
will also be evaluated in a black-box detection scenario for a fair comparison with our black-box
detection PID. We adjust the parameters of all detection methods to obtain their best performance.
More detailed information are provided in Section A.3.

Evaluation Metrics. We use the AUC score, the Area Under the Receiver Operating Characteristic
curve, to evaluate detection performance. This widely adopted metric provides an aggregate measure
across all possible detection thresholds and serves as a unified index in prior works (Xu et al., 2018;
Zhang et al., 2023; Tian et al., 2021; Ma et al., 2018). In addition, for each detection, we report the
True Positive Rate (TPR) at a fixed False Positive Rate (FPR) of 5%.

4.2 EXPERIMENTAL RESULTS

Results on CIFAR-10. The evaluation of detection methods using AUC scores is summarized in
Table 2, and TPRs at a fixed FPR can be found in Section A.4. As described in Section 3.2, our
proposed PID is a black-box detection method, which utilizes the outputs of primal models without
access to their internal outputs or parameters. For a fair comparison, BDMD and SID are first
performed in a black-box way. To be specific, BDMD and SID are trained using the AEs against
naturally and adversarially trained VGG16 models and evaluated on the AEs against naturally and
adversarially trained VGG19 models, respectively. More details on implementation are provided
in Section A.3. Meanwhile, the BDMD and SID in the white-box detection scenario are also
implemented (denoted as BDMD* and SID* in Table 2, respectively).

As shown in Table 2, PID consistently achieves high AUC scores with both naturally and adversarially
trained VGG19 models, reaching average scores of 99.29% and 99.30%, respectively. When working
with the naturally trained primal model, DiffPure also achieves a good detection performance with
an average AUC score of 94.59%, demonstrating its effectiveness on denoising AEs. In contrast,
the performance of FS degrades dramatically when detecting strong attacks, which results from that
strong AEs are actually more robust than NEs after being squeezed.

For BDMD, its performance drops significantly against Square and TA attacks. This can be attributed
to that, when the primal model is naturally trained, strong attacks such as PGD can induce high-
confidence misclassifications, whereas score-based and decision-based attacks typically stop once
successful, resulting in lower confidence predictions. These differences result in the poor general-
ization of the BDMD across various attacks. For SID in the black-box scenario, its performance
is limited, especially when detecting small-scale AEs such as PGD-1/255 and AA-1/255. After
performing SID in the white-box scenario, where the detector is trained and tested on AEs generated
by the same attack against the same primal model, its performance improves, reaching an average
AUC score of 87.58%. Nevertheless, this score remains constrained.

When combined with adversarially trained models, FS, DiffPure, and SID show a decline in perfor-
mance, with average AUC scores falling below 80%, whereas BDMD achieves an AUC of 90.86%.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison of AUC scores (%) of detecting AEs on CIFAR-10, where NAT (ADV) means
the primal model is naturally (adversarially) trained. BDMD* and SID* are not directly comparable
to others since they are in the ideal, white-box scenario.

Primal Detection PGD PGD AA AA C&W C&W DeepFool Square TA VNI-FGSM Average
Model Method ϵ = 1

255 ϵ = 8
255 ϵ = 1

255 ϵ = 8
255 κ = 0 κ = 1

NAT

FS 83.84 56.76 87.24 63.11 93.58 89.47 92.15 92.96 93.10 71.42 82.36

DiffPure 88.93 97.75 91.57 97.90 95.09 95.00 97.02 92.91 92.80 96.92 94.59

BDMD 88.05 98.48 89.57 98.66 66.10 71.38 85.60 22.58 5.88 95.12 72.14

BDMD* 91.53 98.09 91.81 98.75 75.87 79.01 89.10 35.41 20.71 95.87 77.62

SID 67.83 92.84 70.59 90.52 79.29 79.30 83.14 89.31 95.36 73.03 82.12

SID* 68.09 99.35 72.23 99.23 85.54 86.21 86.83 94.98 97.65 85.65 87.58

PID (Ours) 99.81 98.54 99.85 98.71 99.93 99.45 99.86 99.88 99.85 97.02 99.29

ADV

FS 49.40 58.22 49.29 61.67 81.79 84.22 70.81 55.29 76.40 50.88 63.80

DiffPure 50.81 74.55 50.77 76.38 87.00 88.55 83.77 63.60 84.38 52.77 71.26

BDMD 81.93 98.02 77.11 97.83 94.00 97.55 95.00 92.72 95.76 78.71 90.86

BDMD* 88.54 98.25 82.05 98.20 94.68 97.34 95.29 94.11 95.88 80.98 92.53

SID 51.96 75.90 40.09 78.08 89.92 87.07 89.64 82.80 90.42 52.49 73.84

SID* 63.15 75.69 51.67 76.25 90.10 89.27 92.28 80.80 93.52 62.88 77.56

PID (Ours) 99.87 99.68 99.88 99.69 99.91 99.90 99.55 99.82 99.82 94.90 99.30

Table 3: Comparison of AUC scores (%) of detecting AEs on ImageNet, where NAT (ADV) means the
primal model is naturally (adversarially) trained. BDMD* and EPS-AD* are not directly comparable
to others since they are in the ideal, white-box scenario.

Primal Detection PGD PGD AA AA C&W C&W
DeepFool Square TA VNI-FGSM AverageModel Method ϵ = 1

255 ϵ = 8
255 ϵ = 1

255 ϵ = 8
255 κ = 0 κ = 1

NAT

FS 91.50 24.48 90.07 32.08 92.46 84.79 95.43 87.64 88.17 74.75 76.14

DiffPure 96.38 97.59 97.70 97.97 91.53 95.42 86.55 85.22 83.62 96.30 92.83

BDMD 93.89 93.86 94.45 93.88 93.32 93.65 92.07 91.20 90.92 92.59 92.98

BDMD* 93.04 93.46 93.76 93.34 92.51 93.07 90.90 89.47 89.94 92.43 92.19

EPS-AD 96.64 99.89 96.90 99.77 92.07 99.84 55.48 62.43 55.55 99.38 85.80

EPS-AD* 99.33 99.91 99.55 99.88 94.85 99.95 57.55 65.24 58.68 99.95 87.49

PID (Ours) 98.45 98.54 98.74 98.90 98.17 98.20 98.36 97.80 97.80 98.11 98.31

ADV

FS 48.86 72.00 49.04 75.59 72.07 76.89 74.75 59.99 81.39 62.77 67.34

DiffPure 47.33 82.71 50.26 86.91 56.96 72.16 78.09 58.32 79.41 62.18 67.43

BDMD 61.74 81.87 61.78 81.97 68.35 79.04 78.53 75.39 81.91 68.70 73.93

BDMD* 58.73 81.94 59.98 81.74 67.73 78.18 79.31 73.00 81.78 68.93 73.13

EPS-AD 87.56 99.83 85.48 99.89 96.58 99.82 94.36 66.03 85.76 100.00 91.53

EPS-AD* 95.20 99.12 95.27 99.14 97.78 99.65 95.52 65.35 88.60 100.00 93.56

PID (Ours) 95.98 96.17 98.20 97.83 97.23 97.11 98.06 96.90 98.34 92.23 96.81

In contrast, our PID still reaches the highest AUC score, exhibiting its good generalization and
flexibility. This performance gap can be explained by two key factors. First, adversarial training
makes the model less overconfident (Grabinski et al., 2022), leading to less noticeable differences in
predictions before and after image transformations or denoising, which weakens methods that rely on
such differences. Second, the increased robustness of adversarially trained models leads to fewer
successful AEs, resulting in insufficient training samples for the detector.

Results on ImageNet. The evaluation of detection methods using AUC scores is shown in Table 3,
and TPRs at a fixed FPR can be found in Section A.4. In the black-box detection scenario, BDMD
and EPS-AD are trained using the AEs against naturally and adversarially trained ResNet101 models
and evaluated on the AEs against naturally and adversarially trained ResNet50 models, respectively.
Further implementation details can be found in Section A.3. For the white-box detection scenario,
BDMD and EPS-AD are also implemented (denoted as BDMD* and EPS-AD* in Table 3). It is
worth noting that this setup is relatively mild, as the primal models employed in the training and
evaluation of the detector share very similar architectures.
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Table 4: Detection performance of AUC scores
(%) on PGD vs. an adaptive attack.

Dataset Primal Model Auxiliary Model PGD Adaptive

CIFAR-10

NAT
ResNet34 ADV 96.56 91.92

ViT-L/16 98.54 72.20
CLIP-ViT-L/14 97.55 33.44

ADV
ResNet34 ADV 91.46 76.43

ViT-L/16 99.68 51.82
CLIP-ViT-L/14 98.75 16.27

ImageNet

NAT
ConvNeXt-S ADV 97.53 84.43

ViT-L/16 98.54 27.39
CLIP-ViT-L/14 95.91 16.18

ADV
ConvNeXt-S ADV 97.26 65.93

ViT-L/16 96.17 23.60
CLIP-ViT-L/14 96.13 8.04

Table 5: Detection performance of PID by em-
ploying different metrics for quantifying predic-
tion inconsistency on CIFAR-10. The average
AUC scores (%) over 10 attacks are shown, with
full results available in Section A.7.

Metric NAT ADV

Ipred = −gy(x) 99.29 99.30
Ipred = fy(x)− gy(x) 98.58 96.74

Ipred = ∥f(x)top−n − g(x)top−n∥1 98.75 77.76
Ipred = ∥f(x)− g(x)∥1 98.96 78.94

It can be seen from Table 3 that, our PID still outperforms other detection methods when combined
with both naturally and adversarially trained models. Experimental results in Table 3 is obtained on
the randomly sampled 1000 images (one from each class). To mitigate the effect of randomness,
we additionally sample two separate sets of 1000 images each, and the experimental results can be
found in Section A.5. In contrast, the detection performance of FS, DiffPure, and BDMD exhibits
a noticeable decrease after working with the adversarially trained model. While EPS-AD exhibits
strong performance in detecting AEs across multiple attack types, its effectiveness drops significantly
when faced with score-based and decision-based black-box attacks, i.e., Square and TA attacks, either
combined with naturally or adversarially trained models. This also emphasizes the necessity of
introducing black-box attacks in the reliable evaluation of detection methods.

4.3 ADAPTIVE ATTACKS

We now evaluate the robustness of our PID under the adaptive attack, where the attacker has
access to the full knowledge of both primal and auxiliary models and aims to mislead both models
simultaneously. Since Metric 1 is used in PID, i.e., Ipred = 1− gy(x), an intuitive adaptive attack
strategy is to maximize gy(x). To achieve this, we design three adaptive attacks. The strongest attack
is presented below, while detailed information on the other two is provided in Section A.6.

To be specific, we (1) perform an untargeted attack on f(·) to force it to predict a wrong label, and
(2) jointly attack both f(·) and g(·) to make g(·) misclassify the AE into the same wrong label. This
process can be formulated as follows,

Find r1 s.t. t = argmax
i

fi(x+ r1), t ̸= ytrue, ∥r1∥∞ ≤ ϵ, (5)

r2 = arg min
∥r1+r2∥∞≤ϵ

[
L
(
f(x+ r1 + r2), t

)
+ λL

(
g(x+ r1 + r2), t

)]
, (6)

where ytrue is the ground-truth label of x, L(·, ·) is the loss function, ϵ is the perturbation constraint,
and λ is a trade-off parameter. We use the PGD attack strategy to find perturbations r1 and r2, where
r1 is obtained by increasing the loss L

(
f(x+ r1), ytrue

)
, and r2 is obtained following Eq.6 after r1

cause the misclassification. To ensure strong attack performance, the perturbation constraint is set to
ϵ = 8/255, with total 100 iterations and a step size 1/255. Furthermore, we set λ = 99 to encourage
g(·) assign high confidence to the wrong label t.

Table 4 reports the performance of PID against the two-phase adaptive attack on CIFAR-10 and
ImageNet with three kinds of auxiliary models. PID maintains relatively strong detection performance
with adversarially trained CNNs, benefiting from the robustness of adversarial training (AT) and the
distinct decision boundaries between differently trained models. However, PID shows the apparent
performance drop when the auxiliary models are ViT or CLIP, likely due to their vulnerability to
adversarial threats (Mahmood et al., 2021; Zhang et al., 2022), which enables the adaptive attack to
jointly fool both primal and auxiliary models.

It is worth noting that adaptive attacks represent an idealized threat model where the attacker has full
knowledge of both the classifier and the detector, under which many detection methods have been
shown to fail (Tramer et al., 2020; Tramer, 2022). Since AT is widely regarded as a strong defense,
PID’s ability to incorporate AT ensures that future improvements in AT can be directly leveraged,
further enhancing its robustness against adaptive attacks.
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4.4 ABLATION STUDY

Metrics for Quantifying Prediction Inconsistency. Here, we discuss how the metrics for quantifying
prediction inconsistency impact the effectiveness of the PID. Four metrics described in Section 3.2
are employed to measure prediction inconsistency for implementing PID, where we use n = 3 in
Metric 3. The experimental results on CIFAR-10 are summarized in Table 5.

It can be observed that four metrics yield similar results when the protected primal model is naturally
trained, yet Metric 1 remains the best. However, after the primal model is adversarially trained,
Metric 3 and 4 lead to a performance drop, whereas Metric 1 still enables PID to achieve strong
detection performance. This drop occurs because adversarial training reduces the primal model’s
overconfidence on both NEs and AEs, causing the differences between confidence scores from f(x)
and g(x) to increase for NEs and decrease for AEs, particularly for weak AEs with low confidence
on incorrectly predicted labels. The reduced disparity makes it more difficult for other metrics to
distinguish NEs from AEs. In contrast, Metric 1 relies only on the hard label from f(x), avoiding the
fluctuations in confidence scores introduced by the training strategy, and thus allowing PID to remain
consistently effective.

Table 6: Detection performance of PID by em-
ploying different models as the auxiliary model
on CIFAR-10 and ImageNet, where NAT (ADV)
means the primal model is naturally (adversari-
ally) trained. The average AUC scores (%) over
10 attacks are shown, with full results available in
Section A.8.

Dataset Auxiliary Model NAT ADV

CIFAR-10

ResNet34 ADV 95.14 92.75

ViT-L/16 99.29 99.30
CLIP-ViT-L/14 98.36 98.37

ImageNet

ConvNeXt-S ADV 96.93 95.06

ViT-L/16 98.31 96.81
CLIP-ViT-L/14 95.34 94.28

Choice of Auxiliary Model. As discussed in
Section 3.2, in addition to ViT, the adversar-
ially trained CNN and CLIP model can also
serve as the auxiliary model in our PID. The cor-
responding experimental results for PID using
these three kinds of auxiliary models on CIFAR-
10 and ImageNet are summarized in Table 6.

Across both datasets, PID remains stable and
effective in detecting AEs, regardless of the aux-
iliary model used. Specifically, ViT-L/16 con-
sistently achieves the highest AUC scores with
both naturally or adversarially trained models,
which can be attributed to its high clean accu-
racy and significant architecture difference from
CNNs. Although the detection performance of
the adversarially trained CNN and CLIP mod-
els varies across datasets, their average AUC
scores still surpass those of the other five base-
lines shown in Table 2 and 3, confirming the
effectiveness and the flexibility of the proposed PID.

The computational costs of PID with the three auxiliary models, compared to other baseline detections,
are reported in Section A.9, demonstrating that PID remains lightweight even when using large-scale
auxiliary models. Furthermore, Section A.10 explores a broader range of auxiliary models, with
results confirming that PID generalizes well across diverse auxiliary architectures.

5 CONCLUSION

This paper proposes a lightweight detection method named PID, which leverages the prediction
inconsistency between the primal and auxiliary models to detect AEs without requiring any prior
model-specific knowledge or training a separate detector. Our method demonstrates strong generaliza-
tion, as it not only maintains compatibility with both naturally and adversarially trained models, but
also achieves consistently high detection performance across a comprehensive evaluation, including
white-box, black-box, and mixed attacks with varying strengths on two widely used datasets.

ETHICS STATEMENT

This work develops a lightweight method for detecting adversarial examples, which does not involve
potential violations of the Code of Ethics. Authors read the Code of Ethics, adhere to it, and explicitly
acknowledge this during the submission process.
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REPRODUCIBILITY STATEMENT

The detailed information about the implementation of the proposed PID is provided in Section 3.2 and
Section 4.1. The data used in this paper is open-source, and the selection process is stated in Section
4.1. Experimental settings are stated in Section 4.1, and further details are provided in Section A.1 to
Section A.3 in Appendix. The code is included in the supplementary material, along with sufficient
instructions to faithfully reproduce the main experimental results.
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A APPENDIX

A.1 DETAILS ON EMPLOYED MODELS

Primal Models. On CIFAR-10, we adopt VGG19 as the primal model. Under natural training, the
model is trained for 150 epochs with a batch size of 128 using the SGD optimizer, with a weight
decay of 5× 10−4. The initial learning rate is 0.1, which is reduced by a factor of 0.1 at the 50th and
100th epochs. It achieves 92.21% accuracy on the CIFAR-10 test set. For adversarial training, we
follow Madry et al. (2018) and use PGD with an ℓ∞ perturbation bound of 8/255, step size of 2/255,
and 10 iterations. The model is adversarially trained for 200 epochs with a batch size of 128, starting
from an initial learning rate of 0.005, decayed by 0.1 at the 50th and 100th epochs. It achieves 74.19%
accuracy on the CIFAR-10 test set. On ImageNet, we adopt ResNet50 as the primal model and adopt
pre-trained weights under both natural1 and adversarial2 training settings.

Auxiliary Models. In this work, the employed auxiliary models fall into three categories: adversarially
trained CNNs, ViTs, and CLIP models. For adversarially trained CNNs, we adopt the adversarially
trained ResNet34 (denoted as ResNet34 ADV) on CIFAR-10, which is trained under the same setting
as the adversarially trained VGG19. It achieves 83.44% accuracy on the CIFAR-10 test set. On
ImageNet, we adopt the pre-trained ConvNeXt-S under the adversarial training settings2 (denoted as
ConvNeXt-S ADV). For ViTs, we use the pre-trained ViT-L/163 on ImageNet. On CIFAR-10, we
fine-tune it for 20 epochs with a learning rate of 1× 10−5, achieving 98.35% test accuracy. For CLIP
models, we use the pre-trained CLIP-ViT-L/144 on both CIFAR-10 and ImageNet.

Models in Transfer-based Black-box Attacks. To implement the VNI-FGSM attack on both
CIFAR-10 and ImageNet, we train substitute models with architectures similar to the corresponding
primal models to enhance adversarial transferability. On CIFAR-10, we use the naturally trained
VGG13, which is trained under the same setting as the naturally trained VGG19, achieving 92.84%
test accuracy. On ImageNet, we adopt the pre-trained ResNet1521.

A.2 DETAILS ON IMPLEMENTED ATTACKS

White-box attacks. The ℓ∞-constraints of PGD attack are set to 1/255 and 8/255. The former uses a
step size of 1/255 with 2 iterations, while the latter uses a step size of 2/255 with 10 iterations. For
C&W attack, the hyper-parameter κ that controls the confidence level of the generated AE is set to
be 0 and 1 to generate AEs with different strengths. For DeepFool attack, the maximum numbers of
iterations are 30 and 500 on CIFAR-10 and ImageNet, respectively, and the constant used to enlarge
the last step to cross over the decision boundary is 0.02.

Black-box attacks. The constraint of Square attack is set to 8/255, and the query limits are set as
follows: 5000 for the naturally trained model on CIFAR-10, 10,000 for the adversarially trained model
on CIFAR-10, 10,000 for the naturally trained model on ImageNet, and 20,000 for the adversarially
trained model on ImageNet. Following the implementation of TA in Wang et al. (2022), the maximum
number of iterations in each subspace N = 2, and the dimension of directional line d = 3. For
updating angle α, the change rate γ = 0.01, the constant λ = 0.05, and the parameter restricting the
upper and lower bounds τ = 0.1 are used. The query numbers are set to be 500 and 1000 on CIFAR-
10 and ImageNet, respectively. For the transfer-based VNI-FGSM attack, VGG13 and ResNet152
models are used as substitute models on CIFAR-10 and ImageNet, respectively. Following Wang
& He (2021), the number of sampled examples in the neighborhood N = 20, the upper bound of
neighborhood β = 1.5, and the decay factor µ = 1.0. The perturbation sizes are set to ϵ = 8/255
and ϵ = 16/255 on CIFAR-10 and ImageNet, respectively, the number of iteration n = 10, and step
size α = ϵ/n.

Mixed attacks. AA is an ensemble attack consisting of the untargeted APGD-CE, targeted APGD-
DLR, targeted FAB, and the untargeted Square attack with 5000 query times. The ℓ∞-constraints of

1https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.
py

2https://github.com/thu-ml/ares/tree/main/robust_training
3https://github.com/pytorch/vision/blob/main/torchvision/models/vision_

transformer.py
4https://huggingface.co/openai/clip-vit-large-patch14
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Table 7: ASR (%) of each attack on CIFAR-10 and ImageNet, where NAT (ADV) means the primal
model is naturally (adversarially) trained.

Dataset
Primal PGD PGD AA AA C&W C&W

DeepFool Square TA VNI-FGSMModel ϵ = 1
255 ϵ = 8

255 ϵ = 1
255 ϵ = 8

255 κ = 0 κ = 1

CIFAR-10
NAT 38.21 100.00 46.31 100.00 100.00 100.00 100.00 99.87 99.80 89.35

ADV 4.92 45.37 6.36 50.51 62.37 77.92 100.00 44.68 99.73 3.48

ImageNet
NAT 95.20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.70 97.70

ADV 10.50 75.50 13.30 81.50 30.90 70.70 100.00 62.00 99.40 9.24

AA are set to be 1/255 and 8/255 for each model on CIFAR-10 and ImageNet. When implementing
AA against the adversarially trained model on ImageNet, untargeted versions of APGD-DLR and
FAB attacks are used instead, due to high computational cost.

Except for TA, which is implemented using the code5 provided by authors, all other adversarial
attacks are conducted using torchattacks (Kim, 2020), and the attack success rate (ASR) of each
attack is shown in Table 7. It can be observed from Table 7 that adversarially trained models are
still vulnerable to black-box attacks, and this phenomenon has also been observed and demonstrated
in Dong et al. (2020). In addition, the performance of some detection methods can be distorted
by black-box attacks (Aldahdooh et al., 2022). As a result, it is crucial to evaluate both detection
and defense methods using the black-box attack scenario. Moreover, a detection-based module that
complements defended models needs further exploration.

A.3 DETAILS ON DETECTION BASELINES

Five detection methods are employed in our evaluation for comparison, and their implementation
details are introduced as follows. We adjust the parameters of these detection baselines to obtain the
best detection performance.

Feature Squeeze (FS) (Black-Box Detection). Bit depth squeezer, local smoothing squeezer, and
non-local smoothing squeezer are adopted in our work, consistent with those used in Xu et al. (2018),
and the implementation follows the released code6. We reduce the original 8-bit images in test sets
of two datasets to 5-bit images. Local smoothing squeezer is the median smoothing method with
the 2 × 2 sliding window, where the center pixel is located at the lower right, and reflect padding
is used for pixels on the edge. These two squeezers remain invariant when implementing FS. For
the non-local smoothing squeezer, a variant of the Gaussian kernel is used. In different settings, the
following parameters are applied:

• For the naturally trained VGG19 on CIFAR-10, we set the search window size a = 13,
patch size b = 3, and filter strength c = 2.

• For the adversarially trained VGG19 on CIFAR-10, the parameters are a = 13, b = 3, and
c = 4.

• For the naturally trained ResNet50 on ImageNet, the parameters are a = 11, b = 3, and
c = 4.

• For the adversarially trained ResNet50 on ImageNet, we use a = 11, b = 2, and c = 3.

The calculation of the probability of a test sample being an AE strictly follows Xu et al. (2018).

DiffPure (Black-Box Detection). DiffPure is originally designed as a defense method, and we
modify it as a black-box detection method in this work. We use the strategies described in Nie et al.
(2022) to purify the inputs, following the released code7, where the pre-trained diffusion models
Score-SDE (Song et al., 2021) and Guided Diffusion (Dhariwal & Nichol, 2021) on CIFAR-10 and
ImageNet are adopted, respectively. On CIFAR-10, timesteps t∗ = 0.10 and t∗ = 0.15 are used for
the naturally and adversarially trained VGG19 models, respectively. On ImageNet, t∗ = 0.15 and
t∗ = 0.30 are employed for the naturally and adversarially trained ResNet50 models, respectively.

5https://github.com/xiaosen-wang/TA
6https://github.com/mzweilin/EvadeML-Zoo
7https://github.com/NVlabs/DiffPure

14

https://github.com/xiaosen-wang/TA
https://github.com/mzweilin/EvadeML-Zoo
https://github.com/NVlabs/DiffPure


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 8: Comparison of TPRs (%) of detecting AEs on CIFAR-10, where FPR is fixed at 5%, and
NAT (ADV) means the primal model is naturally (adversarially) trained. BDMD* and SID* are not
directly comparable to others since they are in the ideal, white-box scenario.

Primal Detection PGD PGD AA AA C&W C&W
DeepFool Square TA VNI-FGSM AverageModel Method ϵ = 1

255 ϵ = 8
255 ϵ = 1

255 ϵ = 8
255 κ = 0 κ = 1

NAT

FS 31.62 14.28 41.17 21.11 48.28 44.91 53.68 12.05 7.27 27.75 30.21

DiffPure 39.40 89.60 49.53 90.54 49.02 52.47 76.76 8.02 4.05 87.13 54.65

BDMD 87.60 95.90 89.32 96.66 65.65 70.17 85.50 21.09 4.53 88.96 70.54

BDMD* 90.89 95.53 91.59 96.79 75.10 77.56 88.91 33.05 17.99 89.90 75.73

SID 27.29 60.30 26.66 48.99 42.19 38.69 83.14 51.95 79.83 20.53 47.96

SID* 22.38 97.29 36.94 96.50 62.79 55.35 61.27 82.53 91.49 48.20 65.47

PID 99.35 94.72 99.53 95.30 99.78 98.03 99.58 99.58 99.50 89.11 97.45

ADV

FS 3.84 7.01 4.24 9.34 33.09 40.81 11.71 5.07 19.49 2.32 13.69

DiffPure 9.04 30.48 6.99 34.77 55.64 61.03 39.45 17.83 41.38 7.72 30.43

BDMD 29.59 93.46 32.84 91.97 77.54 92.51 86.25 55.38 89.12 40.54 68.92

BDMD* 55.89 95.13 48.52 95.33 89.54 95.62 89.69 81.30 91.62 51.35 79.40

SID 4.55 34.95 2.08 36.94 70.34 55.82 67.89 53.01 71.74 12.66 41.00

SID* 41.82 29.22 20.83 34.19 62.85 66.42 74.00 52.91 75.75 11.39 46.94

PID 99.45 98.72 99.36 98.80 99.83 99.81 98.29 99.37 99.36 79.54 97.25

After obtaining the purified test sample x′ for the test sample x, we adopt the ℓ1 norm of difference
of whole prediction vectors from the primal model on these two samples to calculate the probability
of the test sample being an AE (denoted as prob), which can be described as,

prob = ∥f(x)− f(x′)∥1, (7)

where the primal model outputs confidence scores f(x) = {f1(x), f2(x), · · · , fk(x)}, fi(x) ∈ [0, 1],
and k is the number of classes.

Bi-model Decision Mismatch Detector (BDMD) (White-Box Detection). BDMD (Monteiro et al.,
2019) leverages the predicted soft labels from two models with different architectures on AEs to train
a detector, implemented as a Support Vector Machine (SVM) with RBF kernel. To make BDMD a
competitive baseline, we adopt ViT-L/16 (the optimal auxiliary model in PID) as the second model in
addition to the attacked primal model.

For the white-box setting (denoted as BDMD*), to evaluate the generalization of BDMD across
different attacks, the detector is trained on AEs generated by PGD-8/255. On CIFAR-10, PGD-8/255
AEs generated from the entire test set are split into 60% for training and 40% for testing, while all
AEs are used when detecting other types of attacks. On ImageNet, we additionally sample 5000 clean
images to generate PGD-8/255 AEs for training and evaluate the detector on all types of attacks.

For the black-box setting, we use naturally and adversarially trained VGG16 models as primal models
on CIFAR-10, and ResNet101 models on ImageNet. The naturally trained VGG16 achieves 92.19%
accuracy, while the adversarially trained one (PGD-8/255) achieves 79.29%. For ResNet101, we use
pre-trained weights under natural1 and adversarial2 training. On CIFAR-10, detectors are trained on
PGD-8/255 AEs from naturally and adversarially trained VGG16 models, with the same 60%-40%
split, and tested on all AEs from naturally and adversarially trained VGG19 models. On ImageNet,
detectors are trained on PGD-8/255 AEs from ResNet101 and tested on AEs from ResNet50, with
5000 additional clean images used to generate training AEs.

Sensitivity Inconsistency Detector (SID) (White-Box Detection). SID (Tian et al., 2021) trains
a dual classifier with the transformed decision boundary by adding the Weighted Average Wavelet
Transform (WAWT) layer. The prediction differences between the primal classifier and dual classifier
are used to train a detector composed of two fully connected layers. The implementation of SID can
be computationally expensive on ImageNet, so we adopt it only on CIFAR-10.

We train a dual classifier for naturally and adversarially trained VGG19 models following Tian et al.
(2021) and the released code8, where the dual classifier consists of the same VGG19 architecture and
a WAWT layer. For the white-box SID setting (denoted as SID*), we evaluate detection performance

8https://github.com/JinyuTian/SID
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Table 9: Comparison of TPRs (%) of detecting AEs on ImageNet, where FPR is fixed at 5%, and
NAT (ADV) means the primal model is naturally (adversarially) trained. BDMD* and EPS-AD* are
not directly comparable to others since they are in the ideal, white-box scenario.

Primal Detection PGD PGD AA AA C&W C&W
DeepFool Square TA VNI-FGSM AverageModel Method ϵ = 1

255 ϵ = 8
255 ϵ = 1

255 ϵ = 8
255 κ = 0 κ = 1

NAT

FS 69.75 4.60 68.80 8.00 63.60 45.40 78.40 28.00 26.18 24.69 41.74

DiffPure 80.78 86.50 87.40 89.10 50.20 70.20 6.70 13.10 4.81 82.72 57.15

BDMD 22.37 20.50 22.80 17.60 21.90 22.50 6.50 3.20 0.52 86.31 22.42

BDMD* 20.38 20.40 21.30 16.60 19.80 21.80 6.80 2.10 1.10 13.58 14.39

EPS-AD 85.71 100.00 87.50 99.90 72.80 99.90 10.10 14.90 11.53 99.90 68.22

EPS-AD* 97.58 100.00 98.80 100.00 81.10 99.90 12.90 17.50 15.05 100.00 72.28

PID 90.02 91.80 92.80 94.10 88.70 88.50 89.80 87.60 89.17 85.19 89.77

ADV

FS 0.95 9.80 0.75 17.55 16.18 24.56 10.20 4.68 14.89 4.11 10.37

DiffPure 1.90 35.36 1.50 46.99 7.12 16.27 22.40 4.52 12.58 4.11 15.28

BDMD 8.57 8.87 8.27 8.60 6.54 9.19 7.60 8.62 12.14 2.70 8.03

BDMD* 3.81 15.23 3.76 11.67 5.23 10.47 10.40 5.92 19.40 4.05 8.99

EPS-AD 50.48 100.00 47.37 100.00 89.00 99.86 86.10 8.87 68.51 100.00 75.02

EPS-AD* 76.19 100.00 74.44 100.00 92.23 100.00 90.50 7.42 74.65 100.00 81.54

PID 77.14 80.26 76.69 82.09 81.88 80.62 89.70 80.65 90.85 76.71 81.66

when the detector is trained and tested on AEs generated by the same attack against the same primal
model. Specifically, for each attack, the corresponding AEs are split into 60% for training, 10% for
validation, and 30% for testing. The detector is trained for 100 epochs with a batch size of 80 and a
learning rate of 0.001. The AUC score is then computed on the test set for each attack.

For the black-box SID, we use the naturally and adversarially trained VGG16 models as the primal
models to mitigate performance degradation caused by the architectural differences from VGG19,
ensuring a competitive baseline. The naturally trained VGG16 model achieves 92.19% test accuracy,
and the adversarially trained one, trained using PGD-8/255, achieves 79.29% test accuracy. The dual
classifier composed of the same VGG16 architecture and a WAWT layer is also trained. AEs are
then generated by attacks against these two VGG16 models, with each attack configured using the
same parameters as described in Section A.2. The AE split and training parameters are the same as
previously described to train the detector. When detecting AEs generated against the naturally and
adversarially trained VGG19 models, we use a detector trained on AEs from the same attack, but
generated against the naturally and adversarially trained VGG16 models, respectively.

Expected Perturbation Score-based Adversarial Detection (EPS-AD) (White-Box Detection).
We adopt the EPS-AD as the detection baseline on ImageNet. The implementation follows the
released code9, where the pre-trained Guided Diffusion (Dhariwal & Nichol, 2021) is adopted to
estimate the expected perturbation score (EPS) of test samples and timestep t∗ = 0.05. Then, the
EPS-based maximum mean discrepancy (MMD) is used as the metric to measure the discrepancy
between NEs and AEs and train the detector, where the detector structure is the same as the one
described in Zhang et al. (2023).

For the white-box EPS-AD (denoted as EPS-AD*), we generate 10,000 ℓ∞-FGSM and ℓ2-FGSM
AEs with a perturbation size of 1/255, along with 10,000 NEs to calculate their EPSs and train the
detector. When detecting AEs generated against the naturally and adversarially trained ResNet50
models, we use detectors trained using FGSM AEs generated against the same models, respectively.
Detectors are trained for 200 epochs with a batch size of 200 and a learning rate of 0.002.

For the black-box EPS-AD, when detecting AEs generated against the naturally and adversarially
trained ResNet50 models, we use detectors trained on FGSM AEs generated against the naturally
and adversarially trained ResNet101 models, respectively. For the two ResNet101 models, we use
pre-trained weights under natural1 and adversarial2 training settings, respectively. The number of
AEs and NEs, along with the training settings, are consistent with those described above.

9https://github.com/ZSHsh98/EPS-AD
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Table 10: AUC scores (%) of PID on ImageNet, where mean and standard deviation are calculated
across three random subsets, and NAT (ADV) means the primal model is naturally (adversarially)
trained.

Primal PGD PGD AA AA C&W C&W
DeepFool Square TA VNI-FGSMModel ϵ = 1

255 ϵ = 8
255 ϵ = 1

255 ϵ = 8
255 κ = 0 κ = 1

NAT 98.19 ± 0.27 98.46 ± 0.34 98.64 ± 0.26 98.90 ± 0.60 98.61 ± 0.32 98.26 ± 0.05 98.13 ± 0.35 97.89 ± 0.35 97.78 ± 0.04 98.42 ± 0.29

ADV 95.83 ± 0.13 96.26 ± 0.51 98.34 ± 0.27 97.65 ± 0.14 96.96 ± 0.20 97.34 ± 0.36 98.37 ± 0.23 97.21 ± 0.32 98.41 ± 0.18 92.57 ± 0.27

Table 11: Detection performance of PID on PGD vs. three adaptive attacks on CIFAR-10 and
ImageNet, where NAT (ADV) means the primal model is naturally (adversarially) trained.

Dataset
Primal Auxiliary PGD A1 A2 A3

Model Model ASR AUC ASR AUC ASR AUC ASR AUC

CIFAR-10

NAT
ResNet34 ADV

100.00
96.56 98.96 96.94 84.75 95.86 99.89 91.92

ViT-L/16 98.54 92.70 3.83 92.61 2.56 99.89 72.20
CLIP-ViT-L/14 97.55 24.52 97.94 13.72 98.23 99.25 33.44

ADV
ResNet34 ADV

45.37
91.46 16.66 89.02 7.97 88.60 20.20 76.43

ViT-L/16 99.68 20.68 84.58 19.77 54.18 36.84 51.82
CLIP-ViT-L/14 98.75 11.87 98.84 8.04 98.55 3.48 16.27

ImageNet

NAT
ConvNeXt-S ADV

100.00
97.53 100.00 98.37 100.00 98.36 100.00 84.43

ViT-L/16 98.54 100.00 3.41 100.00 3.35 100.00 27.39
CLIP-ViT-L/14 95.91 87.70 88.86 39.60 90.41 98.70 16.18

ADV
ConvNeXt-S ADV

75.50
97.26 21.80 94.28 11.80 94.50 62.10 65.93

ViT-L/16 96.17 22.70 63.63 22.70 61.02 26.30 23.60
CLIP-ViT-L/14 96.13 24.30 91.97 1.70 94.29 8.40 8.04

A.4 DETECTION PERFORMANCE EVALUATED BY TPR AT 5% FPR

To comprehensively evaluate PID and the baselines, we fix the FPR at 5% and report the corre-
sponding TPR for each detection method. The results on CIFAR-10 and ImageNet are presented
in Table 8 and Table 9, respectively. The results show that PID consistently achieves high TPRs.
For example, on CIFAR-10 it reaches 97.45% and 97.25% when the primal models are naturally
trained and adversarially trained, respectively. On ImageNet, EPS-AD attains comparable TPRs, but
its performance drops significantly against score-based and decision-based black-box attacks. For
example, its TPR falls to only 14.90% and 11.53% when detecting Square and TA attacks on the
naturally trained model.

A.5 ADDITIONAL EXPERIMENTS ON RANDOM IMAGE SAMPLES ON IMAGENET

For evaluation on ImageNet, we randomly select 1000 images (one from each class) to assess the
detector. To mitigate the effect of randomness and ensure the robustness of the results, we additionally
sample two separate sets of 1000 images each for both naturally and adversarially trained model.
The mean AUC scores and standard deviations across these three subsets are reported in Table 10,
showing that PID remains stable under different random splits.

A.6 ADAPTIVE ATTACKS

We design three adaptive attacks to evaluate the robustness of our PID. In addition to the strongest
attack described in Section 4.3, the other two are presented here. Specifically, increasing gy(x) in
Metric 1 used in PID can also be achieved by performing a targeted attack against two models, forcing
both primal and auxiliary models to misclassify the AE into the same label. This can be expressed as,

min
r

L(f(x+ r), t) + λL(g(x+ r), t) s.t. ∥r∥∞ ≤ ϵ, (8)

where t is the targeted label satisfying t ̸= ytrue, ytrue is the ground-truth label of x, L(·, ·) is the
loss function, ϵ is the perturbation constraint of the perturbation r, and λ is a trade-off parameter.

We employ the PGD attack strategy to generate the perturbation r, with the perturbation budget
constrained to ϵ = 8/255, a total of 100 iterations, and a step size of 1/255. The adaptive attack
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Table 12: Comparison of AUC scores (%) of PID by employing different metrics for quantifying
the prediction inconsistency on CIFAR-10, where NAT (ADV) means the primal model is naturally
(adversarially) trained.

Primal
Metric

PGD PGD AA AA C&W C&W
DeepFool Square TA VNI-FGSM AverageModel ϵ = 1

255 ϵ = 8
255 ϵ = 1

255 ϵ = 8
255 κ = 0 κ = 1

NAT

Ipred = 1− gy(x) 99.81 98.54 99.85 98.71 99.93 99.45 99.86 99.88 99.85 97.02 99.29
Ipred = fy(x)− gy(x) 99.59 98.80 99.68 98.94 99.52 97.81 99.48 97.98 96.70 97.34 98.58

Ipred = ∥f(x)top−n − g(x)top−n∥1 99.44 97.58 99.53 97.82 99.67 99.08 99.62 99.46 99.40 95.94 98.75

Ipred = ∥f(x)− g(x)∥1 99.58 98.20 99.65 98.42 99.71 99.21 99.75 99.37 99.30 96.38 98.96

ADV

Ipred = 1− gy(x) 99.87 99.68 99.88 99.69 99.91 99.90 99.55 99.82 99.82 94.90 99.30
Ipred = fy(x)− gy(x) 99.34 97.74 99.37 97.60 98.30 98.24 92.23 98.12 95.94 90.48 96.74

Ipred = ∥f(x)top−n − g(x)top−n∥1 71.50 73.35 69.83 74.37 89.58 92.12 87.36 91.04 82.73 45.71 77.76

Ipred = ∥f(x)− g(x)∥1 66.08 91.16 63.30 90.58 84.73 88.49 86.77 89.60 76.63 52.06 78.94

Table 13: Comparison of AUC scores (%) of PID by employing different models as the auxiliary
model on CIFAR-10, where NAT (ADV) means the primal model is naturally (adversarially) trained.

Primal Auxiliary PGD PGD AA AA C&W C&W
DeepFool Square TA VNI-FGSM AverageModel Model ϵ = 1

255 ϵ = 8
255 ϵ = 1

255 ϵ = 8
255 κ = 0 κ = 1

NAT

ResNet34 ADV 88.18 96.56 90.25 96.70 96.93 96.68 96.96 96.74 96.46 95.93 95.14

ViT-L/16 99.81 98.54 99.85 98.71 99.93 99.45 99.86 99.88 99.85 97.02 99.29
CLIP-ViT-L/14 98.53 97.55 98.73 97.95 99.25 98.40 99.08 99.22 99.31 95.57 98.36

ADV

ResNet34 ADV 86.98 91.46 87.18 92.12 97.52 96.01 97.18 95.06 97.51 86.47 92.75

ViT-L/16 99.87 99.68 99.88 99.69 99.91 99.90 99.55 99.82 99.82 94.90 99.30
CLIP-ViT-L/14 98.86 98.75 99.12 98.69 99.28 99.18 98.13 98.97 99.33 93.43 98.37

is denoted as A1 when λ = 1 in Eq. 8, and as A2 when λ = 99, which places more emphasis on
fooling the auxiliary model. The two-phase adaptive attack described in Section 4.3 is denoted as A3.
The performance of PID against these three adaptive attacks on CIFAR-10 and ImageNet is reported
in Table 11, where all three kinds of auxiliary models are considered.

As shown in Table 11, among the three adaptive attacks, A3 proves to be the most effective against
PID, yielding high ASRs and low AUC scores. On both datasets, although A2 is highly effective
against PID when the auxiliary model is ViT-L/16, its effectiveness drops substantially when the
auxiliary model is CLIP-ViT-L/14, which may be attributed to the increased difficulty of jointly
attacking CNN and CLIP models. Overall, when adversarially trained CNNs are used as auxiliary
models, PID remains robust: its AUC drops by less than 3% under A1 and A2, and although A3
reduces AUC further, PID still maintains satisfactory detection performance.

A.7 FULL EXPERIMENTAL RESULTS ON METRICS FOR QUANTIFYING PREDICTION
INCONSISTENCY

The detection performance of PID by employing different metrics for quantifying the prediction
inconsistency against each attack on CIFAR-10 is summarized in Table 12. It can be observed that
using Ipred = 1 − gy(x) helps the PID to achieve the best detection performance in most cases.
After the primal model is adversarially trained, the effectiveness of metrics Ipred = ∥f(x)top−n −
g(x)top−n∥1 and Ipred = ∥f(x)− g(x)∥1 vary according to strengths and types of attacks, generally
exhibiting a significant decline.

A.8 FULL EXPERIMENTAL RESULTS ON CHOICE OF AUXILIARY MODELS

The detection performance of PID by employing different auxiliary models against each attack on
CIFAR-10 and ImageNet is summarized in Table 13 and Table 14, respectively. It can be observed
that ViT-L/16 consistently achieves the highest AUC scores on CIFAR-10, regardless of whether it is
combined with naturally or adversarially trained models. While on ImageNet, especially after the
primal model is adversarially trained, ConvNeXt-S ADV can sometimes achieve better detection
performance, which is related to its superior performance and robustness compared with traditional
CNNs. In addition, the CLIP model exhibits lower accuracy on NEs than the other two models,
leading to a higher FPR on NEs and degrading detection performance. Nevertheless, pre-trained
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Table 14: Comparison of AUC scores (%) of PID by employing different models as the auxiliary
model on ImageNet, where NAT (ADV) means the primal model is naturally (adversarially) trained.

Primal Auxiliary PGD PGD AA AA CW CW
DeepFool Square TA VNI-FGSM AverageModel Model ϵ = 1

255 ϵ = 8
255 ϵ = 1

255 ϵ = 8
255 κ = 0 κ = 1

NAT

ConvNeXt-S ADV 96.33 97.53 97.06 98.00 95.82 96.32 96.24 96.48 96.81 98.70 96.93

ViT-L/16 98.45 98.54 98.74 98.90 98.17 98.20 98.36 97.80 97.80 98.11 98.31
CLIP-ViT-L/14 95.15 95.91 95.83 96.95 93.94 94.47 95.37 94.61 95.86 95.29 95.34

ADV

ConvNeXt-S ADV 87.17 97.26 88.82 97.57 94.77 96.94 98.54 96.45 99.03 94.03 95.06

ViT-L/16 95.98 96.17 98.20 97.83 97.23 97.11 98.06 96.90 98.34 92.23 96.81
CLIP-ViT-L/14 90.98 96.13 91.52 96.07 93.55 94.33 95.98 93.40 97.42 93.39 94.28

Table 15: Comparison of GPU memory and inference time for PID with three auxiliary models and
baselines on ImageNet.

Computational Cost FS DiffPure BDMD EPS-AD PID (ConvNext-S ADV) PID (ViT-L/16) PID (CLIP-ViT-L/14)

GPU Memory/MiB 2138 28346 3568 40030 2444 3284 5690

Inference Time (per batch)/ms 2171.27 142881.58 1260.62 39154.30 76.33 288.81 645.26

foundation models like CLIP are readily accessible and require no task-specific training, making them
appealing choices for deploying PID under more constrained detection scenarios, such as scenarios
where the training set is completely unknown.

A.9 COMPUTATIONAL COSTS OF PID AND BASELINES ON IMAGENET

Experiments are conducted using PyTorch on two NVIDIA A800 80GB PCIe GPUs. A detailed
comparison of the computational cost of PID with three auxiliary models and other baselines on
ImageNet is provided in Table 15, with the batch size fixed at 16. The results show that (1) PID is
lightweight. Although it uses slightly more GPU memory than FS, it achieves faster inference across
all auxiliary models. (2) Larger auxiliary models lead to higher memory usage, but the overall cost is
still much lower than that of DiffPure and EPS-AD.

A.10 MORE CHOICES OF AUXILIARY MODELS IN PID ON IMAGENET

In addition to the three auxiliary models already evaluated before, we have further selected four
additional models, namely the adversarially trained ConvNeXt-L2 (denoted as ConvNeXt-L ADV),
the pre-trained ViT-B/163, the pre-trained ViT-H/143, and the pre-trained CLIP-ViT-B/1610.

We conduct additional experiments on ImageNet using these auxiliary models, which can be found
in Table 16. The results demonstrate that, as long as the auxiliary model differs from the primal
model either in training approach or architecture, PID remains effective. Moreover, it can be observed
that larger models generally yield better detection performance when sharing the same architecture.
For example, ConvNeXt-L ADV achieves AUC scores of 97.68% and 96.89% when detecting AEs
generated against the naturally and adversarially trained primal models, respectively, outperforming
ConvNeXt-S ADV, which achieves 96.93% and 95.06% in the same settings. We attribute this
phenomenon to the fact that larger models (differ from the primal model either in training approach
or architecture) tend to achieve higher accuracy on NEs, resulting in more consistency between
the primal and auxiliary models when classifying NEs, and more pronounced inconsistency when
classifying AEs.

Overall, the results in Table 16 consistently demonstrate that PID remains generalizable across diverse
auxiliary architectures. Specifically, 6 out of 7 auxiliary models outperform the second-best result in
Table 3, both when detecting AEs against the naturally and adversarially trained primal models.

10https://huggingface.co/openai/https://huggingface.co/openai/
clip-vit-base-patch16
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Table 16: Comparison of AUC scores (%) of PID by employing more auxiliary models on ImageNet,
where NAT (ADV) means the primal model is naturally (adversarially) trained.

Primal Detection PGD PGD AA AA C&W C&W
DeepFool Square TA VNI-FGSM AverageModel Method ϵ = 1

255 ϵ = 8
255 ϵ = 1

255 ϵ = 8
255 κ = 0 κ = 1

NAT

ConvNext-S ADV 96.33 97.53 97.06 98.00 95.82 96.32 96.24 96.48 96.81 98.70 96.93

ConvNext-L ADV 97.26 98.07 97.78 98.53 96.80 97.31 97.10 97.21 97.59 99.13 97.68

ViT-B/16 98.34 98.25 98.66 98.55 98.01 98.06 98.12 97.54 97.58 96.85 98.00

ViT-L/16 98.45 98.54 98.74 98.90 98.17 98.20 98.36 97.80 97.80 98.11 98.31

ViT-H/14 99.12 99.18 99.39 99.36 98.78 98.98 99.18 98.49 98.31 98.39 98.92

CLIP-ViT-B/16 91.48 92.30 92.83 93.65 90.15 90.42 92.14 90.93 93.16 90.63 91.77

CLIP-ViT-L/14 95.15 95.91 95.83 96.95 93.94 94.47 95.37 94.61 95.86 95.29 95.34

ADV

ConvNext-S ADV 87.17 97.26 88.82 97.57 94.77 96.94 98.54 96.45 99.03 94.03 95.06

ConvNext-L ADV 92.38 98.27 92.39 98.49 96.33 98.23 99.11 96.90 99.39 97.37 96.89

ViT-B/16 95.86 96.02 97.72 97.66 97.01 96.94 97.78 96.64 98.18 92.01 96.58

ViT-L/16 95.98 96.17 98.20 97.83 97.23 97.11 98.06 96.90 98.34 92.23 96.81

ViT-H/14 97.04 97.28 99.13 98.90 98.26 98.15 99.02 97.92 99.24 93.81 97.88

CLIP-ViT-B/16 87.57 92.33 87.18 92.53 90.74 90.37 92.87 89.38 95.53 88.80 90.73

CLIP-ViT-L/14 90.98 96.13 91.52 96.07 93.55 94.33 95.98 93.40 97.42 93.39 94.28
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