
Learning Parameterized Task Structure
for Generalization to Unseen Entities

Anthony Z. Liu∗
University of Michigan
anthliu@umich.edu

Sungryull Sohn∗
LG AI Research

srsohn@lgresearch.ai

Mahdi Qazwini
University of Michigan
mqazwini@umich.edu

Honglak Lee
LG AI Research

University of Michigan
honglak@eecs.umich.edu

Abstract

Real world tasks are compositional and hierarchical. Tasks can be composed of
multiple subtasks (or sub-goals) that are dependent on each other. Real world
tasks can also be parameterized, where subtasks can be composed of multiple
interactions and objects, which we call entities. For example, a household kitchen
environment may contain multiple objects (e.g. apple, pot) and multiple ways of
interacting with said objects (e.g. place apple in pot, cook apple). To solve
these tasks efficiently, an agent must infer subtask dependencies (e.g. an agent
must execute pickup apple before place apple in pot), and generalize the
inferred dependencies to new subtasks (e.g. place apple in pot is similar to
place apple in pan). Moreover, an agent may also need to solve unseen tasks,
which can involve unseen entities. To this end, we formulate parameterized subtask
graph inference (PSGI), a method for modeling subtask dependencies using first-
order logic with subtask entities. To facilitate this, we learn entity attributes in a
zero-shot manner, which are used as quantifiers (e.g. is_pickable(X)) for the
parameterized subtask graph. We show this approach accurately learns the latent
structure on hierarchical and compositional tasks more efficiently than prior work,
and show PSGI can generalize by modelling structure on subtasks unseen during
adaptation.

1 Introduction

Real world tasks are compositional and hierarchical [Carvalho et al., 2020, Loula et al., 2018,
Andreas et al., 2017, Oh et al., 2017]. These tasks are composed of multiple subtasks (or sub-goals)
that must be completed in certain order. For example, the cooking task shown in Figure 1 requires
an agent to boil some food object (e.g. Cooked egg). An agent must place the food object x in a
cookware object y, place the cookware object on the stove, before boiling this food object x. Parts
of this task can be decomposed into sub-goals, or subtasks (e.g. Pickup egg, Put egg on pot).
Solving these tasks requires long horizon planning and reasoning ability [Erol, 1996, Xu et al., 2018,
Ghazanfari and Taylor, 2017, Sohn et al., 2018]. This problem is made more difficult of rewards are
sparse, if only few of the subtasks in the environment provide reward to the agent.

Real world tasks are also parameterized. These tasks may contain multiple objects and interactions
between these objects, which we refer to as entities. These entities can be recombined to form

∗These authors contributed equally.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Figure 1: Illustration of parameterized subtask graph inference (PSGI) in a toy cooking environment.
In various tasks, the agent must cook various foods to receive reward. Left: The adaptation policy
πadapt
θ initially explores the cooking source task (training), generating a trajectories τ1, . . . , τK . Mid-

dle: Using τ1, . . . , τK , the agent infers a parameterized subtask graph Ĝ(x, y) of the environment,
which describes the preconditions and effects between parameterized options and subtasks for any x
and y, entities in the environment. The agent learns a set of parameter attributes (Âatt = fpickupable . . .)
in a zero-shot manner and uses these attributes to construct Ĝ. Right: The agent initializes a separate
test policy πtest

Ĝ
that maximizes reward by following the inferred parameterized subtask graph Ĝ. In

this target environment (test) there exist unseen parameters (cabbage and meat). Preconditions and
effects for these parameters are accurately inferred by substituting for entities (x and y).

new subtasks, e.g. (place, apple, pot). These components can be numerous, leading to a
combinatorial number of subtasks. For example, the cooking task shown in Figure 1 contains
subtasks that follow a action-objects structure. The action Pickup admits many subtasks, where any
object x composes into a new subtask (e.g. Pickup egg, Pickup pot). Solving parameterized tasks
also requires reasoning [Andreas et al., 2017, Oh et al., 2017]. Without reasoning on the relations
between components between tasks, exploring the space of a combinatorial number of subtasks is
extremely inefficient.

In this work, we propose to tackle the problem of hierarchical and parameterized tasks. Prior work
has tackled learning hierarchical task structures by modelling dependencies between subtasks in
a graph structure [Sohn et al., 2018, 2020, Xu et al., 2018, Huang et al., 2019]. In these settings,
during training, the agent tries to efficiently adapt to a task by inferring the latent graph structure,
then uses the inferred graph to maximize reward during test. However, this approach does not scale
for parameterized tasks. Prior work tries to infer the structure of subtasks individiually – they do not
consider the relations between entities in parameterized tasks. E.g. they do not infer that Place egg
on pot and Pickup egg on pan have similar hierarchical structure.

We propose the parameterized subtask graph inference (PSGI) approach for tackling hierarchical and
compositional tasks. We present an overview of our approach in Figure 1. This approach extends the
problem introduced by Sohn et al. [2020]. Similar to Sohn et al. [2020], we assume options [Sutton
et al., 1999] (low level policies) for completing subtasks have been trained or are given as subroutines
for the agent. These options are imperfect, and require certain conditions on the state to be meet
before they can be successfully executed. We model the problem as a transfer RL problem. During
training, an exploration policy gathers trajectories. These trajectories are then used to infer the latent
parameterized subtask graph, Ĝ. Ĝ models the hierarchies between compositional tasks and options
in symbolic graph structure (shown in 1). In PSGI, we infer the preconditions of options, subtasks
that must be completed before an option can be successfully executed, and the effects of options,
subtasks that are completed after they are executed. The parameterized subtask graph is then used
to maximize reward in the test environment by using GRProp, a method introduced by Sohn et al.
[2018] which propagates a gradient through Ĝ to learn the test policy.

In PSGI, we model using parameterized options and subtasks. This allows PSGI to infer the latent
task structure in a first-order logic manner. For example, in the cooking task in Figure 1 we represent

2

all Pickup-object options using a parameratized option, Pickup x. Representing options and
subtasks in parameterized form serves two roles: 1. The resulting graph is more compact. There
is less redundancy when representing compositional tasks that share common structure. Hence
a parameterized subtask graph requires less samples to infer (e.g. relations for Pickup apple,
Pickup pan, etc. are inferred at once with a parameterized option Pickup x). 2. The resulting graph
can generalize to unseen subtasks, where unseen subtasks may share similar structure but are not
encountered during adaptation (e.g. Pickup cabbage in Figure 1).

To enable parameterized representation, we also learn the attributes of the components in the
compositional tasks. These attributes are used to indicate differences in the structures of parameterized
options and subtasks. For example, in the cooking task in Figure 1, not every object can be picked
up with Pickup, so the inferred attribute f̂pickupable(x) is a precondition to Pickup(x). Similarly, in
a more complex cooking task, some object x may need to be sliced, before it can be boiled (e.g.
cabbage), but some do not (e.g. egg). We model these structures using parameter attributes, Âatt
(in the cooking task case objects are parameters). We present a simple scheme to infer attributes in
a zero-shot manner, where we infer attributes that are useful to infer relations between parameters
without supervision. These attributes are then used to generalize to other parameters (or entities), that
may be unseen during adaptation.

We summarize our contributions as follows:

• We propose the approach of parameterized subtask graph inference (PSGI) to efficiently
infer the subtask structure of hierarchical and parameterized tasks in a first order logic
manner.

• We propose a simple zero-shot learning scheme to infer entity attributes, which are used to
relate the structures of compositional subtasks.

• We demonstrate PSGI on a symbolic cooking environment that has complex hierarchical
and parameterized task structure. We show PSGI can accurately infer this structure more
efficiently than prior work and generalize this structure to unseen tasks.

2 Problem Definition

2.1 Background: Transfer Reinforcement Learning

A task is characterized by an MDPMG = 〈A,S, TG,RG〉, which is parameterized by a task-specific
G, with an action space A, state space S, transition dynamics TG, and reward functionRG. In the
transfer RL formulation Duan et al. [2016], Finn et al. [2017], an agent is given a fixed distribution
of training tasksMtrain, and must learn to efficiently solve a distribution of unseen test tasksMtest.
Although these distributions are disjoint, we assume there is some similarity between tasks such that
some learned behavior in training tasks may be useful for learning test tasks. In each task, the agent
is given k timesteps to interact with the environment (the adaptation phase), in order to adapt to the
given task. After, the agent is evaluated on its adaptation (the test phase). The agent’s performance is
measured in terms of the expected return:

RMG
= Eπk,MG

[
H∑
t=1

rt

]
(1)

where πK is the policy after k timesteps of the adaptation phase, H is the horizon in the test phase,
and rt is the reward at time t of the test phase.

2.2 Background: The Subtask Graph Problem

The subtask graph inference problem is a transfer RL problem where tasks are parameterized by
hierarchies of subtasks Sohn et al. [2020], Φ. A task is composed of N subtasks, {φ1, . . . , φN} ⊂ Φ,
where each subtask φ ∈ Φ is parameterized by the tuple 〈Scomp, Gr〉, a completion set Scomp ⊂ S,
and a subtask reward Gr : S → R. The completion set Scomp denotes whether the subtask φ is
complete, and the subtask reward Gr is the reward given to the agent when it completes the subtask.

Following Sohn et al. [2020], we assume the agent learns a set of options O = {O1,O2, . . . }
that completes the corresponding subtasks Sutton et al. [1999]. These options can be learned

3

by conditioning on subtask goal reaching reward: rt = I(st ∈ Sicomp). Each option O ∈ O is
parameterized by the tuple 〈π,Gprec, Geffect〉. There is a trained policy π corresponding to each O.
These options may be eligible at different precondition states Gprec ⊂ S, where the agent must be
in certain states when executing the option, or the policy π fails to execute (also the initial set of
O following Sutton et al. [1999]). However, unlike Sohn et al. [2020], these options may complete
an unknown number of subtasks (and even remove subtask completion). This is parameterized by
Geffect ⊂ S (also the termination set of O following Sutton et al. [1999]).

Environment: We assume that the subtask completion and option eligibility is known to the agent.
(But the precondition, effect, and reward is hidden and must be inferred). In each timestep t the agent
is the state st = {xt, et, stept, stepphase,t, obst}.

• Completion: xt ∈ {0, 1}N denotes which subtasks are complete.
• Eligibility: et ∈ {0, 1}M denotes which options are eligible.
• Time Budget: stept ∈ Z>0 is the number steps remaining in the episode.
• Adaptation Budget: stepphase,t ∈ Z>0 is the number steps remaining in the adaptation

phase.
• Observation: obst ∈ Rd is a low level observation of the environment at time t.

2.3 The Parameterized Subtask Graph Problem

Subtasks and Option Entities In the real world, compositional subtasks can be described in terms
of a set of entities, E . (e.g. pickup, apple, pear, · · · ∈ E) that can be recombined to form new
subtasks (e.g. (pickup, apple), and (pickup, pear)). We assume that these entities are given to the
agent. Similarly, the learned options that execute these subtasks can also be parameterized by the
same entities (e.g. [pickup, apple], and [pickup, pear]).

In real world tasks, we expect learned options with entities that share “attributes” to have similar
policy, precondition, and effect, as they are used to execute subtasks with similar entities . For
example, options [cook, egg, pot] and [cook, cabbage, pot] share similar preconditions (the target
ingredient must be placed in the pot), but also different (cabbage must be sliced, but the egg does
not). In this example, egg and cabbage are both boilable entities, but egg is not sliceable.

To model these similarities, we assume in each task, there exist boolean latent attribute functions
which indicate shared attributes in entities. E.g. fpickupable : E → {0, 1}, where fpickupable(apple) = 1.
We will later try to infer the values of these latent entities, so we additionally assume there exist some
weak supervision, where a low-level embedding of entities is provided to the agent, fentityembed : E →
RD.

The Parameterized Subtask Graph Our goal is to infer the underlying task structure between
subtasks and options so that the agent may complete subtasks in an optimal order. As defined in
the previous sections, this task structure can be completely determined by the option preconditions,
option effects, and subtask rewards. As such we define the parameterized subtask graph to be the
tuple of the parameterized preconditions, effects, and rewards for all subtasks and options:

G = 〈Gprec,Geff,Gr〉 (2)

where

Gprec : EN × S → {0, 1} (3)

Geff : EN × S → S (4)

Gr : EN × S → R (5)

The parameterized precondition, Gprec, is a function from an option with N entities and a subtask
completion set to {0, 1}, which specifies whether the option is eligible under a completion set.
E.g. If Gprec([X1, X2], s) = 1, then the option [X1, X2] is eligible if the agent is in state s. The
parameterized effect, Geff, is a function from an option with N entities and subtask completion set to
a different completion set. Finally, the parameterized reward, Gr, is a function from a subtask with N
entities to the reward given to the agent from executing that subtask.

4

Our previous assumption that options with similar entities and attributes share preconditions and
effects manifests in Gprec and Geff where these functions tend to be smooth. Similar inputs to the
function (similar option entities) tend to yield similar output (similar eligibility and effect values).
This smoothness gives two benefits. 1. We can share experience between similar options for inferring
preconditions and effect. 2. This enables generalization to preconditions and effects of unseen entities.
Note that this smoothness does not apply to the reward Gr. We assume reward given for subtask
completion is independent across tasks.

0
1
1

1

0
0
0

1

0
0
0

1

0
0
1

1

𝑡
𝒙 𝒆

𝐴!𝐴"𝐵!𝐵" 𝐶!𝐶"𝐷!𝐷"𝐸!
0
1
2
⋮
𝐻

Option

𝑫𝑿

Agent Trajectory

𝒙𝑎𝑢𝑔 𝒆
𝐴#𝐵#𝑓 𝑥 𝑔(𝑥) 𝐷#

1
1
0
⋮
1

Augmented Predicate Trajectory

FT
𝒇 𝑿 > 𝟎

𝑫𝑿 = 𝟎 𝑨𝑿 > 𝟎
F

𝒈 𝑿 > 𝟎
F T

Decision tree of 𝑫𝑿

T

CART

train

Logic

expression

Precondition of 𝑫𝑿

𝑫𝑿 = 𝒇(𝑿)𝑨𝑿 + 𝒇 𝑿 𝑨𝑿𝒈(𝑿)

𝑫𝑿 = 𝟏

𝑫𝑿 = 𝟏𝑫𝑿 = 𝟎

0
1
1

1
⋮

0
1
1

1

0
0
0

1

0
0
1

1

1
1
1

1

1
1
1

1

1
1
1

1
⋮

0
0
1

1

0
0
0

0
⋮

Figure 2: An overview of our approach for estimating the parameterized precondition of the subtask
graph Ĝprec in a simple environment with subtasks A,B and options C,D,E. Each subtask and
option has a parameter 0 or 1. Note by inferring the parameterized precondition and effects, we can
infer the behavior unseen subtasks and options such as D2. We run precondition inference for every
option and show DX as an example. 1. The first table is built from the agent’s trajectory (x is the
subtask completion, e the option eligibility). 2. We build the second table, the “augmented” trajectory
by substituting X into all possible subtask completions, AX , BX , and inferred attributes f, g. 3. We
train a decision tree over the table, to infer the relation xaug → Dx (predicting when Dx is eligible
given the completion xaug). 4. We translate the decision tree into an equivalent predicate boolean
expression, which is one part of the inferred parameratized subtask graph Ĝ.

3 Method

We propose the Parameterized Subtask Graph Inference (PSGI) method to efficiently infer the latent
parameterized subtask graph G = 〈Gprec,Geff,Gr〉. Figure 2 gives an overview of our approach. At a
high level, we use the adaptation phase to gather adaptation trajectories from the environment using
an adaptation policy πadapt

θ . Then, we use the adaptation trajectories to infer the latent subtask graph
Ĝ. In the test phase, a test policy πtest

Ĝ
is conditioned on the inferred subtask graph Ĝ and maximizes

the reward. As the performance of the test policy is dependent on the inferred subtask graph Ĝ, it is
important to accurately infer this graph. Note that the test task may contain subtasks that are unseen
in the training task. We learn a predicate subtask graph Ĝ that can generalize to these unseen subtasks
and options.

3.1 Zero-shot Learning Entity Attributes

In the Parameterized Subtask Graph Problem definition, we assume there exist latent attributes that
indicate shared structure between options and subtasks with the same attributes. E.g. One attribute
may be fpickupable : E → {0, 1}, where fpickupable(apple) = 1, etc. Our goal is to infer a set of
candidate attribute functions, Âatt = {f̂1, f̂2, . . . }, such that options with the same attributes indicates
the same preconditions. As there is no supervision involved, we formulate this inference as a zero
shot learning problem Palatucci et al. [2009]. Note the inferred attributes that are preconditions
for options should not only construct an accurate predicate subtask graph for options seen in the
adaptation phase, but also unseen options.

During the adaptation phase, the agent will encounter a set of seen entities E ⊂ E . We construct
candidate attributes from E using our smoothness assumption, where similar entities result in similar
preconditions. We generate candidate attributes based on similarity using the given entity embedding,
fentityembed : E → RD.

Let C = {C1, C2, . . . } be an exhaustive set of clusters generated from E using fentityembed. Then, we
define a candidate attribute function from each cluster.

f̂i(X) := I[X ∈ Ci] (6)

5

To infer the attribute of an unseen entity X 6∈ E, we use a 1-Nearest Neighbor classifier that uses the
attributes of the nearest seen entity Fix [1985].

f̂i(X) = I[X∗ ∈ Ci] (7)

where X∗ = argminX′∈E dist(fentityembed(X), fentityembed(X ′)).

3.2 Parameterized Subtask Graph Inference

Let τH = {s1, o1, r1, d1, . . . , sH} be the adaptation trajectory of the adaptation policy πadapt
θ after H

time steps. Our goal is to infer the maximum likelihood parameterized subtask graph G given this
trajectory τH .

ĜMLE = argmax
Gprec,Geff,Gr

p(τH |Gprec,Geff,Gr) (8)

By expanding this likelihood term, we show that to maximize Ĝ, it suffices to maximize Ĝprec, Ĝeff,
and Ĝr individually.

ĜMLE =
(
ĜMLE

prec , ĜMLE
eff , ĜMLE

r

)
(9)

=

(
argmax
Gprec

H∏
t=1

p(et|xt,Gprec), (10)

argmax
Geff

H∏
t=1

p(xt+1|xt, ot,Geff), (11)

argmax
Gr

H∏
t=1

p(rt|ot, ot+1,Gr)
)

(12)

We show details of this derivation in the appendix. Next, we explain how to compute Ĝprec, Ĝeff, and
Ĝr.

Parameterized Precondition Inference via Predicate Logic Induction We give an overview of
how we infer the option preconditions Ĝprec in Figure 2. Note from the definition, we can view
the precondition Gprec as a deterministic function, fGprec : (E, x) 7→ {0, 1}, where E is the option
entities, and x is the completion set vector. Hence, the probability term in Eq.(27) can be written
as p(et|xt,Gprec) =

∏N
i=1 I[e

(i)
t = fGprec(E

(i), xt)] where I is the indicator function, and E(i) is the
entity set of the ith option in the given task. Thus, we have

ĜMLE
prec = argmax

Gprec

H∏
t=1

N∏
i=1

I[e(i)t = fGprec(E
(i), xt)] (13)

Following Sohn et al. [2020], this can be maximized by finding a boolean function f̂Gprec over only
subtask completions xt that satisfies all the indicator functions in Eq.(13). However this yields
multiple possible solutions — particularly the preconditions of unseen option entities in the trajectory
τH . If we infer a f̂Gprec separately over all seen options (without considering the option parameters),
this solution is identical to the solution proposed by Sohn et al. [2020]. We want to additionally
generalize our solution over multiple unseen subtasks and options using the entities, E.

We leverage our smoothness assumption — that f̂Gprec is smooth with respect to the input entities
and attributes. E.g. If the inferred precondition for the option [pickup, X] is the candidate attribute
f̂(X), any entity X where f̂(X) = 1 has the same precondition. I.e. For some unseen entity set E∗
we want the following property to hold:

f̂i(E) = f̂i(E
∗) for some i ⇒ f̂Gprec(E, xt) = f̂Gprec(E

∗, xt) (14)

To do this, we infer a boolean function f̂Gprec over both subtask completions xt and entity variables
X ∈ E. We use (previously inferred) candidate attributes over entities, f̂i(X)∀X ∈ E in the boolean

6

function to serve as quantifiers. Inferring in this manner insures that the precondition function f̂Gprec

is smooth with respect to the input entities and attributes. Note that some but not all attributes may
be shared in entities. E.g. [cook, cabbage] has similar but not the same preconditions as [cook,
egg]. So, we cannot directly reuse the same preconditions for similar entities. We want to generalize
between different combinations of attributes.

We translate this problem as an inductive logic programming (ILP) problem Muggleton and De Raedt
[1994]. We infer the eligibility (boolean output) of some option O with some entities(s) E =
{X1, X2, . . . }, from boolean input formed by all possible completion values {xit}Ht=1, and all
attribute values {f̂i(X)}i=1...

X∈E . We use the classification and regression tree (CART) with Gini
impurity to infer the the precondition functions f̂Gprec for each parameter E Breiman et al. [1984].
Finally, the inferred decision tree is converted into an equivalent symbolic logic expression and used
to build the parameterized subtask graph.

Parameterized Effect Inference We include an visualization of how we infer the option effects
Ĝeff in the appendix in the interest of space. From the definitions of the parameterized subtask graph
problem, we can write the predicate option effect Geff as a deterministic function fGeff : (E, xt) 7→
xt+1, where if there is subtask completion xt, executing option O (with entities E) successfully
results in subtask completion xt+1. Similar to precondition inference, we have

ĜMLE
eff = argmax

Geff

H∏
t=1

N∏
i=1

I[xt+1 = fGeff(E
(i), xt)] (15)

As this is deterministic, we can calculate the element-wise difference between xt (before option) and
xt+1 (after option) to infer fGeff .

f̂Geff(E
(i), x) = x+ Et=1...H [xt+1 − xt|ot = O(i)] (16)

Similar to precondition inference, we also want to infer the effect of options with unseen parameters.
We leverage the same smoothness assumption:

f̂i(E) = f̂i(E
∗) for some i ⇒ f̂Geff(E, xt) = f̂Geff(E

∗, xt) (17)

Unlike preconditions, we expect the effect function to be relatively constant across attributes, i.e., the
effect of executing option [cook, X] is always completing the subtask (cooked, X), no matter the
attributes of X . So we directly set the effect of unseen entities, f̂Geff(E

∗, xt), by similarity according
to Equation 17.

Reward Inference We model the subtask reward as a Gaussian distribution Gr(E) ∼ N (µ̂E , σ̂E).
The MLE estimate of the subtask reward becomes the empirical mean of the rewards received during
the adaptation phase when subtask with parameter T becomes complete. For the ith subtask in the
task with entities Ei,

Ĝr(Ei) = µ̂Ei = Et=1...N [rt|xit+1 − xit = 1] (18)

Note we do not use the smoothness assumption for Ĝr(E), as we assume reward is independently
distributed across tasks. We initialize Ĝr(E∗) = 0 for unseen subtasks with entities E∗ and update
these estimates with further observation.

3.3 Task Transfer and Adaptation

In the test phase, we instantiate a test policy πtest
Ĝprior

using the parameterized subtask graph Ĝprior,
inferred from the training task samples. The goal of the test policy is to maximize reward in the test
environment using Ĝprior. As we assume the reward is independent across tasks, we re-estimate the
reward of the test task according to Equation 18, without task transfer. With the reward inferred, this
yields the same problem setting given in Sohn et al. [2018]. Sohn et al. [2018] tackle this problem
using GRProp, which models the subtask graph as differentiable function over reward, so that the test
policy has a dense signal on which options to execute are likely to maximally increase the reward.

However, the inferred parameterized subtask graph may be imperfect, the inferred precondition and
effects may not transfer to the test task. To adapt to possibly new preconditions and effects, we use

7

samples gathered in the adaptation phase of the test task to infer a new parameterized subtask graph
Ĝtest, which we use to similarly instantiate another test policy πtest

Ĝtest
using GRProp. We expect Ĝtest to

eventually be more accurate than Ĝprior as more timesteps are gathered in the test environment. To
maximize performance on test, we thus choose to instantiate a posterior test policy πtest

posterior, which is
an ensemble policy over πtest

Ĝprior
and πtest

Ĝtest
. We heuristically set the weights of πtest

posterior to favor πtest
Ĝprior

early in the test phase, and πtest
Ĝtest

later in the test phase.

4 Related Work

Subtask Graph Inference. The subtask graph inference (SGI) framework Sohn et al. [2018, 2020]
assumes that a task consists of multiple base subtasks, such that the entire task can be solved by
completing a set of subtasks in the right order. Then, it has been shown that SGI can efficiently solve
the complex task by explicitly inferring the precondition relationship between subtasks in the form of
a graph using an inductive logic programming (ILP) method. The inferred subtask graph is in turn
fed to an execution policy that can predict the optimal sequence of subtasks to be completed to solve
the given task.

However, the proposed SGI framework is limited to a single task; the knowledge learned in one
task cannot be transferred to another. This limits the SGI framework such that does not scale well
to compositional tasks, and cannot generalize to unseen tasks. We extend the SGI framework by
modeling parameterized subtasks and options, which encode relations between tasks to allow efficient
and general learning. In addition, we generalize the SGI framework by learning an effect model
– In the SGI framework it was assumed that for each subtask there is a corresponding option, that
completes that subtask (and does not effect any other subtask).

Compositional Task Generalization. Prior work has also tackled compositional generalization in
a symbolic manner Loula et al. [2018], Andreas et al. [2017], Oh et al. [2017]. Loula et al. [2018] test
compositional generalization of natural language sentences in recurrent neural networks. Andreas
et al. [2017], Oh et al. [2017] tackle compositional task generalization in an instruction following
context, where an agent is given a natural language instruction describing the task the agent must
complete (e.g. “pickup apple"). These works use analogy making to learn policies that can execute
instructions by analogy (e.g. “pickup X"). However, these works construct policies on the option
level – they construct policies that can execute “pickup X" on different X values. They also do not
consider hierarchical structure for the order which options should be executed (as the option order is
given in instruction). Our work aims to learn these analogy-like relations at a between-options level,
where certain subtasks must be completed before another option can be executed.

Classical Planning. At a high level, a parameterized subtask graph G is equivalent to a STRIPS
planning domain Fikes and Nilsson [1971] with an attribute model add-on Frank and Jónsson [2003].
Prior work in classical planning has proposed to learn STRIPS domain specifications (action schemas)
through given trajectories (action traces) Suárez-Hernández et al. [2020], Mehta et al. [2011], Walsh
and Littman [2008], Zhuo et al. [2010]. Our work differs from these in 3 major ways: 1. PSGI learns
an attribute model, which is crucial to generalizing compositional tasks with components of different
behaviors. 2. We evaluate PSGI on more hierarchical domains, where prior work has evaluated on
pickup-place/travelling classical planning problems, which admit flat structure. 3. We evaluate PSGI
on generalization, where there may exist subtasks and options that are not seen during adaptation.

5 Experiments

We aim to answer the following questions:

1. Can PSGI generalize to unseen evaluation tasks in zero-shot manner by transferring the
inferred task structure?

2. Does PSGI efficiently infers the latent task structure compared to prior work (MSGI Sohn
et al. [2020])?

8

(op_cook, A, B) (cook, A)
&

(put, A, B)
&

&

(put, B, stove)

(f_needslice, A)

(slice, A)

(op_pickup, A, B)

(pickup, A)
(op_put, A, B)

&

&

(f_isfood, A)

(f_isfood, B)

(f_pickupable, B)

(op_slice, A, B)(f_isplace, A)

(f_isboard, B)

Figure 3: The inferred parameterized subtask graph by PSGI after 2000 timesteps in the Cooking.
Options are represented in rectangular nodes. Subtask completions and attributes are are in oval
nodes. A solid line represents a positive precondition / effect, dashed for negative. Ground truth
attributes are included option/subtask parameters, however which attributes are used for which option
preconditions is still hidden, which PSGI must infer.

0K 0.5K 1K 1.5K 2K
adaptation steps

0.5

1.0

1.5

Re
tu

rn

Cooking

0K 0.5K 1K 1.5K 2K
adaptation steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

Cooking

0K 0.5K 1K 1.5K 2K
adaptation steps

0.0

0.5

1.0

1.5

Re
tu

rn

ET-Mining

0K 0.5K 1K 1.5K 2K
adaptation steps

0.00

0.25

0.50

0.75

Su
cc

es
s R

at
e

ET-Mining
FSGI
MSGI+
HRL
Random

Figure 4: The adaptation curves in the Cooking and Mining domains.

5.1 Environments

We evaluate PSGI in a novel symbolic environment, Cooking and Mining. An example of the
simplified Cooking task is shown in Figure 1. For each task, we manually define the parameterized
subtask graph in terms parameterized subtasks, options, and attributes in first-order logic form. Then,
the subtask graph can be built by replacing each predicate with a set of task-specific entities. Each
task is randomized by randomly sampling the entities from the entity pool. The entity pool for
training and evaluation tasks are different such that the agent should be able to generalize to unseen
entities to solve the evaluation tasks in zero-shot setting.

Tasks. Cooking has a pool of 22 entities and 10 entities are chosen at random for each task. Then,
the subtasks and options are populated by replacing the parameters in parameterized subtasks and
options by the sampled entities; e.g., we replace X and Y in the parameterized subtask (pickup, X,
Y) by {apple, cabbage, table} to populate nine subtasks. This results in around 320 options
and 100 subtasks. The ground-truth attributes are also predefined in the templates, but is not available
to the agent. Similarly for Mining, we randomly sample 12 entities from a pool of 18 entities and
populate around 180 subtasks and 180 options for each task. The reward is assigned at random to one
of the subtasks that have the largest critical path length, where the critical path length is the minimum
number of options to be executed to complete each subtask. See the appendix for more details on the
tasks.

Observations. At each time step, the agent observes the completion and eligibility vectors (see
Parameterized Subtask Graph Problem section for definitions) and the corresponding embeddings.
The subtask and option embeddings are the concatenated vector of the embeddings of its entities;
e.g., for pickup, apple, table the embedding is [f(pickup), f(apple), f(table)] where f(·)
can be an image or language embeddings. In experiment, we used 50 dimensional GloVE word
embeddings [Pennington et al., 2014] as the embedding function f(·).

9

5.2 Baselines

• MSGI+ is the MSGI Sohn et al. [2020] agent modified to be capable of solving our
Cooking and Mining tasks. We augmented MSGI with an effect model, separate subtasks
and options in the ILP algorithm, and replace the GRProp with cyclic GRProp, a modified
version of GRProp that can run with cycles in the subtask graph.

• HRL Andreas et al. [2017]2 is the option-based hierarchical reinforcement learning agent.
It is an actor-critic model over the pre-learned options.

• Random agent randomly executes any eligible option.

We meta-train PSGI on training tasks and meta-eval on evaluation tasks to test its adaptation efficiency
and generalization ability. We train HRL on evaluation tasks to test its adaptation (i.e., learning)
efficiency. We evaluate Random baseline on evaluation tasks to get a reference performance. We use
the same recurrent neural network with self-attention-mechanism so that the agent can handle varying
number of (unseen) parameterized subtasks and options depending on the tasks. See the appendix for
more details on the baselines.

5.3 Zero-/Few-shot Transfer Learning Performance

Zero-shot learning performance. Figure 4 compares the zero-shot and few-shot transfer learning
performance on Mining and Cooking domains. First, PSGI achieves over 50 and 30% success rate
on Cooking and Mining domain without observing any samples (i.e., x-axis value = 0) in unseen
evaluation tasks. This indicates that the parameterized subtask graph effectively captures the shared
task structure, and the inferred attributes generalizes well to unseen entities in zero-shot manner. Note
that MSGI+, HRL, and Random baselines have no ability to transfer its policy from training tasks
to unseen evaluation tasks. We note that MSGI+ has no mechanism for generalizing to the tasks with
unseen entities.

Few-shot learning performance. In Figure 4, PSGI achieves over 90 and 80% success rate on
Cooking and Mining domains respectively after only 1000 steps of adaptation, while other baselines
do not learn any meaningful policy except MSGI+ in Cooking. This demonstrates that the param-
eterized subtask graph enables PSGI to share the experience of similar subtasks and options (e.g.,
pickup X on Y for all possible pairs of X and Y) such that the sample efficiency is increased by
roughly the factor of number of entities compared to using subtask graph in MSGI+.

5.4 Comparison on Task Structure Inference

We ran PSGI and MSGI+ in the Cooking and Mining, inferring the latent subtask graphs for 2000
timesteps. The inferred graphs at 2000 timesteps are shown in Figure 3. In the interest of space, we
have shown the inferred graph by MSGI+ in the appendix in Figure 8. PSGI infers the parameterized
graph using first-order logic, and thus it is more compact. On the other hand, MSGI+ infers the
subtask graph without parameterizing out the shared structure, resulting in non-compact graph with
hundreds of subtasks and options. Moreover, graph inferred by PSGI has 0% error in precondition
and effect model inference. The graph inferred by MSGI+ has 38% error in the preconditions (the
six options that MSGI+ completely failed to infer any precondition are not shown in the figure
for readability). The result shows that the parameterized graph can infer the task structure much
more efficiently than the subtask graph by sharing the experiences of different options using the
parameterized options and subtasks.

6 Conclusion

In this work we presented parameterized subtask graph inference (PSGI), a method for efficiently
inferring the latent structure of hierarchical and compositional tasks. PSGI also facilitates inference
of unseen subtasks during adaptation, by inferring relations using predicates. PSGI additionally learns
parameter attributes in a zero-shot manner, which differentiate the structures of different predicate
subtasks. Our experimental results showed that PSGI is more efficient and more general than prior
work. In future work, we aim to to tackle noisy settings, where options and subtasks exhibit possible
failures, and settings where the option policies must also be learned.

2In Andreas et al. [2017] this agent was referred as Independent model.

10

References
Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy

sketches. In International Conference on Machine Learning, pages 166–175. PMLR, 2017.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and regression
trees. CRC press, 1984.

Wilka Carvalho, Anthony Liang, Kimin Lee, Sungryull Sohn, Honglak Lee, Richard L Lewis, and
Satinder Singh. Reinforcement learning for sparse-reward object-interaction tasks in first-person
simulated 3d environments. arXiv preprint arXiv:2010.15195, 2020.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Kutluhan Erol. Hierarchical task network planning: formalization, analysis, and implementation.
PhD thesis, 1996.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pages 1126–1135. PMLR,
2017.

Evelyn Fix. Discriminatory analysis: nonparametric discrimination, consistency properties, volume 1.
USAF school of Aviation Medicine, 1985.

Jeremy Frank and Ari Jónsson. Constraint-based attribute and interval planning. Constraints, 8(4):
339–364, 2003.

Behzad Ghazanfari and Matthew E Taylor. Autonomous extracting a hierarchical structure of tasks in
reinforcement learning and multi-task reinforcement learning. arXiv preprint arXiv:1709.04579,
2017.

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese, and
Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video
demonstration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8565–8574, 2019.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017.

Joao Loula, Marco Baroni, and Brenden M Lake. Rearranging the familiar: Testing compositional
generalization in recurrent networks. arXiv preprint arXiv:1807.07545, 2018.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Neville Mehta, Prasad Tadepalli, and Alan Fern. Autonomous learning of action models for planning.
Advances in Neural Information Processing Systems, 24:2465–2473, 2011.

Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19:629–679, 1994.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In International Conference on Machine Learning, pages
2661–2670. PMLR, 2017.

Mark Palatucci, D. Pomerleau, Geoffrey E. Hinton, and Tom Michael Mitchell. Zero-shot learning
with semantic output codes. In NIPS, 2009.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

11

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. Hierarchical reinforcement learning for zero-shot
generalization with subtask dependencies. arXiv preprint arXiv:1807.07665, 2018.

Sungryull Sohn, Hyunjae Woo, Jongwook Choi, and Honglak Lee. Meta reinforcement learning with
autonomous inference of subtask dependencies. arXiv preprint arXiv:2001.00248, 2020.

Alejandro Suárez-Hernández, Javier Segovia-Aguas, Carme Torras, and Guillem Alenyà. Strips
action discovery. arXiv preprint arXiv:2001.11457, 2020.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Thomas J Walsh and Michael L Littman. Efficient learning of action schemas and web-service
descriptions. In AAAI, volume 8, pages 714–719, 2008.

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Neural
task programming: Learning to generalize across hierarchical tasks. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 3795–3802. IEEE, 2018.

Hankz Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li. Learning complex action models with
quantifiers and logical implications. Artificial Intelligence, 174(18):1540–1569, 2010.

A Appendix

𝑡
𝒐𝒕 𝒙𝒕 𝒙𝒕"𝟏

𝐴!𝐴"𝐵!𝐵" 𝐴!𝐴"𝐵!𝐵"
0 𝐶$ 0000 0010
1 𝐷% 1000 1000
2 𝐶% 1010 1011
⋮ ⋮ ⋮
𝐻 𝐶% 1111 1111

Option

𝑫𝑿

Agent
trajectory

𝒐𝒕 𝒙𝒕,()* 𝒙𝒕"𝟏,()*
𝐴#𝐵# 𝐴#𝐵#

𝐷+ 00 01
𝐷+ 11 11
𝐷+ 10 11
⋮ ⋮ ⋮
𝐷+ 11 11

Augmented
predicate trajectory Effect of 𝑫𝑿

𝑫𝑿 ⇒ ∆ 𝒙𝒕,𝒂𝒖𝒈𝒙𝒕)𝟏,𝒂𝒖𝒈
= 𝑩𝑿

Subtask
Completion
Delta

Figure 5: An overview of our approach for estimating the parameterized effect of the parameterized
subtask graph, Ĝeff, in a simple environment with subtasks A,B and options C,D,E. Each subtask
and option has a parameter 0 or 1. We run effect inference for every option and show DX as an
example. 1. The first table is built from the agent’s trajectory (xt, ot is the subtask completion and
option executed at time t). 2. We build the second table, the “augmented” trajectory by substitutingX
into all possible subtask completions, AX , BX , and restricting the table to only row where ot = DX .
3. We infer option dynamics, (xt, ot) 7→ xt+1, by calculating the simple aggregated difference
between subtask completion before and after DX , ∆(xt,aug, xt+1,aug).

B Details on the Method

B.1 Parameterized Subtask Graph MLE Derivation

Recall in the Parameterized Subtask Graph Inference section our goal is to infer the maximum
likelihood factored subtask graph G given a trajectory τH .

ĜMLE = argmax
Gprec,Geff,Gr

p(τH |Gprec,Geff,Gr) (19)

where τH = {s1, o1, r1, d1, . . . , sH} is the adaptation trajectory of the adaptation policy πadapt
θ after

H time steps.

12

We can expand the likelihood term as:
p(τH |Gprec,Geff,Gr) (20)

= p(s|Gprec,Geff)

H∏
t=1

[
πθ(ot|τt) (21)

p(st+1|st, ot,Gprec,Geff)p(rt|st, ot,Gr)p(dt|st, ot)
]

(22)

∝ p(s|Gprec,Geff)

H∏
t=1

[
p(st+1|st, ot,Gprec,Geff) (23)

p(rt|st, ot,Geff,Gr)
]

(24)

where we dropped terms independent of G. From our definitions of the Parameterized Subtask
Graph problem, the predicate precondition Gprec determines the mapping from completion x to option
eligibility e, x 7→ e, the predicate effect Geff determines the mapping from completion and option to
completion, (xt, o) 7→ xt+1, and finally, the predicate reward Gr determines the reward given when a
subtask is completed at time t. Then, we can rewrite the MLE as:

P̂G
MLE

=
(
ĜMLE

prec , ĜMLE
eff , ĜMLE

r

)
(25)

=

(
argmax
Gprec

H∏
t=1

p(et|xt,Gprec), (26)

argmax
Geff

H∏
t=1

p(xt+1|xt, ot,Geff), (27)

argmax
Gr

H∏
t=1

p(rt|ot, ot+1,Gr)
)

(28)

The rest of PSGI follows in maximizing Ĝprec, Ĝeff, and Ĝr individually.

Figure 6: The inferred parameterized subtask graph by PSGI after 6000 timesteps in the Mining
domain. Options are represented in rectangular nodes. Subtask completions and attributes are are in
oval nodes. A solid line represents a positive precondition / effect, dashed for negative. Ground truth
attributes are included option/subtask parameters, however which attributes are used for which option
preconditions is still hidden, which PSGI must infer.

C Details on the Tasks

Cooking The Cooking domain is modelled after cooking interactions from the AI2Thor simulated
home environment Kolve et al. [2017]. The agent has 4 main interactions in the environment: pickup,
put, slice, and cook. The agent can execute options to move objects with pickup and put, and
execute options to change object states with slice and cook. Figure 1 shows a simplified version
of the preconditions and effects of interactions. The full parameterized subtask graph is shown in
Figure 3, which was correctly inferred by the PSGI agent.

13

Mining The Mining domain is modelled after the open world video game Minecraft and the domain
introduced by Sohn et al. [2018]. Similar to the mining from Sohn et al. [2018], the agent has 4
main interactions in the environment: get, light, smelt, and craft. The agent may retrieve/mine
materials with get, use light and smelt to prepare materials in order to craft them into usable
tools. However, Mining has additional added complexity from Sohn et al. [2018]. Mining has one
more “tier” of mining difficulty — a stone pickaxe must be used to mine iron, and a iron pickaxe must
be used to mine diamond. This makes Mining significantly more difficult for the agent, and more
closely matches the gameplay in the Minecraft video game. Mining also has many more materials
added than Sohn et al. [2018]. E.g. in some tasks the agent will encounter stone, iron, copper,
gold, diamond, etc, each material with similar or different latent attributes. Again, this makes the
task more difficult, but more similar to Minecraft. The latent parameterized subtask graph of Mining
is shown in Figure 6.

D Details on the Baselines and Hyperparameters

HRL The baseline HRL is an actor-critic model over pre-learned options Andreas et al. [2017].
As our compared approach PSGI utilizes the entity embeddings (used for zero-shot learning entity
attributes), we use an architecture for HRL that uses attention over the entities as well as the
observations, following Luong et al. [2015]. We briefly describe this architecture.

Let x ∈ {0, 1}N , e ∈ {0, 1}M be the completion and eligibility vector respectively, where there are
N subtasks and M options. Let Ex ∈ RN,D,Ee ∈ RN,D be the entity embeddings for each subtask
and option entities concatenated.

Let D′ be the embedding dimension. We apply attention over the observations by:

V = [Ex;Ee]WV [x; e] ∈ RN+M,D′

K = [Ex;Ee]WK [x; e] ∈ RN+M,D′

attention = V softmax(WQK)

Similarly, we also use attention to calculate the option logits:

h = MLP(attention; observation) ∈ RD
′

O = WOEe ∈ RM,D′

logits = Oh

We searched through the following hyperparameters for HRL in a simple grid search.

HRL hyperparameters
Learning Rate {1e-4, 2.5e-4}
Entropy Cost {0.01, 0.03}
Baseline Cost 0.5
N -step horizon 4
Discount 0.99

MSGI+ We implement MSGI+ following work from Sohn et al. [2020], however, we adjust prior
work to additionally infer option effects (where previous options were assumed to only complete sin-
gular subtasks), by using the PSGI effect model, but without leveraging the smoothness assumptions.
I.e. we directly infer effect from Equation (16), or, skipping step 2. of Figure 5.

We use the following hyperparameters for MSGI+.

MSGI+ hyperparameters
Exploration count-based
GRProp Temperature 200.0
GRProp wa 3.0
GRProp βa 8.0
GRProp εor 0.8
GRProp tor 2.0

14

PSGI We use the following hyperparameters for PSGI. We use mostly similar parameters to

MSGI+.

PSGI hyperparameters
Exploration count-based
GRProp Temperature 200.0
GRProp wa 3.0
GRProp βa 8.0
GRProp εor 0.8
GRProp tor 2.0
Number of priors 4
Prior timesteps Tprior 2000

0K 0.5K 1K 1.5K 2K
adaptation steps

0.5

1.0

1.5

Re
tu

rn

Cooking

0K 0.5K 1K 1.5K 2K
adaptation steps

0.0

0.5

1.0
Su

cc
es

s R
at

e

Cooking

0K 0.5K 1K 1.5K 2K
adaptation steps

0.5

1.0

1.5

Re
tu

rn

ET-Mining

0K 0.5K 1K 1.5K 2K
adaptation steps

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

ET-Mining
Tprior = 100
Tprior = 500
Tprior = 2000

Figure 7: The adaptation curve of PSGI trained with different priors. Priors were trained in the train-
ing tasks of Cooking and Mining domains respectively for Tprior = 100, 500, and 2000 timesteps.

E Additional Experiments

We additionally wanted to ask the following research questions:

1. Can PSGI generalize to unseen subtasks with unseen entities using the inferred attributes?

2. How does the quality of the PSGI’s prior affect transfer learning performance?

E.1 Zero Shot Learning Attributes

In our experiments, we assume the first entity of every subtask and option serves as a “verb” entity
(e.g. pickup, cook, etc.). We assume there is there is no shared structure across subtasks and options
with different verbs.

As described in section 3.1, (when attributes are not provided), we infer attributes from an exhaustive
powerset of all possible features on seen parameters. The attributes that are used for the graph are
then likely to be semantically meaningful, as the decision tree selects the most efficient features.
Hence, to test whether PSGI is generalizable, we can evaluate whether attributes are accurately
inferred for unseen parameters when only given the ground truth attributes on seen parameters (given
that PSGI will infer the ground truth for the seen parameters).

We measure the generalization error of PSGI if some “weak" signal is provided through parameters.
We suppose the word labels for options and subtasks are provided in Cooking. I.e. the words for
parameters “pickup", “apple", etc. are known. Then, we can infer low level (but semantically mean-
ingful) features from these words by using word embeddings to encode the parameters Pennington
et al. [2014]. We choose to use 50 dimensional GloVE word embeddings from Pennington et al.
[2014]. We then evaluate by measuring the accuracy of attributes for 20 additional unseen test
parameters, all words related to kitchens and cooking. We show the results in Table 1. From these
results, we can extrapolate that at least 70% of edges (on unseen entities) in the predicate subtask
graph using these attributes are accurate.

E.2 Effect of the Prior

As described in the Task Transfer and Adaptation section, in PSGI, the training phase is used to learn
a prior parameterized subtask graph, Ĝprior. Ĝprior is then used in an ensemble with the the test policy’s
learned graph Ĝtest. Then, we can infer that the more accurate Ĝprior is, the better the transfer policy
will perform. To study this, we varied the number of timesteps used to learn the priors in the Cooking

15

Ground Truth Attribute Accuracy (on unseen test entities)
isfood 95%
needslice 90%
iscookware 70%
isplace 75%
isboard 95%

Table 1: We evaluate the generalization accuracy of PSGI on unseen test entities in the Cooking
environment. For each ground truth attribute, we evaluate whether PSGI accurately labels the unseen
test entity correctly. There are 10 seen entities (training set), and 20 unseen entities (test set) in the
Cooking environment.

and Mining domains. We trained priors Tprior = 100, 500, and 2000 timesteps respectively, shown in
Figure 7.

In the Cooking domain, we can see that when Tprior is higher, the average return and success rate
increases. However, in the Mining domain, we see no obvious correlation between Tprior and
performance. We reason that this may be from a number of factors — the prior graphs may not have
significant difference between Tprior = 100, 500, and 2000 timesteps, or that Ĝprior is significantly
different from the latent parameterized subtask graph during testing, rendering the prior less useful.

16

(op_cook, carrot, pan)

(op_cook, lettuce, pot) (cook, lettuce)

(op_cook, pear, pan)

(op_cook, pear, pot) (cook, pear)

(op_cook, pork, pan) (cook, pork)

(op_cook, pork, pot)

(op_pickup, carrot, desk)

(pickup, carrot)

(put, carrot, desk)

(op_pickup, carrot, pan)
(put, carrot, pan)

(op_pickup, carrot, pot)
(put, carrot, pot)

(op_pickup, carrot, shelf)

(put, carrot, shelf)

(op_pickup, carrot, stove)

(put, carrot, stove)

(op_pickup, lettuce, desk)

(pickup, lettuce)
(put, lettuce, desk)

(op_pickup, lettuce, pan)

(put, lettuce, pan)

(op_pickup, lettuce, pot)

(put, lettuce, pot)

(op_pickup, lettuce, shelf) (put, lettuce, shelf)

(op_pickup, lettuce, stove)
(put, lettuce, stove)

(op_pickup, pan, desk)

(pickup, pan)

(put, pan, desk)

(op_pickup, pan, shelf)

(put, pan, shelf)
(op_pickup, pan, stove)

(put, pan, stove)

(op_pickup, pear, desk)

(pickup, pear)

(put, pear, desk)

(op_pickup, pear, pan)

(put, pear, pan)

(op_pickup, pear, pot)
(put, pear, pot)

(op_pickup, pear, shelf) (put, pear, shelf)

(op_pickup, pear, stove)

(put, pear, stove)

(op_pickup, pork, desk)

(pickup, pork)

(put, pork, desk)

(op_pickup, pork, pan)

(put, pork, pan)

(op_pickup, pork, pot)

(put, pork, pot)

(op_pickup, pork, shelf)

(put, pork, shelf)

(op_pickup, pork, stove)

(put, pork, stove)

(op_pickup, pot, desk)

(pickup, pot)

(put, pot, desk)

(op_pickup, pot, shelf) (put, pot, shelf)

(op_pickup, pot, stove)
(put, pot, stove)

(op_put, carrot, desk)

(op_put, carrot, pan)

(op_put, carrot, pot)

(op_put, carrot, shelf)

(op_put, carrot, stove)

(op_put, lettuce, desk)

(op_put, lettuce, pan)

(op_put, lettuce, pot)

(op_put, lettuce, shelf)

(op_put, lettuce, stove)

(op_put, pan, desk)

(op_put, pan, shelf)

(op_put, pan, stove)

(op_put, pear, desk)

(op_put, pear, pan)

(op_put, pear, pot)

(op_put, pear, shelf)

(op_put, pear, stove)

(op_put, pork, desk)

(op_put, pork, pan)

(op_put, pork, pot)

(op_put, pork, shelf)

(op_put, pork, stove)

(op_put, pot, desk)

(op_put, pot, shelf)

(op_put, pot, stove)

(op_slice, carrot, desk)
(slice, carrot)

(op_slice, lettuce, desk)
(slice, lettuce)

(op_slice, pear, desk) (slice, pear)

(op_slice, pork, desk) (slice, pork)

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

Figure 8: Inferred subtask graph by MSGI+ after 2000 timesteps in the Cooking environment. For
MSGI+, 262 options with no inferred precondition and effect were not visualized for readability.
Options are represented in rectangular nodes. Subtask completions and attributes are are in oval
nodes. A solid line represents a positive precondition / effect, dashed for negative. Ground truth
attributes are included option/subtask parameters, however which attributes are used for which option
preconditions is still hidden, which MSGI+ must infer.

17

	Introduction
	Problem Definition
	Background: Transfer Reinforcement Learning
	Background: The Subtask Graph Problem
	The Parameterized Subtask Graph Problem

	Method
	Zero-shot Learning Entity Attributes
	Parameterized Subtask Graph Inference
	Task Transfer and Adaptation

	Related Work
	Experiments
	Environments
	Baselines
	Zero-/Few-shot Transfer Learning Performance
	Comparison on Task Structure Inference

	Conclusion
	Appendix
	Details on the Method
	Parameterized Subtask Graph MLE Derivation

	Details on the Tasks
	Details on the Baselines and Hyperparameters
	Additional Experiments
	Zero Shot Learning Attributes
	Effect of the Prior

