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Abstract

Significant progress has been achieved using Vision Transformers (ViTs) in com-
puter vision. However, challenges persist in modeling multi-scale spatial rela-
tionships, hindering effective integration of fine-grained local details and long-
range global dependencies. To address this limitation, a Multi-Kernel Correlation-
Attention Vision Transformer (MK-CAViT) grounded in the Hirschfeld-Gebelein-
Rényi (HGR) theory was proposed, introducing three key innovations. A parallel
multi-kernel architecture was utilized to extract multi-scale features through small,
medium, and large kernels, overcoming the single-scale constraints of conven-
tional ViTs. The cross-scale interactions were enhanced through the Fast-HGR
attention mechanism, which models nonlinear dependencies and applies adaptive
scaling to weigh connections and refine contextual reasoning. Additionally, a stable
multi-scale fusion strategy was adopted, integrating dynamic normalization and
staged learning to mitigate gradient variance, progressively fusing local and global
contexts, and improving training stability. The experimental results on ImageNet,
COCO, and ADE20K validated the superiority of MK-CAViT in classification,
detection, and segmentation, surpassing state-of-the-art baselines in capturing com-
plex spatial relationships while maintaining efficiency. These contributions can
establish a theoretically grounded framework for visual representation learning and
address the longstanding limitations of ViTs.

1 Introduction

In recent years, deep learning, particularly Transformer-based models, has demonstrated remarkable
effectiveness in handling large-scale, high-dimensional, and multi-modal data [1]]. Initially developed
for natural language processing (NLP) tasks, Transformers [2] have been recognized for their
capacity to capture long-range dependencies and complex relationships within sequential data,
thereby becoming foundational to sequence modeling. With the emergence of Vision Transformers
(ViTs) [3], this architecture has been successfully extended to computer vision tasks, including image
classification [4} 5, 6], object detection [[7, 18], and multi-modal learning [9} 10, [11]. These models
are centered on the self-attention mechanism, which enhances token representations by encoding
statistical correlations among sequence elements. Through global self-attention enabling each token
to attend to all others, ViTs effectively model detailed patterns across entire images [12]],surpassing
convolutional neural networks (CNNs) in capturing long-range interactions beyond localized receptive
fields [113}[14]. Despite their demonstrated effectiveness, ViTs remain largely empirically driven and
lack a rigorous mathematical foundation. The outputs of self-attention layers are often interpreted
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heuristically with ambiguous statistical and geometric relationships between data distributions and
the resulting representations [15} |16]]. Moreover, vision tasks involve high-dimensional inputs with
complex spatial dependencies, rendering the global self-attention computationally burdensome. The
Softmax-based attention mechanism [17]] introduces quadratic complexity with respect to the number
of tokens, thereby presenting scalability challenges for high-resolution visual data.

To address these limitations, multiple approaches have been developed to reduce the computational
demands of self-attention while preserving the capacity to model long-range dependencies. The
Swin Transformer [18] and Pyramid Vision Transformer (PVT) [19] decrease computational costs by
restricting attention to local windows or employing sparse attention mechanisms, respectively. Recent
state-of-the-art methods, including FasterViT [20] and Agent-Swin [21]], further enhance efficiency
through hierarchical feature merging and reinforcement learning-based attention selection. Despite
their effectiveness in reducing computational complexity, these approaches have two significant limi-
tations: first, they frequently depend on heuristic design choices lacking a solid theoretical foundation
for modeling multi-scale feature dependencies; second, their emphasis on local or sparse interac-
tions inherently compromises the capture of global dependencies, a critical capability of full global
self-attention that remains essential for tasks demanding holistic scene understanding. Additionally,
the application of pre-trained Transformer models to new tasks or architectures often encounters
compatibility challenges, necessitating substantial modifications to the training process. Typically,
ViTs rely on a fixed image patch structure and experience difficulty in transferring parameters across
tasks. In contrast to CNNs, which can extract local features through sliding windows, ViTs utilize
self-attention to model dependencies between image patches across the entire image. Although this
method effectively captures the global context, it introduces inefficiencies, particularly in capturing
fine-grained details, such as textures and edges.

Recent studies have proposed certain hybrid architectures that integrate CNNs with Transformers
[22, 23| [24], leveraging the strengths of CNNs for local feature extraction and Transformers for
global context modeling. However, the incorporation of CNNs into ViTs increases the computational
complexity primarily because of the global self-attention mechanism, which amplifies the compu-
tational demands and reduces training and inference efficiency. Although lightweight CNNs and
optimized ViT architectures have been explored [25} 26, 27, 128} |29]], achieving a balance between
computational cost and model performance remains a significant challenge. Against this backdrop, a
novel framework was proposed to enhance ViTs with the following contributions:

Multi-Kernel Correlation-Attention Vision Transformer (MK-CAViT): MK-CAViT was intro-
duced as an advanced Vision Transformer that integrated the correlation attention with a multi-kernel
architecture. Parallel kernels of varying sizes were employed to extract features at multiple resolutions.
This unified design addressed the single patch size limitation of Transformers, enabling the modeling
of both local and global dependencies. Through the fusion of multi-scale semantic information,
MK-CAVIT enhanced the feature representations and established a robust foundation for visual tasks.

Hierarchical Multi-Scale Feature Correlation Strategy: A two-stage hierarchical fusion strategy
was proposed to facilitate effective cross-scale integration. Learnable gating dynamically combines
small-kernel local details with medium-kernel features, preserving spatial precision before incorpo-
rating large-kernel global context. This dynamic weighting aligns local and global cues, enhancing
model robustness and generalization for multi-scale object recognition in complex scenes.

Efficient HGR-Based Correlation Attention Mechanism: A Fast-HGR correlation mechanism
was developed to efficiently model nonlinear feature dependencies, grounded in Hirschfeld-Gebelein-
Rényi (HGR) maximal correlation theory. This mechanism utilized cosine similarity for local feature
alignment and incorporated trace regularization to enforce global consistency. These design choices
preserved the theoretical advantages of HGR while significantly reducing computational complexity.
It focused attention on relevant regions, reduced noise, and modeled cross-scale feature interactions,
thereby enhancing feature discriminability across various visual environments.

Unified Multi-Scale Attention Framework: MK-CAVIiT established a unified framework merging
correlation attention with multi-kernel pathways to model local and global dependencies. The
multi-resolution features were extracted through parallel kernels and calibrated using the Fast-HGR
mechanism to ensure semantic consistency. A dynamic attention strategy was applied to adaptively
weigh the features across granularities, enhancing the representations for challenging targets, such as
small objects and ambiguous boundaries. This architecture can provide an efficient solution for both
image-level and pixel-level tasks by effectively integrating fine details with the global context.



2 Related Works

2.1 Vision Transformers

ViTs have transformed computer vision by adapting self-attention mechanisms to capture long-range
dependencies[30]. Recent developments have focused on two primary challenges: the efficient
learning of multi-scale features and robust modeling of local-global interactions [31}32]. The Focal
Transformer [33] introduces a hierarchical self-attention mechanism that combines fine-grained
local attention for nearby tokens with coarse-grained global attention through pooled summaries for
distant tokens. This design reduces computational complexity while effectively capturing multi-scale
dependencies, achieving state-of-the-art performance in dense prediction tasks. In parallel, MPViT
[34] utilizes multi-scale patch embedding with parallel transformer paths, extracting diverse features
from overlapping convolutional patches (e.g., 3x3, 5x5, and 7x7) and aggregating them to enhance
multi-scale representation. These approaches have underscored the significance of hierarchical and
parallel processing in capturing spatial details and global context. Existing multi-scale modeling
approaches can be classified into three main paradigms: (1) structural pyramid designs, such as PVT
[19} 35]] and MVIT [36]], which apply spatial reduction operations across stages; (2) window-based
hybrids, including Swin [[18] and CSwin [37], which balance the local attention within windows using
shifted window strategies; and (3) dynamic attention mechanisms such as DAT [38]] and BiFormer
[39]], which adaptively adjust receptive fields through deformable or routing operations.

Although these methods have advanced in the field, critical limitations persist. The hierarchical
attention of the Focal Transformer introduces complex window-granularity interactions that increase
memory consumption, while MPViT’s multi-path structure encounters difficulties in cross-scale
feature fusion. Moreover, most existing approaches rely on simple dot-product attention to measure
feature correlations, potentially neglecting complex nonlinear dependencies among multi-scale
features. To address these challenges, a novel multi-kernel correlation attention mechanism was
proposed that integrates the HGR maximal correlation with parallel pathway fusion to enable more
effective cross-scale dependency modeling.

2.2 Maximal Correlation in Deep Learning

The Hirschfeld-Gebelein-Rényi (HGR) maximal correlation [40, |41} 42] provides a theoretically
grounded framework for measuring nonlinear dependencies, and offers clear advantages over con-
ventional linear correlation metrics [43]. Recent developments have adapted HGR principles for
deep learning via Soft-HGR [44]], which substitutes strict whitening constraints with low-rank ap-
proximations. This adaptation enables practical deployment in neural networks while preserving the
HGR’s capacity to capture the maximal information between feature representations. HGR-based
methods have evolved in three main directions: (1) enhancement of computational efficiency through
covariance trace optimization [43]); (2) improvement of multimodal fusion via joint covariance-trace
constraints, and (3) stability optimization through eigenvalue normalization techniques.

However, current implementations focus more on feature embedding alignment than on designing
attention mechanisms. This paper introduces three key innovations for integrating HGR into ViTs:(1)
a dynamic covariance projection that adapts to varying feature scales across transformer layers, (2)
multi-kernel trace constraints that stabilize the correlation computation across parallel pathways, and
(3) gradient-aware whitening that facilitates end-to-end learning without explicit matrix inversion.
These advancements enable the effective integration of HGR principles into attention mechanisms
while preserving compatibility with standard transformer optimization processes.

The improved Soft-HGR formulation in Eq.(1) addressed two primary limitations of prior imple-
mentations: (1) the variance instability in high-dimensional features was mitigated through trace
regularization, and (2) cross-kernel compatibility was achieved via dimension-aware covariance
projection, enabling effective correlation measurement within the proposed multi-kernel framework:
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where f(X) and ¢g(Y") denote feature mappings or transformations of inputs X and Y, respectively.
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3.1 Fast-HGR Correlation

To address the computational inefficiency of exact HGR computations while preserving their ability
to model nonlinear feature dependencies, a theoretically grounded approximation was developed.
This approach utilized cosine similarity and trace regularization, inspired by Soft-HGR and improved
Soft-HGR, while removing expensive whitening.

3.1.1 HGR Maximal Correlation Revisited

Let X € R?and Y € R? be random vectors representing features from different network branches.
The k-dimensional HGR maximal correlation p(*) (X, Y") is defined as:

pI(X,Y) = up E[f(X)"g(Y)] st E[f]=E[g] =0, cov(f) =cov(g) =1.  (2)

where f and g are measurable functions, and cov(-) denotes covariance. This measures the strongest
statistical dependence between X and Y, with p = 0 indicating independence and p = 1 indicating
deterministic dependence. For linear f(X) = WX, g(Y) = VY, the optimum reduces to cosine
similarity, motivating our efficient approximation.



3.1.2 Fast-HGR Approximation Derivation

The HGR objective was approximated by replacing the computationally expensive covariance whiten-
ing with batch-wise normalization and combining the cosine similarity for local token alignment with
a trace term to enforce global distributional consistency. Soft-HGR substituted the strict whitening
constraints with a soft regularizer, preserving the feature geometry of the original HGR formulation.
To address the Soft-HGR’s sensitivity to signal variance, the improved Soft-HGR introduced addi-
tional variance constraints. In contrast, the proposed Fast-HGR (F-HGR) approximation removed
orthonormality requirements while retaining directional alignment.

F-HGR(f(X),g(Y) 1 Z ||f IJ ” g yjj)” + A tr(cov(f(X))cov(g(Y))). 3)

Cosine Similarity for Local Dependence. For feature vectors f(z;), g(y;) € R? in a batch of size
N, the cosine similarity between each pair is:
CANIT)

cos(f(x;),9(y;)) = m @

This efficiently captures pairwise local dependencies with lower computational cost than full covari-
ance matrix operations.

Trace Regularization for Global Structure. To retain second-order statistical information, a trace
term over centered feature covariances is introduced:
X)—-HTfX)-f Y)—9)T(g(Y)—g
eov( F(X) - cov(a(¥) — i (LI =DTUC) =) 6 =9 6 =9)) )
N -1 N -1
where f and g are the batch means. This term measures the alignment of the feature distributions
across the entire batch, ensuring global consistency without explicit whitening.

Combined Formulation. The Fast-HGR correlation score balances local and global terms:

N
FHGR(f(X),g(¥)) = 55 D cos(f(2),9(3) + A (cov( (X)) - covlg(Y))  ©

where A is a hyperparameter. This formulation inherits the theoretical guarantee that it upper-bounds
the true HGR correlation under linear transformations, with an error bound ¢ = O(1/+v/ N) due to
batch-wise approximation.

The cosine similarity normalized the feature vectors to the unit hypersphere, constraining the
F-HGR values within [-1, 1] and stabilizing the gradients without the layer normalization. This
is aligned with the Transformers without the Normalization [46], where bounded activations (e.g.,
tanh) prevent gradient explosion or vanishing. The theoretical analysis demonstrated the Lipschitz
continuity of the F-HGR operator, thereby ensuring stable training in deep architectures.

3.2 Multi-Kernel Correlation Attention Vision Transformer

MK-CAVIT integrates multi-scale tokenization, F-HGR attention, and hierarchical fusion to model
cross-scale dependencies. The overall architecture of MK-CAVIT is illustrated in Figure [I]

3.2.1 Multi-Scale Tokenization

Given an input image X € REXCXHXW 'three convolutional tokenizers with different kernel sizes

were applied to capture the hierarchical features:

Xpuen = Conv2D(X, K, S5); Xpien = Conv2D(X, K}, S)1); X,

= Conv2D(X, K}, 5%)
(7

where, K s K ™ and K zl7 are the small, medium, and large kernels, S;, S;", and Sllj are their respective

strides, w1th Xpalch € RBXCXHWi for i ¢ {5,m,1}.

patch -

After tokenization, the feature maps were linearly projected into query, key, and value embeddings:
Q' = W, - Flatten(X},.,); K' =W} - Flatten(X},,); V' = W, - Flatten(X ;) ®

where Wg, Wi, Wi € RXC are the learnable projection matrices, and Flatten represents the
flattening of the spatial dimensions into token sequences.



3.2.2 Fast HGR Correlation Attention Mechanism

Traditional self-attention mechanisms rely on Softmax-based similarity computation, which may
suppress subtle feature dependencies. In contrast, F-HGR correlation attention was employed to
capture the relationships between the query and key pairs more effectively:

H®=F-HGR(Q*, K"),i € {s,m,l} 9)
where H' directly represents the pairwise dependencies between tokens.
From Eq. (3), correlation is computed as:

K

K; Aot Ki 10
flzncrnumn A ti{eov(Q1) cov(KT)). a0y

The first term measures local token dependencies via cosine similarity; the second term encodes
global structural dependencies via trace operation. This formulation preserves both local token
interactions and global feature consistency. The correlation attention mechanism is defined as:

F-HGR(Q, Ki)) ;

— |V
Vd

This approach employs HGR to compute correlations between query and key matrices, replacing

conventional dot-product similarity. Consequently, the model captures intricate feature interactions
while avoiding computational inefficiencies of traditional HGR methods.

Attention(Q*, K*, V') = Softmax ( (11)

3.2.3 Multi-Scale Fusion

The multi-scale fusion mechanism combined features through gated Fast-HGR correlations with
theoretical guarantees of stability. Let Q%, K € RE*N:xd and Q™, K™ € RB*Nmxd denote the
queries/keys from the small- and mid-kernel pathways respectively, with V! € REXNixd 4 the
large-kernel values.

Local-Mid Fusion (Small + Mid-Kernel): Small-kernel (s) and mid-kernel (m) features are fused
using gated F-HGR attention:

Agm = o(a) - Attention(Q’, K°, V™) + o(8) - Attention(Q™, K™, V?) (12)

where a, 3 € R? are learned gating vectors, o(-) denotes sigmoid activation, and V™, V* are
mid/small-kernel value matrices. This balances contributions from cross-kernel value interactions.

Global Context Integration (Local + Large-Kernel): The fused features A,,, then interact with
global context through adaptive mixing:

Afinal = v - Attention(Asp,, Asm, Vl) + (1 =) - AvgPool(Asm) (13)

where the mixing coefficient 7 is dynamically computed from global context, enabling task-aware
scaling where small-kernel features emphasize fine details and large-kernel features prioritize global
patterns.

3.2.4 Adaptive Multi-Head Attention

Traditional multi-head attention mechanisms assign fixed contributions to each head during training
and inference. However, input complexity varies, and not all attention heads contribute equally. In
simpler image regions, certain heads may capture redundant information, increasing computational
cost. To address this issue, an adaptive multi-head attention mechanism was introduced within the
MK-CAVIT. This mechanism adjusted each head’s contribution based on the input complexity using
a lightweight gating module. Each attention head h was associated with a learnable gating parameter
gn, which was either trained through a simple network or learned as a standalone variable. The output
of the h-th attention head, Apcad 1, is computed as:

Anead,h = 0(gn) - Attention, (Qp, Kn, Vi) (14)

where o(-) maps the learnable gating parameter gy, to (0, 1) to scale the output, and Attentiony,
denotes the attention computation for head h.



When the input is simple, the model can reduce the gating parameter g;, toward zero for less relevant
attention heads, thereby lowering computational cost. For more complex inputs, g;, increases toward
one for critical heads. For instance, attention heads may be deactivated in background regions and
fully utilized in target-relevant areas.

In MK-CAVIT, an adaptive attention mechanism is integrated with a multi-kernel architecture and
F-HGR computation. The multi-kernel structure extracts multi-scale features, F-HGR captures cross-
scale dependencies, and the gating mechanism optimizes processing efficiency. Features are projected
into queries, keys, and values. F-HGR computes correlation scores, and the gating module adjusts
attention outputs. The final representation is derived from gated, correlated feature interactions.

Z =W, - Concat (Ahead,h ey Ahead,H) (15)

where W, is a learnable matrix and H is the number of heads. This integration optimizes performance
across varying input complexities.

3.3 Loss Function

The proposed loss function combines cross-entropy loss Lcg and F-HGR loss Ly.ygr. The cross-
entropy loss ensures prediction accuracy by minimizing the discrepancy between predicted and true
labels, whereas the F-HGR loss promotes feature correlation, thereby enhancing the model’s capacity
to capture data dependencies. The overall loss function L is defined as:

L = Lcg — pLrncr (16)

where p controls the F-HGR term’s influence, and Lg.ygr is computed using the F-HGR scalar
defined in Equation (10). This combination enables the model to achieve high predictive accuracy
while maintaining robust feature correlation, improving suitability for complex tasks.

4 Experimental Results and Analysis Table 1: Classification comparison on ImageNet-

1K dataset.

MK-CAVIT was extensively evaluated across im- ~ Model #Params(M) FLOPs(G) Top-1(%)
age classification, object detection, and semantic  ~ RegNet-50 25.0 41 76.2
segmentation tasks. The component contributions  DeiT-Small/16 22.1 4.6 79.9
were assessed through ablation studies, and the SWlﬂglf)lg T %8-3 3-4 8;-3
efficiency and scalability were analyzed. All ex- ~ {OMVNeXt- 8.6 2 82.0
. . Agent-Swin-T 29.0 4.5 82.6
periments adhered to standardized protocols t0  EusterViT-O 31.4 33 821
ensure fair and consistent comparisons. Focal-Tiny 29.1 49 82.2
MPVIT-S 22.8 4.7 83.0
41 D d Baseline Selecti MK-CAViT-Tiny 22.7 4.6 83.5
. ataset and Baseline Selection ResNet-101 450 79 774
Swin-Small 49.6 8.7 83.1
Three benchmark datasets were used to evalu-  copyNeXt-S 502 3.7 83.1
ate the model performance: ImageNet-1K [47],  Agent-Swin-S 50.0 8.7 83.7
COCO [48], and ADE20K [49]. MK-CAViT  Focal-Small 511 9.1 83.5
was compared against state-of-the-art ViTs and ~_MK-CAVIT-Small _ 49.7 8.7 84.3
CNNs, which was categorized by model scale \R/?;l\];et'lflzﬁ ggg {;g ;gg
(Tiny, Small, Base) to ensure the fair compari- D'ei'T_]gz:e/m set g 818
son.The baseline models included: ResNet [S0],  swin-Base 87.8 15.4 834
ResNeXt [51], ViT [3], DeiT [4], Swin [18], Con-  ConvNeXt-B 88.6 15.4 83.8
vNeXt [52], Focal Transformer [33]], MPViT ?gintiﬁ‘%"lﬁfase 257;(6) 3‘9‘ gjg

. . aster vil- .

[34], Agent-Swin [21]], and FasterViT [20]. FasterViT-3 159.5 182 240
Focal-Base 89.8 16.0 83.8
; ; . MPViT-B 74.8 16.4 84.3
4.2 Image Classification on ImageNet-1K M. CAVIT Rase 880 156 856
Table 1 demonstrates MK-CAVIT’s superior ac- FaStef\gTj“ 434-(6) 36‘2 gg‘z‘
curacy across model scales. The Base variant éfﬁf/’;le)‘g“;;grfe 19;0 éi T sis
achieves 85.6% Top-1 accuracy, surpassing Agent-  MK-CAViT-Large 186.0 28.9 86.1

Swin-Base (84.0%) and FasterViT-B1 (84.8%)
while maintaining comparable computational cost.

The consistent improvements across Tiny (83.5%), Small (84.3%), and Base scales validate the



effectiveness of HGR-correlation attention in capturing nonlinear feature dependencies that heuristic-
based multi-scale methods miss. For large-scale variants, MK-CAViT-Large achieves 86.1% Top-1
accuracy, outperforming FasterViT-4 (85.4%) with 54% fewer parameters and 21% lower FLOPs,
demonstrating superior scalability of the correlation attention framework.

Table 2: COCO object detection and instance seg-  Table 3: Semantic segmentation on ADE20K
mentation with RetinaNet and Mask R-CNN (1x  using UperNet.

schedule). Model #Params(M) FLOPs(G) mIoU(%) mAcc(%)
Model #Params(M) FLOPs(G) RetinaNet Mask-R-CNN Swin-Tiny 60 945 44.5 55.6
AP® AP®  AP™ APS ConvNeXt-T 59 939 46.7 58.2
ResNet-50 442 260 36.3 380 344 221 Q’f“‘;ﬁ%";T gé ggj jg-; 22;
Swin-Tiny 47.8 228 2.0 437 398 253 astervi’ - :
Focal-Tiny 4838 291 437 448 410 268  Focal-Tiny 62 998 458 572
MPViT-S 43.0 268 45.9 465 429 287 MPWTS =~ 52 943 483 597
MK-CAViT-Tiny  41.3 236 46.7 480 436 295 MK-CAViT-Tiny 58 940 495 602
ResNet-101 63.2 336 38.5 404 364 239 Swin-Small 81 1038 476 584
PVT-M 63.9 302 419 420 390 26.1 ConvNeXt-S 79 1027 486 595
Swin-Small 69.1 354 450 465 421 289 Agent-Swin-S 81 1043 481 59.8
Focal-Small 712 401 45.6 474 48 293 FasterViT-3 98 1076 487 59.6
MK-CAViT- 65.3 315 475 49.1 443 307 Focal-Small 85 1130 480 585
Small MK-CAViT- 80 1035 502 60.9
ResNeXt101- 102.0 493 410 428 384 252 Small
64xad Swin-Base 121 1188 48.1  59.1
Swin-Base 107.1 496 45.0 469 423 294 ConvNeXt-B 120 1170 48.9 59.8
Focal-Base 110.0 533 46.3 47.8 432 30.1 Agent-Swin-B 121 1196 48.7 60.0
MPViT-B 95.0 503 47.2 48.6 438 305 FasterViT-4 136 1290 49.1 60.3
Agent-Swin-B 1123 501 479 490 440 305 Focal-Base 126 1354 490 596
FasterViT-B1 111.8 498 48.1 49.1 442 308 MPViT-B 105 1186 503 610
MK-CAViT-Base 932 481 487 503 451 319 MK-CAViT-Base 113 1182 508 617

4.3 Object Detection and Semantic Segmentation

COCO Object Detection: The integrating of MK-CAViT as a backbone in RetinaNet [53]] and Mask
R-CNN [54](Table 2) demonstrated significant performance improvements, particularly for small
objects. MK-CAViT-Tiny achieved 48.0 AP and 43.6 AP™ outperforming Swin-Tiny (43.7/39.8),
Focal-Tiny (44.8/41.0), and MPViT-S (46.5/42.9). MK-CAViT-Base achieved 50.3 APP and 31.9
APS (small-object AP), outperforming Agent-Swin-B(49.0 AP, 30.5 AP%) and FasterViT-B1 (49.1
AP®, 30.8 AP®). The 3x3 kernel in the multi-scale design preserves fine-grained details critical for
small-object localization, while the 15x15 kernel provides global context to reduce false positives.

ADE20K Semantic Segmentation: Using UPerNet [S5] as the decoder (Table 3), MK-CAViT-Tiny
achieved 49.5% mloU, surpassing Swin-Tiny (44.5%), ConvNeXt-T (46.7%), and MPViT-S (48.3%)
by notable margins, indicating the strong fine-grained feature extraction capability. MK-CAViT-Base
reached 50.8% mloU, outperforming MPViT-B (50.3%) and FasterViT-4 (49.1%). The multi-scale
feature fusion mechanism ensures accurate boundary localization and effective context aggregation,
both of which are critical for pixel-level prediction.

4.4 Necessity of Multi-Scale Design Table 4: Performance comparison of single-scale versus
multi-scale kernel configurations across vision tasks.
To validate the necessity of multi-scale

. Table 4 inol Configuration ImageNet COCO COCO ADE20K
processing, Table 4 compares single- Top-1 (%)  AP°(%)  APS(%)  mloU (%)
kernel configurations (3x3, 5x5, 7x7, 3y 827 Bl 273 53
9x%9, 11x11, 15x15) against the multi-  5x5only 83.0 43.8 26.9 4.1

. 7x7 only 83.2 436 26.1 443

kernel (3/7/15) des1gq across three g4 only 8.9 430 553 439
benchmarks. The multi-kernel model 11x11 only 82.6 425 248 434
: ~ . 15x15 only 82.9 4238 247 431

outperforms all single-scale variants by \j ' Kernet 37715) 856 503 31.9 50.8

meaningful margins: 2.4-3.0% in Ima-
geNet Top-1 accuracy, 6.5% in COCO
AP®, and 6.5-7.7% in ADE20K mlIoU. This consistent performance gap confirms that no single kernel
size captures the full spectrum of visual features needed for diverse vision tasks. Specifically, single-
scale designs exhibit inherent limitations: Small kernels (3x3, 5x5) achieve competitive small-object
detection (APS =26.9-27.3%) but lack global context, hindering performance on context-dependent
tasks. Large kernels (11x11, 15%15) over-smooth fine-grained features, resulting in the lowest
ADE20K mloU (43.1%) and COCO AP® (24.7%) among all single-scale variants. Mid-sized kernels
(7x7) underperform the multi-kernel model by 2.4% (ImageNet) and 6.2% (COCO APY), as they



cannot integrate fine details and global context. Notably, the multi-kernel model’s superiority stems
from complementary synergy: 3x3 kernels preserve texture/edge details, 15x15 kernels capture
global scene structure, and 7x7 kernels mediate cross-scale interactions. These strengths combine to
produce gains that exceed the sum of individual single-kernel performance—confirming multi-scale
design is essential for comprehensive visual understanding.

4.5 Ablation Studies

Comprehensive ablations validate MK-CAViT’s design choices, with results quantified in Table 5]

Fast-HGR Module: Removing this feature alignment component results in consistent performance
degradation: ImageNet Top-1 accuracy decreases by 0.9%, COCO AP by 1.5%, and ADE20K
mloU by 0.8%. Small-object detection is particularly affected, with COCO APS dropping by 2.1%.
Training convergence slows by 25%, highlighting the module’s critical role in enhancing gradient
quality through maximizing feature-target correlations.

Hierarchical Gating Fusion: Replacing the two-stage gating mechanism with naive concatenation
or element-wise addition degrades performance: ImageNet Top-1 decreases by 0.8%, COCO APP
by 1.1%, and ADE20K mloU by 0.9%, while increasing FLOPs by 14%. This confirms the gating
mechanism’s efficiency in mediating cross-scale information interaction.

Attention Mechanism: The hybrid multi-token attention mechanism achieves an optimal balance
between efficiency and accuracy. Dense global attention provides a marginal 0.2% improvement in
ImageNet Top-1 but increases FLOPs by 50%, rendering it computationally impractical. In contrast,
sparse local attention reduces FLOPs by 20% but causes a 2.2% drop in COCO AP®, validating the
hybrid design’s superiority for multi-task performance.

Dynamic Normalization: Replacing dynamic normalization with static LayerNorm reduces Ima-
geNet Top-1 by 0.5%, while BatchNorm induces more severe declines: 1.3% in ImageNet Top-1,
1.9% in COCO AP, and 1.7% in ADE20K mloU. Dynamic normalization also enhances robustness,
achieving a 1.7% lower mean corruption error (mCE) on ImageNet-C compared to LayerNorm.

Kernel Configuration: The 3x3/7x7/15x15 kernel combination is confirmed as optimal through
comprehensive kernel configuration analysis. Smaller kernel sets (3x3/5x5/7x7) result in a 1.9%
loss in ADE20K mloU due to insufficient global context capture. The 5x5/9x9/13x13 configuration
achieves competitive ImageNet accuracy (85.1%) but underperforms on small-object detection
(30.7% APS) and segmentation (49.6% mloU), indicating the critical importance of the 3x3 kernel
for fine-grained feature preservation. Similarly, the 3x3/9x9/15x15 configuration shows improved
small-object detection (30.2% APS) and segmentation (50.2% mloU) over the 5x5/9x9/13x13 variant,
but still underperforms the optimal 3x3/7x7/15x15 combination. This highlights the 7x7 kernel’s
role as an essential bridge between fine and coarse scales. Larger sets (7x7/11x11/15x15) suffer a
2.2% mloU drop due to over-smoothing of fine-grained features.

Model Scalability: The importance of core components persists across model scales. When Fast-
HGR is removed, the Tiny variant exhibits a 33% larger relative accuracy drop than the Base model.
Ablating multi-scale pathways (Base model with single-scale 7x7 kernel) causes a 2.5% decline in
ImageNet Top-1 and a 4.3% drop in COCO APP, underscoring multi-path fusion as a foundational
design element.

Task Adaptability: Removing task-specific heads (FPN for detection, decoder for segmentation)
results in minimal performance loss: COCO APP decreases by 0.3% to 50.0, and ADE20K mIoU
decreases by 1.5% to 49.3. This indicates the backbone’s inherent strength in learning discriminative
multi-scale features.

5 Discussion

Model Enhancement and Feature Understanding. The integration of Fast-HGR correlation atten-
tion enhances the capacity of MK-CAVIT to model complex feature dependencies, outperforming
traditional dot-product attention. By combining local token similarity with global distributional
consistency, the model effectively captures fine-grained spatial details and long-range context, both
essential for tasks such as small-object detection and semantic segmentation. The theoretical founda-



Table 5: Comprehensive ablation study results.

Component Variant #Params(M) FLOPs(G) ImageNet COCO ADE20K
Top-1(%) AP"(%) APS(%) mloU(%)
MK-CAViT-Base (Full) 88.0 15.6 85.6 50.3 319 50.8
A. Core Architecture Components
w/o Fast-HGR Module 86.2 (-1.8) 152 (-0.4) 84.7(-0.9) 48.8(-1.5) 29.8(-2.1) 50.0(-0.8)
w/o Hierarchical Gating (Concat/Add) 88.0 17.8 (+14%) 84.8(-0.8) 49.2(-1.1) 304 (-1.5) 49.9(-0.9)
Multi-Token Attention (Dense) 132.0 (+44.0) 23.4 (+50%) 85.8(+0.2) 49.8(-0.5) 31.6(-0.3) 50.5(-0.3)
Multi-Token Attention (Sparse) 70.4 (-17.6) 12.5 (-20%) 84.8 (-0.8) 48.1(-2.2) 29.4(-2.5) 49.6(-1.2)
Dynamic Norm (LayerNorm) 88.0 15.6 85.1(-0.5) 499 (-04) 31.7(-0.2) 50.3(-0.5)
Dynamic Norm (BatchNorm) 88.0 15.6 834 (-1.3) 484 (-1.9) 289(-3.00 49.1(-1.7)
B. Kernel Configuration
3/5/7 Kernels 85.1 15.1 839 (-1.7) 48.7(-1.6) 28.7(-3.2) 48.9(-1.9)
5/9/13 Kernels 87.5 15.7 85.1 (-0.5) 49.5(-0.8) 30.7(-1.2) 49.6 (-1.2)
3/9/15 Kernels 88.2 15.8 85.0 (-0.6) 49.8(-0.5) 30.2(-1.7) 50.2 (-0.6)
7/11/15 Kernels 89.3 15.9 83.5(-2.1) 48.3(-2.0) 285(-34) 49.1(-1.7)
C. Model Scalability
Tiny w/o Fast-HGR 21.5 43 823 (-1.2) 46.2(-1.8) 27.7(-1.8) 48.3(-1.2)
Base (Single-Scale) 79.8 13.1 83.1(-2.5) 46.0(-4.3) 272(-4.7) 489 (-1.9)
D. Task Adaptability
COCO w/o FPN 88.0 15.6 - 50.0(-0.3) 31.8(-0.1) -
ADE20K w/o Decoder 88.0 15.6 - - - 493 (-1.5)

tion in HGR maximal correlation provides a rigorous framework for capturing nonlinear dependencies
that conventional attention mechanisms often miss.

Multi-Kernel Architecture Advantages. The multi-kernel design enabled hierarchical feature
extraction, with small kernels capturing local details, large kernels modeling global context, and mid-
sized kernels bridging spatial scales. This synergy enhanced representation robustness, as evidenced
by consistent performance gains in image classification, object detection, and semantic segmentation.

Comparison with State-of-the-Art Methods. MK-CAViT outperforms both CNNs and vision
transformers in accuracy-efficiency trade-offs. Compared with Swin and ConvNeXt, it achieves
higher accuracy at comparable computational costs, enabled by efficient attention mechanisms and
lightweight normalization strategies. The model demonstrates particular advantages over State-of-
the-Art methods including FasterViT and Agent-Swin, achieving 1.6% higher ImageNet accuracy
and 1.3% higher COCO AP while maintaining similar parameter counts, validating the effectiveness
of theoretically grounded correlation modeling.

Limitations and Future Directions. Although MK-CAViT demonstrates strong performance across
diverse vision tasks, several limitations warrant future investigation. The multi-kernel design intro-
duces computational overhead that may challenge deployment in resource-constrained environments.
Performance degradation is observed on low-resolution images where large kernels cover most pixels,
and correlation attention may amplify noise in highly corrupted inputs. Additionally, potential bias
toward majority classes emerges in extremely imbalanced datasets. Future work will explore adaptive
kernel selection, noise-robust attention mechanisms, class-aware HGR loss weighting, and extension
to 3D vision tasks and video analysis for comprehensive cross-modal feature alignment. Hardware-
aware optimization represents another promising direction to enhance computational efficiency while
maintaining performance advantages.

6 Conclusion

In this study, MK-CAViT was proposed as an enhanced Vision Transformer that integrates multi-scale
kernel pathways with a correlation attention mechanism. The framework strengthened the capacity of
the model to capture complex contextual relationships by leveraging the HGR maximal correlation to
represent both fine-grained local details and long-range global context. The multi-kernel, multi-scale
feature correlation strategy effectively balanced the local and global information, improving the
robustness and generalization across tasks such as image classification, object detection, and semantic
segmentation. The Fast-HGR mechanism further optimized the efficiency, interpretability, and consis-
tency of correlation attention, enabling MK-CAVIiT to capture complex feature interactions while
maintaining computational efficiency. This approach enhances feature extraction and interpretability
without compromising performance, achieving an effective balance between precision and efficiency.
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper uses publicly available datasets and provides code in the supplemen-
tal material, with plans for public release upon publication, ensuring sufficient instructions
for reproducing experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Key details like dataset splits, hyperparameters, and optimization strategies are
reported in the experimental sections and supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not report error bars or statistical significance tests. Most
experiments were conducted 3 to 5 times and averaged. According to the statistical results,
the errors were less than +0.3%. However, to maintain clarity, the authors omitted error bars
and detailed statistical tests from the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources required
for the experiment in the attached materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper complies with NeurIPS ethical standards
in all aspects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: The paper focuses on technical contributions without explicit discussion of
societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk assets (e.g., large pretrained models) are introduced, so safeguards
are not applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Existing datasets (e.g., ImageNet-1K, ADE20K,COCO) are properly cited
with DOIs, respecting their licenses and terms of use.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper introduces an improved ViT model. The code is provided as
supplementary material and will be made public after the paper is officially published.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: This study does not involve human subjects or crowdsourcing, and focuses on
ViT models and computational experiments.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved, making IRB approval irrelevant.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology does not rely on large language models (LLMs) as a
key component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Theoretical Analysis of Fast-HGR Approximation

Theorem 1 (Statistical Consistency of Fast-HGR)

Let X € RVXdx and Y € RV*9r be feature matrices with i.i.d. samples, where each sample
x; € X and y; € Y has bounded norms. Define linear transformations f(X) = XW and
g(Y) =YV with W € R *F and V € R?% ¥k, The Fast-HGR correlation score is:

v;)
e ||||g< A eov(F(X)eov(g(Y)) - (17)

Mz

F-HGR(f(X),g(Y

This formulation approximates the true k-dimensional HGR maximal correlation p*) (X, Y') with a
high-probability estimation error bounded by ¢ = O(1/v/N).

Proof

For linear f, g, the HGR objective measures the strongest statistical dependence as p(*) (X,Y) =
sup; , E[f(X) T g(Y)] under centering and covariance constraints. Fast-HGR approximates this by:
1. Replacing the population expectation with a batch-averaged cosine similarity term, which captures
local pairwise dependencies; 2. Retaining global structural information via the trace of covariance
products.

For the trace term:

X)) -HTUX) - @¥Y)-39)"(9(Y)-9)
N-—1 ' N-—1 ) (18)

tr con () eov(a(¥)) = o (

where f and § are batch means of f(X) and g(Y), respectively.

Under ii.d. sampling, empirical covariances ¥; = cov(f(X)) and 2, = cov(g(Y)) converge
to their population counterparts >y and X, in Frobenius norm. By McDiarmid’s inequality, the
deviation between empirical and population estimates decays exponentially with /V, leading to an

overall error bound of O(1/v/N).
Theorem 2 (Lipschitz Continuity of Fast-HGR)

The Fast-HGR operator is Lipschitz continuous with respect to feature perturbations. For any feature
matrices X1, X2 and Y1, Yo,

[F-HGR(f(X1), 9(Y1))—F-HGR(f(X2), 9(Y2))| < L-([|/(X1) = f(X2)[|r + [l9(Y1) - g(afgz))IIF) :
where the Lipschitz constant is

2 - .
L= ==+ (IZsllr +1IZ,lIr) 20)

with 3, 3, denoting empirical covariances of f(X) and g(Y), respectively.
Proof

The cosine similarity term is Lipschitz continuous due to unit normalization of f(x;) and g(y;). For
pairwise terms, | cos(ay, b1) — cos(az, b2)| < 2(]|a; — az|| + ||b1 — b2||) under unit norms, leading
to a collective bound of 2/(NN — 1) for the summed term.

For the trace term, using the inequality for matrix traces:
[tr(AB) — tr(A'B)| < ||A = A'|[p||Bllr + | A 7| B = B'|| r, 21

the perturbation of the trace term is bounded by A([|3¢|| + ||, ]| ) times the feature perturbations.
Combining both terms yields the Lipschitz constant L.
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B Derivation of Fast-HGR from Soft-HGR Variants

Fast-HGR is derived by simplifying and adapting the improved Soft-HGR (I-SoftHGR) objective,
which retains the core of HGR while relaxing strict whitening constraints. The I-SoftHGR objective
is:
A
Lisorncr = E[f(X)"g(Y)] = 5 (lleov(f (X)) = T|% + eov(9(Y)) = TIF) ~ (22)

where the penalty term enforces covariances close to the identity matrix. Fast-HGR modifies this via
two key steps:

1. Local Dependence: Replace Expectation with Cosine Similarity The population expecta-
tion E[f(X)"g(Y)] is approximated using batch-wise cosine similarity to capture local pairwise
dependencies:
T Tg ;)
E[f(X) g(Y
-1 Z ||f Dyl

(23)

2. Global Structure: Replace Whitening Penalty with Covariance Alignment [-SoftHGR’s
penalty term ||cov(f) — I||% + ||cov(g) — I||% enforces soft whitening but introduces sensitivity to
variance. Fast-HGR removes this constraint, instead capturing global distributional alignment via the
trace of covariance products:

Expanding the I-SoftHGR penalty term:
Jeov(£) = I = tr(cov(£)?) — 2tr(cov(f)) + k 24)

where k is the dimension of transformed features. Fast-HGR replaces these with a cross-term that
measures alignment between cov( f) and cov(g) without enforcing unit covariance:

A - tr (cov(f(X))cov(g(Y))) (25)

Combining these steps yields the Fast-HGR formulation:

F-HGR(f(X), g(Y — Z Hf ||||9 ))H + A tr(cov(f(X))cov(g(Y)))  (26)

This derivation preserves the core objective of maximizing feature dependence while replacing
computationally expensive whitening constraints with efficient trace-based regularization.

C Implementation Details

Multi-Scale Tokenization Table 6 presents the optimized kernel configurations designed for efficient
hierarchical feature extraction.

Table 6: Optimized Kernel Configurations for Feature Extraction

Kernel Type Size/Stride/Padding  Output Size  Channels Receptive Field Impact

Small 3x3/1/1 HxW 64 Fine-grained details
Medium 7X7/2/3 H/2 x W/2 128 Mid-level semantics
Large 15x15/1/7 HxW 256 Global context

The medium kernel (7x7, stride=2) uses padding=3 to achieve an output size of H /2xW /2, calculated
as padding = | kemelsize=1| — 3,

The large kernel (15x15, stride=1) employs padding=7 to maintain the input resolution (H x W),
consistent with "same" padding semantics.

The combination of 3x3, 7x7, and 15x15 kernels effectively balances the capture of fine details,
mid-level objects, and global scene context.
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Training Protocol
Optimizer: AdamW is utilized with a weight decay of 0.05, 8; = 0.9, and 82 = 0.999.

Warmup: A warmup phase of 20k steps (equivalent to 10% of the total 200 epochs) is implemented
to stabilize the initial training dynamics.

Learning Rate: The learning rate follows a cosine decay schedule starting from Se-5 for the Base
model, incorporating mixed precision (FP16) to accelerate convergence by 2x and reduce memory
usage.

Regularization: DropPath Rate: This rate is linearly increased from 0 to 0.1 across layers to enhance
feature robustness, applying stronger regularization to deeper layers that handle global features.
Position Bias: 2D learnable relative position embeddings (size: H/2 x W/2) are employed to encode
spatial dependencies in the features derived from medium and large kernels.

D Visualization of HGR-Correlation Attention Maps

This section presents qualitative analyses of attention maps across representative backbones using
two ImageNet samples (a flower and a dog). The objective is to examine how correlation-aware
multi-kernel modeling influences the spatial distribution of attention, particularly in terms of semantic
alignment, background suppression, and integration of discriminative features at varying scales. All
attention maps are generated using the same protocol, normalized per image using min—max scaling,
and visualized with an identical color scale to ensure comparability.

(2)
!ﬂ---!-.

@) (k) ) (m) (n) (0) (P)
Figure 2: Quahtatlve comparison of attention maps across backbones. Top row: flower; bottom
row: dog. From left to right: (a,i) original images; (b,j) ViT-B; (c.,k) DeiT-B; (d,]) Swin-B; (e,m)
Agent-Swin; (f,n) FasterViT; (g,0) MPViT; (h,p) MK-CAVIiT. All maps use the same visualization
pipeline and color scale for consistency.

D.1 Patterns in Attention Distribution

Flower sample (Fig.[2a-h). ViT-B and DeiT-B exhibit two common limitations: either attention
leaks into the background or concentrates excessively on a single peripheral region (e.g., an edge
petal), failing to capture the hierarchical structure of disc and petals (b,c). Swin-B and Agent-Swin
produce fragmented attention with isolated local peaks, lacking coherence across the floral structure
(d,e). FasterViT shows sparse, discontinuous activations with noticeable "holes" in the attention
coverage (f). MPVIT improves petal boundary delineation but weakens response to the central disc, a
critical semantic feature (g). In contrast, MK-CAViT forms a compact primary peak on the floral disc,
with a coherent secondary arc along the petal edges, while effectively suppressing background noise
(h). This "primary-auxiliary" structure aligns with the flower’s intrinsic semantic hierarchy.

Dog sample (Fig. Zj-p). ViT-B allocates significant attention to background regions and non-
discriminative parts (e.g., ears), diluting focus on key facial features (j). DeiT-B and Swin-B fixate on
a single dominant region (e.g., nose or jaw) but underweight other critical components like eyes (k,]).
Agent-Swin and FasterViT generate scattered hotspots across the face without clear prioritization
of discriminative features (m,n). MPVIiT covers a broader facial area but disperses attention energy,
reducing contrast between key and secondary features (0). MK-CAViT, however, concentrates primary
attention on the nose (the most discriminative facial feature) while maintaining distinct secondary
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peaks on both eyes, with minimal activation in background regions (p). This pattern reflects robust
alignment with the semantic importance of facial components.

D.2 Implications for Multi-Scale Modeling

The visualized attention maps represent the final fused output of each architecture; per-scale kernel
attention is not explicitly shown here. Nevertheless, MK-CAViT’s consistent ability to integrate
fine-grained details (e.g., floral disc texture, eye contours) with extended structures (e.g., petal rings,
facial contours) suggests effective aggregation of information across spatial scales. This aligns with
the design intent of HGR-correlation attention: to model nonlinear dependencies between features at
different scales, rather than treating them as independent streams.

D.3 Connection to Quantitative Performance

The qualitative improvements observed in MK-CAViT—tighter semantic alignment, reduced back-
ground interference, and coherent integration of discriminative features—correspond with its quanti-
tative gains across tasks (ImageNet classification, COCO detection, ADE20K segmentation). These
visual patterns provide intuitive support for the claim that correlation-aware multi-scale fusion en-
hances the model’s ability to prioritize semantically relevant features, a mechanism underlying its
superior performance.

E Cross-Domain Generalization

To rigorously evaluate the generalization capability of MK-CAViT beyond standard vision bench-
marks, extensive experiments were conducted across three distinct application domains: multimodal
emotion recognition, medical imaging, and remote sensing. Domain generalization (DG) aims to
learn models from multiple source domains that perform well on unseen target domains, which
is a challenging and practical scenario since models are often deployed in environments different
from where they were trained [39, 156]]. As summarized in Table m the multi-scale design of MK-
CAVIT demonstrates consistent performance advantages over specialized baselines across all domains,
highlighting its robustness to domain shift.

Table 7: Comprehensive cross-domain generalization performance comparison.

Domain-Task Dataset Metric Model
- MK-CAViT-Base Swin-Base ViT-Base = ConvNeXt-Base
Emotion-Recognition IEMOCAP ACC 73.5% 70.1% 68.5% 69.8%
W-F1 73.6% 69.8% 68.7% 70.1%
- MK-CAViT-Base Swin-UNet TransFuse EfficientNet-B4
Medical-Segmentation ISIC2018 mloU 83.43% 82.78% 80.63% 81.21%
Dice 89.96% 89.78% 88.21% 88.77%
Remote Sensing- Houston 2018 - MK-CAViT-Base FasterViT 3D-CNN ViT-Base
Classification OA 93.68% 92.13% 89.59% 91.87%
AA 95.82% 95.22% 93.77% 94.93%
Remote Sensing- Vaihingen - MK-CAViT-Base Swin-UNet U-Net DeepLabV3+
Segmentation OA 92.61% 91.56% 89.93% 88.92%
mloU 84.43% 82.62% 80.15% 81.56%

E.1 Multimodal Emotion Recognition

In multimodal emotion recognition on the [IEMOCAP dataset, MK-CAViT-Base achieved a weighted
accuracy of 73.5% and an F1-score of 73.6 %, outperforming Swin-Base (70.1% accuracy, 69.8%
Fl1-score), ViT-Base (68.5% accuracy, 68.7% F1-score), and ConvNeXt-Base (69.8% accuracy, 70.1%
Fl-score). This task utilized only visual frames to focus on spatial feature learning across four
emotion categories (happy, sad, angry, neutral), which inherently involves dealing with domain shifts
such as variations in lighting, head pose, and individual expressions [57].
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The performance advantage stems from the multi-scale architecture’s ability to capture complemen-
tary emotional cues. The 3x3 kernel identifies fine-grained facial microexpressions (e.g., smile
creases, brow furrows), while the 15x15 kernel models global facial dynamics and head orientation
patterns. The Fast-HGR attention mechanism integrates these scale-specific features by modeling
their nonlinear correlations, enabling robust distinction of subtle emotion cues that require simul-
taneous local detail analysis and global context understanding. This approach effectively learns
domain-invariant representations that are crucial for handling variations across different speakers and
recording sessions.

E.2 Medical Imaging

For skin lesion segmentation on the ISIC2018 dataset, which poses the critical challenge of dis-
tinguishing melanoma from nevus through subtle boundary variations, MK-CAViT-Base achieved
83.43% mloU and 89.96 % Dice coefficient. This surpassed specialized medical imaging baselines
including Swin-UNet (82.78% mloU, 89.78% Dice), TransFuse (80.63% mloU, 88.21% Dice), and
EfficientNet-B4 (81.21% mloU, 88.77% Dice). The medical imaging domain frequently encoun-
ters domain shift problems due to variations in imaging devices, lighting conditions, and patient
populations [58].

The multi-scale design addresses essential requirements in medical diagnostics through comple-
mentary feature extraction. The 3x3 kernel detects subtle lesion boundaries and texture variations
crucial for early melanoma identification, while the 15x15 kernel captures global lesion structure
including asymmetric shapes and spatial distribution patterns. HGR-correlation attention effectively
models the complex spatial relationships between lesions and surrounding healthy tissue, significantly
reducing false positives caused by spurious correlations. The consistent performance gains across
all medical metrics validate the architecture’s capability for precise medical image analysis without
domain-specific architectural modifications.

E.3 Remote Sensing Applications

Remote sensing evaluation encompasses two distinct tasks with complementary spatial requirements.
For land-cover classification on the Houston 2018 dataset[S9]], MK-CAViT achieved 93.68 % overall
accuracy and 95.82% average accuracy, outperforming FasterViT-Small (92.13% OA, 95.22% AA),
3D-CNN (89.59% OA, 93.77% AA), and ViT-Base (91.87% OA, 94.93% AA). In urban segmentation
on the Vaihingen dataset[60, [61]], the model achieved 84.43% mloU and 92.61% overall accuracy,
surpassing Swin-UNet (82.62% mloU, 91.56% OA), U-Net (80.15% mloU, 89.93% OA), and
DeepLabV3+ (81.56% mloU, 88.92% OA). Remote sensing applications inherently face domain
shifts due to seasonal variations, geographical differences, and sensor specifications.

The multi-scale architecture demonstrates natural alignment with remote sensing imagery charac-
teristics. The 15x15 kernel captures large-scale geographical patterns and land-cover distributions
essential for regional classification, while the 3x3 kernel identifies small structural elements such
as road markers and individual vegetation features. For urban segmentation tasks, the 7x7 and
15%15 kernels collaboratively model building and road contexts at appropriate scales, while the 3x3
kernel precisely segments small urban objects including street furniture and vehicle clusters. This
scale-aware processing enables comprehensive scene understanding across varying spatial resolutions
inherent to remote sensing data, effectively addressing the domain shift challenge through multi-scale
invariant feature learning.

E.4 Generalization Analysis

The consistent performance advantages across emotionally nuanced, medically critical, and geograph-
ically complex domains demonstrate the robustness of MK-CAViT’s multi-scale design principle
against various types of domain shifts. Several interconnected factors contribute to this generalization
capability:

Scale adaptability enables automatic adjustment to domain-specific feature hierarchies without
architectural modifications. The parallel kernel pathways capture information across spatial scales
that align naturally with different application requirements, from microscopic medical features to
macroscopic geographical patterns. This adaptability allows the model to maintain performance when
facing domain shifts characterized by scale variations in target features.
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Feature complementarity ensures preservation and integration of both local details and global
context. This proves particularly valuable in domains where both micro-level patterns and macro-
level structures carry diagnostic information, such as facial microexpressions in emotion recognition
or lesion boundaries in medical imaging. By capturing features at multiple scales, the model reduces
dependence on domain-specific superficial patterns, thus enhancing generalization [18]].

Correlation-based feature integration through Fast-HGR attention provides a theoretically
grounded mechanism for modeling nonlinear dependencies across scales. This approach effectively
suppresses spurious correlations that vary across domains while enhancing true causal features that
remain invariant, aligning with the principles of stable learning for out-of-distribution generalization.

The cross-domain validation establishes that the multi-scale correlation attention mechanism provides
fundamental advantages for visual understanding tasks requiring simultaneous processing of fine
details and global context. The consistent outperformance of specialized baselines across diverse
applications positions MK-CAViT as a versatile architecture with strong generalization potential for
real-world deployment where domain shift is a common challenge.

F Parameter Sensitivity Analysis

The parameter A, which balances local cosine similarity and global trace regularization, was tested
on the ImageNet validation set. The results are summarized in Table 8.

Table 8: Parameter Sensitivity of A on ImageNet-1K
A Top-1 Acc (%)

0.01 83.2
0.05 83.9
0.1 84.3
0.2 83.7
0.5 82.9

A ) value of 0.1 optimally balances local token alignment (cosine term) and global feature distribution
consistency (trace term). Smaller values (e.g., 0.01) under-regularize, leading to unstable feature
distributions, while larger values (e.g., 0.5) over-constrain the model, suppressing fine-grained
dependencies.

This aligns with theoretical predictions that A\ controls the trade-off between capturing pairwise
correlations (local) and second-order statistical alignment (global), as demonstrated in Theorems 1
and 2.

G Relationship to Prior Work

1. Nonlinear Dependency Modeling: Fast-HGR explicitly maximizes correlation coefficients to
capture nonlinear dependencies, such as quadratic interactions. In contrast, dot-product attention
relies on implicit nonlinearity through softmax mechanisms and often struggles with high-order
statistical modeling.

2. Asymmetric Fusion: MK-CAViT employs an asymmetric fusion strategy, utilizing small/mid-
kernels for queries and keys while leveraging large-kernels for values. This design contrasts with
symmetric fusion approaches, such as those used in Focal Transformer and MpViT, which process all
scales uniformly. By adopting this asymmetric method, MK-CAVIT achieves more efficient cross-
scale information flow, significantly reducing computational expenses while enhancing interaction
efficiency across different scales.
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