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Abstract
Many natural language generation tasks of-001
ten have more than one acceptable output for002
a given input. However, models are typi-003
cally trained as one-to-one function estima-004
tors, thereby protecting them from the com-005
plexity of learning multiple possible outputs006
per input sample. In this work, we study the007
one-to-many environment through Single-Input008
Multi-Output training and evaluation Regimens009
(SIMOR). Specifically, we show that training010
natural language generation (NLG) models on011
datasets with multiple valid outputs helps them012
perform better than in the typically used setup.013
Using SIMOR on the CFQ dataset, models014
learn to emit valid SPARQL programs ∼10x015
faster and with greater performance. Moreover,016
our experiments demonstrate gains in BLEU017
and TER metrics on low-resource datasets ex-018
tracted from the WMT16 de-en benchmark.019

1 Introduction020

Oftentimes, machine learning tasks are formulated021

as one-to-one function estimations mapping the022

input space of a given dataset to its output space.023

However, many forms of human communication024

exhibit the naturalness property (Allamanis et al.,025

2018) where there exist various utterances with026

equivalent semantics. For example, aspects such027

as names, formatting, and methods order in pro-028

gramming languages have no impact on program029

semantics and are purely based on the program-030

mer’s style. Similarly, a semantic concept can be031

conveyed through completely different wordings in032

natural language. As a result, several NLG tasks033

often have multiple correct outputs for a given in-034

put. Figure 1 illustrates examples of these setups.035

In this work, we focus on exploiting these semanti-036

cal equivalences through single-input multi-output037

training and evaluation regimens (SIMOR), improv-038

ing the performance of existing models.039

The main bottleneck of training and evaluating040

models in one-to-many environments is the absence041

Figure 1: Examples of one-to-many NLG tasks.

of datasets that support such regimens. However, 042

there are certain tasks in which expanding the typi- 043

cal formulation to match SIMOR’s requirements is 044

naturally trivial. In this work, we focus on two of 045

these amenable tasks: compositional generalization 046

and machine translation (MT). 047

Our experiments with the compositional gener- 048

alization task show that the models trained on aug- 049

mented datasets with SIMOR train more efficiently 050

and perform better than the baseline. Moreover, our 051

machine translation experiments showcase boosted 052

performance on both BLEU (Papineni et al., 2002) 053

and TER (Snover et al., 2006) metrics across vari- 054

ous experiments. Intuitively, this puts models using 055

SIMOR at a disadvantage as they observe fewer 056

original training instances; however, our empirical 057

results show that these models actually exhibit a 058

boost in performance across two commons tasks. 059

Note that throughout this work, we use the terms 060

one-to-one and one-to-many from the perspective 061

of each sample, not the whole dataset. 062

Our key contributions are summarized below: 063

1. Introduction of SIMOR along with compati- 064

ble augmentation methods for machine trans- 065

lation and compositional generalization. 066

2. Benchmarking state-of-the-art models on the 067

newly created datasets to showcase the effec- 068

tiveness and efficiency of using SIMOR on 069

augmented datasets. 070
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2 Background071

The conventional training and evaluation regimens072

require an exact match answer corresponding to073

only one of the possible answers. We argue that074

SIMOR presents a fairer setup for evaluating mod-075

els on the aforementioned tasks as the current setup076

prioritizes confounding abilities, such as memoriz-077

ing specific variable binding and ordering schemes.078

We hypothesize that when trained on one-to-many079

augmented data and evaluated on the fairer version080

of these tasks, Transformers (Vaswani et al., 2017)081

will exhibit a boost in performance even with a cap082

on the total amount of training data.083

2.1 Compositional Generalization084

Humans’ compositional generalization capabilities085

have long eluded the existing machine-learning086

models. Hence, in recent years, synthetic datasets087

such as CFQ (Lake and Baroni, 2018) and COGS088

(Kim and Linzen, 2020) have been introduced to089

further study these models. In this work, we focus090

on the CFQ dataset due to the existence of two091

types of equivalences in its output space:092

1. Permutation Invariance holds when a sin-093

gle input could have multiple equally-valid094

outputs, differing only in their sequential or-095

derings, e.g., A B C D ≡ A C B D.096

2. Variable Isomorphism holds when a single097

input could have multiple equally-valid out-098

puts where a one-to-one mapping exists be-099

tween the elements of any two equally-valid100

sequences, e.g., A B C B ≡ A D C D.101

These equivalencies are the direct results of 1)102

SPARQL programs being order-invariant in their103

WHERE clauses and 2) SPARQL programs being104

variable-agnostic. Our critical insight is that given105

the synthetic nature of this dataset, we could eas-106

ily 1) augment the original training set with new107

data points, i.e., the same input paired with multi-108

ple valid outputs, and 2) evaluate models not just109

on the exact matches but also when permutation110

invariance and variable isomorphism are allowed.111

2.2 Machine Translation112

In recent years, the advent of more sophisticated113

models combined with the availability of large-114

scale datasets has resulted in a significant perfor-115

mance boost on machine translation (Ng et al.,116

2019). However, not all languages have the privi-117

lege of having large-scale datasets similar to widely118

used languages such as English and German (Scher- 119

rer and Cartoni, 2012). One of the artifacts of hu- 120

man communications differences is the existence 121

of different styles of delivering a semantic message. 122

Hence, there are potentially many correct outputs 123

for each machine translation input. These one-to- 124

many samples could be leveraged to introduce vari- 125

ability to the data. In this work, we focus on aug- 126

menting datasets with a low-resource source lan- 127

guage and a rich-resource target language. Specifi- 128

cally, we apply a noisy transformation, i.e., back- 129

translation, to target samples creating perturbated 130

samples with the idea of preserving the semantics 131

while introducing more variety. 132

3 Related Work 133

3.1 Compositional Generalization 134

Prior works have criticized neural networks for 135

their poor compositional generalization skills 136

(Fodor and Pylyshyn, 1988; Fodor and Lepore, 137

2002; Marcus, 1998, 2003). The recent emergence 138

of large synthetic datasets has resulted in perfor- 139

mance gains over the initial baselines through pre- 140

training language models (Furrer et al., 2020) or 141

minor changes to the model’s details (Csordás et al., 142

2021). Nevertheless, state-of-the-art models still 143

typically require dataset-specific symbolic compo- 144

nents (Guo et al., 2020) or companion composi- 145

tional parsers (Weißenhorn et al., 2022). Moreover, 146

Lake and Baroni (2018) have reported that only in 147

around 1% of the test set samples, a learned model 148

generates a correct output but is marked incorrect 149

due to a mismatch in the ordering scheme, imply- 150

ing that the minor improvement could be safely ig- 151

nored. However, they do not allow order-agnostic 152

behavior in the training regimen, which is the topic 153

of analysis in this work. 154

3.2 Machine Translation 155

One of the main approaches for augmenting ma- 156

chine translation data is introducing perturbation 157

or noise to either side of the samples. Previous 158

works have introduced many methods to this end, 159

such as randomly masking source words (Word 160

Dropout) (Sennrich et al., 2016a), applying noise 161

functions to either the target or both the target 162

and the source (Norouzi et al., 2016; Wang et al., 163

2018), and self-supervised manifold based aug- 164

mentation (Ng et al., 2020). Moreover, back- 165

translation (Sennrich et al., 2016b) is one of the 166

most prominent approaches for augmenting ma- 167
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Figure 2: Variable, unique variable, and statement distributions for the CFQ dataset.

chine translation data. However, traditionally, back-168

translation has been applied to monolingual data in169

the presence of a sizeable parallel dataset to obtain170

more data points (Sugiyama and Yoshinaga, 2019;171

Khayrallah et al., 2020). In this work, we focus on172

reusing the parallel data with back-translation to173

augment our datasets.174

4 Datasets175

4.1 Compositional Generalization176

We chose the CFQ dataset, a natural-language-177

query-to-SPARQL-code dataset, to study the com-178

positional generalization task. This dataset con-179

tains 485,651 training samples, 56,422 validation180

samples, and 56,317 test samples. Figure 2 show-181

cases the distribution of variable counts, unique182

variable counts, and the number of statements in183

the outputs. Evidently, the dataset allows for gener-184

ating many alternative outputs through statements185

permutation and variable isomorphism. The dataset186

also contains samples with a high number of state-187

ments, making it more difficult to model.188

4.2 Machine Translation189

We chose the WMT16 de-en dataset (Bojar et al.,190

2016) to study the machine translation task. How-191

ever, the original dataset is not a low-resource192

dataset by any means, as it contains more than193

4.8 million samples. To fit the dataset into the con-194

straints of our study, i.e., a low-resource source195

language and a rich-resource target language, we196

extract small subsets of the original data. To this197

end, we extract five subsets by first shuffling the198

original data and then progressively taking the first199

k% of the data where k ∈ {2, 4, 6, 8, 10}. Cre-200

ating the datasets in this way ensures that each201

dataset with a larger size includes all the sam-202

ples from the smaller datasets. This choice was203

made to somewhat control the quality of samples204

across the sampled datasets. The resulting datasets 205

have the following sizes: 90,977, 181,955, 363,910, 206

and 454,888. In this setting, we consider the Ger- 207

man side low-resource and the English side rich- 208

resource. We use the original validation and test 209

sets included in the WMT16 dataset with 2,169 and 210

2,999 samples, respectively, for evaluation. 211

5 Experimental Setup 212

5.1 Compositional Generalization 213

To generate augmented samples for CFQ, we per- 214

mute the WHERE clauses within each SPARQL 215

query and sample a fixed number of examples, 216

i.e., augmentation factor k, from the set of all 217

permuted examples. For any example where 218

|#where clasues|! < k, we upsample the original 219

sample to reach k augmented examples. During the 220

evaluation phase, the model gets a positive score if 221

its generated output has the correct set of SPARQL 222

clauses, regardless of their ordering. Appendix A.1 223

provides the details of the training phase. 224

5.2 Machine Translation 225

To generate augmented samples for WMT16 226

subsets, we use Facebook’s pre-trained English- 227

Russian models (Ng et al., 2019). We chose Rus- 228

sian as the third language to avoid potential data 229

and bias leakage from the larger pre-trained mod- 230

els. Given this pair of models, we generate four 231

augmented examples for each sample in the train- 232

ing datasets using a beam search of depth two and 233

multi-modal sampling. However, after removing 234

duplicate sampled back-translations, some of the 235

original instances end up with less than four aug- 236

mented examples. In these cases, we upsample 237

the original sample to reach the four augmented 238

examples. Lastly, to create an augmented dataset 239

with a target size of Y% from one of the original 240

datasets with a source size of X%, we randomly 241
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Figure 3: CFQ test scores (moving average) with dif-
ferent training permutation factors. A model trained on
100x permuted SPARQL outputs achieves 42% accu-
racy ∼10x quicker than the baseline (when comparing
the total number of training steps on X axis).

sample (Y − X)% worth of data from the back-242

translated examples. We follow a similar procedure243

to augment the test set by generating 25 augmented244

examples per original sample using a beam search245

of depth five and multi-modal sampling. Given246

the augmented examples for the testing set, we247

randomly sample nine of the augmented examples248

to get ten reference targets per sample when com-249

bined with the original targets. During the evalua-250

tion phase, we evaluate and report our models with251

the best validation results in the multi-reference252

environment, i.e., we take a max over all the refer-253

ences in this environment to calculate our metrics.254

Appendix A.2 lists more training details.255

6 Results256

6.1 Compositional Generalization257

In this task, we focused on allowing permutations258

in the training regimen. Figure 3 illustrates the259

results of our experiments. Evidently, using higher260

permutation factors helps the model learn more261

quickly and better. Comparing the test results of262

permutation factors 1, 10, and 100, we observe that263

the model trained with permutation factor 1 takes264

∼10x longer to achieve 42% accuracy on the test265

set than those trained on the same dataset but with266

100 permutations per output sample. These results267

are critical as we allocate the same training steps268

to all our experiments. Hence, while training on an269

augmented dataset, the model only sees the original270

samples for a small fraction of the time. Moreover,271

our results highlight the positive outlook of using272

SIMOR to improve the performance of models in273

a fairer evaluation environment.274

Target
Source 2% 4% 6% 8% 10%

2% 9.4 - - - -
4% 8.3 13 - - -
6% 13.8 7.7 8 - -
8% 11.3 13.8 5.6 17.3 -
10% 12.9 15.1 13.6 17.9 18.3

Table 1: Multi-reference BLEU scores on MT (§6.2).

Target
Source 2% 4% 6% 8% 10%

2% 75.4 - - - -
4% 71.2 66.5 - - -
6% 70.9 67.4 67 - -
8% 67.5 65.1 69.3 63.2 -
10% 66.6 64.7 63.7 64.6 62.3

Table 2: Multi-reference TER scores on MT (§6.2).

6.2 Machine Translation 275

Tables 1 and 2 present our experimental results 276

with the multi-reference evaluation scheme, on 277

the BLEU and TER metrics, respectively. Simi- 278

lar to the previous section, we use the same num- 279

ber of steps for all our experiments. Evidently, in 280

most scenarios, the use of SIMOR on augmented 281

datasets results in significant improvements over 282

the base dataset. These improvements range from 283

0.6 to 5.6 points on the BLEU score and 1.4 to 8.8 284

points on the TER score. This showcases the im- 285

mense potential of SIMOR in improving machine 286

translation models when the source language is low- 287

resource, and the target language is rich-resource. 288

Appendix B presents our experimental results with 289

the single-reference evaluation scheme. 290

7 Conclusion and Future Work 291

In this work, we studied Transformers’ capabilities 292

to model one-to-many datasets using SIMOR. We 293

also presented simple yet effective approaches to 294

augment text generation tasks with one-to-many 295

data through target-side equivalences. Our experi- 296

ments showed that Transformers achieve improved 297

performance on compositional generalization and 298

machine translation tasks when trained on the aug- 299

mented datasets using SIMOR. In future works, 300

we will explore the scenarios where SIMOR fails 301

(e.g., when using only a few augmentations) and 302

expand our study’s scope to include more models 303

and augmentation schemes. 304
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A Training Setup457

All the experiments were carried out on RTX 2080458

Ti GPUs with a computational budget of 6 hours.459

We used PyTorch (Paszke et al., 2017), Open-460

NMT (Klein et al., 2017), and SacreBLEU (Post,461

2018) to implement and run all our experiments.462

A.1 Compositional Generalization463

During the training phase, we train a transformer464

model with 2 encoder and 2 decoder layers, with 16465

heads each. As for the rest of the hyperparameters,466

we use the following values: batch size = 1024467

and learning rate = 5e-4.468

Target
Base 2% 4% 6% 8% 10%

2% 7.6 - - - -
4% 6.1 10.7 - - -
6% 9.7 6.1 6.6 - -
8% 7.7 10.2 4.5 14.2 -
10% 8.9 11.1 10.3 13.9 15

Table 3: Single reference BLEU scores for the machine
translation task.

Target
Base 2% 4% 6% 8% 10%

2% 80.4 - - - -
4% 76.9 71.6 - - -
6% 76.4 73 72.5 - -
8% 73.2 70.6 74.8 68.3 -
10% 72.4 70.3 69.3 70 67.5

Table 4: Single reference TER scores for the machine
translation task.

A.2 Machine Translation 469

During the training phase, we use the Sentence- 470

piece tokenizer (Kudo and Richardson, 2018) with 471

shared vocabulary between the source and target 472

languages to tokenize the sentences. Then, we ap- 473

ply a length filter of size 200 to remove too-long 474

samples. As for the model, we train a transformer 475

model with 3 encoder and 3 decoder layers, with 8 476

heads each. We set the batch size to 2048 and vali- 477

dated the model every 1000 steps. To speed up the 478

convergence, we first do a warm-up training with a 479

learning rate that goes from 2e-5 to 1e-3. We also 480

accumulate gradients for three steps during train- 481

ing. The rest of the hyperparameters that we use 482

are as follows: label smoothing = 0.1, hidden size 483

= 512, word vec size = 512, transformer ff size 484

= 2048, dropout = 0.1, attention dropout = 0.1, 485

training steps = 100, 000. 486

B Single Reference Results 487

Tables 3 and 4 present our experimental results 488

with the single-reference evaluation scheme, on 489

the BLEU and TER metrics, respectively. Similar 490

to the results of the multi-reference evaluation, in 491

most cases, we can observe a significant improve- 492

ment across all scores compared to the original 493

datasets. These improvements range from 0.1 to 494

3.7 points on the BLEU score (Tables 3) and 1.0 to 495

8.0 points on the TER score (Table 4). 496
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