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Abstract

Many natural language generation tasks of-
ten have more than one acceptable output for
a given input. However, models are typi-
cally trained as one-to-one function estima-
tors, thereby protecting them from the com-
plexity of learning multiple possible outputs
per input sample. In this work, we study the
one-to-many environment through Single-Input
Multi-Output training and evaluation Regimens
(SIMOR). Specifically, we show that training
natural language generation (NLG) models on
datasets with multiple valid outputs helps them
perform better than in the typically used setup.
Using SIMOR on the CFQ dataset, models
learn to emit valid SPARQL programs ~10x
faster and with greater performance. Moreover,
our experiments demonstrate gains in BLEU
and TER metrics on low-resource datasets ex-
tracted from the WMT16 de-en benchmark.

1 Introduction

Oftentimes, machine learning tasks are formulated
as one-to-one function estimations mapping the
input space of a given dataset to its output space.
However, many forms of human communication
exhibit the naturalness property (Allamanis et al.,
2018) where there exist various utterances with
equivalent semantics. For example, aspects such
as names, formatting, and methods order in pro-
gramming languages have no impact on program
semantics and are purely based on the program-
mer’s style. Similarly, a semantic concept can be
conveyed through completely different wordings in
natural language. As a result, several NLG tasks
often have multiple correct outputs for a given in-
put. Figure 1 illustrates examples of these setups.
In this work, we focus on exploiting these semanti-
cal equivalences through single-input multi-output
training and evaluation regimens (SIMOR), improv-
ing the performance of existing models.

The main bottleneck of training and evaluating
models in one-to-many environments is the absence

{ Machine Translation \

Input 1: 1REF
Output 1:  hi

Input 2: 1REF
Output 2:  hello

Compositional Generalization

Input 1: What sibling of MO
was M1’s parent?

Output 1: Output 2:

SELECT DISTINCT ?x0 WHERE { SELECT DISTINCT ?x0 WHERE {
2x0 ns:people.person.child ML . ?x0 ns:people.person.sibling MO .
?x0 ns:people.person.sibling MO . > 2x0 ns:people.person.child M1 .
FILTER ( ?x0 != MO )

Input 2: What sibling of MO

was M1’s parent?

FILTER ( ?x0 != MO )
i }
Baseline

Figure 1: Examples of one-to-many NLG tasks.

of datasets that support such regimens. However,
there are certain tasks in which expanding the typi-
cal formulation to match SIMOR’s requirements is
naturally trivial. In this work, we focus on two of
these amenable tasks: compositional generalization
and machine translation (MT).

Our experiments with the compositional gener-
alization task show that the models trained on aug-
mented datasets with SIMOR train more efficiently
and perform better than the baseline. Moreover, our
machine translation experiments showcase boosted
performance on both BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006) metrics across vari-
ous experiments. Intuitively, this puts models using
SIMOR at a disadvantage as they observe fewer
original training instances; however, our empirical
results show that these models actually exhibit a
boost in performance across two commons tasks.
Note that throughout this work, we use the terms
one-to-one and one-to-many from the perspective
of each sample, not the whole dataset.

Our key contributions are summarized below:

1. Introduction of SIMOR along with compati-
ble augmentation methods for machine trans-
lation and compositional generalization.

2. Benchmarking state-of-the-art models on the
newly created datasets to showcase the effec-
tiveness and efficiency of using SIMOR on
augmented datasets.



2 Background

The conventional training and evaluation regimens
require an exact match answer corresponding to
only one of the possible answers. We argue that
SIMOR presents a fairer setup for evaluating mod-
els on the aforementioned tasks as the current setup
prioritizes confounding abilities, such as memoriz-
ing specific variable binding and ordering schemes.
We hypothesize that when trained on one-to-many
augmented data and evaluated on the fairer version
of these tasks, Transformers (Vaswani et al., 2017)
will exhibit a boost in performance even with a cap
on the total amount of training data.

2.1 Compositional Generalization

Humans’ compositional generalization capabilities
have long eluded the existing machine-learning
models. Hence, in recent years, synthetic datasets
such as CFQ (Lake and Baroni, 2018) and COGS
(Kim and Linzen, 2020) have been introduced to
further study these models. In this work, we focus
on the CFQ dataset due to the existence of two
types of equivalences in its output space:

1. Permutation Invariance holds when a sin-
gle input could have multiple equally-valid
outputs, differing only in their sequential or-
derings, e.g., ABCD=ACBD.

2. Variable Isomorphism holds when a single
input could have multiple equally-valid out-
puts where a one-to-one mapping exists be-
tween the elements of any two equally-valid
sequences, e.2, ABCB=ADCD.

These equivalencies are the direct results of 1)
SPARQL programs being order-invariant in their
WHERE clauses and 2) SPARQL programs being
variable-agnostic. Our critical insight is that given
the synthetic nature of this dataset, we could eas-
ily 1) augment the original training set with new
data points, i.e., the same input paired with multi-
ple valid outputs, and 2) evaluate models not just
on the exact matches but also when permutation
invariance and variable isomorphism are allowed.

2.2 Machine Translation

In recent years, the advent of more sophisticated
models combined with the availability of large-
scale datasets has resulted in a significant perfor-
mance boost on machine translation (Ng et al.,
2019). However, not all languages have the privi-
lege of having large-scale datasets similar to widely

used languages such as English and German (Scher-
rer and Cartoni, 2012). One of the artifacts of hu-
man communications differences is the existence
of different styles of delivering a semantic message.
Hence, there are potentially many correct outputs
for each machine translation input. These one-to-
many samples could be leveraged to introduce vari-
ability to the data. In this work, we focus on aug-
menting datasets with a low-resource source lan-
guage and a rich-resource target language. Specifi-
cally, we apply a noisy transformation, i.e., back-
translation, to target samples creating perturbated
samples with the idea of preserving the semantics
while introducing more variety.

3 Related Work

3.1 Compositional Generalization

Prior works have criticized neural networks for
their poor compositional generalization skills
(Fodor and Pylyshyn, 1988; Fodor and Lepore,
2002; Marcus, 1998, 2003). The recent emergence
of large synthetic datasets has resulted in perfor-
mance gains over the initial baselines through pre-
training language models (Furrer et al., 2020) or
minor changes to the model’s details (Csordas et al.,
2021). Nevertheless, state-of-the-art models still
typically require dataset-specific symbolic compo-
nents (Guo et al., 2020) or companion composi-
tional parsers (WeiBlenhorn et al., 2022). Moreover,
Lake and Baroni (2018) have reported that only in
around 1% of the test set samples, a learned model
generates a correct output but is marked incorrect
due to a mismatch in the ordering scheme, imply-
ing that the minor improvement could be safely ig-
nored. However, they do not allow order-agnostic
behavior in the training regimen, which is the topic
of analysis in this work.

3.2 Machine Translation

One of the main approaches for augmenting ma-
chine translation data is introducing perturbation
or noise to either side of the samples. Previous
works have introduced many methods to this end,
such as randomly masking source words (Word
Dropout) (Sennrich et al., 2016a), applying noise
functions to either the target or both the target
and the source (Norouzi et al., 2016; Wang et al.,
2018), and self-supervised manifold based aug-
mentation (Ng et al., 2020). Moreover, back-
translation (Sennrich et al., 2016b) is one of the
most prominent approaches for augmenting ma-
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Figure 2: Variable, unique variable, and statement distributions for the CFQ dataset.

chine translation data. However, traditionally, back-
translation has been applied to monolingual data in
the presence of a sizeable parallel dataset to obtain
more data points (Sugiyama and Yoshinaga, 2019;
Khayrallah et al., 2020). In this work, we focus on
reusing the parallel data with back-translation to
augment our datasets.

4 Datasets

4.1 Compositional Generalization

We chose the CFQ dataset, a natural-language-
query-to-SPARQL-code dataset, to study the com-
positional generalization task. This dataset con-
tains 485,651 training samples, 56,422 validation
samples, and 56,317 test samples. Figure 2 show-
cases the distribution of variable counts, unique
variable counts, and the number of statements in
the outputs. Evidently, the dataset allows for gener-
ating many alternative outputs through statements
permutation and variable isomorphism. The dataset
also contains samples with a high number of state-
ments, making it more difficult to model.

4.2 Machine Translation

We chose the WMT16 de-en dataset (Bojar et al.,
2016) to study the machine translation task. How-
ever, the original dataset is not a low-resource
dataset by any means, as it contains more than
4.8 million samples. To fit the dataset into the con-
straints of our study, i.e., a low-resource source
language and a rich-resource target language, we
extract small subsets of the original data. To this
end, we extract five subsets by first shuffling the
original data and then progressively taking the first
k% of the data where k € {2,4,6,8,10}. Cre-
ating the datasets in this way ensures that each
dataset with a larger size includes all the sam-
ples from the smaller datasets. This choice was
made to somewhat control the quality of samples

across the sampled datasets. The resulting datasets
have the following sizes: 90,977, 181,955, 363,910,
and 454,888. In this setting, we consider the Ger-
man side low-resource and the English side rich-
resource. We use the original validation and test
sets included in the WMT 16 dataset with 2,169 and
2,999 samples, respectively, for evaluation.

S Experimental Setup

5.1 Compositional Generalization

To generate augmented samples for CFQ, we per-
mute the WHERE clauses within each SPARQL
query and sample a fixed number of examples,
i.e., augmentation factor k, from the set of all
permuted examples. For any example where
|#where clasues|! < k, we upsample the original
sample to reach k augmented examples. During the
evaluation phase, the model gets a positive score if
its generated output has the correct set of SPARQL
clauses, regardless of their ordering. Appendix A.1
provides the details of the training phase.

5.2 Machine Translation

To generate augmented samples for WMTI16
subsets, we use Facebook’s pre-trained English-
Russian models (Ng et al., 2019). We chose Rus-
sian as the third language to avoid potential data
and bias leakage from the larger pre-trained mod-
els. Given this pair of models, we generate four
augmented examples for each sample in the train-
ing datasets using a beam search of depth two and
multi-modal sampling. However, after removing
duplicate sampled back-translations, some of the
original instances end up with less than four aug-
mented examples. In these cases, we upsample
the original sample to reach the four augmented
examples. Lastly, to create an augmented dataset
with a target size of Y% from one of the original
datasets with a source size of X%, we randomly



= 100 permutations =1 permutation (baseline)
= 10 permutations

0.46

0.44

Test Accuracy

0.42

R ' P SRR g R 0 BB T 2 e e

0.4

0.38 Number of Training Steps

10k 20k 30k

Figure 3: CFQ test scores (moving average) with dif-
ferent training permutation factors. A model trained on
100x permuted SPARQL outputs achieves 42% accu-
racy ~10x quicker than the baseline (when comparing
the total number of training steps on X axis).

sample (Y — X )% worth of data from the back-
translated examples. We follow a similar procedure
to augment the test set by generating 25 augmented
examples per original sample using a beam search
of depth five and multi-modal sampling. Given
the augmented examples for the testing set, we
randomly sample nine of the augmented examples
to get ten reference targets per sample when com-
bined with the original targets. During the evalua-
tion phase, we evaluate and report our models with
the best validation results in the multi-reference
environment, i.e., we take a max over all the refer-
ences in this environment to calculate our metrics.
Appendix A.2 lists more training details.

6 Results

6.1 Compositional Generalization

In this task, we focused on allowing permutations
in the training regimen. Figure 3 illustrates the
results of our experiments. Evidently, using higher
permutation factors helps the model learn more
quickly and better. Comparing the test results of
permutation factors 1, 10, and 100, we observe that
the model trained with permutation factor 1 takes
~10x longer to achieve 42% accuracy on the test
set than those trained on the same dataset but with
100 permutations per output sample. These results
are critical as we allocate the same training steps
to all our experiments. Hence, while training on an
augmented dataset, the model only sees the original
samples for a small fraction of the time. Moreover,
our results highlight the positive outlook of using
SIMOR to improve the performance of models in
a fairer evaluation environment.

Source | o, 4% 6% 8% 10%
Target
2% 04 - - - -
4% 83 13 - - -
6% 138 77 8 - -
8% 113 138 56 173 -
10% 129 151 136 179 183

Table 1: Multi-reference BLEU scores on MT (§6.2).

Source | ho, 4% 6% 8% 10%
Target

2% 754 - - - -

4% 712 665 - - -

6% 709 674 67 - -

8% 675 651 693 632 -

10% 66.6 647 637 646 623

Table 2: Multi-reference TER scores on MT (§6.2).

6.2 Machine Translation

Tables 1 and 2 present our experimental results
with the multi-reference evaluation scheme, on
the BLEU and TER metrics, respectively. Simi-
lar to the previous section, we use the same num-
ber of steps for all our experiments. Evidently, in
most scenarios, the use of SIMOR on augmented
datasets results in significant improvements over
the base dataset. These improvements range from
0.6 to 5.6 points on the BLEU score and 1.4 to 8.8
points on the TER score. This showcases the im-
mense potential of SIMOR in improving machine
translation models when the source language is low-
resource, and the target language is rich-resource.
Appendix B presents our experimental results with
the single-reference evaluation scheme.

7 Conclusion and Future Work

In this work, we studied Transformers’ capabilities
to model one-to-many datasets using SIMOR. We
also presented simple yet effective approaches to
augment text generation tasks with one-to-many
data through target-side equivalences. Our experi-
ments showed that Transformers achieve improved
performance on compositional generalization and
machine translation tasks when trained on the aug-
mented datasets using SIMOR. In future works,
we will explore the scenarios where SIMOR fails
(e.g., when using only a few augmentations) and
expand our study’s scope to include more models
and augmentation schemes.
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A Training Setup

All the experiments were carried out on RTX 2080
Ti GPUs with a computational budget of 6 hours.
We used PyTorch (Paszke et al., 2017), Open-
NMT (Klein et al., 2017), and SacreBLEU (Post,
2018) to implement and run all our experiments.

A.1 Compositional Generalization

During the training phase, we train a transformer
model with 2 encoder and 2 decoder layers, with 16
heads each. As for the rest of the hyperparameters,
we use the following values: batch size = 1024
and learning rate = Se-4.

Base | vo 4% 6% 8% 10%
Target
2% 76 - - - -
4% 61 107 - - -
6% 97 61 66 - -
8% 77 102 45 142 -
10% 89 11.1 103 139 15

Table 3: Single reference BLEU scores for the machine
translation task.

Base | o 4% 6% 8% 10%
Target
2% 80.4 - - : :
4% 769 716 - - -
6% 764 73 725 - -
8% 732 706 748 683 -
10% 724 703 693 70 67.5

Table 4: Single reference TER scores for the machine
translation task.

A.2 Machine Translation

During the training phase, we use the Sentence-
piece tokenizer (Kudo and Richardson, 2018) with
shared vocabulary between the source and target
languages to tokenize the sentences. Then, we ap-
ply a length filter of size 200 to remove too-long
samples. As for the model, we train a transformer
model with 3 encoder and 3 decoder layers, with 8
heads each. We set the batch size to 2048 and vali-
dated the model every 1000 steps. To speed up the
convergence, we first do a warm-up training with a
learning rate that goes from 2e-5 to le-3. We also
accumulate gradients for three steps during train-
ing. The rest of the hyperparameters that we use
are as follows: label smoothing = 0.1, hidden size
= 512, word vec size = 512, transformer [f size
= 2048, dropout = 0.1, attention dropout = 0.1,
training steps = 100, 000.

B Single Reference Results

Tables 3 and 4 present our experimental results
with the single-reference evaluation scheme, on
the BLEU and TER metrics, respectively. Similar
to the results of the multi-reference evaluation, in
most cases, we can observe a significant improve-
ment across all scores compared to the original
datasets. These improvements range from 0.1 to
3.7 points on the BLEU score (Tables 3) and 1.0 to
8.0 points on the TER score (Table 4).
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