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ABSTRACT

Backpropagation underpins modern deep learning, yet its reliance on global gradi-
ent synchronization limits scalability and incurs high memory costs. In contrast,
fully local learning rules are more efficient but often struggle to maintain the
cross-layer coordination needed for coherent global learning. Building on this
tension, we introduce Stochastic Layer-wise Learning (SLL), a layer-wise training
algorithm that decomposes the global objective into coordinated layer-local updates
while preserving global representational coherence. The method is ELBO-inspired
under a Markov assumption on the network, where the network-level objective
decomposes into layer-wise terms and each layer optimizes a local objective via a
deterministic encoder. The intractable KL in ELBO is replaced by a Bhattacharyya
surrogate computed on auxiliary categorical posteriors obtained via fixed geometry-
preserving random projections, with optional multiplicative dropout providing
stochastic regularization. SLL optimizes locally, aligns globally, thereby elimi-
nating cross-layer backpropagation. Experiments on MLPs, CNNs, and Vision
Transformers from MNIST to ImageNet show that the approach surpasses recent
local methods and matches global BP performance while memory usage invariant
with depth. The results demonstrate a practical and principled path to modular
and scalable local learning that couples purely local computation with globally
coherent representations.

1 INTRODUCTION

The success of deep learning across a wide range of domains has been substantially driven by
backpropagation (BP), a foundational learning algorithm enabling hierarchical representation learning
through end-to-end gradient-based optimization Rumelhart et al. (1986); LeCun et al. (2015). Despite
its algorithmic clarity and practical effectiveness, BP requires the exact storage of indeterminate
activations and subsequent gradient computation across all layers. This mechanism facilitates global
credit assignment Lillicrap et al. (2020); it also introduces a well-known bottleneck called update-

locking Jaderberg et al. (2017); Griewank & Walther (2008), where the weight update of a given
layer must wait until both the forward pass through the entire network and the backward pass through
deeper layers are complete. Consequently, this global dependency limits asynchronous updating, and
imposes substantial memory and computational overhead, ultimately reducing training efficiency
and scalability, especially in resource-constrained devices Luo et al. (2024); Belilovsky et al. (2019);
Bengio et al. (2006).

BP is often seen as biologically implausible and this drives efforts to discover local learning rules
for credit assignment in inspired by real neural systems Lillicrap et al. (2020); Scellier & Bengio
(2017); Guerguiev et al. (2017). At the same time, neuroscience suggests that feedback connections
may approximate global errors via local activity differences Guerguiev et al. (2017); Whittington &
Bogacz (2019), hinting at a bioplausible path to deep learning Lillicrap et al. (2020); Sacramento
et al. (2018). Yet, these approaches struggle to reconcile local updates with global learning and lack a
unifying theoretical framework.

Given this context, a central research question emerges: “Can we design a theoretical framework

capable of decomposing deep neural network training into local (layer-wise) optimizations while

retaining the benefits of hierarchical representation learning?” This question captures a fundamental
conflict: while local learning encourages architectural scalability and computational parallelization,
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Figure 1: Overview of Stochastic Layer-wise Learning (SLL). (a) SLL treats each hidden activation
hl as a latent variable and projects it to vl via a random matrix. The local ELBO comprises a
log-likelihood term and a KL surrogate that promotes inter-layer consistency. Optimizing this loss
yields the improved projection ṽl and its corresponding activation h̃l. (b) SLL optimizes each layer
independently using a prediction loss Lpred(vl, y) from the log-likelihood and a feature alignment
loss Lper

BC (vl, v
sg
l�1) approximating the KL term. Arrows denote forward computation (black), local

updates (red), and stop-gradient paths (slashed).

effective deep learning relies on non-linear coordination across the entire network. This disconnect
often results in misaligned learning signal and suboptimal performance, challenging the network
scalability of locally trained models Yang et al. (2024).

To address this question, we ground local learning in how information propagates through deep
networks: as signals traverse layers, raw inputs are progressively transformed into increasingly
disentangled and class-separable representations He & Su (2023); Razdaibiedina et al. (2023); Telgar-
sky (2016). This refinement suggests that intermediate layers perform latent inference, selectively
preserving task-relevant signals while suppressing redundancy Shwartz-Ziv & Tishby (2017). In
this paper, we make this intuition precise by exhibiting a network-level ELBO that decomposes into
layer-wise terms under a Markov assumption of network architecture, thereby furnishing principled
local objectives while retaining an explicit link to the global goal. Building on this decomposition, we
introduce Stochastic Layer-wise Learning (SLL), a local learning framework in which each layer
produces auxiliary categorical posteriors via fixed stochastic random projections, and the intractable
layer-wise KL in the ELBO is replaced by a Bhattacharyya surrogate Bhattacharyya (1943) computed
on these induced posteriors, yielding an ELBO-inspired and numerically stable update. Here, the
projections preserve minibatch geometry with high probability by the Johnson–Lindenstrauss (JL)
lemma Johnson et al. (1984); Razdaibiedina et al. (2023), which justifies computing divergences in
the compressed space; we further apply multiplicative dropout to the fixed projection, which provides
stochastic regularization consistent with the dropout-as-variational-inference interpretation Gal &
Ghahramani (2016); we do not learn mask parameters and do not claim a variational bound over
masks, and the overall objective remains ELBO-inspired at the layer level. SLL thus reconciles local
optimization with hierarchical coordination, mitigating over-compression associated with direct KL
minimization, maintaining global representational coherence, and enabling scalable, parallel training
without full backpropagation.

This work targets mathematical analysis, algorithmic development, and experimental evaluations,
leading to three principal contributions: Theoretical contribution: we formally decompose the
network ELBO into layer-wise terms under a Markov assumption and prove that the arithmetic
mean of these layer-wise ELBOs provides a valid lower bound on the global ELBO, establishing the
theoretical basis for local training. Algoritmic contribution: we proposed SLL and demonstrate its
potential as a scalable and efficient alternative to BP. By integrating stochastic random projections,
SLL replaces the need for a complete backward pass, thereby facilitating structured local learning.
Experimental evaluations: We demonstrate that SLL scales effectively across architectures and
datasets, from MLPs on MNIST to ViTs on ImageNet. Our results show that the SLL algorithm
surpasses recently proposed local training methods that address the update locking problem of BP.
Moreover, SLL approaches or equals the accuracy performance of BP but with a significant reduction
in memory (4× or more).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

In supervised learning tasks, such as classification applications or regression, neural networks
are designed to construct mappings between given input data X and the corresponding target
label Y . Traditional feedforward neural networks have a sequential structure in which each layer
processes the output of the previous layer through a parameterized function. Following the classical
formulation Rumelhart et al. (1986), such a L-layer neural network can be expressed as a chain of its
parameterized sub-functions:

f1:L(x) := f(f(...f(x, ✓1)..., ✓L�1), ✓L) (1)
where ✓i 2 ⇥ represents a set of learnable parameters at layer i. This hierarchical or Markov structure
introduces a sequence of hidden representations H = [h1, h2, ..., hL] where each representation is
defined recursively as hi = f(hi�1, ✓i). Given the stacked structure of neural networks, each layer
builds on the representation of the previous layer. This structure induces a hierarchical representation
where higher layers encode increasingly abstract and task-relevant features.

Backpropogation is the standard approach for network training, aiming to optimize the parameters
⇥ of the network given a dataset of input-label pairs (x, y) and a task-relevant loss function L(hL, y).
During training, input data is propagated through the entire network to generate predictions. The
loss function then evaluates the network performance by quantifying the distance between these
predictions and labels. Next, BP computes the gradient of the loss with respect to each parameter by
recursively applying the chain rule in reverse through the network. The update rule for the parameters
at layer i, ✓i, are updated iteratively using gradient descent:

✓0i = ✓i + ⌘�✓i; �✓i =
@L
@✓i

=
@L
@hi

· @hi

@✓i
=

@L
@hL

Y

j>i

@hj+1

@hj
· @hi

@✓i
(2)

where ⌘ is the learning rate. The first term (blue) captures the global contributions of activation hi to
the global loss. It encodes dependencies across all subsequent layers and ensures that updates are
coordinated with the global objective. The second term (red) reflects the local sensitivity of hi with
respect to the corresponding parameters ✓i, and can be calculated independently at each layer.

3 METHODOLOGY

In this section, we break the global training objective into local layer updates, so each layer learns
locally while still contributing to the overall optimization of the network.

3.1 FROM GLOBAL LOSS TO GLOBAL ELBO

In principle, BP’s inefficiencies arise from its treatment of activations as fixed, deterministic values
that require explicit gradient computations across all layers. Here, we adopt a probabilistic formulation
where each hidden activation is modeled as stochastic latent variables, conditioned on its previous
layer. This hierarchy views forward computation as an approximate inference over latent variables,
similar to the approaches in deep-generative models Kingma & Welling (2014); Sønderby et al.
(2016). Thus, instead of optimizing deterministic activations, learning becomes an inference problem
where the goal is to infer their posterior distributions conditioned on observed inputs and outputs.
Formally, this corresponds to estimating the true posterior over the hidden representations:

p(h1, . . . , hL | x, y) = p(y | hL)p(hL | hL�1) . . . p(h1 | x)
p(y | x) =

L+1Y

i=1

p(hi | hi�1)/p(y|x)

(Assumption 1)
where h0 := x and hL+1 := y. This joint distribution factorizes into a global evidence term and a
product of local conditional terms. However, computing the evidence term requires marginalization
over all hidden representations: p(h | x, y) =

R
· · ·

R QN+1
i=1 p(hi | hi�1) dhL . . . dh1 which is

computationally intractable in high-dimensional deep architecture.

To address this challenge, we apply Variational Inference (VI) Blei et al. (2017); Ranganath et al.
(2014) to approximate the intractable true posterior p(y | x) with a variational surrogate distribution
q(h) by minimizing the KL divergence between them in latent space:

KL(q(h)kp(h | x)) = Eq[log q(h)]� Eq[log p(h | x)].

3
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where Eq[·] denotes expectation under the variational posterior q(h). This leads to maximizing the
Evidence Lower Bound (ELBO):

argmax
✓

E = Eq[log p(y | h)]�KL(q(h)kp(h)) (3)

where p(h) is the prior distribution over latent variables. At this point, network optimization is
reformulated as a structured variational inference problem, fundamentally distinct from standard BP.

3.2 FROM GLOBAL ELBO TO LAYER-WISE ELBO

Generative and recognition models. We view the network as a hierarchical latent variable model
with generative transitions p(hi | hi�1) for i = 1, . . . , L and likelihood p(y | hL). To approximate
the intractable posterior, we adopt a Markov assumption on the network architecture that mirrors the
forward architecture Vahdat & Kautz (2020):

q(h1, . . . , hL | x, y) =
LY

i=1

q(hi | hi�1), (Assumption 2)

where each factor may include auxiliary noise (reparameterization) or reduce to a delta, as specified
below. Here p(hi | hi�1) denotes the generative transition (prior) at layer i, and q(hi | hi�1) is the
approximate posterior (inference distribution) over hi given hi�1. Under this factorization, a standard
network-level variational objective is

ENN = Eq

⇥
log p(y | hL)

⇤
�

LX

i=1

KL
�
q(hi | hi�1) k p(hi | hi�1)

�
, (Assumption 3)

with expectation over q(h1, . . . , hL | x, y). Each additive item admits a local interpretation, motivat-
ing the following layer-wise ELBO-inspired objective:

Ei = Eq(hi|x,y)[log p(y | hi)]| {z }
Expected log-likelihood

� KL
�
q(hi | hi�1) k p(hi | hi�1)

�
| {z }

Layer-wise divergence

, (4)

where the first term encourages class-discriminative representations at layer i, and the second term
regularizes by enforcing local consistency with p(hi | hi�1). In short, each layer learns to improve
the prediction while remaining consistent with its generative prior Eldan & Shamir (2016).

Layer-to-network relation. Theorem 1. Under the above assumptions, the arithmetic mean of

the L layer-wise objectives provides a lower bound surrogate that is dominated by the network

objective:
1
L

PL
i=1 Ei  ENN . Proof sketch in Appendix. This result ensures that local optimization

at each layer contributes meaningfully to the global objective, thereby supporting SLL as a practical
alternative to backpropagation.

3.3 STOCHASTIC LAYER-WISE LEARNING (SLL)

To approximate the layer-wise ELBO in Assumption 3 with a strictly local training rule, we make
each layer-wise KL term as a tractable surrogate defined on auxiliary discrete posteriors coming from
adjacent layers. For layer i, we attach a random lightweight classification head Ri : Rdi !RK and
define two categorical distributions over K codes induced from the activations: a predictive prior
pi(· | hsg

i�1) = softmax(Ri�1h
sg
i�1) that depends only on the stop-gradient parent hsg

i�1 (i.e. frozen
input from the previous layer), and an auxiliary posterior qi(· | hi) = softmax(Rihi) which depends
on the current activations hi. We replace KL

�
q(hi | hi�1)kp(hi | hi�1)

�
, the KL term in the ELBO,

by the per-sample Bhattacharyya surrogate:

Lper
BC(i) = � 1

B

BX

b=1

log BC
�
q(b)i , p(b)i

�
, BC(, q) =

KX

k=1

p
ukvk 2 [0, 1].

Here BC denotes the Bhattacharyya coefficient, introduced by Bhattacharyya Bhattacharyya (1943)
as a measure of affinity between distributions; it equals the inner product of square-rooted probabilities.
It is closely related to the squared Hellinger distance, since H2(u, v) = 1� BC(u, v) Bhattacharyya
(1943); van Erven & Harremoës (2014). This construction preserves locality because pi depends

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

only on the frozen inputs hsg
i�1, while also serving as a proxy for the ELBO term. A second-

order expansion yields KL(qkp) = 4
�
1 � BC(q, p)

�
+ o(kq � pk2). Moreover, the inequalities

KL(qkp) � �2 log BC(q, p) � 2
�
1 � BC(q, p)

�
provide global monotone control and improved

numerical stability, especially when probabilities are small. The resulting layer objective becomes:

argmin
✓

Li = Lpred + Lper
BC = Lpred(Rihi, y)| {z }

expected likelihood term

+ Lper
BC(i)| {z }

surrogate for KL(qkp)

, (5)

is ELBO-inspired rather than a strict ELBO lower bound. In general, optimizing {Li}Li=1 gives a
structured approximation to the layer-wise ELBOs in Assumption 3 and, together with Theorem 1,
links these local updates to the global objective ENN , thereby enabling scalable training that remains
faithful to the hierarchical variational formulation. Unlike auxiliary heads, greedy training, or
reconstruction-based target propagation, our local objective is relational across depth which enforces
adjacent-layer probabilistic alignment by minimizing a Bhattacharyya KL-surrogate between induced
posteriors with stop–gradient on the parent, thereby regularizing inter-layer information flow while
preserving strict locality.

Stochastic Random Projection. We compute layer-wise divergences in a compressed subspace
using fixed random projections, which preserve minibatch geometry with high probability by the JL
lemma Johnson et al. (1984). Concretely, activations are mapped as vi = 1

p

d0 Rihi with Ri 2 RK⇥d

sampled once at initialization with i.i.d. subgaussian entries, where K ⌧ d and we set K to the
number of classes. For any finite set H of size n (e.g., a minibatch), the JL lemma ensures that
if d0�C "�2 log(n/�) then, with probability at least 1 � �, pairwise distances and inner products
among {vi(u) : u 2 H} are preserved up to O("); this justifies computing our alignment divergence
on the auxiliary posteriors in the projected space. The projections act as lightweight heads that enable
strictly local updates without backpropagating across layers. To improve generalization, we inject
structured noise into the projection during training:

vi = 1
p

d0 (Mi �Ri)hi, Mi ⇠ Bernoulli(p)d
0
⇥d,

which acts as multiplicative dropout on the projection weights. This introduces Monte Carlo variability
without learning the projection, and is consistent with the Bayesian view of dropout as approximate
variational inference while our overall objective remains ELBO-inspired Gal & Ghahramani (2016).
In our implementation it functions as a stochastic regularizer that stabilizes the induced posteriors
and improves robustness. The result is a geometry-preserving, parameter-efficient mechanism that
stabilizes alignment, mitigates over-compression, and scales local training.

Implementation note. We use a deterministic approximate posterior q(hi | hi�1) = �
�
hi�fi(hi�1)

�

and therefore compute the layer-wise divergence on the auxiliary categorical summaries (qi, pi) rather
than the continuous conditionals, preserving locality via stop–gradient on the prior side. During
training, each layer is updated locally as the child-side distribution qi, while its frozen output
simultaneously serves as the parent-side target pi+1 for the next layer, yielding a chain of coordinated
adjacent-layer updates without cross-layer backpropagation.

4 RELATED WORK

The intersection of probabilistic inference and biologically plausible optimization has inspired a
range of methods that seek to improve the scalability, interpretability, and local adaptability of deep
learning. We organize related work into three areas: variational inference, local learning, and forward-
only training. Variational Inference and Probabilistic Deep Learning. Variational inference
(VI) enables tractable approximate Bayesian learning via ELBO maximization Blei et al. (2017);
Jordan et al. (1999), foundational to deep generative models like VAEs Kingma & Welling (2014);
Sohn et al. (2015); Higgins et al. (2017), and their structured extensions Sønderby et al. (2016);
Vahdat & Kautz (2020). SLL approximates VI for feedforward networks, combining local latent
approximations with task-driven learning, and can be seen as a layer-wise variational EM scheme.
Gradient-Based Local Learning Local learning reduces backpropagation overhead by optimizing
layers independently, from greedy layer-wise training Bengio et al. (2006) to local heads Belilovsky
et al. (2019); Nøkland & Eidnes (2019) and synchronization strategies Ernoult et al. (2022). Recent
blockwise and parallel approaches Yang et al. (2024); Apolinario et al. (2024) aim to scale under
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Figure 2: Peak training memory on (a) MLPs (1024 neurons/layer) as a function of depth. BP memory
scales linearly, while SLL remains constant; (b) CNNs on the Imagenette without pooling layers.
Each convolution layer uses a kernel size of 3 and 64 output channels; (c) ViTs on Imagentte. For fair
comparison, we are using SGD as the optimizer in training.

memory constraints, but often suffer from global feature inconsistency Yang et al. (2024). SLL
alleviates this via variational alignment. More biologically inspired alternatives include FA Lillicrap
et al. (2016), DFA Nøkland (2016), DPK Webster et al. (2021), and TP Lee et al. (2015), which replace
gradients with alternative feedback signals. More recent Hebbian variants Journé (2023); Halvagal &
Zenke (2023) show promise for scalable bio-plausible learning, though accuracy and depth remain
challenges. Forward-Only Credit Assignment Forward-only methods eliminate backprop by using
dual forward passes, e.g., Forward-Forward (FF)Hinton (2022), Signal PropagationKohan et al.
(2023), and PEPITA (D&K’22). Other FF variants Wu et al. (2024); Dooms et al. (2023); Lee & Song
(2023) reframe credit assignment via L2 distances. Despite biological inspiration, these methods
often face inter-layer misalignment Lorberbom et al. (2024), limiting hierarchical feature learning.

5 EXPERIMENTS

We evaluate the effectiveness, interpretability, and scalability of SLL across a range of standard
benchmarks. Our experiments include multiple architectures, including MLPs, CNNs, and Vision
Transformers (ViTs), and datasets of increasing complexity, from MNIST LeCun et al. (1998) and
CIFAR-10/100 Krizhevsky et al. (2009) to ImageNette and ImageNet-1K Deng et al. (2009). To
assess SLL’s capacity for local learning, we compare it against established local training base-
lines across multiple network scales. We further extend SLL to block-wise training (SLL+) for
ViTs, demonstrating its compatibility with modern large-scale architectures without relying on full
backpropagation.

Method Memory FLOPS MNIST CIFAR10 CIFAR100

BP O(NL) O(N2L) 99.25 ± 0.09 60.95 ± 0.33 32.92 ± 0.23
TP Lee et al. (2015) O(NL) O(N2L) 97.96 ± 0.08 49.64 ± 0.26 -
FALillicrap et al. (2016) O(NL) O(NLC) 98.36 ± 0.03 53.10 ± 0.30 25.70 ± 0.20
DFANøkland (2016) O(NL) O(NLC) 98.26 ± 0.08 57.10 ± 0.20 26.90 ± 0.10
PEPITA(D&K’22) O(NL) O(N2L) 98.01 ± 0.09 52.57 ± 0.36 24.91 ± 0.22
SPKohan et al. (2023) O(N) O(N2L) 98.29 ± 0.03 57.38 ± 0.16 29.70 ± 0.19
SLL O(N) O(NLC) 99.32 ± 0.05 61.43 ± 0.31 32.95 ± 0.26

Table 1: Performance and computational complexity of SLL vs prior local-learning methods for
MLPs on MNIST, CIFAR-10, and CIFAR-100 under the same experimental setup. BP and baseline
results are taken from (Kohan et al., 2023). Memory and FLOPs are reported as asymptotic scaling
in N (neurons per layer), L (layers), and C (classes). Metrics are mean ± std over three runs. “–”
denotes values not reported.
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5.1 EXPERIMENTS ON MLPS

We begin by evaluating SLL on fully connected networks trained on benchmarks: MNIST and
CIFAR-10/100. These datasets serve as controlled settings to study local learning dynamics in
low-dimensional and moderately complex inputs.

Accuracy and Efficiency. To establish a comprehensive comparison, we evaluate SLL alongside a
range of biologically motivated and local learning algorithms that do not rely fully or avoid BP. All
models are trained with identical architectures and training schedules to ensure a fair comparison. As
shown in Table 1 and Figure 4(a), SLL consistently outperforms all local learning baselines, despite
operating under reduced memory and computational budgets. In particular, under this identical setting
in Kohan et al. (2023), SLL even surpasses BP on these datasets while requiring fewer operations and
avoiding global gradient synchronization. Moreover, Figure 2(a) confirms SLL’s memory efficiency
during training. The training memory usage of SLL remains effectively constant as the depth of the
network increases, in contrast to its theoretical complexity reported in Table 1.

Representation Visualization. We analyze the internal representations of the network trained by
SLL in Figure 3. In general, input features are initially entangled, deeper layers show improved class
separation. It is obvious that vi forms sharper, more distinct clusters than hi, indicating that random
projections not only preserve but often enhance class-discriminative structure.

Figure 3: t-SNE visualization of activations and random projections on MNIST, colored by class.

Ablation study. We further investigate the effect of projection dimension and network width on
SLL performance (Figure 4b,c). Increasing the projection dimension d improves test accuracy, with
diminishing returns beyond d = 700, suggesting a trade-off between representational precision and
efficiency. Likewise, wider networks result in faster convergence and higher accuracy on CIFAR-100,
with improvements saturating above 800 neurons. These trends are consistent with our theoretical
insights in JL Lemma Johnson et al. (1984), which indicate that high-dimensional layers reduce
alignment loss and preserve inter-layer information. Together, these findings highlight the role of
capacity and compression in enabling stable local learning with SLL.

Figure 4: (a) Training curves of a 3-layer MLP on CIFAR-10 via SLL. Ablation study: (b) random
projection dimension in a 3×1000 MLP trained on CIFAR-100; activations are downsampled to d-dim
via adaptive pooling before projection. (c) network width in SLL on CIFAR-100, showing that wider
layers significantly enhance performance and stability.
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Model F-MNIST CIFAR10 CIFAR100 Imagenette Tiny-Imagenet64
BP-CNN 93.52(0.22) 91.58(0.53) 68.7(0.38) 90.5(0.45) 48.15(0.82)

Local Learning

FA (Nok’16) 91.12(0.39) 60.45(1.13) 19.49(0.97) – –
DFA (Nok’16) 91.54(0.14) 62.70(0.36) 48.03(0.61) – 32.12(0.66)
DKP (Web’21) 91.66(0.27) 64.69(0.72) 52.62(0.48) – 35.37(1.92)
Softhebb (Jour’23) – 80.3 56 81.0 –
SGR (Yan’24) – 72.40(0.75) 49.41(0.44) – –
LLS (Apo’24) 90.54(0.23) 88.64(0.12) 58.84(0.33) – 35.99(0.38)

Forward-Only

FF-CNN (Hin’22) – 59 – – –
TFF (Doo’23) 91.44(0.49) 83.51(0.78) 35.26(0.23) – –
PEPITA (D&K’22) – 56.33(1.35) 27.56(0.60) – –
LC-FF (Lor’24) 88.4 48.4 – – –
DF-R (Wu’24) 92.5 84.75 48.16 81.2 –
SLL-CNN 93.67(0.17) 91.36(0.32) 67.57(0.18) 88.09(0.73) 49.42(0.65)

Table 2: CNN test accuracies comparing SLL with prior local-learning and forward-only methods.
Values are reported as mean(std) over three runs; “–” indicates not reported.

Figure 5: Activation and weight distributions from VGG-11 trained with BP and SLL on Imagenette.

5.2 SCALING SLL TO CNNS

We next explore how SLL can scale effectively to convolutional architectures despite discarding
explicit spatial structure when utilizing fully connected random projection. To this end, we evaluate
SLL on a VGG-11 architecture and compare it against representative local learning methods, forward-
only training algorithms, and conventional global BP.

Accuracy. Table 2 reports the test accuracies in F-MNIST, CIFAR-10/100 and Tiny-Imagenet.
SLL performs competitively with BP, achieving within 1–2% of BP on all datasets like F-MNIST,
CIFAR-10/100 and TinyImageNet200, even slightly surpassing it on F-MNIST. In particular, SLL
outperforms all local and forward-only baselines on all given tasks, including DFA Nøkland (2016),
DKP Webster et al. (2021), SoftHebb Journé (2023), and TFF Dooms et al. (2023).

Training memory efficiency. Figure 2(b) illustrates the training memory usage of SLL and BP on
CNNs. While SLL exhibits a clear memory advantage in MLPs, its benefit is more moderate in
CNNs. This is because convolution operations are inherently sparse and memory-efficient, while the
dense random projections used in SLL introduce additional overhead. However, SLL still maintains a
significant advantage in deeper architectures.

Feature visualization. Figure 5 indicates that SLL effectively learns high-quality spatial and
discriminative representations, despite discarding explicit spatial priors. Compared with BP, the
broader weight distributions from SLL suggest robust and distributed encoding.
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5.3 SCALING TO VISION TRANSFORMER

Moreover, we use Vision Transformers (ViTs) Dosovitskiy et al. (2021) as a scalability benchmark
for SLL, since their dense, MLP-like blocks and large activations footprints heavily impact compute
and memory, making them ideal for testing efficiency and convergence.

Task Method Test Acc Memory(GB)

CIFAR-10 BP 93.62 3.05
SLL7+ 92.17 1.18(# 64.1%)

CIFAR-100 BP 75.24 3.05
SLL7+ 74.27 1.18(# 64.1%)

Imagenette BP 92.82 22.12
SLL7+ 92.25 5.43(# 75.45%)

Imagenet

BP 79.4 20.70
SGR3+ 78.65 11.73(# 43.33%)
SLL3+ 72.43 6.54(# 68.41%)

SLL12+ 59.62 4.30(# 79.22%)

Table 3: ViTs results. “Memory” denotes peak GPU training
memory during training at batch sizes 128 and 256. SGR
refers to Yang et al. (2024). BP baseline of ImageNet are
taken from Yuan et al. (2021).

To scale to ViTs, we propose SLLi+, a
blockwise variant of SLL tailored for
large residual architectures. We parti-
tion the ViT architecture into i-units,
each comprising one or more attention
blocks; training is hybrid where stan-
dard backpropagation is used within
each unit, while between units we op-
timize the local objectives indepen-
dently, eliminating global backpropa-
gation across the entire model. It effec-
tively turns SLL into a local block-wise
training scheme for deep networks, in
this case ViTs. This design aligns
with the residual structure of ViT while
preserving the localized memory and
learning advantage of SLL.

SLLi+ leverages the class token or
mean over all tokens as a stable and
semantically meaningful signal for lo-
cal supervision. This allows efficient classification without requiring end-to-end backpropagation. As
shown in table 3, SLLi+ achieves large memory savings in Vision Transformers while preserving
accuracy, with memory use staying nearly constant as block depth increases (Figure 2(c)). This trend
is similar to the MLP findings and demonstrates SLL scalability across architectures. Compared to
BP, SLLi+ reduces training memory by 64%–80% without sacrificing stability or model capacity.

6 DISCUSSION AND CONCLUSIONS

The above results highlight open opportunities for improving SLL. First, the Markov assumption
between layers, while simplifying inference, may limit expressivity in architectures with long-range
dependencies such as residual connections. Second, the absence of second-order gradient information
may reduce SLL’s effectiveness in navigating ill-conditioned loss surfaces. Third, SLL’s reliance
on local supervision may limit convergence in large-scale classification tasks where informative
gradients may only emerge in later layers. Finally, aggressive dimension reduction via random
projection may lead to information loss in narrow architectures. Addressing these challenges through
more expressive dependency modeling, adaptive projection schemes, architecture-aware supervision,
and specialized training approaches for sequential models could extend the applicability of SLL to
broader research.

It is worth mentioning that the SLL also draws conceptual parallels with Equilibrium Propagation
(EP) Scellier & Bengio (2017) and energy-based models. Both frameworks enable local updates
that align with global objectives, but they operate through distinct mechanisms: stochastic layer-
wise updates for SLL and dynamical relaxation for EP. Bridging these perspectives under a unified
probabilistic or dynamical systems framework is an interesting direction for future research.

In conclusion, we introduce SLL, a scalable and memory-efficient alternative to BP that reformulates
training as an ELBO inspired, stochastic layer-wise learning. By combining stochastic random
projection with a Bhattacharyya surrogate for the layer-wise KL, SLL enables parallel, local updates
while preserving global coherence without global BP and without additional trainable parameters.
Compared to BP, SLL achieves competitive accuracy with significant memory efficiency, up to 4×
in our settings, and consistently outperforms prior local learning methods. It generalizes effectively
across MLPs, CNNs, and ViTs, scaling from small to moderately large vision tasks. Beyond training
efficiency, SLL also provides a structured probabilistic view of deep representations, offering a
foundation for interpretable learning dynamics and architecture design grounded in information flow.
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