

000 001 002 003 004 005 STOCHASTIC LAYER-WISE LEARNING: SCALABLE AND 006 EFFICIENT ALTERNATIVE TO BACKPROPAGATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030 Backpropagation underpins modern deep learning, yet its reliance on global gradient
031 synchronization limits scalability and incurs high memory costs. In contrast,
032 fully local learning rules are more efficient but often struggle to maintain the
033 cross-layer coordination needed for coherent global learning. Building on this
034 tension, we introduce Stochastic Layer-wise Learning (SLL), a layer-wise training
035 algorithm that decomposes the global objective into coordinated layer-local updates
036 while preserving global representational coherence. The method is ELBO-inspired
037 under a Markov assumption on the network, where the network-level objective
038 decomposes into layer-wise terms and each layer optimizes a local objective via a
039 deterministic encoder. The intractable KL in ELBO is replaced by a Bhattacharyya
040 surrogate computed on auxiliary categorical posteriors obtained via fixed geometry-
041 preserving random projections, with optional multiplicative dropout providing
042 stochastic regularization. SLL optimizes locally, aligns globally, thereby elimi-
043 nating cross-layer backpropagation. Experiments on MLPs, CNNs, and Vision
044 Transformers from MNIST to ImageNet show that the approach surpasses recent
045 local methods and matches global BP performance while memory usage invariant
046 with depth. The results demonstrate a practical and principled path to modular
047 and scalable local learning that couples purely local computation with globally
048 coherent representations.
049

050 1 INTRODUCTION

051 The success of deep learning across a wide range of domains has been substantially driven by
052 backpropagation (BP), a foundational learning algorithm enabling hierarchical representation learning
053 through end-to-end gradient-based optimization Rumelhart et al. (1986); LeCun et al. (2015). Despite
054 its algorithmic clarity and practical effectiveness, BP requires the exact storage of intermediate
055 activations and subsequent gradient computation across all layers. This mechanism facilitates global
056 credit assignment Lillicrap et al. (2020); it also introduces a well-known bottleneck called *update-
057 locking* Jaderberg et al. (2017); Griewank & Walther (2008), where the weight update of a given
058 layer must wait until both the forward pass through the entire network and the backward pass through
059 deeper layers are complete. Consequently, this global dependency limits asynchronous updating, and
060 imposes substantial memory and computational overhead, ultimately reducing training efficiency
061 and scalability, especially in resource-constrained devices Luo et al. (2024); Belilovsky et al. (2019);
062 Bengio et al. (2006).

063 BP is often seen as biologically implausible and this drives efforts to discover local learning rules
064 for credit assignment inspired by real neural systems Lillicrap et al. (2020); Scellier & Bengio
065 (2017); Guerguiev et al. (2017). At the same time, neuroscience suggests that feedback connections
066 may approximate global errors via local activity differences Guerguiev et al. (2017); Whittington &
067 Bogacz (2019), hinting at a biologically plausible path to deep learning Lillicrap et al. (2020); Sacramento
068 et al. (2018). Yet, these approaches struggle to reconcile local updates with global learning and lack a
069 unifying theoretical framework.

070 Given this context, a central research question emerges: “*Can we design a theoretical framework
071 capable of decomposing deep neural network training into local (layer-wise) optimizations while
072 retaining the benefits of hierarchical representation learning?*” This question captures a fundamental
073 conflict: while local learning encourages architectural scalability and computational parallelization,

Figure 1: **Overview of Stochastic Layer-wise Learning (SLL).** (a) SLL treats each hidden activation h_l as a latent variable and projects it to v_l via a random matrix. The local ELBO comprises a log-likelihood term and a KL surrogate that promotes inter-layer consistency. Optimizing this loss yields the improved projection \tilde{v}_l and its corresponding activation \tilde{h}_l . (b) SLL optimizes each layer independently using a prediction loss $\mathcal{L}_{\text{pred}}(v_l, y)$ from the log-likelihood and a feature alignment loss $\mathcal{L}_{\text{BC}}^{\text{per}}(v_l, v_{l-1}^{\text{sg}})$ approximating the KL term. Arrows denote forward computation (black), local updates (red), and stop-gradient paths (slashed).

effective deep learning relies on non-linear coordination across the entire network. This disconnect often results in misaligned learning signal and suboptimal performance, challenging the network scalability of locally trained models [Yang et al.] (2024).

To address this question, we ground local learning in how information propagates through deep networks: as signals traverse layers, raw inputs are progressively transformed into increasingly disentangled and class-separable representations [He & Su (2023); Razdaibiedina et al. (2023); Telgarsky (2016)]. This refinement suggests that intermediate layers perform latent inference, selectively preserving task-relevant signals while suppressing redundancy [Shwartz-Ziv & Tishby (2017)]. In this paper, we make this intuition precise by exhibiting a network-level ELBO that decomposes into layer-wise terms under a Markov assumption of network architecture, thereby furnishing principled local objectives while retaining an explicit link to the global goal. Building on this decomposition, we introduce **Stochastic Layer-wise Learning (SLL)**, a local learning framework in which each layer produces auxiliary categorical posteriors via fixed stochastic random projections, and the intractable layer-wise KL in the ELBO is replaced by a Bhattacharyya surrogate [Bhattacharyya (1943)] computed on these induced posteriors, yielding an ELBO-inspired and numerically stable update. Here, the projections preserve minibatch geometry with high probability by the Johnson–Lindenstrauss (JL) lemma [Johnson et al. (1984); Razdaibiedina et al. (2023)], which justifies computing divergences in the compressed space; we further apply multiplicative dropout to the fixed projection, which provides stochastic regularization consistent with the dropout-as-variational-inference interpretation [Gal & Ghahramani (2016)]; we do not learn mask parameters and do not claim a variational bound over masks, and the overall objective remains ELBO-inspired at the layer level. SLL thus reconciles local optimization with hierarchical coordination, mitigating over-compression associated with direct KL minimization, maintaining global representational coherence, and enabling scalable, parallel training without full backpropagation.

This work targets mathematical analysis, algorithmic development, and experimental evaluations, leading to three principal contributions: **Theoretical contribution**: we formally decompose the network ELBO into layer-wise terms under a Markov assumption and prove that the arithmetic mean of these layer-wise ELBOs provides a valid lower bound on the global ELBO, establishing the theoretical basis for local training. **Algorithmic contribution**: we proposed SLL and demonstrate its potential as a scalable and efficient alternative to BP. By integrating stochastic random projections, SLL replaces the need for a complete backward pass, thereby facilitating structured local learning. **Experimental evaluations**: We demonstrate that SLL scales effectively across architectures and datasets, from MLPs on MNIST to ViTs on ImageNet. Our results show that the SLL algorithm surpasses recently proposed local training methods that address the update locking problem of BP. Moreover, SLL approaches or equals the accuracy performance of BP but with a significant reduction in memory (4x or more).

108 **2 BACKGROUND**

110 In supervised learning tasks, such as classification applications or regression, neural networks
 111 are designed to construct mappings between given input data X and the corresponding target
 112 label Y . Traditional feedforward neural networks have a sequential structure in which each layer
 113 processes the output of the previous layer through a parameterized function. Following the classical
 114 formulation Rumelhart et al. (1986), such a L -layer neural network can be expressed as a chain of its
 115 parameterized sub-functions:

$$f_{1:L}(x) := f(f(\dots f(x, \theta_1), \dots, \theta_{L-1}), \theta_L) \quad (1)$$

116 where $\theta_i \in \Theta$ represents a set of learnable parameters at layer i . This hierarchical or Markov structure
 117 introduces a sequence of hidden representations $\mathcal{H} = [h_1, h_2, \dots, h_L]$ where each representation is
 118 defined recursively as $h_i = f(h_{i-1}, \theta_i)$. Given the stacked structure of neural networks, each layer
 119 builds on the representation of the previous layer. This structure induces a hierarchical representation
 120 where higher layers encode increasingly abstract and task-relevant features.

121 **Backpropagation** is the standard approach for network training, aiming to optimize the parameters
 122 Θ of the network given a dataset of input-label pairs (x, y) and a task-relevant loss function $\mathcal{L}(h_L, y)$.
 123 During training, input data is propagated through the entire network to generate predictions. The
 124 loss function then evaluates the network performance by quantifying the distance between these
 125 predictions and labels. Next, BP computes the gradient of the loss with respect to each parameter by
 126 recursively applying the chain rule in reverse through the network. The update rule for the parameters
 127 at layer i , θ_i , are updated iteratively using gradient descent:

$$\theta'_i = \theta_i + \eta \Delta \theta_i; \quad \Delta \theta_i = \frac{\partial \mathcal{L}}{\partial \theta_i} = \frac{\partial \mathcal{L}}{\partial h_i} \cdot \frac{\partial h_i}{\partial \theta_i} = \frac{\partial \mathcal{L}}{\partial h_L} \prod_{j>i} \frac{\partial h_{j+1}}{\partial h_j} \cdot \frac{\partial h_i}{\partial \theta_i} \quad (2)$$

128 where η is the learning rate. The first term (blue) captures the global contributions of activation h_i to
 129 the global loss. It encodes dependencies across all subsequent layers and ensures that updates are
 130 coordinated with the global objective. The second term (red) reflects the local sensitivity of h_i with
 131 respect to the corresponding parameters θ_i , and can be calculated independently at each layer.

132 **3 METHODOLOGY**

133 In this section, we break the global training objective into local layer updates, so each layer learns
 134 locally while still contributing to the overall optimization of the network.

135 **3.1 FROM GLOBAL LOSS TO GLOBAL ELBO**

136 In principle, BP's inefficiencies arise from its treatment of activations as fixed, deterministic values
 137 that require explicit gradient computations across all layers. Here, we adopt a probabilistic formulation
 138 where each hidden activation is modeled as stochastic latent variables, conditioned on its previous
 139 layer. This hierarchy views forward computation as an approximate inference over latent variables,
 140 similar to the approaches in deep-generative models Kingma & Welling (2014); Sønderby et al.
 141 (2016). Thus, instead of optimizing deterministic activations, learning becomes an inference problem
 142 where the goal is to infer their posterior distributions conditioned on observed inputs and outputs.
 143 Formally, this corresponds to estimating the *true posterior* over the hidden representations:

$$p(h_1, \dots, h_L | x, y) = \frac{p(y | h_L)p(h_L | h_{L-1}) \dots p(h_1 | x)}{p(y | x)} = \prod_{i=1}^{L+1} p(h_i | h_{i-1})/p(y | x) \quad (\text{Assumption 1})$$

144 where $h_0 := x$ and $h_{L+1} := y$. This joint distribution factorizes into a global *evidence* term and a
 145 product of local conditional terms. However, computing the evidence term requires marginalization
 146 over all hidden representations: $p(h | x, y) = \int \dots \int \prod_{i=1}^{L+1} p(h_i | h_{i-1}) dh_L \dots dh_1$ which is
 147 computationally intractable in high-dimensional deep architecture.

148 To address this challenge, we apply Variational Inference (VI) Blei et al. (2017); Ranganath et al.
 149 (2014) to approximate the intractable true posterior $p(y | x)$ with a variational surrogate distribution
 150 $q(h)$ by minimizing the KL divergence between them in latent space:

$$KL(q(h) \| p(h | x)) = \mathbb{E}_q[\log q(h)] - \mathbb{E}_q[\log p(h | x)].$$

162 where $\mathbb{E}_q[\cdot]$ denotes expectation under the variational posterior $q(h)$. This leads to maximizing the
 163 Evidence Lower Bound (ELBO):

$$164 \quad \arg \max_{\theta} \mathcal{E} = \mathbb{E}_q[\log p(y | h)] - KL(q(h) \| p(h)) \quad (3)$$

166 where $p(h)$ is the prior distribution over latent variables. At this point, network optimization is
 167 reformulated as a structured variational inference problem, fundamentally distinct from standard BP.
 168

169 3.2 FROM GLOBAL ELBO TO LAYER-WISE ELBO

171 **Generative and recognition models.** We view the network as a hierarchical latent variable model
 172 with generative transitions $p(h_i | h_{i-1})$ for $i = 1, \dots, L$ and likelihood $p(y | h_L)$. To approximate
 173 the intractable posterior, we adopt a Markov assumption on the network architecture that mirrors the
 174 forward architecture Vahdat & Kautz (2020):

$$175 \quad q(h_1, \dots, h_L | x, y) = \prod_{i=1}^L q(h_i | h_{i-1}), \quad (\text{Assumption 2})$$

178 where each factor may include auxiliary noise (reparameterization) or reduce to a delta, as specified
 179 below. Here $p(h_i | h_{i-1})$ denotes the generative transition (prior) at layer i , and $q(h_i | h_{i-1})$ is the
 180 approximate posterior (inference distribution) over h_i given h_{i-1} . Under this factorization, a standard
 181 network-level variational objective is

$$183 \quad \mathcal{E}_{NN} = \mathbb{E}_q[\log p(y | h_L)] - \sum_{i=1}^L KL(q(h_i | h_{i-1}) \| p(h_i | h_{i-1})), \quad (\text{Assumption 3})$$

186 with expectation over $q(h_1, \dots, h_L | x, y)$. Each additive item admits a local interpretation, motivating
 187 the following layer-wise ELBO-inspired objective:

$$188 \quad \mathcal{E}_i = \underbrace{\mathbb{E}_{q(h_i | x, y)}[\log p(y | h_i)]}_{\text{Expected log-likelihood}} - \underbrace{KL(q(h_i | h_{i-1}) \| p(h_i | h_{i-1}))}_{\text{Layer-wise divergence}}, \quad (4)$$

191 where the first term encourages class-discriminative representations at layer i , and the second term
 192 regularizes by enforcing local consistency with $p(h_i | h_{i-1})$. In short, each layer learns to improve
 193 the prediction while remaining consistent with its generative prior Eldan & Shamir (2016).

194 **Layer-to-Network Relation.** Assume:

- 196 (A1) **Shared variational family.** All conditionals of q are drawn from the same family across depths,
 197 and the same predictive head $p_\phi(y | \cdot)$ is used to evaluate all ELBO terms.
- 198 (A2) **Layer-/block-Markov posterior (analysis only).** For every i , $q(h_{i-1} | h_{i:L}, x) = q(h_{i-1} |$
 199 $h_i, x)$ (when using blocks, the equality is imposed at block boundaries).
- 200 (A3) **Monotone predictive gain.** For every i , $\mathbb{E}[\log p_\phi(y | h_i)] \geq \mathbb{E}[\log p_\phi(y | h_{i-1})]$, with
 201 expectations taken as in the ELBO definitions.
- 203 (A4) **KL budget.** The sum of the (conditional) KL terms used in the layerwise ELBOs upper-
 204 bounds the joint regularizer in the global ELBO: $\sum_i \mathbb{E}[KL(q(h_{i-1} | h_i, x) \| p(h_{i-1} | h_i))] \geq$
 205 $\mathbb{E}[KL(q(h_{1:L} | x) \| p(h_{1:L}))]$.

206 Then the arithmetic mean of the layer-wise ELBOs is upper-bounded by the global ELBO:
 207 $\frac{1}{L} \sum_{i=1}^L \mathcal{E}_i \leq \mathcal{E}_{NN}$. Consequently, under (A1)–(A4), decreasing the local objectives provably
 208 tightens the global lower bound.

210 *Proof sketch.* By (A3), the average of the predictive terms (evaluated with the same head) is no larger
 211 than the top-level predictive term. By the chain rule of KL, (A2) and (A4) upper-bound the global
 212 KL by the sum of layer-wise conditional KLs. Combining yields arithmetic mean $\frac{1}{L} \sum_{i=1}^L \mathcal{E}_i \leq \mathcal{E}_{NN}$.
 213 The inequality can fail when the layer-Markov assumption is violated, i.e., when $I_q(h_{i-1}; h_{i+1:L} |$
 214 $h_i, x) > 0$. This occurs in architectures with long-range cross-layer couplings such as hierarchical
 215 VAEs with top-down inference (e.g., Ladder-VAE Sønderby et al. (2016)), and encoder–decoder
 models with long lateral skip connections (U-Net Ronneberger et al. (2015)).

216 3.3 STOCHASTIC LAYER-WISE LEARNING (SLL)
217

218 To approximate the layer-wise ELBO in Assumption 3 with a strictly local training rule, we make
219 each layer-wise KL term as a tractable surrogate defined on auxiliary discrete posteriors coming from
220 adjacent layers. For layer i , we attach a random lightweight classification head $R_i : \mathbb{R}^{d_i} \rightarrow \mathbb{R}^K$ and
221 define two categorical distributions over K codes induced from the activations: a predictive prior
222 $p_i(\cdot | h_{i-1}^{\text{sg}}) = \text{softmax}(R_{i-1} h_{i-1}^{\text{sg}})$ that depends only on the stop-gradient parent h_{i-1}^{sg} (i.e. frozen
223 input from the previous layer), and an auxiliary posterior $q_i(\cdot | h_i) = \text{softmax}(R_i h_i)$ which depends
224 on the current activations h_i . We replace $\text{KL}(q(h_i | h_{i-1}) \| p(h_i | h_{i-1}))$, the KL term in the ELBO,
225 by the per-sample Bhattacharyya surrogate:

$$226 \quad \mathcal{L}_{\text{BC}}^{\text{per}}(i) = -\frac{1}{B} \sum_{b=1}^B \log \text{BC}(q_i^{(b)}, p_i^{(b)}), \quad \text{BC}(u, v) = \sum_{k=1}^K \sqrt{u_k v_k} \in [0, 1].$$

227 Here BC denotes the *Bhattacharyya coefficient*, introduced by Bhattacharyya [\(1943\)](#)
228 as a measure of affinity between distributions; it equals the inner product of square-rooted probabilities.
229 It is closely related to the squared Hellinger distance, since $H^2(u, v) = 1 - \text{BC}(u, v)$ [Bhattacharyya \(1943\)](#)
230 [\(1943\); van Erven & Harremoës \(2014\)](#). This construction preserves locality because p_i depends
231 only on the frozen inputs h_{i-1}^{sg} , while also serving as a proxy for the ELBO term. A second-
232 order expansion yields $\text{KL}(q \| p) = 4(1 - \text{BC}(q, p)) + o(\|q - p\|^2)$. Moreover, the inequalities
233 $\text{KL}(q \| p) \geq -2 \log \text{BC}(q, p) \geq 2(1 - \text{BC}(q, p))$ provide global monotone control and improved
234 numerical stability, especially when probabilities are small. The resulting layer objective becomes:

$$235 \quad \arg \min_{\theta} \mathcal{L}_i = \mathcal{L}_{\text{pred}} + \lambda_i \mathcal{L}_{\text{BC}}^{\text{per}} = \underbrace{\mathcal{L}_{\text{pred}}(R_i h_i, y)}_{\text{expected likelihood term}} + \underbrace{\lambda_i \mathcal{L}_{\text{BC}}^{\text{per}}(i)}_{\text{surrogate for } \text{KL}(q \| p)}, \quad \lambda_i \geq 0, \quad (5)$$

236 , where $\lambda_i \geq 0$ is an *optional per-layer trade-off coefficient* that controls the *relative weight* of the
237 alignment term (we use $\lambda_i = 1$ as default). This objective is ELBO-inspired rather than a strict
238 ELBO lower bound. In general, optimizing $\{\mathcal{L}_i\}_{i=1}^L$ provides a structured approximation to the
239 layer-wise ELBOs in Assumption 3 and, together with [lemma 1](#), links these local updates to the global
240 objective \mathcal{E}_{NN} , thereby enabling scalable training that remains faithful to the hierarchical variational
241 formulation. Unlike auxiliary heads, greedy training, or reconstruction-based target propagation, our
242 local objective is relational across depth which enforces *adjacent-layer probabilistic alignment* by
243 minimizing a Bhattacharyya KL-surrogate between induced posteriors with stop-gradient on the
244 parent, thereby regularizing inter-layer information flow *via a proper, contractive f -divergence* while
245 preserving strict locality.

246 **Stochastic Random Projection.** We compute layer-wise divergences in a compressed subspace
247 using fixed random projections, which preserve minibatch geometry with high probability by the JL
248 lemma [Johnson et al. \(1984\)](#). Concretely, activations are mapped as $v_i = \frac{1}{\sqrt{d'}} R_i h_i$ with $R_i \in \mathbb{R}^{K \times d}$
249 sampled once at initialization with i.i.d. subgaussian entries, where $K \ll d$ and we set K to the
250 number of classes. For any finite set \mathcal{H} of size n (e.g., a minibatch), the JL lemma ensures that
251 if $d' \geq C \varepsilon^{-2} \log(n/\delta)$ then, with probability at least $1 - \delta$, pairwise distances and inner products
252 among $\{v_i(u) : u \in \mathcal{H}\}$ are preserved up to $O(\varepsilon)$; this justifies computing our alignment divergence
253 on the auxiliary posteriors in the projected space. The projections act as lightweight heads that enable
254 strictly local updates without backpropagating across layers. To improve generalization, we inject
255 structured noise into the projection during training:

$$256 \quad v_i = \frac{1}{\sqrt{d'}} (M_i \odot R_i) h_i, \quad M_i \sim \text{Bernoulli}(p)^{d' \times d},$$

257 which acts as multiplicative dropout on the projection weights. This introduces Monte Carlo variability
258 without learning the projection, and is consistent with the Bayesian view of dropout as approximate
259 variational inference while our overall objective remains ELBO-inspired [Gal & Ghahramani \(2016\)](#).
260 In our implementation it functions as a stochastic regularizer that stabilizes the induced posteriors
261 and improves robustness. The result is a geometry-preserving, parameter-efficient mechanism that
262 stabilizes alignment, mitigates over-compression, and scales local training.

263 **Implementation note.** Our implemented loss does not optimize \mathcal{E}_j directly: it minimizes the
264 (expected) Rényi- $\frac{1}{2}$ / Bhattacharyya divergence the student and stop-gradient parent posteriors in
265 the shared K -class label space. With softmax and normalization, decreasing BC loss \mathcal{L}_{BC} , and at

Figure 2: Peak training memory on (a) MLPs (1024 neurons/layer) as a function of depth. BP memory scales linearly, while SLL remains constant; (b) CNNs on the Imagenette without pooling layers. Each convolution layer uses a kernel size of 3 and 64 output channels; (c) ViTs on Imagenette. For fair comparison, we are using SGD as the optimizer in training.

the same time, pushing KL divergence towards zero in the label space; When (A1)–(A4) hold, these layer-wise alignments correlate with improvements in $\{\mathcal{E}_j\}$ and thereby tighten the global bound.

We use a deterministic approximate posterior $q(h_i \mid h_{i-1}) = \delta(h_i - f_i(h_{i-1}))$ and therefore compute the layer-wise divergence on the auxiliary categorical summaries (q_i, p_i) rather than the continuous conditionals, preserving locality via stop-gradient on the prior side. During training, each layer is updated locally as the child-side distribution q_i , while its frozen output simultaneously serves as the parent-side target p_{i+1} for the next layer, yielding a chain of coordinated adjacent-layer updates without cross-layer backpropagation.

4 RELATED WORK

The intersection of probabilistic inference and biologically plausible optimization has inspired a range of methods that seek to improve the scalability, interpretability, and local adaptability of deep learning. We organize related work into three areas: variational inference, local learning, and forward-only training. **Variational Inference and Probabilistic Deep Learning.** Variational inference (VI) enables tractable approximate Bayesian learning via ELBO maximization Blei et al. (2017); Jordan et al. (1999), foundational to deep generative models like VAEs Kingma & Welling (2014); Sohn et al. (2015); Higgins et al. (2017), and their structured extensions Sønderby et al. (2016); Vahdat & Kautz (2020). SLL approximates VI for feedforward networks, combining local latent approximations with task-driven learning, and can be seen as a layer-wise variational EM scheme. **Gradient-Based Local Learning** Local learning reduces backpropagation overhead by optimizing layers independently, from greedy layer-wise training Bengio et al. (2006) to local heads Belilovsky et al. (2019); Nøkland & Eidnes (2019) and synchronization strategies Ernoult et al. (2022). Recent blockwise and parallel approaches Yang et al. (2024); Apolinario et al. (2024) aim to scale under memory constraints, but often suffer from global feature inconsistency Yang et al. (2024). SLL alleviates this via variational alignment. More biologically inspired alternatives include FA Lillicrap et al. (2016), DFA Nøkland (2016), DPK Webster et al. (2021), and TP Lee et al. (2015), which replace gradients with alternative feedback signals. More recent Hebbian variants Journé (2023); Halvagal & Zenke (2023) show promise for scalable bio-plausible learning, though accuracy and depth remain challenges. **Forward-Only Credit Assignment** Forward-only methods eliminate backprop by using dual forward passes, e.g., Forward-Forward (FF) Hinton (2022), Signal Propagation Kohan et al. (2023), and PEPITA (D&K'22). Other FF variants Wu et al. (2024); Dooms et al. (2023); Lee & Song (2023) reframe credit assignment via L_2 distances. Despite biological inspiration, these methods often face inter-layer misalignment Lorberbom et al. (2024), limiting hierarchical feature learning.

5 EXPERIMENTS

We evaluate the effectiveness, interpretability, and scalability of SLL across a range of standard benchmarks. Our experiments include multiple architectures, including MLPs, CNNs, and Vision

Transformers (ViTs), and datasets of increasing complexity, from MNIST [LeCun et al. (1998)] and CIFAR-10/100 [Krizhevsky et al. (2009)] to ImageNette and ImageNet-1K [Deng et al. (2009)]. To assess SLL’s capacity for local learning, we compare it against established local training baselines across multiple network scales. We further extend SLL to block-wise training (SLL+) for ViTs, demonstrating its compatibility with modern large-scale architectures without relying on full backpropagation.

Method	Memory	FLOPS	MNIST	CIFAR10	CIFAR100
BP	$\mathcal{O}(NL)$	$\mathcal{O}(N^2L)$	99.25 ± 0.09	60.95 ± 0.33	32.92 ± 0.23
TP [Lee et al. (2015)]	$\mathcal{O}(NL)$	$\mathcal{O}(N^2L)$	97.96 ± 0.08	49.64 ± 0.26	-
FA [Lillicrap et al. (2016)]	$\mathcal{O}(NL)$	$\mathcal{O}(NLC)$	98.36 ± 0.03	53.10 ± 0.30	25.70 ± 0.20
DFA [Nøkland (2016)]	$\mathcal{O}(NL)$	$\mathcal{O}(NLC)$	98.26 ± 0.08	57.10 ± 0.20	26.90 ± 0.10
PEPITA [D&K’22]	$\mathcal{O}(NL)$	$\mathcal{O}(N^2L)$	98.01 ± 0.09	52.57 ± 0.36	24.91 ± 0.22
SP [Kohan et al. (2023)]	$\mathcal{O}(N)$	$\mathcal{O}(N^2L)$	98.29 ± 0.03	57.38 ± 0.16	29.70 ± 0.19
SLL	$\mathcal{O}(N)$	$\mathcal{O}(NLC)$	99.32 ± 0.05	61.43 ± 0.31	32.95 ± 0.26

Table 1: Performance and computational complexity of SLL vs prior local-learning methods for MLPs on MNIST, CIFAR-10, and CIFAR-100 under the same experimental setup. BP and baseline results are taken from [Kohan et al. (2023)]. Memory and FLOPs (credit-assignment compute only) are reported as asymptotic scaling in N (neurons per layer), L (layers), and C (classes). Metrics are mean \pm std over three runs. “-” denotes values not reported.

5.1 EXPERIMENTS ON MLPs

We begin by evaluating SLL on fully connected networks trained on benchmarks: MNIST and CIFAR-10/100. These datasets serve as controlled settings to study local learning dynamics in low-dimensional and moderately complex inputs.

Figure 3: **Layer-wise evolution under SLL.** (a) t-SNE of a held-out batch: activations h_i (top) and projected codes $v_i = R_i h_i$ (bottom). Class clusters tighten with depth and the readout preserves the class geometry. CKA is computed w.r.t. the input; higher = more similar to pixel space, lower = more abstract. (b) Per-layer training curves: both \mathcal{L}_{BC} and \mathcal{L}_{pred} decrease steadily and are lowest for deeper layers, indicating progressive adjacent-layer alignment without full backpropagation. More details check Fig.A7 in appendix.

Accuracy and Efficiency. To establish a comprehensive comparison, we evaluate SLL alongside a range of biologically motivated and local learning algorithms that do not rely fully or avoid BP. All models are trained with identical architectures and training schedules to ensure a fair comparison. As shown in Table 1 and Figure 4(a), SLL consistently outperforms all local learning baselines, despite operating under reduced memory and computational budgets. In particular, under this identical setting in [Kohan et al. (2023)], SLL even surpasses BP on these datasets while requiring fewer operations and avoiding global gradient synchronization. Moreover, Figure 2(a) confirms SLL’s memory efficiency

378 during training. The training memory usage of SLL remains effectively constant as the depth of the
 379 network increases, in contrast to its theoretical complexity reported in Table 1.
 380

381 **Representation Visualization.** We analyze the internal representations of the network trained by
 382 SLL in Figure 2(a). In general, input features are initially entangled, deeper layers show improved
 383 class separation. It is obvious that v_i forms sharper, more distinct clusters than h_i , indicating that
 384 random projections not only preserve but often enhance class-discriminative structure.

395 Figure 4: (a) Training curves of a 3-layer MLP on CIFAR-10 via SLL. Ablation study: (b) *Effect of*
 396 *the pooled feature size d in a 3×1000 MLP on CIFAR-100: before the head, each layer’s activation is*
 397 *reduced to d features by *adaptive average pooling*, then mapped by a fixed linear readout $R \in \mathbb{R}^{d \times K}$*
 398 *(with K the number of classes).* (c) network width in SLL on CIFAR-100, showing that wider layers
 399 significantly enhance performance and stability.

400 **Ablation study.** We further investigate the effect of projection dimension and network width on
 401 SLL performance (Figure 4b,c). Increasing the projection dimension d improves test accuracy, with
 402 diminishing returns beyond $d = 700$, suggesting a trade-off between representational precision and
 403 efficiency. Likewise, wider networks result in faster convergence and higher accuracy on CIFAR-100,
 404 with improvements saturating above 800 neurons. These trends are consistent with our theoretical
 405 insights in JL Lemma [Johnson et al. (1984)], which indicate that high-dimensional layers reduce
 406 alignment loss and preserve inter-layer information. Together, these findings highlight the role of
 407 capacity and compression in enabling stable local learning with SLL.

Model	F-MNIST	CIFAR10	CIFAR100	Imagenette	Tiny-Imagenet ₆₄
BP-CNN	93.52(0.22)	91.58(0.53)	68.7(0.38)	90.5(0.45)	48.15(0.82)
Local Learning					
FA (Nok’16)	91.12(0.39)	60.45(1.13)	19.49(0.97)	–	–
DFA (Nok’16)	91.54(0.14)	62.70(0.36)	48.03(0.61)	–	32.12(0.66)
DKP (Web’21)	91.66(0.27)	64.69(0.72)	52.62(0.48)	–	35.37(1.92)
Softhebb (Jour’23)	–	80.3	56	81.0	–
SGR (Yan’24)	–	72.40(0.75)	49.41(0.44)	–	–
LLS (Apo’24)	90.54(0.23)	88.64(0.12)	58.84(0.33)	–	35.99(0.38)
Forward-Only					
FF-CNN (Hin’22)	–	59	–	–	–
TFF (Doo’23)	91.44(0.49)	83.51(0.78)	35.26(0.23)	–	–
PEPITA (D&K’22)	–	56.33(1.35)	27.56(0.60)	–	–
LC-FF (Lor’24)	88.4	48.4	–	–	–
DF-R (Wu’24)	92.5	84.75	48.16	81.2	–
SLL-CNN	93.67(0.17)	91.36(0.32)	67.57(0.18)	88.09(0.73)	49.42(0.65)

424 Table 2: CNN test accuracies comparing SLL with prior local-learning and forward-only methods.
 425 Values are reported as mean(std) over three runs; “–” indicates not reported.
 426

427 5.2 SCALING SLL TO CNNs

428 We next explore how SLL can scale effectively to convolutional architectures despite discarding
 429 explicit spatial structure when utilizing fully connected random projection. To this end, we evaluate
 430 SLL on a VGG-11 architecture and compare it against representative local learning methods, forward-
 431 only training algorithms, and conventional global BP.

432 **Accuracy.** Table 2 reports the test accuracies in F-MNIST, CIFAR-10/100 and Tiny-Imagenet.
 433 SLL performs competitively with BP, achieving within 1–2% of BP on all datasets like F-MNIST,
 434 CIFAR-10/100 and TinyImageNet200, even slightly surpassing it on F-MNIST. In particular, SLL
 435 outperforms all local and forward-only baselines on all given tasks, including DFA [Nøkland (2016)],
 436 DKP [Webster et al. (2021)], SoftHebb [Journé (2023)], and TFF [Dooms et al. (2023)].
 437

453 Figure 5: Activation and weight distributions from VGG-11 trained with BP and SLL on Imagenette.
 454

455 **Training memory efficiency.** Figure 2(b) illustrates the training memory usage of SLL and BP on
 456 CNNs. While SLL exhibits a clear memory advantage in MLPs, its benefit is more moderate in
 457 CNNs. This is because convolution operations are inherently sparse and memory-efficient, while the
 458 dense random projections used in SLL introduce additional overhead. However, SLL still maintains a
 459 significant advantage in deeper architectures.
 460

461 **Feature visualization.** Figure 5 indicates that SLL effectively learns high-quality spatial and
 462 discriminative representations, despite discarding explicit spatial priors. Compared with BP, the
 463 broader weight distributions from SLL suggest robust and distributed encoding.
 464

465 5.3 SCALING TO VISION TRANSFORMER

466 Moreover, we use Vision Transformers (ViTs) [Dosovitskiy et al. (2021)] as a
 467 scalability benchmark for SLL, since their dense, MLP-like blocks and large
 468 activations footprints heavily impact compute and memory, making them
 469 ideal for testing efficiency and convergence.
 470

471 To scale to ViTs, we propose SLL^{i+} , a
 472 blockwise variant of SLL tailored for
 473 large residual architectures. We parti-
 474 tion the ViT architecture into i -units,
 475 each comprising one or more attention
 476 blocks; training is hybrid where stan-
 477 dard backpropagation is used within
 478 each unit, while between units we op-
 479 timize the local objectives indepen-
 480 dently, eliminating global backpropa-
 481 gation across the entire model. It effec-
 482 tively turns SLL into a local block-wise training scheme
 483 for deep networks, in this case ViTs. This design aligns with the residual structure of ViT while
 484 preserving the localized memory and learning advantage of SLL.
 485

Task	Method	Test Acc	Mem(GB)
CIFAR-10	BP	93.62	3.05
	SLL ⁷⁺	92.17	1.18(↓ 64.1%)
CIFAR-100	BP	75.24	3.05
	SLL ⁷⁺	74.27	1.18(↓ 64.1%)
Imagenette	BP	92.82	22.12
	SLL ⁷⁺	92.25	5.43(↓ 75.45%)
Imagenet	BP	79.4	20.70
	SGR ³⁺	78.65	11.73(↓ 43.33%)
	SLL ³⁺	72.43	6.54(↓ 68.41%)
	SLL ¹²⁺	59.62	4.30(↓ 79.22%)

486 Table 3: ViTs results. “Mem” denotes peak GPU training
 487 memory. SGR refers to [Yang et al. (2024)]. BP baseline of
 488 ImageNet is from [Yuan et al. (2021)].
 489

486 SLLⁱ⁺ leverages the class token or mean over all tokens as a stable and semantically meaningful
 487 signal for local supervision. This allows efficient classification without requiring end-to-end backprop-
 488 agation. As shown in table 3, SLLⁱ⁺ achieves large memory savings in Vision Transformers while
 489 preserving accuracy, with memory use staying nearly constant as block depth increases (Figure 2(c)).
 490 This trend is similar to the MLP findings and demonstrates SLL scalability across architectures.
 491 Compared to BP, SLLⁱ⁺ reduces training memory by 64%–80% without sacrificing stability or model
 492 capacity.

493 6 DISCUSSION AND CONCLUSIONS

496 The above results highlight open opportunities for improving SLL. First, the Markov assumption
 497 between layers, while simplifying inference, may limit expressivity in architectures with long-range
 498 dependencies such as residual connections like UNets [Ronneberger et al. (2015)]. Second, the absence
 499 of second-order gradient information may reduce SLL’s effectiveness in navigating ill-conditioned
 500 loss surfaces. Third, SLL’s reliance on local supervision may limit convergence in large-scale
 501 classification tasks where informative gradients may only emerge in later layers. **In addition, it is**
 502 **worth investigating hierachic and epoch-dependent schedules for alignment weight λ_i to improve**
 503 **optimization dynamics.** Finally, aggressive dimension reduction via random projection may lead
 504 to information loss in narrow architectures. Addressing these challenges through more expressive
 505 dependency modeling, adaptive projection schemes, architecture-aware supervision, and specialized
 506 training approaches for sequential models could extend the applicability of SLL to broader research.

507 It is worth mentioning that the SLL also draws conceptual parallels with Equilibrium Propagation
 508 (EP) [Scellier & Bengio (2017)] and energy-based models. Both frameworks enable local updates
 509 that align with global objectives, but they operate through distinct mechanisms: stochastic layer-
 510 wise updates for SLL and dynamical relaxation for EP. Bridging these perspectives under a unified
 511 probabilistic or dynamical systems framework is an interesting direction for future research.

512 In conclusion, we introduce SLL, a scalable and memory-efficient alternative to BP that reformulates
 513 training as an ELBO inspired, stochastic layer-wise learning. By combining stochastic random
 514 projection with a Bhattacharyya surrogate for the layer-wise KL, SLL enables parallel, local updates
 515 while preserving global coherence without global BP and without additional trainable parameters.
 516 Compared to BP, SLL achieves competitive accuracy with significant memory efficiency, up to 4×
 517 in our settings, and consistently outperforms prior local learning methods. It generalizes effectively
 518 across MLPs, CNNs, and ViTs, scaling from small to moderately large vision tasks. Beyond training
 519 efficiency, SLL also provides a structured probabilistic view of deep representations, offering a
 520 foundation for interpretable learning dynamics and architecture design grounded in information flow.

521 REFERENCES

522 Marco Paul E Apolinario, Arani Roy, and Kaushik Roy. Lls: local learning rule for deep neural
 523 networks inspired by neural activity synchronization. *arXiv preprint arXiv:2405.15868*, 2024.

524 Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
 525 to imagenet. In *International conference on machine learning*, pp. 583–593. PMLR, 2019.

526 Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
 527 deep networks. *Advances in neural information processing systems*, 19, 2006.

528 Anil Kumar Bhattacharyya. On a measure of divergence between two statistical populations defined
 529 by their probability distributions. *Bulletin of the Calcutta Mathematical Society*, 35:99–109, 1943.

530 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
 531 *Journal of the American statistical Association*, 112(518):859–877, 2017.

532 Anzhe Cheng, Heng Ping, Zhenkun Wang, Xiongye Xiao, Chenzhong Yin, Shahin Nazarian, Mingxi
 533 Cheng, and Paul Bogdan. Unlocking deep learning: A bp-free approach for parallel block-wise

540 training of neural networks. In *ICASSP 2024-2024 IEEE International Conference on Acoustics,
541 Speech and Signal Processing (ICASSP)*, pp. 4235–4239. IEEE, 2024.
542

543 Giorgia Dellaferreira and Gabriel Kreiman. Error-driven input modulation: solving the credit assignment
544 problem without a backward pass. In *International Conference on Machine Learning*, pp.
545 4937–4955. PMLR, 2022.

546 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
547 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
548 pp. 248–255. Ieee, 2009.

549 Thomas Dooms, Ing Jyh Tsang, and Jose Oramas. The trifecta: Three simple techniques for training
550 deeper forward-forward networks. *arXiv preprint arXiv:2311.18130*, 2023.

552 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
553 Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is
554 worth 16x16 words: Transformers for image recognition at scale. In *International Conference on
555 Learning Representations*, 2021.

556 Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In *Conference
557 on learning theory*, pp. 907–940. PMLR, 2016.

559 Maxence M Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina
560 Rish, Blake Richards, and Yoshua Bengio. Towards scaling difference target propagation by
561 learning backprop targets. In *International Conference on Machine Learning*, pp. 5968–5987.
562 PMLR, 2022.

563 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
564 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
565 PMLR, 2016.

567 Andreas Griewank and Andrea Walther. *Evaluating derivatives: principles and techniques of
568 algorithmic differentiation*. SIAM, 2008.

569 Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with segregated
570 dendrites. *elife*, 6:e22901, 2017.

572 Manu Srinath Halvagal and Friedemann Zenke. The combination of hebbian and predictive plasticity
573 learns invariant object representations in deep sensory networks. *Nature Neuroscience*, 26(11):
574 1906–1915, 2023.

576 Hangfeng He and Weijie J Su. A law of data separation in deep learning. *Proceedings of the National
577 Academy of Sciences*, 120(36):e2221704120, 2023.

578 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
579 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
580 constrained variational framework. In *International conference on learning representations*, 2017.

582 Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. *arXiv preprint
583 arXiv:2212.13345*, 2022.

584 Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
585 Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In
586 *International conference on machine learning*, pp. 1627–1635. PMLR, 2017.

588 William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert space.
589 *Contemporary mathematics*, 26(189-206):1, 1984.

590 Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
591 variational methods for graphical models. *Machine learning*, 37:183–233, 1999.

593 Adrien et al. Journé. Hebbian deep learning without feedback. In *International conference on
learning representations*, 2023.

594 David Kappel, Khaleelulla Khan Nazeer, Cabrel Teguemne Fokam, Christian Mayr, and Anand
 595 Subramoney. A variational framework for local learning with probabilistic latent representations.
 596 In *5th Workshop on practical ML for limited/low resource settings*.

597

598 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *International Conference
 599 on Learning Representations (ICLR)*, 2014.

600 Adam Kohan, Edward A Rietman, and Hava T Siegelmann. Signal propagation: The framework for
 601 learning and inference in a forward pass. *IEEE Transactions on Neural Networks and Learning
 602 Systems*, 2023.

603

604 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

605

606 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 607 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

608

609 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 2015.

610

611 Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation. In
 612 *Proceedings of the 2015th European Conference on Machine Learning and Knowledge Discovery
 in Databases-Volume Part I*, pp. 498–515, 2015.

613

614 Heung-Chang Lee and Jeonggeun Song. Symba: Symmetric backpropagation-free contrastive
 615 learning with forward-forward algorithm for optimizing convergence. *arXiv:2303.08418*, 2023.

616

617 Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
 618 feedback weights support error backpropagation for deep learning. *Nature communications*, 7(1):
 13276, 2016.

619

620 Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
 621 agation and the brain. *Nature Reviews Neuroscience*, 21(6):335–346, 2020.

622

623 Guy Lorberbom, Itai Gat, Yossi Adi, Alexander Schwing, and Tamir Hazan. Layer collaboration in
 624 the forward-forward algorithm. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 volume 38, pp. 14141–14148, 2024.

625

626 Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen, Guochu Xiong, and Weichen Liu.
 627 Efficient deep learning infrastructures for embedded computing systems: A comprehensive survey
 628 and future envision. *ACM Transactions on Embedded Computing Systems*, 24(1):1–100, 2024.

629

630 Chenxiang Ma, Jibin Wu, Chenyang Si, and KC Tan. Scaling supervised local learning with aug-
 631 mented auxiliary networks. In *The Twelfth International Conference on Learning Representations
 2024*.

632

633 Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. *Advances in
 634 neural information processing systems*, 29, 2016.

635

636 Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
 637 *International conference on machine learning*, pp. 4839–4850. PMLR, 2019.

638

639 Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In *Artificial
 intelligence and statistics*, pp. 814–822. PMLR, 2014.

640

641 Anastasia Razdaibiedina, Ashish Khetan, Zohar Karnin, Daniel Khashabi, and Vivek Madan. Repre-
 642 sentation projection invariance mitigates representation collapse. In *Findings of the Association
 for Computational Linguistics: EMNLP 2023*, pp. 14638–14664, 2023.

643

644 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 645 image segmentation. In *International Conference on Medical image computing and computer-
 assisted intervention*, pp. 234–241. Springer, 2015.

646

647 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
 back-propagating errors. *nature*, 323(6088):533–536, 1986.

648 João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical microcircuits
 649 approximate the backpropagation algorithm. *Advances in neural information processing systems*,
 650 31, 2018.

651 Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
 652 based models and backpropagation. *Frontiers in computational neuroscience*, 11:24, 2017.

653 Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
 654 *arXiv preprint arXiv:1703.00810*, 2017.

655 Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
 656 conditional generative models. *Advances in neural information processing systems*, 28, 2015.

657 Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
 658 variational autoencoders. *Advances in neural information processing systems*, 29, 2016.

659 Matus Telgarsky. Benefits of depth in neural networks. In *Conference on learning theory*, pp.
 660 1517–1539. PMLR, 2016.

661 Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. *Advances in neural
 662 information processing systems*, 33:19667–19679, 2020.

663 Tim van Erven and Peter Harremoës. Rényi divergence and kullback–leibler divergence. *IEEE
 664 Transactions on Information Theory*, 60(7):3797–3820, 2014. doi: 10.1109/TIT.2014.2320500.

665 Yulin et al. Wang. Revisiting locally supervised learning: an alternative to end-to-end training. In
 666 *International conference on learning representations*, 2021.

667 Matthew Bailey Webster, Jonghyun Choi, and Changwook Ahn. Learning the connections in direct
 668 feedback alignment. openreview, 2021.

669 James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. *Trends in
 670 cognitive sciences*, 23(3):235–250, 2019.

671 Yujie Wu, Siyuan Xu, Jibin Wu, Lei Deng, Mingkun Xu, Qinghao Wen, and Guoqi Li. Distance-
 672 forward learning: Enhancing the forward-forward algorithm towards high-performance on-chip
 673 learning. *arXiv preprint arXiv:2408.14925*, 2024.

674 Yibo Yang, Xiaojie Li, Motasem Alfarra, Hasan Hammoud, Adel Bibi, Philip Torr, and Bernard
 675 Ghanem. Towards interpretable deep local learning with successive gradient reconciliation. In
 676 *International Conference on Machine Learning*, pp. 56196–56215, 2024.

677 Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
 678 Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
 679 imagenet. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 558–567, 2021.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701