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Abstract

Diffusion models have emerged as powerful tools for generative tasks, producing
high-quality outputs across diverse domains. However, how the generated data re-
sponds to the initial noise perturbation in diffusion models remains under-explored,
which hinders understanding the controllability of the sampling process. In this
work, we first observe an interesting phenomenon: the relationship between the
change of generation outputs and the scale of initial noise perturbation is highly
linear through the diffusion ODE sampling. Then we provide both theoretical
and empirical study to justify this linearity property of this input-output (noise-
generation data) relationship. Inspired by these new insights, we propose a novel
Controllable and Constrained Sampling (CCS) method, along with a new controller
algorithm for diffusion models, that enables control over both the proximity of
individual samples to a target image and the alignment of the sample mean with
the target, while preserving good sample quality. We perform extensive experi-
ments to compare our proposed sampling approach with other methods on both
sampling controllability and sampled data quality. Results show that our CCS
method achieves more precisely controlled sampling while maintaining superior
sample quality and diversity, enhancing the applications of precise image editing.
The code is available at https://github.com/efzero/diffusioncontroller.

1 Introduction

Recently, diffusion models achieve remarkable success in generative tasks such as text-to-image
generation, audio synthesis [24, 31], as well as conditional generation tasks including inverse problem
solving, image or video restoration, image editing, and translation [3, 28, 44, 6, 34, 9, 26, 37, 20, 45].
Despite these success, real-world scientific and engineering problems pose more challenges on
requesting reliable and controllable generation as well as data privacy.

To tackle this, one important question is: How to control the distribution of samples from a diffusion
model to match a specific target? Previous works on controllable generation with diffusion models
mostly focus on constraining the generation process sample-by-sample using either plug-and-play
approaches [29, 9, 26, 37] or modifying the unconditional score [31, 45, 16, 6], so that each sample
can satisfy a measurement constraint. However, most prior works focus on per-sample control, with
limited exploration of how to regulate the overall distribution of generated samples to meet specific
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statistical constraints, which is a crucial requirement in differential privacy [15]. This inspires the
novel task for controllable and constrained sampling we are targeting in this paper. Considering the
unique mechanism in diffusion sampling, we are motivated to exploit the initial noise control by
studying this key question: How do the initial noise perturbations affect the generated samples in
diffusion models? Previous works [2, 41] suggest that the learned posterior mean predictor function
is locally linear with perturbation among a certain range of timesteps for diffusion models. However,
this linearity cannot be applied to every timestep nor to the samples of diffusion models. From a
new perspective, this work sheds lights on the relationship between input noise perturbations and
generation data in diffusion models, by proposing a training-free approach.

First of all, we observe an interesting phenomenon that when using denoising diffusion implicit
models (DDIM) sampling, the initial noise has a highly linear effect on the generation data at small
or moderate scales. Motivated by this observation, our study tries to justify this linearity property via
initial noise perturbation theoretically and empirically.

Based on the spherical interpolation to perturb the initial noise vector, we propose a novel Controllable
and Constrained Sampling method (CCS) for diffusion models to sample with a target rMSE level,
enabling the sample mean to be close to the target image, while preserving high quality and adjustable
diversity. The motivation for this task stems from a fundamental need in image editing and controllable
generation: preserving key source features while allowing controlled variation. However, few studies
benchmark sample quality and key feature preservation at a target controlled variation level. Our
first key idea is to fix the average distance (rMSE) between samples and the target, enabling a
fair comparison of sample diversity and feature preservation. Our second insight is to evaluate the
distance between the sample mean and the target image, which reveals how well common features
are preserved. In addition, our CCS algorithm enables a user-controllable “diversity slider”: a tool
that adjusts how far generated samples deviate from the input image. This fine-grained control over
similarity can be vital for practical applications such as photo editing apps.

Furthermore, we conduct extensive experiments to validate the linearity phenomenon and then inves-
tigate the controllability performance of our proposed CCS method by generating images centered
around a specified target mean image with a certain distance. Results demonstrate the superiority of
our CCS method in both controllability and sampled image quality compared with baseline methods.
Moreover, we show the potential of proposed CCS sampling for broader applications including
precise image editing.

Our contributions can be summarized as below:

• We unveil a novel linear relationship between the initial noise and generated samples for DDIM
sampling. We justify it theoretically, validate it thoroughly through extensive experiments, and
discuss practical implications.

• We propose a novel task of controllable generation with the goal of making sample mean close to a
target mean while controlling the MSE of samples to a target level. To the best of our knowledge,
we are the first to study this task. This task can be useful for benchmarking the performance of
personalized image generation.

• We propose a novel controllable sampling method based on our discovered linearity relationship.
Extensive experiments with both pixel and latent diffusion models demonstrate the superior
performance of our algorithm in achieving precise controllability within a our proposed constrained
sampling framework.

2 Background

Diffusion Models. Diffusion models consists of a forward process that gradually adds noise to a
clean image, and a reverse process that denoises the noisy images [35, 38]. The forward model is
given by xt = xt−1 − 0.5βt∆txt−1 +

√
βt∆tω where ω ∈ N(0, I) and β(t) is the noise schedule

of the process. The distribution of x0 is the clean data distribution, while the distribution of xT is
approximately a standard Gaussian distribution. When we set ∆t→ 0, the forward model becomes
dxt = −0.5βtxtdt+

√
βtdωt, which is a stochastic differential equation (SDE). The reverse of this

SDE is given by:

dxt =

(
−β(t)

2
− β(t)∇xt log pt(xt)

)
dt+

√
β(t)dω.
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Figure 1: Qualitative demonstration of linearity when increasing scale of perturbation. For each
target mean, we sample a perturbation noise and gradually increase C0 (0.1 at a time) to increase the
magnitude of the perturbation.

One can training a neural network to learn the score function∇xt
log pt(xt). However, this formula-

tion involves running many timesteps with high randomness. We can also compute the equivalent
Ordinary Differential Equation (ODE) form to the SDE, which has the same marginal distribution of
p(xt). A sampling process, called denoising diffusion implicit models (DDIM), modifies the forward
process to be non-markovian, so as to form a deterministic probability-flow ODE for the reverse
process [36]. In this way, we are able to achieve significant speed-up sampling. More discussion on
this can be found in Section 3.

Constrained Generation with Diffusion Models. Constrained generation requires to sample x0

subject to certain conditions or measurements y. The conditional score at T can be computed by the
Bayes rule, such that

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt). (1)

The second term can be computed through classifier guidance [13], where an external classifier
is trained for p0(y|x0) or pt(y|xt), and then can be plug into the diffusion model through Eq. 1.
Diffusion posterior sampling [6] further refines this formulation by proposing to perform posterior
sampling with the approximation of p(y|xt) ≈ p(y|x̂0), where x̂0 is the Minimum Mean Square
Error (MMSE) estimator of x0 based on xt.

Another line of works exploit hard consistency, which projects the intermediate noise to a
measurement-consistent space during sampling via optimization and plug-and-play [7, 9, 29, 34].
However, the projection term can damage the sample quality [6]. However, these works all target on
controlling each individual sample. To our best knowledge, few works explore how to control the
distribution of generated samples to match certain statistical constraints, such as centered around a
specified target mean with certain distance, which is the target for this work.

Noise Perturbation in Diffusion Models. Noise adjustment for diffusion models has been explored
in image editing, video generation, and other applications [28, 44, 10, 18, 42, 46] for changing the
style or other properties of the generated data. However, a principled study on how the noise
adjustment affects the samples is limited in diffusion models. Recently, [2, 41] observe the local
linearity and low-rankness of the posterior mean predictor x̂0 based on xt in large timesteps, but this
study cannot extend to the analysis of generated samples. In this work, we investigate how initial
noise perturbations affect generated samples from the diffusion model in the ODE sampling setting.

3 Linear Relationship between Initial Noise and Outputs in Diffusion Models

This section analyzes how small perturbations in the input noise affect the generation data under the
DDIM sampling framework. We show that a slight change in the initial noise leads to an approximately
linear variation in the sampled images. This result is quantified from two perspectives: the discretized
DDIM sampling process [36] and the associated continuous-time ODE. Our mathematical analysis
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relies on minimal assumptions, which also serves as the foundation for our proposed CCS algorithm
in Section 4.

3.1 Preliminary: DDIM Sampling

Fix the total sampling timesteps T and an initialization noise sample xT , [36] generates samples
from the backward process xT → xT−1 → . . .→ x0 using the following recursive formula:

xt−1 =
√
αt−1

(
xt −

√
1− αt ϵ

(t)
θ (xt)√

αt

)
+
√
1− αt−1 − σ2

t ϵ
(t)
θ (xt) + σtϵt, (2)

where αt corresponds to the noise schedule in DDPM, ϵ(t)θ (xt) is the predicted noise given by the pre-
trained neural network with parameter θ, ϵt is the standard Gaussian noise, and σt is a hyperparameter.
The DDIM sampler [36] sets σt = 0 to make the backward process deterministic once xT is fixed.
It is known (e.g., eq (11) of [14]) that predicting the noise is equivalent to predicting the score
function up to a normalizing factor, i.e., ϵ(t)θ (xt) ≈ −

√
1− αt∇xt log pt(xt). By setting σt = 0

and substituting ϵ(t)θ with its corresponding estimand, we obtain the idealized DDIM process:

xt−1 =
√
αt−1

(
xt + (1− αt )∇xt log pt(xt)√

αt

)
−
√
(1− αt−1)(1− αt)∇xt log pt(xt). (3)

If we treat the index t as a continuous variable (and rewrite αt as α(t) to avoid confusion), we can
write the idealized ODE as:

dx̄t = −
√
1− α(t)∇ log pt

(
x̄t√

σ2(t) + 1

)
dσ(t). (4)

We now examine how a small perturbation xT → xT + λ∆x would affect the output sample at time
t = 0 through both the discrete (3) and continuous time (4) perspectives.

Related work: Theorem 1 in [3] presents a related result on the impact of initial noise perturbation.
Our study differs from theirs in a variety of aspects. Firstly, they study E[x0 | xt+λ∆x]−E[x0 | xt]
under the (stochastic) diffusion process. In contrast, we directly examine the output x0 given the
initializations xt and xt + λ∆x under the deterministic DDIM (3) or the ODE process (4). Secondly,
[3] assumes that p0 is a low-rank mixture of Gaussian distributions, which allows for an analytical
solution for pt. In contrast, our weaker assumptions render pt analytically intractable. Consequently,
we use very different techniques, such as ODE stability theory and Grönwall’s inequality, to study
the system’s behavior.

3.2 Linearity in DDIM Discretizated Sampling

Previous works reveal the local linearity of the denoiser (which learns the score function) is quite
strong [2, 27] in certain range of timesteps for diffusion models. Indeed, we can demonstrate that at
very large noise levels, the score function is approximately linear. If a distribution is Gaussian, its
score function is a linear function. Let: x ∼ N (µ,Σ) the score function is given by: ∇x log p(x) =
−Σ−1(x− µ) which is linear in x.

This explains why the denoiser exhibits high linearity at large timesteps as observed in [2, 27]. For
DDPM, since xt =

√
αtx0+

√
1− αt ϵ where ϵ ∼ N (0, I), as t increases, the noise term dominates,

and p(xt) approaches a Gaussian. Based on this observation, we can derive an approximately linear
relationship between change and input initial noise and output of DDIM sampling as demonstrated in
Proposition 1.
Proposition 1. With all the notations defined as above, assuming log pt is second-order differentiable
for every t ≥ 1, there exists a matrix-valued function γ0 such that

x0(xT + λ∆x, T ) = x0(xT , T ) + λγ0(xT )∆x+ o(λ).

In turn,

∥x0(xT + λ∆x, T )− x0(xT , T )∥2 = ∥λγ0(xT )∆x∥2 + o(λ).
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Proposition 1 shows that a linear perturbation of the input with magnitude λ and direction ∆x results
in an approximately linear change in the output, with magnitude |λ|∥γ0(xT )∆x∥2 and direction
γ0(xT )∆x. Recalling Eq. 2, each idealized DDIM sampling can be viewed as a linear combination
of the current intermediate noisy input xt and the score function ∇xt

log pt(x). Based on this
observation, Proposition 1 can be derived recursively using the linear approximation of the score
function since each DDIM sampling step takes a linear combination of the predicted score and the
intermediate noise. The derivation can be found in Appendix A.1. Our assumption is based solely on
the second-order smoothness of the score, which is weaker than most existing assumptions depending
on the data distribution p0. For example, our assumptions hold under common conditions in the
literature, such as the manifold hypothesis [11, 38] or the mixture of (low-rank) Gaussian assumption
[17, 3, 1].
Furthermore, at large t, pt is approximately Gaussian and∇xt log pt(xt) is smooth, which implies
small linear approximation error. The reason for the small error is that: 1) the score function of a
Gaussian is linear in x by∇x log p(x) = −Σ−1(x− µ), 2) when a function is smooth and its higher-
order derivatives are small in magnitude, it has fewer abrupt changes, and the linear approximation
error is bounded by the norm of the Hessian of the score function (through the Taylor Remainder
Theorem), leading to low linear approximation error. However, one might be concerned that the linear
approximation error could grow significantly when t decreases and p0 contains multiple clusters with
low-density regions in between. Nevertheless, we now explain why this concern does not arise in
practice. The coefficient f(t) := −√αt

−1
√
αt−1(1− αt) +

√
1− αt−1 of ϵ(t)θ (xt) in (2) is close

to 0 for small t, as αt ≈ 1. Moreover, the structure of the neural network ϵθ ensures that the output is
normalized and bounded in norm, so the change in output is also bounded. Consequently, for a small
perturbation in xt, we have ∥f(t)(ϵ(t)θ (xt +∆x)− ϵ(t)θ (xt))∥2 ≈ 0 when t is small.
Linear Approximation Error. We provide further analysis of this linear approximation error in
the Appendix. We derive that this error is affected by the magnitude and the smoothness of local
probability density p(x0 = xsample).

3.3 ODE Stability

Let x̄0(x, T ) be the solution of (4) with initialization xT = x (i.e., x̄T = x/
√
α(T )) at timestep T ,

and x0(x, T ) = α(0)x̄0(x, T ). With some technical assumptions that is detailed in Appendix, we
have the following:
Proposition 2. There exists a matrix-valued function ψ0 such that:

x̄0(xT + λ∆x, T ) = x̄0(xT , T ) + λψ0(xT )∆x+ o(λ).

In turn,
x0(xT + λ∆x, T ) = x0(xT , T ) + λ

√
α(0)ψ0(xT )∆x+ o(λ).

Proposition 2 mirrors Proposition 1 but is formulated in the continuous-time ODE setting. Its
proof relies on ODE stability theory, showing that the output change is “approximately linear" for
sufficiently small λ. Furthermore, under the same assumption, we establish that the change remains
“at most linear" for all λ. The proof, which applies Grönwall’s inequality, is provided in Appendix.
Proposition 3. With the same assumptions as above, there exists a constant C(T ) depending on T
such that for any λ:

∥x̄0(xT + λ∆x, T )− x̄0(xT , T )∥2 ≤ C(T )|λ|∥∆x∥2.

4 Sampling with Control

Our objective is to perturb xT into a random x′
T such that the generated image x′

0 such that it
has 1. a sample mean close to x0 while maintaining 2. sufficient diversity and difference from the
original image and 3. high image quality. We preserve the notation x0 to denote a “target image”
or “target mean”. We also preserve the notation xT := DDIM−1(x0; 0, T ), the “noise” by finding
a reliable initial noise xT , such that DDIM(xT ) = x0 The closeness is quantified by L-2 norm
distance ∥E[x′

0]− x0∥2, and the diversity is measured by E[||x′
0 − x0||22]. A notable feature of our

algorithm is that users can specify a desired level of diversity (such as using C0 in Fig.1), and the
generated images will match this level while ensuring E[x′

0] ≈ x0. Our mechanism is defined as
x′
T = axT + b∆, where ∆ is a random perturbation, and a and b are parameters to be specified

shortly.
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4.1 Sampling around a Center

For an input of the form x′
T = axT +b∆ with random ∆, when b is small and a is close to 1, it can be

regarded as a slight perturbation of xT . Based on Section 3, the output will remain close to x0 with an
additional linear adjustment applied to bn. Thus, we define x̂′

0 := x0 + bA∆ as an approximation for
x′
0, where A = γ0(axT + b∆) specified in Proposition 1. Since ∆ is the only source of randomness

in x̂′
0, we can easily calculate E[x̂′

0] = x0 + bAE[∆] and Var[x̂′
0] = b2ACov(∆)A⊤. We will now

discuss the principles for our sampling design.

High-quality image generation: we first note that the input to both DDPM and DDIM samplers is
standard Gaussian noise. The following feature is known as the “concentration phenomenon” of a
high-dimensional Gaussian:

Proposition 4. Let X ∼ N(0, Id), then for any δ ∈ (0, 1)

P
[
∥X∥22 ∈ (1± δ)d

∣∣] ≥ 1− 2 exp

(
−1

2
d

(
1

2
δ2 − 1

3
δ3
))

.

This result suggests that a standard Gaussian noise vector remains close to a hypersphere of radius√
d.

Close to target mean: Our approximation x̂′
0 has expectation E[x̂′

0] = x0 + bAE[∆]. Thus, it is
sufficient to select ∆ such that E[∆] = 0 in order to achieve: E[x̂0] ≈ E[x̂′

0] = x0, where the first
approximation is justified by Proposition 1 and 2, with further empirical validation in Appendix.

4.2 Centering Feasibility

The simplest strategy is to add a random noise vector ∆x directly to xT , expressed as x′
T = xT +∆x

(with a = 1, b∆ = ∆x). However, the following proposition demonstrates that this approach cannot
produce high-quality images.

Proposition 5. For any fixed vector x, and any random vector ∆x such that E[∆x] = 0, the
following holds:

E[∥x+∆x∥22] = ∥x∥22 + tr(Cov[∆x]) ≥ ∥x∥22,
with equality if and only if ∆x = 0 almost surely.

Proposition 5 indicates that directly adding noise, xT → x′
T := xT +∆x, pushes x′

T farther from
the spherical surface. This partly explains why the average image becomes blurrier or noisier as the
scale of ∆x increases, since the drift term tr(Cov[∆x]) grows larger, causing x′

T to deviate further
from the sphere with radius ∥xT ∥2. On the other hand, a simple linear interpolation such as for
also cannot produce high-quality images", because this will shrink the magnitude of the interpolated
vector, which we demonstrate in the experiments. This inspires us to consider the spherical linear
interpolation method [33] for sampling, as described below. Similar approaches have been proposed
by [46, 35], but only for interpolating between two images.

4.3 Spherical Interpolation

Algorithm 2 Controller Tuning (CT)
1: Input: target mean x0, target diversity level

MSEtarget, tolerance: tol, C0, and Chigh

2: Initialize: C0 ← Clow+Chigh

2
2: while not converged do
3: Sample a batch of x′

0 by Alg. 1
4: if |E[||x′

0 − x0||2]−MSEtarget| < tol then
5: Break
6: else if E[||x′

0 − x0||2] > MSEtarget then
7: (Chigh, C0)← (C0,

C0+Clow
2 )

8: else
9: (Clow, C0)← (C0,

C0+Chigh

2 )
10: end if
10: end while=0

Let vectors a and b satisfy ∥a∥2 = ∥b∥2 and
form an angle θ. Then for any α ∈ (0, 1),
the vector obtained through spherical interpo-
lation c := sin(αθ)

sin θ a + sin((1−α)θ)
sin(θ) b satisfies

∥c∥2 = ∥a∥2 = ∥b∥2. In our case, for a stan-
dard d-dimensional normal noise vector ϵ, it is
known ∥ϵ∥2 ≈

√
d ≈ ∥xT ∥2. Therefore, we

can do spherical interpolation between xT and
ϵ to obtain x′

T . Our CCS algorithm is described
in Algorithm 1.

The perturbation mechanism corresponds to
x′
T = axT + b∆ with a = sin(θ −
C0)/ sin(θ), b = sin(C0)/ sin(θ), and ∆ is a
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Algorithm 1 (Full Inversion) CCS Sampling
Requires: target mean x0, perturbation scale C0, number of diffusion model timesteps T
Step 0: Compute the DDIM inversion of x0, i.e. xT = DDIM−1(x0, 0, T )
Step 1: Sample noise ϵ ∼ N(0, I). Then compute

θ = cos−1

(
ϵ · xT

||ϵ||2||xT ||2

)
Step 2: Compute xT using spherical interpolation formula:

x′
T =

sin(C0)

sin(θ)
· ϵ+ sin(θ − C0)

sin(θ)
· xT

Step 3: Output sample x′
0 = DDIM(x′

T , T, 0)

standard Gaussian noise. C0 := αθ is defined as the parameter of perturbation scale. This mechanism
satisfies the design principles described in Section 4.1: E[ϵ] = 0 ensures that the new sample remains
close to the target mean, while the Gaussian concentration and spherical interpolation ensure that
∥x′

T ∥2 ≈ ∥xT ∥2, resulting in high-quality generated images. Parameter C0 controls sampling
diversity. In the extreme case C0 = 0, we have x′

T = xT , so x′
0 matches x0 exactly but has no

diversity. A larger C0 makes the perturbed input deviate more from the original image and gets closer
to noise. This leads to greater diversity in the generated image.

Algorithm 2 allows users to control the desired level of diversity. It works by calling Alg. 1 for
different values of C0, which are determined through binary search. Let the process is repeated until
the desired diversity level (up to a small tolerance threshold) is reached: if the MSE of generated
images to target mean is below target threshold, C0 is increased; otherwise, it is decreased.

The following theorem demonstrates that the CCS algorithm is able to precisely control the input
distance.

Proposition 6. Denote the dimensionality of xT by d. Given an initial noise xT with ∥xT ∥2 =

(1 + o(1))
√
d, and fix a small δ > 0. For any M ≤ (2− δ)

√
d, then we can find C0 in Algorithm 1

such that with probability pd → 1 as d→∞, we have ∥x′
T − xT ∥2 =M .

Since the dimensionality of our problem is sufficiently large, Proposition 6 allows users to control M
as the input distance. Consequently, Algorithm 1 can generate a random interpolants with an exact
distance of M from the input. Furthermore, since the direction is uniformly distributed, and when C0

is small, E[x′
T ] ≈ E[xT ], and E[x′

0] ≈ E[x0], which satisfies our design goal.

In other cases when the inverted noise does not lie on the standard Gaussian hypersphere, we argue
that our proposed spherical interpolation leads the second moment closer to a standard Gaussian.
Formally, Fix any vector x ∈ Rd, and let ϵ ∼ N(0, Id). Let θ ∈ [0, π] be the angle between x and ϵ.
We define the interpolated vector:

y =
sin(cθ)

sin(θ)
ϵ+

sin((1− c)θ)
sin θ

x.

Our goal is to show y is closer than x to a Gaussian in the second-moment (energy-shell) sense. Since
a standadrd Gaussian has second moment E[∥Z∥2] = d, we define the gap of second moment as:

δ(Y ) := |E[Y 2]− d|.

Proposition 7. For any c ∈ (0, 1), we have:

δ(y) ≤ δ(x).

In summary, we argued that we can center our samples around the target mean better through spherical
interpolation with random noise as in Prop. 5, and control the distance to the sample mean through
adjusting the perturbation scale C0 as in Prop. 6, and we can also improves the sample quality even if
the initial noise is not on a Gaussian hypersphere as demonstrated in Prop. 7.
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4.4 Extension to Conditional Latent Diffusion Models

Conditional diffusion models usually compute the conditional score with classifier-free guidance
(CFG). Let sθ(xt, t) be the predicted noise, it can be written in sθ(xt, t) = sθ(xt, t, cnull) +
γ(sθ(xt, t, c) − sθ(xt, t, cnull)) where γ is the CFG term, c is the condition and cnull is the null
condition. The computation is more expensive, and we may not want to change the semantics drasticly
by a small perturbation. Motivated by this, we propose a Partial-Inversion CCS Sampling algorithm
(P-CCS). Instead of starting from the T , we pick an intermediate timestep t0. Then, we compute
the noise term from DDIM inversion by subtracting the clean component, sample a new noise from
N(0, (1− αt0)I), and then perform spherical interpolation. Details of this partial inversion algorithm
(P-CCS) can be found in the Appendix.

5 Applications and Experiments

In this section, we will discuss the applications of the observed linearity property with the proposed
controllable sampling techniques.

5.1 Linearity Property Table 1: R2 between input perturbation and normalized
residual norms

Pixel Diffusion Models Latent Diffusion Models
FFHQ CIFAR-10 CelebA-HQ fMoW

0.995 0.988 0.959 0.947

Experimental Validation. We perform
extensive experiments on both pixel dif-
fusion models on the FFHQ and CIFAR-
10 dataset and latent diffusion models on
the Celeba-HQ and fMoW dataset. For
each experiment, we first sample 50 images as target images from each validation dataset from
FFHQ [22], CIFAR-10 [25], and Celeba-HQ [43]. We also pick one images each class from the
validation set of the fMoW dataset [5] for further verification. Then for the FFHQ and CIFAR-
10 selected data, we use pixel diffusion models as backbone; for Celeba-HQ and fMoW we
use stable diffusion 1.5 as the backbone.For each target image, we sample eight C0 from a uni-
form [0, 0.9] distribution. For each C0, we sample 24 images. Then we compute the average
L2 distance between the sampled images and the target mean for each scale. We compute the
R-squared coefficient (R2) between the input perturbation scales and the normalized average resid-
ual norms (scale between 0-1). As shown in Table 4, we observe a very strong linearity in the
above experiments. Fig. 1 also demonstrates linear semantic change visually. We provide ad-
ditional analysis in the Appendix. In summary, the linearity widely exists for DDIM sampling
regardless of dataset or model backbone, and it may heavily depend on the dataset distribution.

Figure 2: Quantitative demonstration of linearity
when increasing scale of perturbation. With increased
sin(C0), the magnitude of perturbation increases, and
the average L2 distance between samples and the target
image increases linearly. Left is the linearity on FFHQ
dataset using pixel diffusion; Right is the linearity on
Celeba-HQ dataset using Stable Diffusion 1.5.

To further investigate how the linearity
changes with the complexity of dataset, and
different diffusion model backbones. We
perform experiments to test the linearity of
(1) pretrained diffusion models on a simple
dataset such as FFHQ. (2) pretrained dif-
fusion models on multimodal dataset (with
many classes) such as ImageNet. (3) large
pretrained foundation models such as Sta-
ble Diffusion Model (trained on complex
multimodal dataset). We hypothesize that
the linearity on out-of-distribution dataset
will decreases, so we test the pretrained
pixel-diffusion models on OOD datasets.
While the training data for SD1.5 is very
large (LAION-5B), we just test it on other
multimodal datasets such as UCF-101 [39]
and ImageNet [12]. Results show that the linearity decreases significantly when testing on OOD
dataset for pixel-diffusion models. For foundation models, complexity of dataset for sampling does
not affect the linearity significantly. The linearity decreases slightly comparing diffusion models
trained on multimodal dataset to those trained on simple dataset. These results validate the analysis
in the linear approximation error, and imply that a low probability density and a sudden change in the

8



Figure 3: Precise image editing with the proposed P-CCS algorithm. Source prompt: “A high-quality
portrait of a man”. Target prompt: “A high-quality portrait of a woman”. The right-most images with
edit strength as 0 are the source images.

data distribution may contribute to low linearity. We also find significant drop of sample quality with
low linearity. Details and numbers can be found in the Appendix.

Application 1: Precise Image Editing. With the aid of linearity property, we can perform the
application of precise image editing, by having the user enters a value of edit strength to precisely
control the target image edited to that extent. The key idea is through the DDIM inversion to project
both the source and target images back to the initial noise manifold. Specifically, we first compute
x
(1)
T = DDIM−1(x0, csource), x

(2)
T = DDIM−1(x0, ctarget), and then perform spherical interpolation

between x(1)T , and x(2)T according to the user-specified editing strength. This is implemented using
the proposed P-CCS algorithm with more details described in the Appendix (Alg. 4). As shown of
two example images in Fig. 3, our algorithm can easily achieve a smooth and precise image editing
guaranteed by the aforementioned linearity property.

5.2 Controllable Sampling

We propose CCS (Alg. 1) and P-CCS (Alg. 3) algorithms for controllable sampling close to a specified
target image, constrained by a target MSE to the target mean. We validate that our algorithm can
achieve this better than baselines while preserving good image quality. In addition, we demonstrate
our algorithm’s capability in generating personalized albums and improving sample quality.

Application 2: Generating Personalized Album. We perform experiments on generating per-
sonalized albums using both pixel diffusion models and latent diffusion models with our (P-)CCS
algorithms. For benchmarking performance of different baselines, we propose a novel task of fixing
MSE to a target image, and compare other metrics, which we call controllable sampling. The goal is
to sample images as close to source as possible while keeping target diversity (MSE).

Experimental setup: We FFHQ-256 [22] and CelebA-HQ [43] test set images as target images.
We use ADM (a pixel diffusion model) for FFHQ, and Stable Diffusion for CelebA-HQ. Baselines:
We self-implement 5 baselines as comparison since no existing work is designed for the target
task so some adaptation is necessary. Naive Linear interpolation with Controller (LP-C), Gaussian

Figure 4: We sample 120 images with a fixed target mean using different methods and analyze their
sample mean (average pixel intensity). Our observations show that the sample mean of our method
closely matches that of the original image.
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Table 2: Results of Pixel Diffusion models on the FFHQ Dataset
with target rMSE set as 0.12.

Method PSNR↑ SD↑ CLIP-IQA↑ MUSIQ↑
GP-C 18.88 0.028 0.701 45.88
ILVR-C 20.04 0.070 0.746 62.45
DPS-C 21.02 0.069 0.738 64.60
CCDF-C 23.52 0.088 0.746 66.15

CCS (Ours)-C 25.13 0.104 0.750 66.79

Perturbation with Controller
(GP-C), Diffusion Posterior
Sampling [6] with Controller
(DPS-C), ILVR with Controller
(ILVR-C), Come-Closer-Diffuse-
Faster with Controller (CCDF-C
or SDEdit-C). Metrics: We
adopt Peak Signal to Noise ratio
(PSNR) for measuring whether
sample mean is close to target
mean; LPIPS for measuring samples similarity to the source image; CLIP-IQA and MUSIQ for
semantic/low-level image quality respectively; Standard Deviation (SD) for measuring sampling
diversity. More experimental details and baseline implementation can be found in the Appendix.

Table 3: Results of the Stable Diffusion 1.5 on the CelebA-HQ
dataset with target rMSE set as 0.07.

Method PSNR↑ SD↑ CLIP-IQA↑ MUSIQ↑
GP-C 23.02 0.045 0.721 48.91
LDPS-C 24.56 0.034 0.721 29.07
CCDF-C 27.66 0.051 0.735 49.29

CCS (Ours)-C 30.29 0.053 0.732 49.66

Results. We observe that our
CCS sampling method signif-
icantly outperforms all other
methods in centering at a tar-
get mean constrained by a fixed
rMSE distance, while surpris-
ingly maintaining superior image
perceptual quality and diversity.
Other posterior sampling meth-
ods such as DPS suffer from image quality degradation and diversity decrease, as shown by the
quantitative results reported in Table. 2 and 3. . Qualitatively, we observe that the sample means of
other methods look blurry or noisy, as demonstrated in Fig. 4. More qualitative results can be found
in the Appendix.

Figure 5: Top: Corrupted images with artifacts or unreason-
able structures. Bottom: Improved images by P-CCS algorithm
through spherical interpolation of initial noises.

Application 3: Improving Im-
age Quality through P-CCS
Sampling. Note that in our (P-
)CCS sampling algorithms, we
perform spherical interpolation
with a random Gaussian noise.
Intuitively, if the initial noise is
not Gaussian like falling in low-
density probability region, con-
ducting such interpolation will
make it “more Gaussian” to in-
crease the likelihood of that sam-
ple so as to enhance image qual-
ity. We provide a formal argument for this in the Appendix. Motivated by this, we propose to perform
P-CCS at some timesteps of reverse DDIM sampling. As shown in Fig. 5, we observe that the
sample quality can be improved significantly by this simple method, which supports the potential
of our findings to introduce a new post-training mechanism for enhancing image generation. More
experiment details and quantitative results are described in the Appendix.

6 Conclusion

In this work, we unveil an interesting linear response to perturbation phenomenon both theoretically
and empirically in diffusion models. we also study a new problem: how to sample images with a
target mean and target MSE. We present a novel sampling algorithm along with a new controller
method for achieving this goal. Extensive experiments show that our proposed method samples the
closest to the target mean when controlling the MSE compared to other methods, while maintaining
superior image quality and diversity. The limitations of our work include: (1) Controlling other
interesting statistical properties beyond sample mean with MSE is left as future works. (2) There
might be some artifact samples that exhibit overlapping patterns. (3) DDIM inversion may not be
perfectly standard Gaussian, which may hurt sample quality. We believe the linearity property will be
important for designing better latent space for large-scale diffusion models.
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A Proofs

A.1 Proof in Section 3.2

Proof of Proposition 1. Let Lt(x) := ηtx+ λt∇xt
log pt(x) be the one-step recursion. Our x0(a, t)

is formally defined as L1 ◦ L2 ◦ . . . ◦ LT (a).

The second-order differentiability of pt implies the score function∇ log pt is first-order differentiable.
Let Ht be the Hessian matrix of log pt (Hi,j

t := ∂2 log pt/∂i∂j). We have

∇ log pt(x) = ∇ log pt(w) +Ht(w)(x−w) + o(∥x−w∥2).

Therefore, for any fixed direction w of unit length and δ ∈ R,

LT (x+ δw) = ηT (x+ δw) + λT∇x log pT (x+ δw)

= ηTx+ λT∇x log pT (x) + λT δHT (x)w + δηTw + o(δ)

= LT (x) + δ(ηT + λTHT (x))w + o(δ)

= LT (x) + δγT (x)w + o(δ)

where γT (x) is defined as
γT (x) = ηT + λTHT (x),

is a matrix-valued function which is bounded if the norm of the Hessian of log pt is bounded.

Applying LT−1 on both sides of the above formula:

LT−1 ◦ LT (x+ δw) = LT−1 ◦ (LT (x) + δγT (x)w + o(δ))

= ηT−1LT (x) + δηT−1γT (x)w + o(δ) + λT−1∇ log pT−1

(
LT (x) + δγT (x)w + o(δ))

)
= ηT−1LT (x) + λT−1∇ log pT−1(LT (x))︸ ︷︷ ︸

recursion on the unperturbed data x

+ δηT−1γT (x)w + δλT−1HT−1(LT (x))γT (x)w︸ ︷︷ ︸
linear term

+ o(δ)︸︷︷︸
lower order term

= LT−1 ◦ LT (x) + δγT−1(x)w + o(δ).

where
γT−1(x) := (ηT−1I + λT−1HT−1 (LT (x))) γT (x)

So we have
x0(x+ δw, T ) := L0 ◦ · · ·LT−1 ◦ LT (x) + δγ0(x)w + o(δ)

Now let λ be the scale of the perturbation, such that λ > 0 and λ ∈ R, and let ∆x be the unit-length
perturbation to the initial noise xT , we have:

x0(xT + λ∆x, T ) = x0(xT , T ) + λ γ0(xT )∆x+ o(λ)

We could continue applying LT−2, LT−3 . . . , L1 on the above formula, and conclude:

x0(xT + λ∆x, T ) = x0(xT ) + λγ0(xT )∆x+ o(λ). (5)

We might be particularly interested in the distance ∥x0(xT +λ∆x, T )−x0(xT , T )∥, our calculation
directly implies:

∥x0(xT + λ∆x, T )− x0(xT , T )∥2 =

∥λγ0(xT )∆x∥2 + o(λ) = λ∥γ0(xT )∆x∥2 + o(λ). (6)

by applying triangle inequality twice:

∥λγ0(xT )∆x∥2 − ∥o(λ)∥2 ≤ ∥x0(xT + λ∆x, T )− x0(xT )∥2 ≤ ∥λγ0(xT )∆x∥2 + ∥o(λ)∥2
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A.2 Proof in Section 3.3

We first state the detailed assumptions posed in Section 3.3. Define the function

h(t,y) := −1

2

√
α(t)

α′(t)

α2
t

∇ log pt

(
y√

σ2(t) + 1

)
.

We assume this function has a continuous derivative (i.e., C1) on the whole space [0, T ] × Rm.
Moreover, we assume there exists C(t) such that:

∥h(t,y)− h(t,x)∥2 ≤ C(t)∥y − x∥2,
for every x,y, t, and maxt∈[0,T ] C(t) ≤ C <∞.

Proof of Proposition 2. We first show the ODE (4) exists a unique solution. We can rewrite the (4)
as:

dx̄t = −
√
1− α(t)∇ log pt

(
x̄t√

σ2(t) + 1

)
dσ(t)

= −σ′(t)
√

1− α(t)∇ log pt

(
x̄t√

σ2(t) + 1

)
dt

= −1

2

√
α(t)

α′(t)

α2
t

∇ log pt

(
x̄t√

σ2(t) + 1

)
dt as σ(t) =

√
(1− α(t))/α(t)

= h(t, x̄t)dt.

Given h(t,y) ∈ C1 and unifomrly Lipschitz in y, it follows from the Picard-Lindelöf Theorem (e.g.,
Theorem 1.1 of [19]) that our ODE (4) has a unique solution for any initialization x̄T = x̄.

Next, it follows from Theorem 3.1 of [19] that the solution x̄0(x̄, T ) ∈ C1, i.e., the solution depends
continuously and differentiably on its initialization x̄. Thus,

x̄0(xT + λ∆x, T ) = x̄0(xT , T ) + λJx̄(xT )∆x+ o(λ),

where Jx is the Jabobian matrix of the function x̄0(x̄, t) with respect to x̄. This concludes the proof
of Proposition 2.

Proof of Proposition 3. Let x̄T and x̄T + λ∆x be two fixed initializations. Define
yt := x̄t(x̄T )− x̄t(x̄T + λ∆x)

as the difference between the solutions of (4) at time t ∈ [0, T ].

Taking derivative on y with respect to t yields:
y′
t = h(t, x̄t(x̄T ))− h(t, x̄t(x̄T + λ∆x)).

By the Lipschitz continuity:
∥y′

t∥2 ≤ C∥x̄t(x̄T )− x̄t(x̄T + λ∆x)∥2 = C(t)∥yt∥2

Denote yt by (y1,t,y2,t, . . . ,ym,t)
⊤, we have:

d∥yt∥2
dt

=
d
√∑m

i=1 y
2
i,t

dt

=
1

2

∑m
i=1 2yi,ty

′
i,t√∑m

i=1 y
2
i,t

=

∑m
i=1 yi,ty

′
i,t

∥yt∥2

≤ ∥yt∥2∥y′
t∥2

∥yt∥2
Cauchy-Schwarz inequality

= ∥y′
t∥2.
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Thererfore, we have

d∥yt∥2
dt

≤ C(t)∥yt∥2.

Applying Grönwall’s inequality on the function ∥yt∥, we have:

∥yt∥2 ≤ exp

(∫ T

t

C(t)dt

)
∥λ∆x∥2

for every 0 ≤ t ≤ T . Taking t = 0, we have

∥x̄0(xT + λ∆x, T )− x̄0(xT , T )∥2 ≤ exp

(∫ T

0

C(t)dt

)
|λ|∥∆x∥2.

as claimed in Proposition 3.

A.3 Proof in Section 4

Proof of Proposition 5. It is known

E[∥x+∆x∥22] = ∥E[x+∆x]∥22 + tr(Cov[x+∆x])

= ∥x∥22 + tr(Cov[∆x])

≥ ∥x∥22
The equality is taken if and only if tr(Cov[∆x]) =

∑
i Var[∆xi] = 0. This is equivalent to saying

that all components of ∆x are deterministic. Therefore, almost surely, ∆x = E[∆x] = 0.

Proof of Proposition 6. Given a standard normal vector ϵ, we claim the following holds:

∥ϵ− xT ∥22
d

=
∥ϵ∥22
d

+
∥xT ∥22
d

+
−2ϵ · xT

d
→ 2

in L2 as d→∞. To see this, notice the first term is∑d
i=1 ϵ

2
i

d

which converges to 1 by the law of large numbers, since E[ϵ2i ] = 1. The second term converges to 1
by our assumption. The last term converges to 0 in L2 as

E

[∥∥∥∥−2ϵ · xT

d

∥∥∥∥2
]
=

4E[
∑

i x
2
T,iE[ϵ2i ]]
d2

=
4(d+ o(d))

d2
→ 0.

Therefore the distance ∥ϵ− xT ∥2 converges to 2
√
d as d→∞. Similarly we can show θ(ϵ,xT ), the

angle between ϵ and xT converges to π/2 as d→∞. In other words, ϵ is approximately orthogonal
to xT when the dimension d is large.

Therefore, with probability 1−o(1), the angle θ in Algorithm 1 is π/2±o(1), and ∥ϵ−xT ∥2/2
√
d =

1± o(1) as d→∞. Fix any M ≤ (2− δ)
√
d, since the spherical interpolation smoothly interpolate

between x0 and ϵ, there exists a C satisfying Algorithm 1 with input C output x′
T with distance M

to xT with probability 1− o(1).
We can indeed find an explicit C0 with slightly weaker guarantees, set

C0 = cos−1

(
1− M2

2∥xt∥22

)
.

Then with probability 1− o(1), C0 ∈ (0, π/2), and∥∥∥∥ sin(C0)

sin(θ)
· ϵ+ sin(θ − C0)

sin(θ)
· xT − xT

∥∥∥∥ ≤ ∥∥∥∥ sin(C0)

sin(θ)
· ϵ+ sin(θ − C0)

sin(θ)
· xT − sin(C0)ϵ− sin(θ − C0)xT

∥∥∥∥
+ ∥sin(C0)ϵ+ sin(θ − C0)xT − xT ∥
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by triangle’s inequality. Meanwhile, the first term is o(
√
d) as sin(θ) = sin(π/2 + o(1)) = 1 + o(1)

and cos(θ) = 1− o(1). The square of the second term is

∥sin(C0)ϵ+ sin(θ − C0)xT − xT ∥2 = sin(C0)
2∥ϵ∥2 + (1− sin(θ − C0))

2∥xT ∥2 + 2 sin(C0)(sin(θ − C0)− 1)ϵ · xT

= sin(C0)
2(d+ o(1)) + (1− sin(θ − C0))

2(d+ o(1)) + o(d)

The last term is o(d) as ϵ · xT /d→ 0 as we analyzed above. Using again θ = π/2 + o(1), we know
sin(θ − C0) = sin(π/2− C0) + o(1) = cos(C0) + o(1). Hence we clean the above equation:

∥sin(C0)ϵ+ sin(θ − C0)xT − xT ∥2 = d(sin(C0)
2 + (1− cos(C0))

2) + o(d)

= d(2− 2 cos(C0)) + o(d)

= d

(
2− 2 +

M2

∥xt∥22

)
+ o(d)

=M2 + o(d),

where the last equality follows from ∥xT ∥22 = d+ o(1). Finally, taking the square root and plugging
back into the triangle inequality, we have:

∥x′
T − xT ∥ =M + o(

√
d).

Proof of Proposition 7. We can write x = r0x0 where r0 = ∥x∥ and x0 = x/r0 belongs to Sd−1,
the unit sphere in Rd.

Meanwhile, it is well known that we can generate ϵ ∼ N(0, Id) via 1) sample r21 ∼ χ2(d) from the
chi-squared distribution with parameter d, 2) sample u ∼ Unif(Sd−1) uniformly on the d-dim unit
sphere, 3) set ϵ = r1u. Therefore, let

θ = θ(u) := arccos⟨x0,u⟩

s(θ) :=
sin(cθ)

sin θ

t(θ) :=
sin((1− c)θ)

sin θ
.

We rewrite y as
y = s(θ)r1u+ t(θ)r0x0

Now we calculate E[∥y∥2]:

E[∥y∥2] = E[s(θ)2r21∥u∥2] + E[t(θ)2r20∥x0∥2] + E[2r0r1s(θ)t(θ)⟨u,x0⟩]

Our first claim is the cross term E[2r0r1s(θ)t(θ)⟨u,x0⟩] is zero. To see this, we first observe since
r1 and u are independent, we have

E[2r0r1s(θ)t(θ)⟨u,x0⟩] = 2r0E[r1]E[s(θ)t(θ)⟨u,x0⟩]

We examine the expectation E[s(θ)t(θ)⟨u,x0⟩] where the only random variable is the direction vector
u. Replacing u with −u sends the angle θ to π − θ, which will not change the value of s(θ), t(θ).
However, the inner product flips sign:⟨−u,x0⟩ = −⟨u,x0⟩. Consequently, the function of interest:

F (u) := s(θ(u))t(θ(u))⟨u,x0⟩

is an odd function of u. Therefore,

Eu∼Unif(Sd−1) [s(θ)t(θ)⟨u,x0⟩] = 0.

Now the expected distance simplifies to
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E[∥y∥2] = E[s(θ)2r21∥u∥2] + E[t(θ)2r20∥x0∥2]
= dE[s(θ)2] + r20E[t(θ)2]

The next observation is the following trigonometric identity:

s(θ)2 + t(θ)2 + 2s(θ)t(θ) cos(θ) = 1

for any c ∈ (0, 1), θ ∈ (0, π).

To show this identity, set α = cθ, β = (1−c)θ. Then s = sin(α)/ sin(α+β), t = sin(β)/ sin(α+β).
The left hand side of the claimed identity equals

sin2(α) + sin2(β) + 2 sin(α) sin(β) cos(α+ β)

sin2(α+ β)

Now we expand sin2(α+ β) as

sin2(α+ β) = (sin(α) cos(β) + cos(α) sin(β))2

= sin2(α) cos2(β) + cos2(α) sin2(β) + 2 sin(α) cos(α) sin(β) cos(β)

= sin2(α)− sin2(α) sin2(β) + sin2(β)− sin2(α) sin2(β) + 2 sin(α) cos(α) sin(β) cos(β)

= sin2(α) + sin2(β) + 2 sin(α) sin(β)(cos(α)cos(β)− sin(α) sin(β))

= sin2(α) + sin2(β) + 2 sin(α) sin(β) cos(α+ β),

as claimed.

Leveraging this equality s(θ)2 + t(θ)2 + 2s(θ)t(θ) cos(θ) = 1 and taking expectation with respect
to u implies:

E[s(θ)2] + E[t(θ)2] = 1,

as the cross term is zero as proved before.

Now let sc := E[s(θ)2] ∈ (0, 1), we have

E[∥y∥2] = dsc + r20(1− sc)
Therefore

δ(y) = |E[∥y∥2]− d| = (1− sc)|d− r20| = (1− sc)|∥x∥2 − d]| ≤ |∥x∥2 − d]| = δ(x)

A.4 Why linear interpolation fails

To further support this point, we provide additional theoretical analysis to justify why simple linear
interpolation does not work well for sampling. Formally, let ∥∆x∥2 = ∥x∥2, and its direction is
uniformly distributed, and E[∆x] = 0. For 0 < α < 1, we have:

E
[
∥αx+ (1− α)∆x∥22

]
< ∥x∥22

Proof. We have:

∥αx+ (1− α)∆x∥22 = α2∥x∥22 + 2α(1− α)(x ·∆x) + (1− α)2∥∆x∥22

Since E
[
α(1− α)(x ·∆x)

]
= α(1− α)x · E[∆x] = 0, we have:

E
[
∥αx+ (1− α)∆x∥22

]
= α2∥x∥22 + (1− α)2∥∆x∥22 = (α2 + (1− α)2)∥x∥22

Since 2α(α− 1) < 0, we have (α2 + (1− α)2) < 1, and we can conclude that using simple linear
interpolation cannot preserve the norm, leading to falling apart from the Gaussian sphere.
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B More Analysis on Linearity

B.1 Validation of Linearity Phenomenon on changing C0

Experimental setting. We perform extensive experiments on both pixel diffusion models on the
FFHQ and CIFAR-10 dataset and latent diffusion models on the Celeba-HQ and fMoW dataset. For
each experiment, we first sample 50 images as target images from each validation dataset from FFHQ
[22], CIFAR-10[25], and Celeba-HQ [43]. We also pick one images each class from the validation
set of the fMoW dataset [5] for further verification. Then for the FFHQ and CIFAR-10 selected data,
we use pixel diffusion models as backbone; for Celeba-HQ and fMoW we use stable diffusion 1.5 as
the backbone. The prompt for Celeba-HQ is given by "A high quality photo of a face" and the prompt
for fMoW is given by "satellite images". Then, we use each image as a target mean and perform CCS
sampling as in Alg.1.

For each target image, we sample eight C0 from a uniform [0, 0.9] distribution. For each C0, we
sample 24 images. Then we compute the average L2 distance between the sampled images and the
target mean for each scale.

Evaluations. To quantitatively evaluate the linearity phenomenon, we compute the R-square between
the input perturbation scales and the normalized average residual norms (scale between 0-1) for 4
datasets with both pixel diffusion models and latent diffusion models. Note that since different target
means can lead to different slopes by different Hessian matrices, we normalize the residual norms.
Specifically, we compute empirical slope a and bias b between x = sin(C0) and y = E[∥x′

0 − x0∥2]
each target mean, and then normalize the average L2 distance to be: y′ = y−b

a .

Results. We observe a very strong linearity in the above experiments. Especially for pixel diffusion
models, the R-square exceeds 0.98 for both datasets, which indicates almost a perfect linear relation-
ship. For latent diffusion models, the linearity is slightly weaker, but still above 0.94 in R-square for
both datasets. This is expected since Stable Diffusion use a nonlinear autoencoder and trained on a
different dataset. We also present more quantitative results in Fig. 2 and qualitative results in Fig. 1.
Surprisingly, we also observe a very linear semantic change in additional to pixel-value change.

Pixel Diffusion Models Latent Diffusion Models
FFHQ CIFAR-10 CelebA-HQ fMoW
0.995 0.988 0.959 0.947

Table 4: R-square between scales of input perturbation and normalized residual norms

B.2 Validation of Compositional Linearity

Experimental setting. Here we just have motivation similar to the previous one. We first sample
a random noise ϵ0 ∈ N(0, I), and then another random noise ϵ1 ∈ N(0, I). We perform spherical
interpolation on ϵ0 and ϵ1, and inference using a joint noise. We can adjust C0 to decrease the
strength of sspherical interpolation to preserve orginal image structure. This. We sample C0

uniformly and continue sample ϵ0 and ϵ1 for evaluation. Then we compare the cosine distance
between DDIM(slerp(ϵ0, ϵ1, C0)) and aDDIM(ϵ0) + bDDIM(ϵ1), where a and b are given by
slerp(ϵ0, ϵ1, C0). We still find very large linearity, and the linearity decreases for Latent Diffusion
Models. The quantitative results using four datasets, each with 100 evaluations are attached below in
Table 5:

Pixel Diffusion Models Latent Diffusion Models
FFHQ CIFAR-10 CelebA-HQ fMoW
0.958 0.942 0.901 0.920

Table 5: Cosine similarity between samples generated by spherical interpolated initial noise, and
linear combination of samples.

B.3 Mathematical Explanation of the Linearity

Bound the Linear Approximation Error of Score Function
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Let
z =
√
δx0 +

√
1− δ ϵ, f(x) = data distribution

νδ(x) = f

(
x√
δ

)
· 1√

δ
, u(x) = N (0, 1− δ)

Then the density of z is:
fz(z) = (ν ∗ u)(z)

Score Function and Its Derivatives

The score function is:

∇ log fz(z) =
Eu(x)[∇ν(z + x)]

Eu(x)[ν(z + x)]

Let:

A(z) := Eu(x)[ν(z + x)], B(z) := Eu(x)[∇ν(z + x)], C(z) := Eu(x)[∇2ν(z + x)]

Then the second derivative is:

∇2 log fz(z) =
C(z)

A(z)
− B(z)B(z)⊤

A(z)2

Assuming ∇A(z) = B(z), ∇B(z) = C(z), and ∇C(z) exists, the third derivative becomes:

∇3 log fz(z) =
∇C(z)
A(z)

− C(z)⊗B(z)

A(z)2

− C(z)B(z)⊤ +B(z)⊗ C(z)
A(z)2

+
2B(z)B(z)⊤ ⊗B(z)

A(z)3

Norm Bound on the Third Derivative

Suppose:
∥C(z)∥2 ≤ c, ∥B(z)∥2 ≤ b, A(z) ≥ a > 0, ∥∇C(z)∥2 ≤ d

Then: ∥∥∇3 log fz(z)
∥∥
2
≤ d

a
+

3bc

a2
+

2b3

a3

Taylor Approximation and Linearization Error Bound

Let z0 be a reference point. Then the second-order Taylor expansion of the score function is:

∇ log fz(z) ≈ ∇ log fz(z0) +∇2 log fz(z0)(z − z0)

The remainder (linearization error) satisfies:

∥∇ log fz(z)−∇ log fz(z0)−∇2 log fz(z0)(z−z0)∥2 ≤
1

2
sup

t∈[0,1]

∥∥∇3 log fz(z0 + t(z − z0))
∥∥
2
·∥z−z0∥22

Using the third derivative bound, we get the formula for linear approximation error bound:

∥E(z, z0)∥2 ≤
1

2

(
d

a
+

3bc

a2
+

2b3

a3

)
· ∥z − z0∥22

By this bound, we may argue that the probability density of the sampling center, the curvature and
gradient of the distribution (smoothness) impact the linearity error the most. If we are in the high
probability region (a local maximum), assume that the curvature of probability distribution at that
place is small, we will have low linear approximation error. So more complicated dataset may have
less linearity since it is more likely to have discontinuous regions or low-density regions. This
mathematical derivation explains the decrease of linearity from Pixel diffusion models to LDMs as
shown in Table: 5.
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B.4 Linearity Analysis for OOD and Multimodal data

To further investigate this relationship, we perform additional experiments on three more datasets to
test how the linearity changes for multimodal distributions. We are interested in:

1. How is the linearity when the model is trained on a multimodal dataset and samples an
out-of-distribution target image from another highly multimodal dataset, or an OOD simple
dataset?

2. How is the linearity when the model is trained on a simple dataset (for example, FFHQ) and
samples on an out-of-distribution multimodal dataset, or an OOD simple dataset?

3. How is the linearity when training on a simple dataset and sampling on the same dataset?

4. How is the linearity comparing model trained on multimodal dataset in-distribution and
model trained on simple dataset testing in-distribution?

In our experiment section of the paper, we cover partially 1, 3, and 4. We test pixel diffusion models
on FFHQ and CIFAR datasets. We also test the Stable Diffusion model (1.5) trained on a complex
dataset (LAION-5B) on the human face dataset (CelebA-HQ). We observe that diffusion models
trained on simple datasets (FFHQ) and tested on distributions exhibiting significant differences show
stronger linearity than Stable Diffusion trained on CelebA-HQ.

We observed in our paper that linearity decreases slightly when comparing diffusion models trained
on multimodal datasets to diffusion models with simple training data. CIFAR-10, being a dataset with
different classes, shows a slightly lower linearity score compared to FFHQ even though CIFAR-10 is
lower resolution. Empirically, we observe sudden changes of image semantics occasionally.

1. We pick 4 images from classes 0, 4, . . . , 99 from the validation set of ImageNet.

2. We pick five videos from classes: “Applying Eye Makeup", “Baby Crawling", “Billiard",
and “Blow Dry Hair" from the UCF-101 dataset, and sample five frames per video.

3. We pick 10 images from each organ site in the AAPM dataset, which consists of CT scans
of different body parts. These datasets are different from the training data of SD1.5.

We use the same linearity testing methods as in Section 5.1 of our main paper (and also in Appendix
B). We first summarize the results for Stable Diffusion 1.5:

Dataset ImageNet UCF-101 CelebA-HQ fMoW

R2 0.960 0.962 0.959 0.947
Cosine similarity of linear combinations 0.922 0.924 0.901 0.920

Table 6: Linearity statistics across multimodal datasets for Stable Diffusion 1.5.

The results show that for multimodal datasets (containing many classes like ImageNet or UCF-101),
there is no evidence of a decrease in linearity compared to simple datasets (CelebA-HQ). For the same
backbone model trained on a large multimodal dataset (LAION-5B), the slightly lower linearity on
CelebA-HQ may be due to data processing techniques such as upscaling, which introduces blurriness
and removes latent noise patterns from the Gaussian sphere.

When testing the linearity on OOD datasets for models trained on simple datasets, we observe a
significant linearity drop. We compare models trained on multimodal data and tested on simple
datasets. Results are computed using the same testing method as before and as described in Appendix
B. Here, “trained→ tested” means that the model is trained on the training set of the “trained” dataset
and tested on the validation set of “tested”.

For fair evaluation, we use the same model architecture (DDPM++) with the same training loss for
these two pixel-space diffusion models. We find that for non-foundation models, OOD linearity drops
significantly. The multimodal backbone has a slightly lower linearity score than the simple data
backbone due to complexity in its training data (it trains on LAION-5B). The probability distribution
of multimodal images plays an important role in linearity.
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Dataset (trained→ tested) ImageNet→ FFHQ FFHQ→ ImageNet FFHQ→ FFHQ

R2 0.934 0.938 0.995
Cosine Similarity 0.902 0.905 0.958

Table 7: Cross-dataset linearity comparison between multimodal and simple dataset training/testing.
Results are computed using the same testing method as before and as described in Appendix B. Here,
“trained→ tested” means that the model is trained on the training set of the “trained” dataset and
tested on the validation set of “tested”.

C Limitations and Clarifications

C.1 DDIM inversion not conforming to standard Gaussian distribution.

1. Investigation of Sample Quality Drop. To investigate whether there is a sample quality drop,
we use our CelebA-HQ validation set for additional experiments. This dataset is originally of size
256 × 256, and we upscale it to 512 × 512, so it becomes slightly blurry and sometimes gives
inversions not perfectly on the sphere. We partition the CelebA-HQ data into two sets:

• Not STG noise: encoded noise with mean deviation > 0.03 or std deviation > 0.03 from
standard Gaussian distribution.

• STG noise: all remaining samples.

We compute performance metrics of these images on Stable Diffusion with rMSE target 0.07. The
results are summarized below:

Set PSNR ↑ MUSIQ ↑ CLIP-IQA ↑ SD ↑
Not STG noise 30.86 49.43 0.734 0.053
STG noise 30.10 49.74 0.731 0.054

Table 8: Comparison of image quality for STG vs. non-STG noise at rMSE target 0.07 on CelebA-
HQ.

We do not find significant image quality differences between these two sets. Indeed, after our CCS
interpolation at the 0.07 rMSE target, the interpolated noise of the non-STG noise group all falls
within 0.01 difference between zero mean and unit standard deviation. Empirically, at low rMSE
levels, the noise may be non-standard Gaussian, but the samples remain close to the input image. At
higher rMSE levels, the interpolated noise becomes more standard Gaussian, resulting in good image
quality.

2. Verification of Gaussianity with Interpolation Strength. To verify that the Gaussian distri-
bution becomes more standard with stronger interpolation, we compute the average deviation of
mean (from 0) and deviation of variance (from 1) for the CelebA-HQ experiment. We find that as the
interpolation strength C0 increases, the deviation quickly narrows:

C0 Deviation in mean Deviation in std
0.0 0.025 0.023
0.2 0.013 0.016
0.3 0.011 0.009
0.4 0.010 0.008
0.5 0.009 0.006
0.6 0.007 0.005

Table 9: Deviation of mean and standard deviation across interpolation strength C0 in CelebA-HQ
experiments.
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3. Discussion. In our paper, C0 is mostly between 0.3 and 0.6, so we do not worry much about
the interpolated noise being non-standard Gaussian. We also conduct experiments at different rMSE
target levels (with varying C0) and observe that increasing interpolation strength may lead to slightly
better image quality when the input image is not very good.

C.2 Some other common confusions

There might be some misunderstanding of our method and experiments. To clarify:

• the baseline CCDF is just a special type of SDEdit.

• Our method does not specifically focus on improving quality in our main experiments in the
main paper (the improvement in sample quality is a very nice add-on). Instead, it focuses
on controllability (how to sample around a mean with a target MSE). So even though our
performance gain is not that large, we achieve much better controllability over the edit
strength which is measured as the distance between sample mean and the real input image
(as demonstrated in Fig. 3).

D Additional Results and Experiments

In this section, we clarify some implementation details, providing more details on algorithms and
visualization. We also provide more quantitative results and computational efficiency analysis.

D.1 More Details on Controllable Sampling

Experimental Set up For pixel diffusion models, we use the first 50 images from the validation data
from the FFHQ-256 [6] dataset. Then we set each image as the target mean and then sample 120
images (6000 images in total) with each target mean with a target rMSE (square root of average L-2
norm of the residuals between the sample and target mean) of 0.12. Then we test on the CIFAR-10
dataset. We randomly sample 20 images serving as target means, and then sample 120 images for
each target mean with a target rMSE level of 0.11.

For Stable Diffusion, we use the SD1.5 checkpoint [31]. We study a more challenging scenario
(degraded low-resolution input images with conditional text-guided latent diffusion model). We
sample 50 images from the validation set from Celeba-HQ dataset with resolution 256×256, and then
use bicubic upsampling to upscale it to 512× 512. Note that SD1.5 is not trained on the Celeba-HQ
dataset so this demonstrates the generalization capability of algorithms. We use the same prompt and
CFG level in the linearity control experiments.

Implementation Detail
We follow Alg. 1 in implementing our methods for pixel diffusion models, and Alg. 3 for latent
diffusion models. We take the pretrained models for FFHQ and CIFAR-10 from the improved/guided
diffusion repos [30, 13] for the pixel diffusion experiments, and the Stable Diffusion 1.5 [31] for
latent diffusion experiments. For LDMs, we set t0 = 45, where T = 50 due to DDIM inversion
performing worse with classifier-free guidance than unconditional models. We set the rMSE target to
be 0.12, 0.11 for FFHQ and CIFAR-10 respectively, and 0.07 for Stable Diffusion experiments to test
diverse control targets. The tolerance is set to be 0.01 in all cases. More details in the Appendix.
Baselines Since we are doing a novel task, we self-design the baselines with our proposed controller
algorithm as an add-on.

• Gaussian Perturbation with Controller (GP-C): We add a Gaussian perturbation to the initial
noisy image xt0, where the perturbation scale is determined by our controller. This method
resembles works that perform local editing [2].

• (Latent) Diffusion Posterior Sampling [6, 34] with controller (DPS-C): We perform posterior
sampling with x0 as the measurement. The scale of the gradient term in (L)DPS can control
the randomness, so we design a controller based on this. Details in the Appendix.

• ILVR with controller (ILVR-C): the ILVR algorithm [4] is for sampling high quality images
based on a reference image. The larger the downsampling parameter gives a better diversity,
we dynamically adjust that parameter as by our controller algorithm. Since it is designed
only for DDPM, we do not experiment it with LDMs. Details in the Appendix.
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• Come-closer-diffuse-faster with controller (CCDF-C): CCDF use DDPM forward to find a
starting noise at t0, and then perform reverse sampling based on that noise [8]. We adjust t0
based on our controller algorithm.

• Linear Interpolation with controller (LP-C): Replacing CCS spherical interpolation with
linear interpolation

Evaluation Metrics

We first compute pixel-wise metrics to validate our hypothesis that sample mean is close to the target
mean.

• PSNR (Peak Signal-to-Noise Ratio): quantifies the pixel-wise difference between the target
mean and the sample mean.

• SD: the average of standard deviations of pixel intensities for each sampled image, which is
used to measure the diversity of images.

Then we compute perceptual and reference-free metrics to measure the sample quality:

• MUSIQ [23]: measures the perceptual image quality, which focuses on low-level perceptual
quality and is sensitive to blurs/noise/other distortions

• CLIP-IQA [40]: measures the semantic image quality, which is more higher-level than
MUSIQ

• Inception Score (IS) [32]: is used in the CIFAR-10 dataset to further measure image quality
and diversity. Since CIFAR-10 has a low resolution and images are blurry, we report IS
score instead of MUSIQ and CLIP-IQA for CIFAR-10.

Additionally, we compute LPIPS between sampled image and target mean, this reflects how the
samples are preserving source information even though the MSE of those samples are controlled for
a fair comparison.

Results

We observe that our method achieves preserving more source information while generate superior
quality images with sufficient diversity. The Table below shows our superior performance in this
direction:

Table 10: Performance with Stable Diffusion with MSE level 0.07

Methods PSNR ↑ LPIPS ↓
GP-C 23.02 0.306
LDPS-C 24.56 0.351
CCDF-C 27.66 0.318
LP-C 29.59 0.322
CCS (Ours)-C 30.29 0.252

Table 11: Performance with Pixel Diffusion on FFHQ with MSE level 0.12

Methods PSNR ↑ LPIPS ↓
GP-C 18.88 0.596
ILVR-C 20.04 0.443
DPS-C 21.02 0.459
CCDF-C 23.52 0.461
LP-C 23.41 0.489
CCS (Ours)-C 25.13 0.332
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Table 12: Performance with Pixel Diffusion on CIFAR-10 with MSE level 0.11

Methods PSNR ↑ LPIPS ↓
GP-C 24.66 0.409
DPS-C 23.13 0.567
CCDF-C 24.63 0.529
CCS (Ours)-C 26.05 0.328

D.2 Sampling Efficiency

We provide sampling speed and sampling NFE results in the table below. The sampling procedure
consists of two steps:

1. Controller tuning for statistical constraint. This only needs to be performed once for
each album. For our method and GP, we have an additional one-time single-image inversion
step (which turns out to be very fast).

2. Sampling with the tuned parameters. Thanks to the linearity property, the binary search
algorithm can efficiently find the feasible scale of perturbation, achieving the best controller
tuning efficiency. Otherwise, the feasible scales may lie in a narrower region due to abrupt
output changes or variability among samples, requiring more search rounds. We will include
a detailed discussion of sampling efficiency in our revision.

We provide inference time for sampling 120 images around a target mean (with a tuning batch of size
20) for different methods below, using Stable Diffusion tested on one A40 GPU. The table reports the
controller tuning NFE per batch, and sampling NFE per batch for each baseline.

Method Sample time / image Controller Tuning NFE Sampling NFE
GP-C 1.66s 96 45
CCDF-C 1.73s 163 42
LDPS-C 5.84s 234 50
CCS-C (Ours) 1.65s 94 45
Table 13: Sampling efficiency comparison on Stable Diffusion tested on one A40 GPU.

The advantage of CCDF-C (or in other words, SDEdit-C) is that it does not require DDIM inversion,
and requires fewer timesteps for denoising. However, it needs more controller tuning rounds since
the outputs can be highly sensitive to some timesteps.

D.3 More Results on Adjusting rMSE Control Levels

We perform additional experiments with sampling quality benchmarks using rMSE targets from
[0.05, 0.06, 0.07, 0.08, 0.09, 0.10] for Stable Diffusion on CelebA-HQ. We observe that our method
consistently performs quite well (PSNR is for sample mean vs. target image, SD is for diversity).
Numbers are reported in the order of CCS-C / CCDF-C (the stronger/best baseline).

Target rMSE PSNR ↑ MUSIQ ↑ CLIP-IQA ↑ SD ↑
0.05 32.22/30.86 49.60/49.53 0.729/0.730 0.036/0.034
0.06 31.44/29.03 49.58/49.02 0.731/0.731 0.043/0.040
0.07 30.29/27.66 49.66/48.91 0.732/0.735 0.053/0.051
0.08 30.10/26.80 49.85/48.23 0.742/0.729 0.056/0.052
0.09 29.74/25.98 49.82/48.01 0.740/0.732 0.061/0.054
0.10 29.31/25.20 49.80/46.74 0.731/0.727 0.063/0.057

Table 14: Sampling quality comparison for different rMSE targets on CelebA-HQ of CCS-C v.s.
CCDF-C: CCS on the left, CCDF on the right
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We also perform experiments on the FFHQ dataset for rMSE levels of [0.09, 0.12, 0.15], summarized
below:

Target rMSE PSNR ↑ MUSIQ ↑ CLIP-IQA ↑ SD ↑
0.09 28.25/27.08 66.53/66.10 0.749/0.750 0.078/0.069
0.12 25.13/23.52 66.79/66.15 0.750/0.746 0.104/0.088
0.15 23.45/20.64 66.71/65.24 0.743/0.740 0.131/0.104

Table 15: Sampling quality results on FFHQ for different rMSE levels FOR CCS-C v.s. CCDF-C:
CCS on the left, CCDF on the right

Observations

We observe several interesting phenomena in these additional experiments:

1. With more perturbation of noise (i.e., sample images farther from the target image), there
is no decrease in sampling quality. Instead, there is a slight increase in MUSIQ for stable
diffusion, meaning the image quality increases and looks sharper. One explanation is that
the target image may not have good image quality or that the DDIM inversion is slightly
apart from the Gaussian sphere. As the perturbation level increases, more Gaussian noise is
interpolated, making the interpolated noise more “Gaussian” and improving image quality.
Since Stable Diffusion is conditional and the input image is not from its training distribution,
the DDIM inversion lies slightly off the Gaussian sphere. For FFHQ, however, the inversion
is quite Gaussian, so there is no significant change in sample quality.

2. The sampled mean remains close to the target image as the rMSE level increases. We do
not observe a sudden drop in controllability or diversity (PSNR and SD). However, with
increasing rMSE targets, it becomes harder to control the sample mean close to the target
mean, as demonstrated by declining PSNR. Nevertheless, this trade-off brings diversity
improvement.

D.4 More Details on improving sample quality.

Based on the observation that interpolates with a Gaussian make a non-Gaussian random variable
more Gaussian, previous work points out that this gives a higher likelihood [30]. Hence, we propose to
apply P-CCS on every step of reverse sampling with a very small interpolation factor. The algorithm
is stated at Alg. 5. We observe significant gain in sample quality when testing on T2IBench [21].
Table. 16 shows the quantitative performance.

Table 16: Image Quality Scores for with and without P-CCS purified on T2IBench

Metric With Without
MUSIQ Score 55.499 52.951
CLIP-IQA Score 0.541 0.530

D.5 More Algorithms

We describe more details for the proposed P-CCS (Partial inversion CCS sampling) algorithms for
different applications including constrained sampling, precise image editing and improving sampling
quality.

Alg. 3 demonstrates using P-CCS for constrained sampling based on Stable Diffusion.

Alg. 4 demonstrates using P-CCS for precise image editing based on Stable Diffusion.

Alg. 5 demonstrates using P-CCS for improving the sample quality, instead of controllability.
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Algorithm 3 P-CCS for Constrained Sampling
Requires: target mean x0, perturbation scale C0, inversion time steps t0, Encoder E and Decoder D,
a prompt c.
Step 0: Compute z0 = E(x0), then compute the DDIM inversion of z0, i.e. zT =
DDIM−1(z0, 0, t0, c)
Step 1: Compute the noise from zt0 , by ϵt0 = zt0 −

√
αt0 · z0

Step 2: Sample noise ϵ ∼ N(0, 1− αt). Then compute

θ = cos−1

(
ϵ · ϵtarget

||ϵ||2||ϵtarget||2

)
Step 3:
Compute ϵ′t0 using spherical interpolation formula:

ϵ′t0 =
sin(C0)

sin(θ)
· ϵ+ sin(θ − C0)

sin(θ)
· ϵt0

Step 4: Compute z′t0 =
√
αt0 · z0 + ϵ′t0

Step 5: Output sample x′
0 = D(z′0) = D(DDIM(z′t0 , t0, 0, c))

Algorithm 4 P-CCS for Precise Image Editing
Requires: target mean x0, perturbation scale C0, inversion time steps t0, Encoder E and Decoder D,
source prompt cs, target prompt ct.
Step 0: Compute z0 = E(x0), then compute the DDIM inversion of z0 with the source prompt,
i.e. zt0,s = DDIM−1(z0, 0, t0, cs), and the DDIM inversion with the target prompt, i.e. zt0,t =
DDIM−1(z0, 0, t0, ct)
Step 1: Compute the noise from zt0,s, by ϵt0,s = zt0,s −

√
αt0 · z0

Step 2: Compute the noise from zt0,t, by ϵt0,t = zt0,t −
√
αt0 · z0

Step 3: Compute

θ = cos−1

(
ϵt0,s · ϵt0,t

||ϵt0,s||2||ϵt0,t||2

)
Step 3:
Compute ϵ′t0 using spherical interpolation formula:

ϵ′t0 =
sin(C0)

sin(θ)
· ϵt0,s +

sin(θ − C0)

sin(θ)
· ϵt0,c

Step 4: Compute z′t0 =
√
αt0 · z0 + ϵ′t0

Step 5: Output sample x′
0 = D(z′0) = D(DDIM(z′t0 , t0, 0, ct)), which is the precisely edited image

with strength given by C0.

D.6 More Figures

Fig. 6 demonstrates the generated personalized album for CCS. Fig. 7 demonstrates example of
applying P-CCS with SD1.5 on the Celeba-HQ dataset, we demonstrate that our algorithm can work
well on in-the-wild images which are very different from the training.

Fig. 10 demonstrates the linear trend for each target mean on the FFHQ dataset.

Fig. 8,9 demonstrates an example of image editing controlled sampling with Alg. 4.

Fig. 11 demonstrates the linearity drop with OOD data.
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Algorithm 5 P-CCS for Improving Sampling Quality
Requires: target mean x0, perturbation scale C0, inversion time steps t0, Encoder E and Decoder D,
condition c.
Step 0: Start by computing z0 = E(x0), then compute the DDIM inversion of z0 with the condition,
i.e. zt0 = DDIM−1(z0, 0, t0, c),
While t0 > 0: Step 1: Compute the noise from zt0 , by ϵt0 = zt0 −

√
αt0 · ẑ0(zT ) using Tweedie’s

formula to compute ẑ0(zT ).
Step 2: Sample a noise ϵ ∈ N(0, 1− αt).
Step 3: Compute

θ = cos−1

(
ϵt0 · ϵ

||ϵt0 ||2||ϵ||2

)
Step 3:
Compute ϵ′t0 using spherical interpolation formula:

ϵ′t0 =
sin(C0)

sin(θ)
· ϵt0 +

sin(θ − C0)

sin(θ)
· ϵ

Step 4: Compute z′t0 =
√
αt0 · z0 + ϵ′t0

Step 5: Reverse Sampling using DDIM formula, and the modified zt0 , t0 = t0 − 1
End While
Step 6: Output sample x′

0 = D(z′0) = D(DDIM(z′t0 , t0, 0, ct)), which is the purified (improved)
image with purification strength given by C0.

Figure 6: a demo of sampled album with CCS algorithm on FFHQ dataset. Note that the sample
mean is almost the same as the input image.
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Figure 7: CCS-CT Sampled Images with Stable Diffusion 1.5. (a) Samples with an in-the-wild target
mean (e) and a target rMSE 0.09; (b) Samples with a target mean (d) from Celeba-HQ dataset and a
target rMSE 0.07; (d): sample mean from (a); (f): sample mean from (b).

Figure 8: Image Editing Samples with Stable Diffusion 1.5, the source prompt is given by ‘a high-
quality portrait of a man’, and the target prompt is given by ‘a high-quality portrait of a woman’, the
target MSE level is given by 0.10

Figure 9: Image Editing Samples with Stable Diffusion 1.5, the source prompt is given by ‘a high-
quality portrait of an old man’, and the target prompt is given by ‘a high-quality portrait of a young
man’, the target MSE level is given by 0.09
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Figure 10: We first sample 50 images around each target mean in the FFHQ dataset. We then obtain
the DDIM inverse of each target mean, and then add spherical perturbation to it. When the scale of
perturbations sin(C0) increases, the average of norms of the residuals between each sample and the
target mean approximately increases linearly.

Figure 11: We demonstrate that there is sudden change in output when testing on OOD input perturbed
with increasing Gaussian noise. The backbone model is a pixel diffusion model (DDPM++), which is
only trained on FFHQ. The top row uses an OOD input from ImageNet, and the bottom row uses an
image from FFHQ validation set input. C0 from left to right: 0.0, 0.2, 0.4, 0.6, 0.8
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contribution and scope are stated in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: We have provided a discussion about limitations in the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[Yes]
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Justification: We have clearly stated our assumptions, propositions and results in Sec. 3
and 4, with proof in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have fully explained the setup of our experiments in Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: This paper utilizes publicly available datasets, with detailed access instructions
and appropriate citations provided. While the code is not publicly released at the time of
submission, we intend to make it available upon acceptance of the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: It is clearly stated in the experiment section (Sec. 5).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported multiple metrics in our experiments with average values in
main paper and the standard deviations in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information about computer resoures in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research complies fully with the NeurIPS Code of Ethics. It does not
involve sensitive data, human subjects, or potentially harmful applications.
Guidelines: The research complies fully with the NeurIPS Code of Ethics. It does not
involve sensitive data, human subjects, or potentially harmful applications.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: This paper presents work whose goal is to advance the field of generative AI.
There are many potential societal consequences of our work, none which we feel must be
specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not introduce or release any new models or datasets that could
pose a risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We have properly cited and credited the pretrained diffusion models (Stable
Diffusion 1.5), and datasets used in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: At the time of submission, we have not released any new assets, but after
acceptance, we will release new assets including code and trained models along with detailed
documentation for them.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: The core methods and contributions of the paper do not involve the use of
LLM in any important, original, or non-standard way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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