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Abstract
Deep State Space Models (SSMs), such as
Mamba (Gu & Dao, 2024), have become powerful
tools for language modeling, offering high perfor-
mance and linear scalability with sequence length.
However, the application of parameter-efficient
fine-tuning (PEFT) methods to SSM-based mod-
els remains largely underexplored. We start by in-
vestigating two fundamental questions on existing
PEFT methods: (i) How do they perform on SSM-
based models? (ii) Which parameters should they
target for optimal results? Our analysis shows
that LoRA and its variants consistently outper-
form all other PEFT methods. While LoRA is
effective for linear projection matrices, it fails on
SSM modules—yet still outperforms other meth-
ods applicable to SSMs, indicating their limita-
tions. This underscores the need for a specialized
SSM tuning approach. To address this, we pro-
pose Sparse Dimension Tuning (SDT), a PEFT
method tailored for SSM modules. Combining
SDT for SSMs with LoRA for linear projection
matrices, we achieve state-of-the-art performance
across extensive experiments.

1. Introduction
In the past few years, Large Language Models (LLMs) such
as ChatGPT (Achiam et al., 2023; Brown et al., 2020) have
achieved groundbreaking performance and are now widely
used in daily life. While many models rely on the Trans-
former architecture (Vaswani et al., 2017), its quadratic time
complexity due to the attention mechanism poses challenges
for long sequences. To address this, alternative architec-
tures such as linear attention (Katharopoulos et al., 2020),
RWKV (Peng et al., 2023), RetNet (Sun et al., 2023), and
Mamba (Gu & Dao, 2024) have been developed, offering

*Equal contribution. Authors listed in alphabetical or-
der. 1FuriosaAI 2Seoul National University 3University of
Wisconsin-Madison. Correspondence to: Kangwook Lee <kang-
wook.lee@wisc.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

subquadratic time complexity. Efficient attention alterna-
tives often rely on State Space Models (SSMs) or their
variants (Gu et al., 2021; 2022b;a; Gu & Dao, 2024), which
are akin to linear RNNs, maintaining hidden states of fixed
size for sequential processing. S4 (Gu et al., 2022b;a) over-
comes RNNs’ parallel training limitations by constraining
parameter structures, enabling a convolutional form for effi-
cient parallel computation. S6 (Gu & Dao, 2024) improves
this with input-dependent parameters, enabling selective fo-
cus on relevant information per token. Building on S6 with
linear projection matrices (analogous to the Feed-Forward
Networks in Transformer layers), Mamba-I (Gu & Dao,
2024) emerged as a prominent SSM-based model. Mamba-I
was later extended to Mamba-II (Dao & Gu, 2024), with
both models achieving Transformer-level performance in
language modeling and gaining widespread recognition.

As SSMs gain popularity, performing parameter-efficient
fine-tuning (PEFT) on pretrained models for downstream
tasks is crucial, since full fine-tuning is costly and ineffi-
cient. Numerous PEFT methods (Houlsby et al., 2019; Hu
et al., 2021; He et al., 2021; Li & Liang, 2021; Lester et al.,
2021; Zaken et al., 2022; Liu et al., 2021; 2022; Houlsby
et al., 2019) have been developed, achieving notable success
on Transformer models. The most popular PEFT meth-
ods fall into three categories: (i) input-injection methods,
which add sequences to the model’s main input (Lester et al.,
2021) or prepend tokens to the intermediate inputs at each
layer (Li & Liang, 2021); (ii) architecture-enhancement
methods, which adjust the model architecture. For example,
Houlsby et al. (2019) added layers between Transformer lay-
ers, while Additional-scan (Yoshimura et al., 2025) expands
state dimensions in the SSM module; (iii) weight-tuning
methods, which directly modify existing model weights.
Notable weight-tuning approaches include BitFit (Zaken
et al., 2022), which updates only bias terms, and LoRA (Hu
et al., 2021), which modifies weight matrices through low-
rank updates, along with its variants such as DoRA (Liu
et al., 2024) and LoRA+ (Hayou et al., 2024). For simplicity,
we denote LoRA and its variants as LoRA⋆.

Despite the success that existing PEFT methods have
achieved in adapting Transformer-based models, their effi-
cacy in adapting SSM-based models remains largely under-
explored, leaving many interesting questions open.
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Figure 1. A visual guide to PEFT methods in SSM-based models: benchmarking and innovation. We compare various existing
PEFT approaches on SSM-based models, demonstrating that LoRA applied to linear projection matrices outperforms all other methods.
However, extending LoRA to SSM modules fails to yield further improvements. To address this, we propose Sparse Dimension Tuning
(SDT), which achieves state-of-the-art performance on SSM-based models when combined with LoRA for linear projection matrices.

1. Do existing popular PEFT methods remain effective for
SSM-based models?

2. If applicable, what is the optimal way to integrate these
methods into SSM-based models, and which parameters
should be updated?

3. If not, can we design specialized variants tailored to
SSMs that yield superior performance?

Our main contributions to address these questions are:

• Comprehensive Benchmarking of PEFT Methods. We
benchmark six widely used PEFT methods across three
categories on diverse tasks, including natural language
understanding, generation, and computer vision. We
evaluate these methods on both SSM-based models (i.e.,
Mamba) and a hybrid model (i.e., Jamba (Lieber et al.,
2025)), which consists of both Transformer layers and
Mamba layers. Our results show that LoRA⋆ consistently
outperforms all other PEFT methods on both SSM-based
and hybrid models. However, its effectiveness is limited
to linear projection matrices, as further tuning of SSM
modules does not improve performance. Notably, other
methods applicable to SSM modules perform worse than
LoRA⋆, further underscoring the need for a specialized
approach to tuning SSM modules.

• Introducing Sparse Dimension Tuning (SDT) for SSM
Modules. To develop an effective method for tuning
SSM modules, we conduct a theoretical analysis to under-
stand the roles of different parameters. This analysis moti-
vates the Sparse Dimension Tuning and Pruning (SDT-P)
method, which improves efficiency by freezing and prun-
ing certain channel and state dimensions while training
only the remaining ones. We establish theoretical guar-
antees for its effectiveness in SSM-based models when
combined with LoRA applied to linear projection matrices.
We then simplify SDT-P into Sparse Dimension Tuning
(SDT) by omitting explicit pruning, as pruned dimensions

can be considered equivalent to training dimensions set
to zero. SDT selectively updates channels and fine-tunes
specific dimensions within them, as illustrated in Fig. 1.

• Demonstrating Effectiveness of SDT. Through extensive
experiments, we demonstrate that integrating SDT into
SSM-based models, combined with applying LoRA⋆ to
their linear projection matrices, achieves state-of-the-art
fine-tuning performance.

The roadmap of our paper is illustrated in Fig. 1. Our code
is available at https://github.com/furiosa-ai/
ssm-peft.

2. Related Works
Concurrent Works of PEFT on SSMs. Several concur-
rent studies (Halloran et al., 2024; Yoshimura et al., 2025;
Kang et al., 2025) have investigated PEFT methods for
SSM-based models. Halloran et al. (2024) studied both
in-context learning and parameter-efficient fine-tuning, with
an orthogonal focus on analyzing Mamba’s stability under
mixed-precision training using Lyapunov exponents. Kang
et al. (2025) introduced state-based PEFT methods and
proposed State-offset Tuning, solely focusing fine-tuning
Mamba’s S6 blocks. Yoshimura et al. (2025) benchmarked
multiple PEFT approaches—including established methods
and a new method called Additional-scan (which adds a
trainable state dimension to the SSM module), plus par-
tial tuning (fine-tuning only a subset of parameters)—and
introduced MambaPEFT through PEFT search strategies.
While Yoshimura et al. (2025) solely focused on Mamba-I,
providing an in-depth study of that particular architecture,
our work investigates a broader class of SSM-based models
including deep S4, Mamba-I, Jamba in the main body, as
well as Mamba-II presented in Sec. C.2 and E.2, aiming
to offer general insights on how to effectively tune SSMs
rather than focusing on a single variant.
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Sparse Tuning. Several studies have explored sparse pa-
rameter selection in fine-tuning (Song et al., 2024) and skill
localization (Panigrahi et al., 2023). Song et al. (2024)
showed that sparse tuning is an effective PEFT method, link-
ing the low intrinsic dimensionality of pre-trained models to
the proportion of parameters needing updates. They propose
selecting optimal fine-tuning parameters based on gradient
magnitudes. We enable sparse tuning for SSM by apply-
ing sparsity across entire dimensions (channel and state)
rather than specific neurons. Panigrahi et al. (2023) focused
on identifying neurons responsible for specific downstream
tasks by fully fine-tuning the model and computing neuron
masks to minimize task loss. While effective for skill local-
ization, this method is computationally expensive and not
optimized for parameter-efficient fine-tuning.

In Sec. A, we provide a more detailed discussion of related
work on SSMs and PEFT.

3. Preliminaries
3.1. State Space Models

Discrete-Time SSMs. The initial SSM is derived from a
specific continuous system that maps a one-dimensional
function or signal x(t) ∈ R to y(t) ∈ R via an H-
dimensional latent state h(t) ∈ RH , as described in
(1). In this formulation, input transition vector B ∈
RH×1 indicates the input’s impact on the state of the
system, state matrix A ∈ RH×H characterizes the sys-
tem’s internal state dynamics, and the output mapping
vector C ∈ R1×H relates the state to the output y(t).1

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)
(1)

ht = Aht−1 +Bxt,

yt = Cht

(2)

K = (CB,CAB, . . . ,CA
t−1

B),

(y1, . . . , yt) = (x1, . . . , xt) ∗K
(3)

To handle discrete inputs, the continuous parameters (A,B)
are discretized into (A,B) using a learnable step size ∆ ∈
R. A common discretization rule, the zero-order hold, de-
fines A = exp(∆A),B = (∆A)−1(exp(∆A)− I) ·∆B.
The discrete-time SSM, given in (2), enables efficient in-
ference via long convolution described in (3). For multi-
channel inputs x,y ∈ RD, separate SSMs are used per
channel, with a superscript (d) indicating channel-specific
parameters when needed.

Structured State Space Sequence Model (S4). S4, in-
troduced by Gu et al. (2022b), is an early application of
SSMs in deep learning, featuring a diagonal state matrix
A. To introduce non-linearity and cross-channel mixing, S4
integrates a position-wise linear layer, an activation func-

1Note that B,C are vectors; we use bold capitals for consis-
tency with prior work (Gu et al., 2022b; Gu & Dao, 2024).

tion, and a residual connection from input to output. Let ⊙
represent the element-wise product, and S4(·) denote the S4
mechanism, where each channel’s output follows (3) with its
convolutional kernel K

(d)
. To facilitate theoretical analysis,

certain subtle details—such as activation functions—may
differ slightly from those in previous studies (Gu et al.,
2022b;a). We define the deep S4 layer as:

yt = ReLU(W · S4t(x1, . . . ,xt) + β + u⊙ xt), (4)

where W ∈ RD×D and β ∈ RD represent the linear pro-
jection matrix and bias, respectively, and u ∈ RD is the
coefficient of the residual connection. Trainable parameters
include SSM parameters (A(d),B(d),C(d),∆(d)) across D
channels with A(d) being diagonal, as well as linear layer
(W ,β) and residual connection u.

Selective State Space Models (S6). All SSMs mentioned
above exhibit linear time invariance (LTI), meaning their
dynamics remain constant over time. A key limitation
of LTI SSMs is their fixed dynamics, hindering selec-
tive context extraction and input-dependent state transi-
tions. S6 (Gu & Dao, 2024) addresses this by making
parameters input-dependent. At each time step t, given
input xt ∈ RD, S6 introduces input-dependent step sizes
∆t = (∆

(1)
t , . . . ,∆

(D)
t )⊤ ∈ RD, input transition vectors

Bt ∈ RH×1 and output mapping vectors Ct ∈ R1×H via
linear projection:

∆t = softplus(W∆xt + β∆), Bt = WBxt, Ct = WCxt,

where the diagonal state matrices A(1), . . . ,A(D) remain
input-independent. The weight W∆ ∈ RD×D is fac-
torized as W∆ = W∆,↓W∆,↑, with W∆,↓ ∈ RD×R,
W∆,↑ ∈ RR×D to reduce computation (Wang et al., 2021;
2023a). Trainable parameters in S6 include A(d) across
D channels, W∆,↑,W∆,↓ and β∆ for computing ∆t, and
WB,WC ∈ RH×D for computing Bt,Ct. Discretization
follows: A

(d)

t = exp(∆
(d)
t A(d)),B

(d)

t = ∆
(d)
t Bt. Unlike

S4, where B(d) varies per channel, S6’s variation on B
(d)

stems from the scalar ∆(d)
t . Additionally, S6 shares Ct for

all channels at each time step t, while S4 assigns a distinct
C(d) to each channel.

Mamba & Jamba. Similar to the Transformer block,
which consists of attention and linear layers, the Mamba-I
block proposed by Gu & Dao (2024) features an S6 mod-
ule, a point-wise 1D causal convolution layer (Conv1d) for
token mixing, linear layers — including input (Win) and
output (Wout) projection layers and a gated MLP. Mamba-
II (Dao & Gu, 2024) further simplifies the state matrix
A to be a scalar. Building on Mamba-I, Jamba (Lieber
et al., 2025) introduces a hybrid architecture that integrates
both Transformer blocks and Mamba blocks, leveraging
the strengths of both to enhance performance. This paper
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focuses on Mamba-I (referred as Mamba in this paper) and
Jamba, deferring Mamba-II discussions to the appendix.

3.2. Parameter-Efficient Fine-Tuning

Input-Injection Methods. Input-injection methods, such
as prompt tuning (Lester et al., 2021) and prefix-tuning (Li
& Liang, 2021), enhance the model’s input by injecting
specialized sequences. Prompt tuning prepends a set of
trainable embeddings P ∈ RD×M to the original input
X ∈ RD×N , forming the concatenated sequence X̃ =
[P ;X]. Prefix-tuning (Li & Liang, 2021) instead injects
learnable vectors into the key and value matrices of each
attention layer. For a Transformer layer, it prepends prefix
states PK ,P V ∈ RL×D to the original projections:

K̃ = [PK ;K], Ṽ = [P V ;V ],

where K and V are the key and value matrices derived
from the input. We note that prefix-tuning is functionally
equivalent to prepending soft tokens to the input at each
attention layer and discarding the corresponding outputs
associated with the prepended tokens. This view simpli-
fies adaptation to SSMs, which lack explicit key and query
projections. Yoshimura et al. (2025) also adopt this imple-
mentation, though they refer to it as affix-tuning.

Architecture-Enhancement Methods. These methods
modify the model’s internal structure to introduce tunable
components. In the context of SSMs, one example is
Additional-scan (Yoshimura et al., 2025), which expands
the state dimensions within the SSM block and fine-tunes
only the added parameters, leaving the original weights
untouched.

Weight-Tuning Methods. Notable weight-tuning meth-
ods include LoRA (Hu et al., 2021) and its variants (Liu
et al., 2024; Hayou et al., 2024), as well as BitFit (Zaken
et al., 2022). LoRA (Hu et al., 2021) fine-tunes a model by
introducing low-rank updates to its weight matrices. Given
a weight matrix W0 ∈ RD×D, LoRA updates it as follows:

W = W0 +W↓W↑,

with W↓ ∈ RD×R, W↑ ∈ RR×D, and R ≪ D being the
rank. Only W↓ and W↑ are trained, reducing the num-
ber of trainable parameters from D2 to 2RD. Weight-
Decomposed Low-Rank Adaptation (DoRA) (Liu et al.,
2024) improves upon LoRA by decomposing the weight
matrix into two components: magnitude (m ∈ RD) and
direction (W↓W↑), leading to the formulation

W = m
W0 +W↓W↑

∥W0 +W↓W↑∥
.

This additional parameter m enhances both training capac-
ity and stability. LoRA+ (Hayou et al., 2024) modifies

LoRA by applying different learning rates to W↓ and W↑,
enabling more effective feature learning. In contrast, Bit-
Fit (Zaken et al., 2022) updates only the bias terms, offering
a lightweight and highly parameter-efficient alternative.

4. Benchmarking PEFT Methods on
SSM-based Models

In this section, we examine the effectiveness of popular
PEFT methods when applied naively to SSM-based models,
specifically Mamba and Jamba.

4.1. Experiment Setup

We evaluate PEFT methods across three categories: input-
injection, architecture-enhancement, and weight-tuning. For
input-injection methods, we use prompt tuning (Lester et al.,
2021) and prefix-tuning (Li & Liang, 2021), where prefix-
tuning employs an overparameterized MLP for stable op-
timization. For architecture-enhancement methods, we in-
clude Additional-scan (Yoshimura et al., 2025), which in-
troduces and fine-tunes newly added state dimensions in
SSM modules. For weight-tuning, we consider BitFit (Za-
ken et al., 2022) and LoRA⋆, including LoRA (Hu et al.,
2021) and DoRA (Liu et al., 2024), while LoRA+ (Hayou
et al., 2024) is deferred to Sec. E.2. BitFit fine-tunes the
bias terms of Conv1d and W∆,↑.

We use six datasets spanning different domains: GLUE
for natural language understanding (Wang et al., 2019),
DART for RDF-to-text generation (Nan et al., 2021), SAM-
Sum (Gliwa et al., 2019) for summarization, Spider for
text-to-SQL generation (Yu et al., 2018), and two vi-
sion datasets—CIFAR-10 (Krizhevsky et al., 2009) and
CelebA (Liu et al., 2015), with the vision datasets pro-
cessed by cropping, resizing, and flattening pixel values
into space-separated numerical sentences. Details are in
Sec. B. Prefix-tuning requires significantly more parame-
ters than other PEFT methods due to its per-layer MLP for
projecting fixed sequences into soft tokens. For all meth-
ods—except prefix-tuning and the special case of LoRA and
DoRA when applied to both linear projection layers—we
limit trainable parameters to below 1% for Mamba and be-
low 0.15% for Jamba. For Jamba, all PEFT methods are
applied to Mamba layers, while Transformer layers remain
frozen to isolate performance effects. See more details in
Sec. C.1.

4.2. Results

Table 1 summarizes the benchmarking results. Detailed
results for GLUE and Spider subtasks appear in Sec. C.2.
We analyze the results from three key perspectives below.
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Model Method Major Target
Module

GLUE DART SAMSum Spider CIFAR-10 CelebA

Avg. Score METEOR BLEU R1 R2 RL Acc. Acc. Acc.

Mamba

Prompt Tuning Other 63.8 66.2 39.8 50.1 25.6 41.6 43.6 30.4 82.5

Prefix-Tuning SSM 68.6 66.6 42.5 50.6 26.5 42.1 39.7 41.0 86.5

BitFit Both 76.8 67.0 43.7 50.3 25.7 41.9 48.4 44.4 86.9

LoRA
SSM 76.9 68.8 48.0 50.4 26.0 41.8 55.0 52.3 87.0

LinProj 81.2 70.9 49.5 50.9 27.0 42.3 57.5 61.0 87.0
Both 80.3 70.2 52.2 50.7 26.8 42.4 57.0 58.4 89.8

DoRA
SSM 77.9 68.3 47.3 48.1 24.2 39.6 55.3 44.5 87.1

LinProj 81.1 70.7 51.6 51.0 26.9 42.8 60.7 57.6 86.7
Both 80.8 70.8 51.4 51.3 27.2 43.0 58.1 58.2 89.8

Additional-Scan SSM 62.4 60.6 15.8 37.6 17.5 30.9 26.9 32.2 86.0

Full Fine-Tuning Both 80.5 71.0 51.8 51.2 27.3 42.9 66.2 60.0 89.4

Jamba

Prompt Tuning Other 73.3 54.1 6.3 54.7 31.8 46.8 74.9 40.9 85.6

Prefix-Tuning SSM 56.9 59.6 14.4 11.5 1.8 10.4 0.3 29.9 82.2

BitFit Other 75.2 59.2 14.8 54.7 31.9 47.0 73.7 45.6 86.3

LoRA LinProj 73.9 68.9 37.8 54.6 32.3 46.8 69.3 59.7 89.0

DoRA LinProj 71.4 68.1 28.8 55.2 32.2 47.3 70.9 58.6 89.0

Additional-Scan SSM 68.3 63.3 20.1 53.4 30.5 45.6 69.3 50.6 0.0

Table 1. Benchmarking popular Parameter-Efficient Fine-Tuning (PEFT) methods on Mamba (Gu & Dao, 2024) and Jamba (Lieber
et al., 2025) across six real-world datasets. R1/R2/RL stand for ROUGE-1/2/L. We evaluate PEFT applied to different target modules:
SSM module only, linear projection matrices (LinProj) only, both, or other components such as embedding layer. For both Mamba and
Jamba, all methods use fewer than 1% and 0.15% of parameters, respectively, except when the target module for LoRA or DoRA is set to
“Both” or when prefix-tuning is applied. Comprehensive hyperparameter tuning was performed for all methods. Bold values indicate
the best performance for each model (Mamba and Jamba) separately, while underlined values denote the second-best performance for
each task, excluding full fine-tuning. Key findings include: (i) among PEFT methods applied to SSM modules, LoRA⋆ outperforms
others, (ii) for all PEFT methods, LoRA⋆ achieves the best performance, (iii) applying LoRA⋆ to linear projections yields results
comparable to applying it to both linear projections and SSM modules, while outperforming its application solely to SSM modules, and
(iv) input-injection methods (i.e., prompt tuning and prefix-tuning), are generally ineffective.

Superiority of LoRA⋆. The most prominent finding is
that LoRA⋆ consistently outperforms other PEFT methods
(e.g., prompt tuning, prefix-tuning, BitFit, additional-scan),
regardless of the target module.

Finding: Across all target modules, LoRA⋆ surpasses
existing PEFT methods in performance.

Even when restricted to SSM modules, LoRA⋆ still outper-
forms all other PEFT baselines applied to the same target.

Limitations of Input-Injection Methods. Input-injection
methods like prefix-tuning are ineffective for SSM-based
models (Table 1), as their expressiveness reduces to tun-
ing only the initial hidden state (Proposition 1). Formal
statement, proof and empirical verification are in Sec. C.3.

Optimal Application of LoRA⋆ in SSM-based Models.
Table 1 shows that LoRA⋆ outperforms all other PEFT meth-
ods in most scenarios. From our results, we explore the
optimal layers for applying LoRA⋆ in SSM-based models:
the SSM module, the linear projection matrices, or a combi-

nation of both. Note that S6 in Mamba and Jamba includes
fine-grained parameters like x_proj (WB,WC ,W∆,↓)
and dt_proj (W∆,↑), which were already explored by
Yoshimura et al. (2025) on Mamba. We defer a deeper dis-
cussion of them to Sec. C.4 and focus on the key question
here: Is applying LoRA⋆ to SSM modules necessary for
performance gains? By narrowing our scope, we aim to clar-
ify LoRA⋆’s impact across major components (e.g., SSM
modules, linear projection matrices) rather than all specific
parameters.

We evaluate LoRA⋆’s performance on linear projections us-
ing Win, Wout, and both combined. Since the performance
of different combinations of linear projections is consistent
across datasets (see Sec. C.4.), we only report the results
for LoRA⋆ applied to Win in Table 1. For SSM modules,
we apply LoRA⋆ to weight matrices, including those for the
input-dependent step size ∆. For state transition matrices
A, we treat their diagonal structures as vectors, concatenate
them across channels to form a matrix, and apply LoRA⋆.
Table 1 summarizes results for the best-performing configu-
rations (see Sec. C.2 for full results). Based on these results,
we present the following finding:
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Finding: For LoRA⋆: Tuning on SSMs is less effective
than tuning linear projection matrices, with the latter
performing comparably to tuning both.

Detailed experiments, including LoRA⋆ on different linear
projection matrices and additional evaluations of Mamba-II,
are presented in Sec. C.2. These experiments reinforce the
finding that LoRA⋆ is highly effective for linear projections
but less suitable for SSM modules.

To further elucidate this concept, we present the following
lemma, which examines a simplified model architecture
consisting of S6 with two linear input projection matrices at
each layer. We demonstrate that fine-tuning one input projec-
tion matrix encompasses the expressivity of fine-tuning the
parameters WB , WC , and W∆,↑. Consider an S6 model
with two input projection matrices Win,1,Win,2 ∈ RD×D:
the first affects how internal parameters depend on the in-
put, while the second governs the input passed directly into
the S6 module. Under this setup, the output y(d)N can be
expressed as:

y
(d)
N =

Input-dependent CN︷ ︸︸ ︷
C(Win,1xN )⊤

N∑
n=1

 n∏
m=1

Input-dependent Am︷ ︸︸ ︷
A(Win,1xm)


Input-dependent Bn︷ ︸︸ ︷
Bn(Win,1xn)

︸ ︷︷ ︸
Parameters depending on input after projection Win,1

(Win,2xn)
(d)︸ ︷︷ ︸

Input after projectionWin,2

.

When Win,1 = Win,2, this reduces to a stan-
dard architecture with a single input projection fol-
lowed by an S6 layer. For simplicity, we let
β∆ = 0. Then the full model is parameterized by
({A(d)}Dd=1,WB,WC ,W∆,↑,W∆,↓,Win,1,Win,2). As-
sume none of the parameters are zero and D > 2H + R,
where R is the rank of W∆,↓W∆,↑.

Lemma 1 (Expressivity of Fine-Tuning Projection Matri-
ces). Consider two models with the architecture described
above. Let:

• A target model f⋆ parameterized by ({A⋆(d)}Dd=1, W ⋆
B ,

W ⋆
C , W ⋆

∆,↑, W ⋆
∆,↓, W ⋆

in,1, W ⋆
in,2);

• A frozen model f0 parameterized by ({A⋆(d)}Dd=1, WB ,
WC , W∆,↑, W ⋆

∆,↓, Win,1, W ⋆
in,2).

The two models share {A⋆(d)}Dd=1, W ⋆
∆,↓, and W ⋆

in,2, while
differing in WB , WC , W∆,↑, and Win,1. Then, there ex-
ists an updated projection matrix Ŵin,1 such that the frozen
model matches the output of the target model without updat-
ing WB , WC , W∆,↑ for any input sequence, i.e.,

f(·; {A⋆(d)}Dd=1,WB,WC ,W∆,↑,W
⋆
∆,↓, Ŵin,1,W

⋆
in,2)

= f⋆(·; {A⋆(d)}Dd=1,W
⋆
B,W ⋆

C ,W ⋆
∆,↑,W

⋆
∆,↓,W

⋆
in,1,W

⋆
in,2).

We expand on this discussion in Sec. C.4, where we present
both theoretical proofs and empirical validation. The lemma
shows that tuning the linear projection matrix can match

the expressive power of certain SSM parameters (i.e., WB ,
WC , and W∆,↑), aligning with our empirical observation
that tuning only the linear projections already performs well.
However, a key limitation of tuning only the linear pro-
jection matrices remains: such tuning lacks the expressive
power to affect the state matrix A, which is an essential
parameter for sequence-to-sequence operations. Therefore,
tuning the SSM modules is still necessary. Existing PEFT
methods fall short in effectively tuning SSM modules: (i)
alternative methods underperform compared to LoRA⋆ on
SSM modules, and (ii) applying LoRA⋆ to SSM modules
does not improve performance beyond applying it to lin-
ear projections alone. These findings highlight a gap in
current PEFT techniques for SSM modules, leading to an
importantca question: Is there a more effective strategy for
fine-tuning SSM modules?

5. Sparse Dimension Tuning
This section aims to develop an algorithm for tuning SSM
modules. In doing so, we start by first analyzing the roles
of different parameters, as outlined in Lemma 2. This analy-
sis motivates us to classify channels and state dimensions
into three categories: (i) zero, (ii) trainable, and (iii) frozen,
leading to the development of the Sparse Dimension Tuning
and Pruning (SDT-P) method. We then establish theoret-
ical guarantees for applying SDT-P to SSM modules and
LoRA to linear projection matrices (Theorem 1). Finally,
we simplify SDT-P into Sparse Dimension Tuning (SDT) by
omitting pruning, as pruned parameters can be effectively
considered as being trained to zero. This simplified version
serves as the primary method used in our experiments.

5.1. Understanding Key Parameters in S4 Modules

Problem Setting. Inspired by the work by Zeng & Lee
(2024), we analyze the expressive power of S4 parameters
using a similar framework. We assume a well-performing
target model and a frozen model (pretrained or random) and
aim to update the frozen model efficiently to match the target.
Following Zeng & Lee (2024), we assume the frozen model
has a capacity at least as large as the target model. This
assumption ensures analytical tractability and is reasonable,
as frozen models are typically overparameterized in practice.
Both models are S4 with hidden dimensions H⋆ (target) and
H ≥ H⋆ (frozen). Assuming all hidden dimensions are
active (i.e., all parameters are non-zero), we define their
dynamics using discretized parameters (A,B,C):

(Target model) f⋆(x)n =
∑n

m=1
C⋆A

m−n

⋆ B⋆xm,

(Frozen model) f0(x)n =
∑n

m=1
C0A

m−n

0 B0xm,

where diag(A⋆),B⋆,C⋆ ∈ RH⋆ , diag(A0),B0,C0 ∈
RH . This formulation shows that the S4 module remains
unchanged even if the state dimensions are permuted.
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Parameter Efficiency Analysis on S4. We analyze the
parameter efficiency of updating a frozen S4 module after
discretizing its parameters (A0,B0,C0) to match the func-
tionality of a target S4 module with discretized parameters
(A⋆,B⋆,C⋆). Based on this setup, we present the follow-
ing result characterizing the minimum number of parameters
that must be tuned for functional equivalence.

Lemma 2 (Minimal Parameter Adjustment for S4 Fine-Tun-
ing). Assume all hidden dimensions of the target model f⋆

are non-zero, i.e., all elements of diag(A⋆)⊙B⋆ ⊙C⋆ are
non-zero. To update frozen model f0 such that it becomes
functionally equivalent to the target model f⋆, the minimum
number of tunable parameters is:

min
A,B,C

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[diag(A)⊙B ⊙C⊤]
(H⋆+1):H

∥∥∥
0

+

aligning remaining dimensions with target model︷ ︸︸ ︷∥∥∥[A]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0
+
∥∥∥[B ⊙C⊤]

1:H⋆
−B⋆ ⊙C⊤

⋆

∥∥∥
0
,

(5)

subject to

(A,B,C) ∈ {(P⊤A0P ,P⊤B0,C0P ) : P is a permutation matrix}.

Note that the search space consists of all possible S4 param-
eterizations that can be obtained by permuting the hidden
dimensions of the frozen model. Proofs and further details
are provided in Sec. D.1. This result highlights three dis-
tinct roles of the state dimensions. First, any dimensions
that do not contribute to the target function (represented by
the first term in (5)) are effectively zero and can be pruned.
These correspond to state dimensions larger than those of
the target model after permutation, indicating that redundant
information can be directly removed to eliminate its impact.
Second, among the remaining dimensions, alignment is nec-
essary for those that do not already match the target. The
state matrix A plays a crucial role in sequence modeling
by capturing dependencies between tokens at different po-
sitions. To achieve functional equivalence (as represented
by the second term in (5)), A must be aligned. Notably,
dimensions that are already aligned with the target require
no updates. These two insights motivate our Sparse Dimen-
sion Tuning and Pruning (SDT-P) method, which classifies
hidden dimensions into three categories: (i) zero, (ii) frozen
(already aligned), and (iii) trainable. Finally, the third term
in (5) indicates that the expressive power of B and C is
essentially equivalent, meaning that tuning either one is
equivalent to updating both.

5.2. Sparse Dimension Tuning and Pruning (SDT-P)

Building on Lemma 2, we introduce SDT-P, the precursor
to Sparse Dimension Tuning (SDT). SDT-P updates param-
eters selectively based on the role of each state dimension.
In the multi-channel case, we first categorize the channel

dimensions into three groups: pruned, frozen, and trainable.
Then, the state dimensions of each trainable channel are
also categorized as pruned, frozen, or trainable. This hi-
erarchical selection ensures that updates are applied only
when necessary, while pruned dimensions are discarded and
frozen dimensions remain unchanged.

Dimension Selection Algorithm. To enable this struc-
tured tuning process, we first introduce our dimension selec-
tion algorithm. The algorithm starts with a warmup epoch,
where the SSM modules are updated using a subset of the
dataset for one epoch. After this warmup, we classify chan-
nel dimensions based on the magnitude of the state matrix
A: dimensions with small magnitude are pruned (set to
zero), those with significant changes are marked as train-
able, and the rest remain frozen. Next, we apply the same
classification to state dimensions, but only within the train-
able channels. The detailed pseudo-code is in Sec. D.4.

Parameter Update Scheme. Once the channel and state
dimensions are selected, we determine how to update the
parameters. (S4) For S4, Gu et al. (2022a) showed that
tuning C alone is as effective as tuning both B and C.
Therefore, we always freeze B and update only A and C.
Specifically, an entry in A or C is trainable if and only
if both its channel and state dimensions are trainable. If
either the channel or state dimension is pruned, the entry
is pruned as well. All other entries remain frozen. (S6)
For S6, where parameters are input-dependent, we update
A,WB , and WC instead. Since WB and WC operate
across channels, we categorize their updates based only
on channel dimensions—we do not update individual state
dimensions differently for each channel. Based on this
categorization, we mark the corresponding columns of WB

and WC as trainable, frozen, or pruned accordingly.

The dimension selection algorithm and parameter updates
together form the SDT-P method for tuning SSM modules.
Next, we provide theoretical guarantees for applying SDT-P
to SSM modules and LoRA⋆ to linear projection matrices.

5.3. Expressive Power of SDT-P Combined with LoRA

Our analysis focuses on simplified SSM-based models,
where each layer consists of an SSM module followed by
linear projection matrices with residual connections. We
refer to this structure as a deep SSM layer: i) a deep S4 layer
consists of an S4 module followed by linear projections; ii) a
deep S6 layer follows the same structure but replace S4 with
S6. A deep S4 model is composed of deep S4 layers, while
a deep S6 model consists of deep S6 layers. The detailed
formulation of deep S4 layers is provided in Sec. 3, and a
deep S6 layer follows the same structure with S4 replaced
by S6. The following theorem highlights the expressive
power of SDT-P on updating SSM modules, where each
layer uses a single type of SSM module (S4 or S6) followed
by linear projections.
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Theorem 1 (Expressive Power of SDT-P with LoRA on
Simplified SSM-based Models). Assume all layers use lin-
ear activations. Let f0 be a frozen deep S4 or S6 model with
L layers, each containing H hidden states per channel. Let
f⋆ be a smaller target model of the same type (S4 or S6),
with no residual connections, L⋆ < L layers, and H⋆ < H
hidden states per channel. Then, there exists a set of param-
eter updates to f0 satisfying the following conditions such
that for any finite-length input sequence X = (x1, . . . ,xN )
with xn ∈ X ⊂ RD, where X is bounded, the resulting
model f satisfies f(X) = f⋆(X):

1. (SDT-P on SSM) In each SSM module, update at most
⌈DL⋆/L⌉ channels. Within each updated channel, fine-
tune at most H⋆ hidden states and set the rest to zero.

2. (LoRA⋆ on Linear Projections) Apply rank-⌈L/L⋆⌉ up-
dates to each linear projection matrix.

3. (Minimal Additional Updates) Update only the residual
connections, per-layer biases, and the final-layer output
projection matrix.

For proof and details, refer to Sec. D.2 and D.3. This theo-
rem shows that a larger pretrained model can be fine-tuned
into any smaller model of the same architecture by applying
SDT-P to SSM modules and LoRA⋆ to linear projection
matrices. Moreover, for less complex tasks, where the target
model has fewer layers (L⋆) and hidden states (H⋆), the re-
quired number of trainable channels and hidden states also
decreases. This aligns with the theoretical analysis of LoRA
by Zeng & Lee (2024), which demonstrates that larger pre-
trained models require fewer learnable parameters (i.e., a
lower-rank update) during fine-tuning, especially for sim-
pler tasks. While our theorem assumes linear activations,
no residual connections in the target model, and full fine-
tuning of the last-layer projection matrix, our findings have
broader implications. As our experimental results in Sec. 6
will show, these insights generalize beyond these theoretical
constraints.

Algorithm 1 Dimension Selection Algorithm of SDT
Input: A small subset of dataset D, warmup epochs E,

number of layers L, total channels D, total states H ,
channel freeze ratio α, state freeze ratio β

/* Warmup epochs */
Perform full update on SSM modules using D for E epochs
for l = 1 to L do
/* Unfreeze dimensions */

Sort channels D based on changes of ∥A(d)∥
Freeze the bottom β|D| channels, denoted by D′

for d ∈ D′ do
Sort state dimensions by the changes in ∥A(d)∥
Freeze the bottom α|H| state dimensions at the d-th
channel

5.4. Sparse Dimension Tuning (SDT): A Pruning-Free
Alternative

While SDT-P classifies channels and states into three cate-
gories, we simplify our approach by omitting pruning and
categorizing parameters as either trainable or frozen. We
refer to this simplified method as Sparse Dimension Tun-
ing (SDT). This reduces the number of hyperparameters,
as pruned parameters are effectively equivalent to being
trained to zero. The resulting dimension selection approach
is outlined in the pseudo-code (Alg. 1), which corresponds
to the update scheme illustrated in Fig. 1. Experiments will
show that this simplification remains effective.

Overhead Analysis. We assess the computational over-
head of applying SDT with LoRA (for linear projection
matrices) versus LoRA alone with Table 2 summarizing the
results. Although SDT involves an additional dimension
selection stage, Table 2 shows that this incurs minimal extra
cost. Furthermore, with the same parameter budget, SDT for
SSM modules combined with LoRA on linear projections
runs faster than LoRA alone, since LoRA introduces extra
matrix multiplications between two low-rank matrices for
the SSM modules, whereas SDT does not. In Sec. D.6, we
detail the experimental settings and present a memory us-
age analysis showing that SDT also consumes less memory
during fine-tuning for the same reason.

Stage Method Mamba-130M Mamba-1.4B Jamba-Mini-52B

Dim. Selection LoRA & SDT 16.5 ± 3.9 85.8 ± 5.3 163.9 ± 10.2

Training
(per epoch)

LoRA 410.0 ± 80.0 2060.0 ± 135.0 3427.5 ± 185.0
LoRA & SDT 330.0 ± 77.5 1697.5 ± 87.5 3065.0 ± 232.5

Table 2. PEFT combining SDT with LoRA is more efficient
than LoRA alone when the same number of trainable param-
eters are used. Shown are dimension selection and per-epoch
training times (s) for Mamba and Jamba models.

6. Experimental Studies of SDT
In this section, we evaluate the performance of SDT in
tuning SSM modules, comparing it to LoRA⋆, the best
existing PEFT method for fine-tuning SSM modules, as
shown in Sec. 4. Our experiments reveal the key result:

Finding: SDT outperforms LoRA⋆ on SSM modules.

6.1. Synthetic Experiments on Deep S4 Models

This experiment validates our theoretical guarantees un-
der broader conditions, including residual connections and
ReLU activations in both models, without fully fine-tuning
the last-layer projection matrix. See Sec. E.1 for details.

(Experimental Setup) We employ a regression setting
to validate our theoretical results. We randomly ini-
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tialize two models: a one-layer deep S4 model as the
target and a four-layer deep S4 model as the frozen
model. LoRA is applied to linear projection matrices,
while different methods are tested on the SSM module
to assess their effectiveness. The goal is to update the
frozen model to match the target model’s functionality.

20 40
1

2

M
SE

Frozen
LoRA
SDT

# Trainable Parameters (%)

Figure 2. SDT surpasses LoRA
in tuning S4 within deep S4 mod-
els when LoRA is applied to lin-
ear projection matrices in syn-
thetic experiments.

We generate an input se-
quence X of length 200
and dimension 64, with
values uniformly drawn
from integers between 0
and 9. This input is
then processed through
the target model to obtain
the corresponding out-
puts. These input-output
pairs are used to train the
frozen model over 500 it-
erations using the Mean Squared Error (MSE) loss. (Re-
sults) Figure 2 shows the MSE, averaged across all tokens,
plotted against the number of trainable parameters for differ-
ent methods on SSM modules. SDT achieves significantly
lower MSE than LoRA on SSM modules, demonstrating its
effectiveness in updating SSM modules.

6.2. Real-World Experiments on Pretrained Models

Lastly, we conduct experiments to evaluate our approach on
pretrained models, including Mamba and Jamba with differ-
ent model sizes. We consider five datasets: GLUE, DART,
SAMSum, Spider, and CelebA. For these experiments, we
split the datasets into three parts: train, validation, and test,
different from benchmarking experiments. We combine our
proposed SDT with LoRA⋆ and evaluate it in three different
settings against three pure LoRA⋆ settings. In SDT, 99%
of channels are frozen, and we adjust state freeze ratios.
For the pure LoRA⋆ settings, we apply LoRA⋆ to different
parameter sets, selecting ranks to ensure all settings have a
comparable parameter budget for fair comparison. Residual
connections and biases are frozen and learning rates are
independently selected via a small grid search over data
subsets. See Sec. E.2 for further details.

Mamba. The experimental results of Mamba are reported
in Table 3, showing that applying SDT on SSM modules
outperforms pure LoRA⋆, even when 99% of the channels
are frozen. This underscores the effectiveness of SDT on
fine-tuning SSM modules.

Jamba. We extend our experiments to Jamba, applying
all tested methods exclusively to its Mamba layers. No-
tably, the performance gain on Jamba is smaller compared
to Mamba. This is because we freeze all Transformer layers
to isolate the effect of Mamba layers for a fair evaluation.
Additionally, since the Mamba layers in Jamba contain sig-

LinProj S6 GLUE DART CelebA SAMSum Spider
Avg. BLEU MET. Acc. R1 R2 RL Acc.

LoRA
LoRA 80.8 51.0 70.2 88.6 51.6 28.2 43.2 83.5

SDT 81.1 51.5 70.5 88.6 51.7 28.1 43.4 84.5

DoRA
DoRA 80.1 51.2 70.4 88.4 51.8 28.0 43.4 83.8

SDT 78.2 51.5 70.8 88.6 52.1 28.3 43.7 85.1

Table 3. Performance comparison between SDT and LoRA on
pretrained Mamba models. Bold numbers indicate the best per-
formance for each task. We use Mamba-130M to compare the
performance of SDT and LoRA on GLUE (Wang et al., 2019),
DART (Nan et al., 2021), and CelebA (Liu et al., 2015) bench-
marks. For all other datasets, we employ Mamba-1.4B. We report
only the best setting out of three for each method. We observe that
SDT outperforms LoRA⋆ on updating SSM modules on Mamba.

nificantly fewer parameters than those in the Mamba model,
fine-tuning them yields limited performance improvements.
Nevertheless, results on GLUE (Table 4) validate the effec-
tiveness of our method. See Table 22 for more results.

LinProj S6 RTE MRPC CoLA SST-2 QNLI QQP MNLI Avg.

DoRA
DoRA 65.7 77.8 7.1 93.9 77.8 67.8 85.4 67.9

SDT 67.1 77.5 7.5 94.2 79.6 72.7 85.5 69.2

Table 4. Performance comparison between SDT and DoRA on
pretrained Jamba models. Bold numbers indicate the best per-
formance for each task. We use Jamba-Tiny-319M to compare the
performance of SDT and DoRA on the GLUE (Wang et al., 2019)
benchmark. We report only the best setting out of three for each
method. We observe that SDT outperforms DoRA on updating
SSM modules on Jamba.

7. Discussion
In this paper, we study PEFT methods applied to SSM-based
models. Our evaluation of existing PEFT methods provides
valuable insights and guidelines for future researchers to
parameter-efficiently fine-tune SSM-based models for other
domains. Moreover, we take an initial step in establishing a
theoretical framework for studying PEFT methods on SSM-
based models. Additionally, we introduce SDT, a PEFT
method specifically tailored to SSM modules, demonstrating
superior performance compared to existing approaches.

Limitations & Future Works. The theoretical guaran-
tees for SDT are restricted to linear activations and require
full fine-tuning of the last layer. Nonetheless, our exper-
iments show that SDT performs well in practice despite
these constraints. Addressing these theoretical limitations
or developing new PEFT methods applicable to broader
scenarios is a promising future direction. Additionally, our
theory shows that modifying a subset of channels and states
is sufficient but does not guide optimal selection. Our ap-
proach, based on a warmup stage and parameter magnitude,
might not be optimal. Future research could explore the
impact of channel/state selection and improve dimension
selection algorithms.
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A. Additional Related Works
A.1. Additional Related Works on SSMs

Linear State-Space Layers (LSSL) represent one of the earliest SSM layers utilized in deep learning, functioning as
continuous-time, recurrent, and convolutional models (Gu et al., 2021). LSSL employs HiPPO theory (Gu et al., 2020) to
initialize the state matrix A, enabling the capture of long dependencies. However, LSSL is computationally expensive,
limiting its practical application. Gu et al. (2022b) introduced Structured State Space Models (S4), which optimize
computation efficiency by employing a structured state matrix A. Gupta et al. (2022) proposed DSS, which simplifies the
model by using a diagonal matrix for A and empirically demonstrated that it suffices to achieve performance comparable to
S4. Further, Gu et al. (2022a) provided a theoretical explanation for the effectiveness of the diagonal state matrix A in DSS
and introduced S4D, which offers various initialization methods for A. Subsequently, the diagonal structure of the state
matrix A has been adopted in follow-up methods (Gu & Dao, 2024). Despite differences in optimization algorithms, we
refer to S4 and its close variants, including DSS and S4D, collectively as S4. This terminology encompasses models that
maintain the standard discrete-time SSM form with a diagonal state matrix.

Despite of the remarkable performance of SSMs on certain tasks of sequence modeling, SSMs still showed worse perfor-
mance than Transformers on language modeling. Fu et al. (2022) transitioned from synthetic language modeling tasks to
real language modeling tasks with SSMs. They proposed H3, which is inspired by Linear Attention (Katharopoulos et al.,
2020), introducing both diagonal SSM and shift SSM. Recently, Mamba (Gu & Dao, 2024; Dao & Gu, 2024) escaped
from linear time invariance (LTI) modeling by introducing input-dependent terms and achieved better performance than
Transformers on language modeling. Furthermore, several hybrid models (Lieber et al., 2025; Park et al., 2024) tried to
exploit the advantages of both SSMs and Transformers.

A.2. Additional Related Works on PEFT

In this section, we provide a more detailed description of the baseline methods.

LoRA (Hu et al., 2021). LoRA (Low-Rank Adaptation) focuses on fine-tuning large models by freezing pretrained
parameters and injecting trainable low-rank matrices into each layer of the Transformer architecture. The intuition behind
using low-rank matrices comes from linear algebra, where a large matrix can be closely approximated by the product of two
smaller matrices. The number of trainable parameters can be controlled with the rank of the low-rank matrices. LoRA also
uses a scaling parameter (LoRA alpha) for the weight matrices to control the balance of the original model weights and
LoRA weights during training. After fine-tuning, LoRA weights can be merged with the original model weights, introducing
no additional inference overhead.

Prompt Tuning (Lester et al., 2021). Prompt tuning freezes all model weights and prepends a trainable soft prompt to the
input prompt. The soft prompt consists of trainable virtual tokens, which are continuous. At inference time, prompt tuning
introduces an inference overhead based on the number of virtual tokens used.

Prefix-Tuning (Li & Liang, 2021). Prefix-tuning also prepends trainable tokens to the input like prompt tuning but injects
separate prefixes in every layer. For each Transformer layer, prefix-tuning prepends trainable embeddings to the attention’s
K and V matrix. The authors have found that directly training these prefixes can lead to unstable training, so they propose
to over-parameterize them with a large MLP to increase training stability. After training, the MLP can be dropped. Like
prompt tuning, prefix-tuning introduces an inference overhead, scaling with the number of trainable embeddings.

BitFit (Zaken et al., 2022). BitFit is a simple but effective PEFT method that freezes all model weights except the
bias terms, consequently greatly reducing the number of trainable parameters. As no additional parameters are added, no
inference overhead occurs.

Theoretical Understanding of PEFT. Numerous efforts have been made to theoretically understand existing PEFT
methods. For input-injection methods, Wang et al. (2023b), Petrov et al. (2024), and Oymak et al. (2023) have theoretically
analyzed the effectiveness and limitations of prompt tuning and prefix-tuning for Transformer-based models. For LoRA,
Zeng & Lee (2024) explored its expressive power by demonstrating that even a randomly initialized model can be adapted
to match any smaller target model using LoRA. Some of our theoretical analysis draws upon the framework established by
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Zeng & Lee (2024). Jang et al. (2024) conducted a theoretical exploration of LoRA within the neural tangent kernel (NTK)
regime.

B. Details of Datasets
In this paper, we consider six datasets across three domains: (i) Natural Language Understanding (NLU), represented by
GLUE (Wang et al., 2019); (ii) Natural Language Generation (NLG), including SAMSum (Gliwa et al., 2019), Spider (Yu
et al., 2018) and DART (Nan et al., 2021); and (iii) Computer Vision (CV), represented by CIFAR-10 (Krizhevsky et al.,
2009) and CelebA (Liu et al., 2015).

GLUE (Wang et al., 2019). The GLUE (General Language Understanding Evaluation) benchmark is a collection of
datasets used for training, evaluating, and analyzing natural language understanding models across a range of diverse tasks.
The benchmark includes nine sentence- or sentence-pair language understanding tasks that require various features of
understanding, such as sentiment analysis, linguistic acceptability, semantic textual similarity, and question answering. We
use seven datasets from the GLUE benchmark (RTE, MRPC, CoLA, SST-2, QNLI, QQP, MNLI) where the model has to
choose between two or three (for MNLI) different choices for the respective task. Except for CoLA, we evaluate all used
datasets with the accuracy metric. For CoLA, Matthews correlation is employed.

SAMSum (Gliwa et al., 2019). SAMSum is a dataset for dialogue summarization research, comprising approximately
16,000 synthetic text conversations with accompanying summaries. Created by English-fluent linguists, these exchanges
simulate real-world digital communications across various topics and styles. The conversations range from informal to
formal, incorporating elements like slang and emoticons to reflect authentic messaging patterns. Each dialogue is paired
with a concise, third-person summary, capturing its essential content. This structure makes SAMSum particularly useful for
developing and evaluating automated summarization systems capable of processing conversational text.

Spider (Yu et al., 2018). Spider is a large-scale, complex, and cross-domain semantic parsing and text-to-SQL dataset.
It contains about 10,000 annotated SQL queries, distributed across 200+ databases, each with multiple tables. We follow
Scholak et al. (2021) and use about 7,000 examples for training and about 1,000 examples for validation, where we ignore
sequences longer than 1536 tokens. The dataset consists of English question and SQL query pairs, which cover a wide
range of SQL operations including SELECT, WHERE, COUNT, GROUP BY, ORDER BY, JOIN, and more. Given an
English question and an SQL database scheme, the task for the model is to translate the English question into an appropriate
SQL statement. Evaluation is performed via accuracy where the output is considered as correct if the model’s predicted
SQL query and the included GT SQL query give the same result when executed on the database. The dataset additionally
categorizes each query into easy (25%), medium (40%), hard (20%), and extra hard (15%) based on the complexity of the
required SQL statement. For evaluation, we report the execution accuracy of all categories.

DART (Nan et al., 2021). The DART (DAta Record to Text) benchmark is a large-scale, structured dataset designed
for RDF-to-text (Resource Description Framework-to-text) generation with 80,000+ instances. The DART benchmark is
composed of a collection of structured data triples and corresponding text summaries which are organized into different
categories. The task of the DART benchmark is to generate natural language summaries that correctly represent the given
structured data inputs. DART is typically evaluated with METEOR and BLEU.

CIFAR-10 (Krizhevsky et al., 2009). The CIFAR-10 (Canadian Institute For Advanced Research) dataset is a collection
of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely
used datasets for image classification. The CIFAR-10 dataset contains 60,000 (50,000 for training, 10,000 for validation)
32×32 color images in 10 different classes. The 10 different classes are: airplane, car, bird, cat, deer, dog, frog, horse,
ship, and truck. There are 6,000 images of each class. For training, we center crop each image to 24×24 pixels and flatten
each image to a string, with a total of 24×24×3 words, where each word is a number between 0-255 representing the
respective pixel value. Although CIFAR-10 is a dataset for computer vision, previous work (Dinh et al., 2022) showed that
Transformers can be adapted to the vision domain from the language domain. In our work, we extend this investigation to
SSMs, examining their ability to perform on vision data.

CelebA (Liu et al., 2015). The CelebA (CelebFaces Attributes) dataset is an extensive collection of more than 200,000
celebrity images, each tagged with 40 attributes. This dataset is notable for its diversity, volume, and comprehensive
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Dataset Size (Train) Size (Val) Size (Test) Max. seq. len. #Epochs Mamba Size Jamba Size Metrics

GLUE

RTE 1992 498 277 291 10 130M 319M Accuracy

MRPC 2934 734 408 105 10 130M 319M Accuracy

CoLA 6840 1711 1043 47 10 130M 319M Matthews corr.

SST-2 53879 13470 872 68 10 130M 319M Accuracy

QNLI 83794 20949 5463 602 10 130M 319M Accuracy

QQP 291076 72770 40430 316 3 130M 319M Accuracy

MNLI 314161 78541 19647 425 3 130M 319M Accuracy

Spider 5543 1375 1034 1412 10 1.4B, 2.8B 52B Accuracy

SAMSum 14732 818 819 1174 10 1.4B 52B ROUGE

DART 62659 2768 5097 491 10 130M 52B METEOR, BLEU

CIFAR-10 40000 10000 10000 1730 5 130M 319M Accuracy

CelebA 162770 19867 19962 12614 3 130M 319M Accuracy

Table 5. Datasets and models for our experiments. For each dataset, we report the number of training, validation, and test samples,
maximum sequence length, training epochs, model size, and evaluation metric used.

annotations, encompassing 10,177 distinct identities, 202,599 facial images, and annotations of five landmark points with 40
binary attributes per image. The dataset, which includes images with varied poses and complex backgrounds, is an essential
resource for tasks in computer vision such as face recognition, attribute analysis, and detection, as well as facial landmark
localization, and it offers significant utility in face editing and synthesis.

The dataset characteristics, including our train, validation and test set sizes, sequence lengths, and number of epochs, are
summarized in Table 5.

C. Details of Sec. 4: Benchmarking PEFT Methods on SSM-based Models
In this section, we provide a comprehensive experimental setup, proofs and further discussion of theoretical results, and
more detailed experimental outcomes.

C.1. Experiment Setup

For each dataset, we choose the model size depending on how challenging the dataset is and perform a small grid search for
one epoch on a subset of the data (1k-2k instances) with learning rates {4× 10−1, 2× 10−1, 1× 10−1, ..., 1× 10−5} to
find the optimal learning rate of each PEFT method. We only report the validation metric of the best epoch during training
(early stopping) in our results. We fine-tune pretrained Mamba and Jamba models with AdamW with a linear learning rate
decay schedule. For LoRA we set rank to 8, alpha to 8, and dropout to 0.1 for all experiments. For evaluating NLG tasks,
we employ beam search with five beams and a maximum beam length of 1024.

C.2. Extended Results on Benchmarking Existing PEFT Methods

Mamba-I. We present comprehensive fine-tuning results for the GLUE benchmark (Wang et al., 2019), DART dataset (Nan
et al., 2021), SAMSum dataset (Gliwa et al., 2019), Spider dataset (Yu et al., 2018), and CIFAR-10 (Krizhevsky et al.,
2009) in Table 6, Table 7, Table 8, Table 9, and Table 10 respectively. These experimental results encompass various LoRA
implementations (on different weight matrices and modules) and provide more fine-grained results across all subtasks.

Mamba-II. Table 11 and Table 12 present the benchmark results of LoRA and full fine-tuning across different layers of
Mamba-II. We follow the same experimental setup used for Mamba-I and demonstrate that, on Mamba-II, our conclusion
holds: LoRA is more effective on linear projection layers than on SSM modules.
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Jamba. Table 13 presents the benchmark results of LoRA and full fine-tuning across different layers of Jamba. Our
findings demonstrate that, on Jamba, LoRA is more effective on linear projection layers than on SSM modules, which aligns
with our conclusion on Mamba.

Layer Method # Params (%) RTE MRPC CoLA SST-2 QNLI QQP MNLI Avg.

Pretrained 0.00 46.9 67.9 0.0 52.4 50.5 36.8 32.3 41.0

All All Full 100.00 71.1 80.6 63.2 92.2 87.4 87.9 80.8 80.5
LoRA 1.92 69.9 80.9 61.4 91.9 88.4 87.6 81.1 80.2

Prompt
Prompt Tuning 16 tokens 0.01 56.0 71.6 12.0 89.4 76.8 79.6 61.5 63.8

Prefix-Tuning 1 token (no MLP) 0.03 67.5 75.7 43.4 91.5 83.4 83.1 35.6 68.6

Bias β∆,Conv1d BitFit 0.06 69.5 80.4 54.7 92.0 86.2 85.3 77.2 77.9

Linear Projection Matrices

All LoRA 1.02 70.0 82.4 57.7 93.3 88.7 88.7 82.5 80.5

Win,x LoRA 0.34 70.4 82.1 57.4 91.7 88.3 87.7 81.2 79.8

Win,z LoRA 0.34 70.0 82.4 58.1 92.4 87.3 87.3 80.4 79.7

Win,x,Win,z LoRA 0.68 70.4 84.3 62.4 92.5 88.6 88.3 81.7 81.2

Wout LoRA 0.34 70.4 82.8 60.6 92.4 88.4 87.7 81.5 80.5

S6

All Full 4.31 69.7 78.9 59.1 91.5 88.1 87.5 80.5 79.3
LoRA 0.92 66.1 78.7 57.8 90.8 87.8 86.9 79.8 78.3

A Full 0.46 68.2 82.1 54.2 90.9 86.4 87.9 79.4 78.4

WB,WC ,W∆,↓
Full 2.28 69.7 77.0 55.8 91.4 85.4 85.0 76.8 77.3
LoRA 0.69 67.9 78.9 48.8 91.4 86.9 85.8 78.6 76.9

W∆,↑
Full 1.40 66.1 75.2 56.7 91.1 86.2 87.1 78.5 77.3
LoRA 0.23 67.1 79.9 55.1 90.9 52.7 86.6 78.7 73.0

Conv1d Full 0.14 68.2 78.4 57.9 91.1 86.0 86.0 78.0 77.9

Others D,LayerNorm Full 0.04 65.3 79.2 40.3 91.1 83.9 86.0 67.0 73.3

Table 6. Full benchmark results on the GLUE (Wang et al., 2019) benchmark using Mamba-I 130M. We report accuracy (↑) for
RTE, MRPC, SST-2, QNLI, QQP, and MNLI tasks. CoLA performance is measured using Matthews Correlation Coefficient (↑). In each
Mamba block, Win,x and Win,z are input projections that preprocess the input for the SSM modules and the gating branch, respectively.
Wout denotes the output projection after the gating mechanism. WB and WC are weight matrices for computing input-dependent Bn

and Cn. W∆,↓ and W∆,↑ represent down and up projections of low-rank weight matrices in the linear layer computing input-dependent
step size ∆n. β∆ represents the bias in this linear layer. D denotes the weight of residual connections.

C.3. Limitations of Applying Input-injection Methods on SSMs

We start by introducing the necessary notations. Denote the space of S4 mechanisms with D channels as FS4,D. Let
H0 = (h

(1)
0 ,h

(2)
0 , . . . ,h

(D)
0 ) ∈ RH×D represent the initial hidden state, and X = (x1,x2, . . . ,xN ) ∈ RD×N denote the

input sequence. The output of the S4 mechanism is represented as f(X;H0). Furthermore, for d-th channel, let state

transition matrix A
(d)

= diag (a
(d)
1 , · · · , a(d)H ) and input transition vector B

(d)
= (b1, · · · , bH)⊤, where d = 1, . . . , D.

For any vector v ∈ Rn, we use vi:j ∈ Rj−i to denote the subvector of v containing elements from i ∈ N+ to j ∈ N+,
where i < j. Similarly, for any matrix M ∈ Rm×n, we use Mi1:j1,i2:j2 to denote the submatrix containing rows i1 ∈ N+

to j1 ∈ N+ and columns i2 ∈ N+ to j2 ∈ N+, where i1 < j1, i2 < j2.

Proposition 1 (Expressivity of Prefix-Tuning on SSMs). Let f ∈ FS4,D be an S4 mechanism. Consider prefix-tuning that
prepends a sequence P = (p1, . . . ,pM ) ∈ RD×M to the input sequence X = (x1,x2, . . . ,xN ) ∈ RD×N . For any prefix
P ∈ RD×M , there exists an initial hidden state H⋆

0 ∈ RH×D such that the output of S4 after prefix-tuning and that after
initial state tuning are identical, i.e., f(X;H⋆

0 ) ≡ f([P ,X];H0)1:D,M+1:M+N for all X ∈ RD×N .

Furthermore, assume that
∏

0≤i<j≤H(a
(d)
j − a

(d)
i ) ̸= 0 and

∏H
k=1 b

(d)
k ̸= 0 for all channels d = 1, . . . , D. Then the

converse (i.e., for any H0 ∈ RH×D, there exists a P ⋆ ∈ RD×M such that f([P ⋆,X];H0)1:D,M+1:M+N ≡ f(X;H⋆
0 )

for all X ∈ RD×N ) holds if and only if M ≥ H .

Proof of Proposition 1. Given that operations in S4 are independent across all channels, we can, without loss of generality,
consider the case where the number of channels D = 1. Consequently, we can simplify our notation: the initial hidden states
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Layer Method # Params (%) METEOR BLEU

All All
Full 100.00 71.0 51.8
LoRA 1.92 71.0 49.5
DoRA 2.02 70.9 51.4

Prompt
Prompt Tuning 64 tokens 0.04 66.2 39.8

Prefix-Tuning 64 tokens 22.69 66.6 42.5

Bias β∆,Conv1d BitFit 0.06 67.0 43.7

Linear Projection Matrices

All LoRA 1.02 71.2 49.2
DoRA 1.09 71.2 50.8

Win,x
LoRA 0.34 70.3 48.9
DoRA 0.37 70.8 49.9

Win,z
LoRA 0.34 70.4 49.1
DoRA 0.37 70.2 48.3

Win,x,Win,z
LoRA 0.68 70.9 49.5
DoRA 0.74 70.7 51.6

Wout
LoRA 0.34 70.7 47.0
DoRA 0.36 70.7 46.0

S6

All
Full 4.31 70.3 48.7
LoRA 0.92 69.9 50.8
DoRA 0.95 70.2 50.0

A Full 0.46 69.3 48.1

WB,WC ,W∆,↓

Full 2.28 70.1 50.0
LoRA 0.69 68.8 48.0
DoRA 0.69 68.3 47.3

W∆,↑

Full 1.40 69.6 47.2
LoRA 0.23 68.9 47.0
DoRA 0.26 68.4 46.3

Conv1d Full 0.14 68.6 47.9

Others D,LayerNorm Full 0.04 67.0 44.2

Table 7. Full benchmark results on the DART (Nan et al., 2021) benchmark using Mamba-I 130M. We report METEOR (↑) and
BLEU (↑) scores. In each Mamba block, Win,x and Win,z are input projections that preprocess the input for SSM modules and the gating
branch, respectively. Wout denotes the output projection after the gating mechanism. WB and WC are weight matrices for computing
input-dependent Bn and Cn. W∆,↓ and W∆,↑ represent down and up projections of low-rank weight matrices in the linear layer
computing input-dependent step size ∆n. β∆ represents the bias in this linear layer. D denotes the weight of residual connections.

Layer Method # Params (%) R1 R2 RL

All All Full 100.00 51.2 27.3 42.9
LoRA 0.97 50.8 26.6 42.7

Prompt
Prompt Tuning 64 tokens 0.01 50.1 25.6 41.6

Prefix-Tuning 64 tokens 12.81 50.6 26.5 42.1

Bias β∆,Conv1d BitFit 0.03 50.3 25.7 41.9

Linear Projection Matrices

All LoRA 0.51 50.8 26.9 42.8

Win,x LoRA 0.17 49.8 25.4 41.2

Win,z LoRA 0.17 50.0 26.1 41.7

Win,x,Win,z LoRA 0.34 50.9 27.0 42.3

Wout LoRA 0.17 49.9 25.4 41.5

S6

All Full 4.46 51.1 26.9 42.2
LoRA 0.46 50.5 26.4 42.2

A Full 0.23 50.1 25.9 41.7

WB,WC ,W∆,↓
Full 2.29 50.5 26.0 41.8
LoRA 0.35 50.4 26.0 41.8

W∆,↑
Full 1.85 50.3 25.7 41.6
LoRA 0.12 50.2 25.4 41.3

Conv1d Full 0.07 50.1 25.7 41.9

Others D,LayerNorm Full 0.02 49.6 24.8 41.1

Table 8. Full benchmark results on the SAMSum (Gliwa et al., 2019) benchmark using Mamba-I 1.4B. R1, R2, and RL represent
ROUGE-1 (↑), ROUGE-2 (↑), and ROUGE-L (↑), respectively. In each Mamba block, Win,x and Win,z are input projections that
preprocess the input for SSM modules and the gating branch, respectively. Wout denotes the output projection after the gating mechanism.
WB and WC are weight matrices for computing input-dependent Bn and Cn. W∆,↓ and W∆,↑ represent down and up projections of
low-rank weight matrices in the linear layer computing input-dependent step size ∆n. β∆ represents the bias in this linear layer. D
denotes the weight of residual connections.
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Layer Method # Params (%) All Easy Medium Hard Extra

All All Full 100.00 66.2 84.3 69.5 53.4 43.4
LoRA 0.97 56.4 76.2 57.0 47.7 34.3
DoRA 1.02 55.7 77.0 57.0 47.1 29.5

Prompt
Prompt Tuning 64 tokens 0.01 43.6 65.3 42.4 33.3 25.3

Prefix-Tuning 64 tokens 12.81 39.7 65.7 38.6 31.0 15.1

Bias β∆,Conv1d BitFit 0.03 51.3 74.2 50.9 43.1 26.5

Linear Projection Matrices

All LoRA 0.51 54.7 75.0 55.6 46.0 31.3
DoRA 0.55 57.2 79.4 58.7 46.0 31.3

Win,x
LoRA 0.17 60.8 76.6 63.5 52.9 38.6
DoRA 0.19 58.4 80.2 60.1 49.4 30.7

Win,z
LoRA 0.17 46.3 68.5 45.7 36.8 24.7
DoRA 0.19 59.8 83.9 60.1 50.6 32.5

Win,x,Win,z
LoRA 0.34 57.5 77.4 58.7 45.4 37.3
DoRA 0.37 60.7 78.6 62.1 52.9 38.6

Wout
LoRA 0.17 61.8 81.9 65.2 45.4 39.8
DoRA 0.18 61.3 79.4 63.9 50.0 39.2

S6

All
Full 4.46 56.7 76.6 57.8 46.0 34.9
LoRA 0.46 56.3 75.0 56.5 50.6 33.7
DoRA 0.48 58.9 77.4 62.1 47.1 34.9

A Full 0.23 51.1 71.4 52.5 42.5 25.9

WB,WC ,W∆,↓

Full 2.29 47.2 72.2 46.9 35.6 22.9
LoRA 0.35 55.0 73.8 56.7 44.3 33.7
DoRA 0.35 55.3 78.2 57.8 41.4 28.9

W∆,↑

Full 1.85 56.8 77.0 59.4 43.7 33.1
LoRA 0.12 58.0 78.6 59.4 48.9 33.1
DoRA 0.13 55.3 76.2 59.2 42.5 27.1

Conv1d Full 0.07 53.2 74.6 52.9 43.7 31.9

Others D,LayerNorm Full 0.02 49.6 70.6 50.4 40.2 25.9

(a) Full benchmark results on Spider using Mamba-I 1.4B.
Layer Method # Params (%) All Easy Medium Hard Extra

All All Full 100.00 71.8 87.5 73.5 63.8 51.8
LoRA 0.80 70.9 90.7 74.0 58.6 45.8

Prompt
Prompt Tuning 64 tokens 0.01 50.7 75.4 53.8 37.4 19.3

Prefix-Tuning 1 token 10.82 45.1 75.0 45.1 32.2 13.9

Bias β∆,Conv1d BitFit 0.02 59.9 82.3 60.8 52.9 31.3

Linear Projection Matrices

All LoRA 0.42 58.2 74.6 58.3 51.7 40.4

Win,x LoRA 0.14 66.7 87.9 67.7 56.9 42.8

Win,z LoRA 0.14 65.4 86.7 68.8 54.6 35.5

Win,x,Win,z LoRA 0.28 65.2 89.1 67.3 51.7 38.0

Wout LoRA 0.14 67.0 87.1 69.1 52.9 46.4

S6

All Full 4.44 65.7 81.9 68.8 58.0 41.0
LoRA 0.38 63.9 86.3 68.2 49.4 34.3

A Full 0.19 56.6 77.0 58.1 46.0 33.1

WB,WC ,W∆,↓
Full 2.27 58.8 79.0 61.0 50.6 31.3
LoRA 0.29 60.3 82.7 63.0 46.6 33.7

W∆,↑
Full 1.91 62.2 82.3 65.7 51.7 33.7
LoRA 0.10 62.2 80.2 66.6 49.4 36.7

Conv1d Full 0.06 62.5 81.9 66.1 51.1 35.5

Others D,LayerNorm Full 0.02 51.0 71.0 51.1 42.5 29.5

(b) Full benchmark results on Spider using Mamba-I 2.8B.

Table 9. Full benchmark results on Spider (Yu et al., 2018) dataset using Mamba-I. We report the accuracy (↑) for Spider and its
subsets. We consider two models in our experiments: Mamba-I 1.4B and Mamba-I 2.8B. In each Mamba block, Win,x and Win,z are
input projections that preprocess the input for SSM modules and the gating branch, respectively. Wout denotes the output projection after
the gating mechanism. WB and WC are weight matrices for computing input-dependent Bn and Cn. W∆,↓ and W∆,↑ represent down
and up projections of low-rank weight matrices in the linear layer computing input-dependent step size ∆n. β∆ represents the bias in
this linear layer. D denotes the weight of residual connections.
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Layer Method # Params (%) Accuracy

Pretrained 0.00 0.08

All All Full 100.00 59.96
LoRA 1.92 60.35

Bias β∆,Conv1d BitFit 0.06 44.40

Linear Projection Matrices

All LoRA 1.02 62.79

Win,x LoRA 0.34 53.49

Win,z LoRA 0.34 58.15

Win,x,Win,z LoRA 0.68 61.04

Wout LoRA 0.34 52.04

S6

All Full 4.31 55.51
LoRA 0.92 43.96

A Full 0.46 61.21

WB,WC ,W∆,↓
Full 2.28 49.51
LoRA 0.69 52.27

W∆,↑
Full 1.40 34.54
LoRA 0.23 56.49

Conv1d Full 0.14 55.65

Others D,LayerNorm Full 0.04 58.09

Table 10. Full benchmark results on the CIFAR-10 (Krizhevsky et al., 2009) dataset using Mamba-I 130M. We report accuracy (↑).
In each Mamba block, Win,x and Win,z are input projections that preprocess the input for SSM modules and the gating branch, respectively.
Wout denotes the output projection after the gating mechanism. WB and WC are weight matrices for computing input-dependent Bn

and Cn. W∆,↓ and W∆,↑ represent down and up projections of low-rank weight matrices in the linear layer computing input-dependent
step size ∆n. β∆ represents the bias in this linear layer. D denotes the weight of residual connections.

H0 ∈ RH×D become h0 ∈ RH , the input sequence X ∈ RD×N becomes x ∈ RN , and the prefix P ∈ RD×M becomes
p ∈ RM . We omit the superscript (d) denoting the channel index. To differentiate between the hidden states and output of
prefix-tuned S4 (i.e., f([P ,X];H0)1:D,M+1:M+N ) and initial state tuned S4 (i.e., f(X;H⋆

0 )), we introduce superscripts
“PT” and “IST” respectively. The “PT” superscript denotes hidden states and output of S4 after prefix-tuning, while “IST”
indicates those after initial state tuning.

We divide the proposition into two statements:

1. For any prefix p ∈ RM , there exists an initial hidden state h⋆
0 ∈ RH such that the output of S4 after prefix-tuning and

that after initial state tuning are identical, i.e., f(x;h⋆
0) ≡ f([p,x];h0)M+1:N+M for all x ∈ RN .

2. Furthermore, assume that
∏

0≤i<j≤H(aj − ai) ̸= 0 and
∏H

k=1 bk ̸= 0. Then the converse (i.e., for any h0 ∈ RH , there
exists a p⋆ ∈ RM such that f([p⋆,x];h0)M+1:N+M ≡ f(x;h⋆

0) for all x ∈ RN ) holds if and only if M ≥ H .

We will first prove the first statement and then proceed to prove the second statement.

Statement 1. The recurrent computation formulation of S4 in (2) implies that for each position i, the output yi depends solely
on the previous hidden state hi−1 and the current input xi. Thus, to demonstrate that f(x;h⋆

0) ≡ f([p,x];h0)M+1:N+M

for all x ∈ RN , it suffices to show that the hidden state for predicting output yIST
1 equals that for predicting output yPT

M+1,
where yIST

1 and yPT
M+1 are outputs corresponding to the input x1 for initial state tuning and prefix-tuning, respectively. In

other words, it is sufficient to show that the initial state of initial-state-tuned model hIST
0 = h⋆

0 is equal to the (M + 1)-th
hidden state of prefix-tuned model hPT

M+1 =
∑M

m=1 A
M−m

Bpm. When this equality holds, the subsequent hidden states
and outputs for both versions of S4 will be identical, as the input sequence from that point onward is the same. Therefore,
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Layer Method # Params (%) METEOR BLEU

All All Full 100.00 66.6 34.9
LoRA 1.39 66.9 45.4

Linear Projection Matrices

Win,Wout LoRA 1.02 67.1 44.7

Win LoRA 0.68 67.1 43.0

Wout LoRA 0.34 66.8 42.3

S6
All Full 4.17 65.7 39.7

LoRA 0.38 64.2 40.1

WB,WC ,W∆
Full 4.00 66.0 36.2
LoRA 0.38 64.8 39.5

Table 11. Full benchmark results of LoRA on DART (Nan et al., 2021) dataset using Mamba-II 130M.

Layer Method # Params (%) All Easy Medium Hard Extra

All All Full 100.00 64.8 85.9 65.7 54.0 42.2
LoRA 0.71 64.5 81.0 66.4 56.9 42.8

Linear Projection Matrices

Win,Wout LoRA 0.52 50.4 68.5 52.0 44.8 24.7

Win LoRA 0.35 57.5 76.2 59.4 48.9 33.7

Wout LoRA 0.18 57.9 81.0 56.7 51.7 33.1

S6

All Full 2.42 55.1 76.2 56.1 42.5 34.3
LoRA 0.18 54.1 74.2 58.1 46.0 21.7

Alog Full 0.00 21.5 46.0 18.8 11.5 2.4

WB,WC ,W∆
Full 2.34 50.3 73.0 52.2 39.7 22.3
LoRA 0.18 55.5 77.4 55.2 46.6 33.1

Table 12. Full benchmark results on the Spider (Yu et al., 2018) dataset using Mamba-II 1.3B.

we prove the first statement by letting

h⋆
0 =

M∑
m=1

A
M−m

Bpm.

Statement 2. We aim to investigate the conditions under which there exists a h⋆
0 ∈ RH such that for any p ∈ RM ,

f([p⋆,x];h0)M+1:N+M ̸= f(x;h⋆
0). This is equivalent to demonstrating the existence of h⋆

0 ∈ RH such that

h⋆
0 ̸=

M∑
m=1

A
M−m

Bpm, for all p ∈ RM .

This condition can be further reformulated as

RH \ span(A
M
B,A

M−1
B, . . . ,B) ̸= ∅,

which is equivalent to
span(A

M
B,A

M−1
B, . . . ,B) ⊊ RH . (6)

To determine when this condition holds, we analyze three distinct cases: (i) M < H , (ii) M = H , and (iii) M > H .

(Case 1: When M < H). In this scenario, it is obvious that (6) holds. The existence of such a h⋆
0 is guaranteed because the

dimension of the span is at most M , which is strictly less than H . This choice of h⋆
0 ensures that it cannot be represented as

a linear combination of the vectors in the span, thereby establishing the inequality.

(Case 2: When M = H). In this scenario, span(A
M
B,A

M−1
B, . . . ,B) = RH if and only if (A

M
B,A

M−1
B, . . . ,B)

are linearly independent. Note that

det(A
M
B,A

M−1
B, . . . ,B) = det(A

M
,A

M−1
, . . . ,1)

H∏
k=1

bk, (7)
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Layer Method # Params (%) METEOR BLEU

All All Full 100.00 70.8 45.0

Attention All LoRA 0.02 63.5 19.7

MLP All LoRA 1.37 70.9 46.2

Linear Projection Matrices + S6 All LoRA 0.31 70.2 40.0

Linear Projection Matrices
Win LoRA 0.11 68.9 37.8

Wout LoRA 0.05 67.7 31.9

S6 All Full 0.54 69.2 35.5
WB,WC ,W∆,↓ LoRA 0.15 66.6 24.2

Table 13. Full benchmark results on DART (Nan et al., 2021) dataset using Jamba-Tiny-319M.

Task RTE MRPC CoLA SST-2 QNLI QQP MNLI Avg. Score

Prompt Tuning 56.0 71.6 12.0 89.4 76.8 79.6 61.5 63.8
Prefix-Tuning 69.5 75.7 43.4 91.5 83.4 83.1 35.6 68.6
Initial State Tuning 66.8 75.1 52.4 92.4 86.4 86.1 78.5 76.8

LoRA (Linear Projection Matrices) 70.4 82.8 60.6 92.4 88.4 87.7 81.5 80.5

Table 14. Comparison of prompt-tuning, prefix-tuning, initial state tuning, and LoRA on seven tasks from the GLUE benchmark.
We report Matthews correlation (↑) for CoLA, overall (matched and mismatched) accuracy (↑) for MNLI, and accuracy for other tasks.
Initial state tuning and LoRA are constrained to use less than 0.5% trainable parameters. Bold numbers indicate the best performance
across all three methods, while underlined numbers show the highest score among input-injection methods (prefix-tuning and initial state
tuning). Initial state tuning outperforms prefix-tuning and prompt-tuning on five out of seven tasks, while LoRA consistently outperforms
all input-injection methods.

where

det(A
M
,A

M−1
, . . . ,1) = det


aH−1
1 · · · a21 a1 1

aH−1
2 · · · a22 a2 1

...
. . .

...
...

...
aH−1
H · · · a2H aH 1

 (Expand)

= (−1)
H(H−1)

2

H∏
0≤i<j≤H

(aj − ai). (Vandermonde matrix) (8)

Combining (7) and (8) yields

det(A
M
B,A

M−1
B, . . . ,B) = (−1)

H(H−1)
2

H∏
0≤i<j≤H

(aj − ai)

H∏
k=1

bk.

Therefore, if and only if
∏

1≤i<j≤H(aj − ai) ̸= 0 and
∏H

k=1 bk ̸= 0, we have

det(A
M
B,A

M−1
B, . . . ,B) ̸= 0,

which is both necessary and sufficient for the linear independence of (A
M
B,A

M−1
B, . . . ,B), and consequently, for the

condition in (6) to be satisfied.

(Case 3: When M > H). The analysis presented in case 2 extends naturally to this scenario.

The combination of the three cases above completes the proof of statement 2.

C.4. Optimal Application of LoRA⋆ in SSM-based Models

Several studies (Hu et al., 2023; He et al., 2021) present findings on Transformers, indicating that applying LoRA⋆ to linear
projection matrices yields performance comparable to or marginally superior to that of attention layers. In contrast, our
experimental results on SSMs reveal that applying LoRA⋆ to linear projection matrices is more effective than applying it to
S6. To elucidate this phenomenon, we examine the influence of updating linear projection matrices on the model’s output.
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Notations. To make the analysis tractable, we consider a simplified SSM-based architecture composed of the following
components:

• Two input projection matrices: Win,1,Win,2 ∈ RD×D;

• The S6 module parameterized by diagonal state transition matrices {A(d)}Dd=1 with A(d) ∈ RH×H , the weight matrices
WB,WC ∈ RH×D for computing input-dependent input transition vectors Bn ∈ RH and output mapping vectors
Cn ∈ RH , the down and up projection matrices W∆,↓ ∈ RD×R,W∆,↑ ∈ RR×D (where R is the rank) for low-rank
weight matrices for computing the input-dependent step size ∆n = (∆

(1)
n , . . . ,∆

(D)
n ) ∈ RD, for n = 1, . . . , N .

Define WS6 = [W⊤
B ,W⊤

C ,W⊤
∆,↑]

⊤ ∈ R(2H+R)×D. In the Mamba implementation, WS6 is implemented as the weight
matrix of a single linear layer, referred to as x_proj in the codebase. Let the input sequence be X = (x1, . . . ,xN ) ∈
RD×N . At each time step n, the S6 module uses two differently projected versions of the input: (i) the input projected via
Win,1 is used to compute the input-dependent parameters An, Bn, and Cn, and (ii) the input projected via Win,2 serves as
the actual input to the S6 module. We note that this formulation generalizes the standard case, which uses a single input
projection matrix before the S6 module. In particular, it reduces to the standard case when Win,1 = Win,2. Then, the output
at time step N is given by:

y
(d)
N =

Input-dependent CN︷ ︸︸ ︷
C(Win,1xN )⊤

N∑
n=1

 n∏
m=1

Input-dependent Am︷ ︸︸ ︷
A(Win,1xm)


Input-dependent Bn︷ ︸︸ ︷
Bn(Win,1xn)

︸ ︷︷ ︸
Parameters depending on input after projection Win,1

(Win,2xn)
(d)︸ ︷︷ ︸

Input after projectionWin,2

.

To be more specific, the definitions for the relevant terms are:

∆n = softplus(W∆,↓W∆,↑Win, 1xn + β∆), (9)

A
(d)

n = exp(∆(d)
n A(d)), B

(d)

n = ∆(d)
n WBWin, 1xn, Cn = WCWin, 1xn.

When β∆ = 0, the output at time step N can be further written as

y
(d)
N = (WCWin, 1xn)

⊤
N∑

n=1

(
n∏

m=1

exp(∆(d)
n A(d))

)
∆(d)

n WBWin, 1xn(W
⋆
in,2xn)

(d), (10)

where ∆n = softplus(W∆,↓W∆,↑Win, 1xn).

Theoretical Analysis. Assume none of the parameters are zero and D > 2H +R, where R is the rank of W∆,↓W∆,↑.
Lemma 1 in the main body shows that applying LoRA⋆ solely to Win,1 is equivalent to applying it to WS6. For completeness,
we provide the proof below and restate the lemma for the reader’s convenience.
Lemma 1 (Expressivity of Fine-Tuning Projection Matrices). Consider two models with the architecture described above.
Let:

• A target model f⋆ parameterized by ({A⋆(d)}Dd=1, W ⋆
B , W ⋆

C , W ⋆
∆,↑, W ⋆

∆,↓, W ⋆
in,1, W ⋆

in,2);

• A frozen model f0 parameterized by ({A⋆(d)}Dd=1, WB , WC , W∆,↑, W ⋆
∆,↓, Win,1, W ⋆

in,2).

The two models share {A⋆(d)}Dd=1, W ⋆
∆,↓, and W ⋆

in,2, while differing in WB , WC , W∆,↑, and Win,1. Then, there exists a

projection matrix Ŵin,1 such that the frozen model matches the output of the target model for any input sequence, i.e.,

f(·; {A⋆(d)}Dd=1,WB,WC ,W∆,↑,W
⋆
∆,↓, Ŵin,1,W

⋆
in,2) = f⋆(·; {A⋆(d)}Dd=1,W

⋆
B,W ⋆

C ,W ⋆
∆,↑,W

⋆
∆,↓,W

⋆
in,1,W

⋆
in,2).

(11)

Proof of Lemma 1. To prove (11), we substitute (10) into (11), simplify the expression, and show that the equality holds
under the following conditions:

W ⋆
CW ⋆

in,1 = WCWin,1 (12)
W ⋆

∆,↑W
⋆
in,1 = W∆,↑Win,1

W ⋆
BW ⋆

in,1 = WBWin,1.
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Since WS6 =

 WB

WC

W∆,↑

, the three conditions (12) can be compactly written as

W ⋆
S6W

⋆
in,1 = WS6Win,1. (13)

We now show that for any WS6, there exists a matrix Win,1 that satisfies (13). By applying Singular Value Decomposition
(SVD) to WS6 , we obtain:

WS6 = U
[
Σ O(2H+R)×(D−2H−R)

]
V ⊤, (14)

where U ∈ R(2H+R)×(2H+R), Σ ∈ R(2H+R)×(2H+R), and V ∈ RD×D. The diagonal elements of Σ are in decreasing
order. We let

Win,1 = V

[
Σ−1U⊤W ⋆

S6W
⋆
in,1

Q

]
, (15)

where Q ∈ R(D−2H−R)×D is an arbitrary matrix to be determined later. Plugging (14) and (15) back to WS6Win,1 and
simplifying results in

WS6Win,1

= U
[
Σ O(2H+R)×(D−2H−R)

]
V ⊤V

[
Σ−1U⊤W ⋆

S6W
⋆
in,1

Q

]
((14) & (15))

= W ⋆
S6W

⋆
in,1, (Simplifying)

which demonstrates that (13) is satisfied and completes the proof.

Empirical Validation. To experimentally verify Lemma 1, we conduct a small-scale experiment. Specifically, we train
Mamba 130M on three GLUE tasks—RTE, MRPC, and CoLA—for ten epoch under two settings: (1) training only the
linear projection layer (Win), and (2) training the S6 modules (WB , WC , W∆,↑). We experiment with various learning
rates and, for each configuration, repeated the best-performing setting five times to ensure robustness. As shown in Fig. 3
(training loss) and Table 15 (validation metrics), our results confirm that optimizing only the linear projection layer is as
expressive as training the S6 layers. In fact, in all cases, training only the linear projection not only matches, but even
outperforms S6 layer training and converges more quickly.
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Figure 3. Training cross-entropy loss, with the shaded area indicating the standard deviation, for fine-tuning linear projection
layers versus S6 layers. The results show that Win matches the expressivity of WB , WC , and W∆,↑, while also achieving faster
convergence.

D. Details of Sec. 5: SDT
D.1. Understanding the Roles of State Matrix A, Input Transition Vector B, and Output Mapping Vector C for a

Single Channel in S4 Modules

Problem Setting. Inspired by Zeng & Lee (2024)’s theoretical analysis of LoRA’s expressive power, we adopt a similar
framework to explore the expressive potential of various parameters in the S4 model. Specifically, we assume a target model
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Layers RTE MRPC CoLA

Win 69.9 ± 1.2 82.4 ± 0.7 61.1 ± 2.3
WB , WC , W∆,↑ 68.3 ± 0.8 79.9 ± 1.2 54.9 ± 1.5

Table 15. Mean and standard deviation of validation metrics for fine-tuning linear projection layers versus S6 layers. The results
demonstrate that Win effectively captures the expressivity of WB , WC , and W∆,↑, and achieves superior performance on validation
metrics—accuracy for RTE and MRPC, and Matthews correlation coefficient for CoLA.

that performs well on the intended task and a frozen model, which may be either pretrained or randomly initialized. Our
goal is to identify a parameter-efficient method to update the frozen model so that it becomes functionally equivalent to the
target model. In alignment with Zeng & Lee (2024), we assume that the frozen model’s capacity is equal to or exceeds that
of the target model. This assumption is based on two main considerations: (i) analytical tractability, which necessitates
that the frozen model must have the potential to match the functionality of the target model, and (ii) a practical rationale,
given that the models typically used in practice are often overparameterized. Assume that both the target model and the
frozen model are S4, with the target model having a hidden state dimension H⋆ and the frozen model having a hidden state
dimension H ≥ H⋆. Meanwhile, suppose that all the hidden dimensions of both models are valid, meaning that none of the
parameter elements are zero. The target model, frozen model, and the updated model after tuning the parameters on the
frozen model can be formulated using discretized parameters A,B,C as follows:

(Target model) f⋆(x)n =

n∑
m=1

C⋆A
m−n

⋆ B⋆xm, where diag(A⋆),B⋆,C⋆ ∈ RH⋆ ,

(Frozen model) f0(x)n =

n∑
m=1

CA
m−n

Bxm, where diag(A),B,C ∈ RH ,

(Updated model) f̂(x)n =

n∑
m=1

ĈÂ
m−n

B̂xm, where diag(Â), B̂, Ĉ ∈ RH .

Parameter Efficiency Analysis on S4. Let PH denote the set of all H ×H permutation matrices. Given this formulation,
we present our first analysis of parameter efficiency for the S4 model in the following lemma. This analysis is based on the
parameters after necessary discretization (A,B,C). For the reader’s convenience, we restate Lemma 2 below with minor
notational changes to facilitate the proof.

Lemma 2 (Minimal Parameter Adjustment for S4 Fine-Tuning). Consider the parameters after discretization, i.e., A,B,C.
To achieve functional equivalence between the updated model and the target model, i.e., f̂ ≡ f⋆, the minimum number of
tunable parameters is:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[P⊤(diag(A)⊙B ⊙C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊙C⊤)

]
1:H⋆

−B⋆ ⊙C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

Proof of Lemma 2. The key idea of this proof is straightforward. To facilitate the analysis and update the frozen model to
be equivalent to the target model, we first equalize the number of hidden state dimensions between the two models. This is
achieved by expanding the target model’s A⋆, B⋆, and C⋆ to match the H hidden state dimensions of the frozen model,
padding the additional H −H⋆ dimensions with zeros.

Define ⊙ as the element-wise product. We can express the target model as:

f⋆(x)n =
n∑

m=1

[
C⋆ 0⊤] [A⋆ O

O O

]n−m [
B⋆

0

]
xm

=

n∑
m=1

diag

([
A⋆ O
O O

])n−m([
C⊤

⋆

0

]
⊙
[
B⋆

0

])
xm.
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Consider any permutation matrix P ∈ PH . Applying P to permute the frozen model leaves the model functionally
unchanged:

f0(x)n =

n∑
m=1

CA
n−m

Bxm =

n∑
m=1

CP
(
P⊤AP

)n−m
P⊤Bxm

=

n∑
m=1

diag
(
P⊤AP

)n−m (
(P⊤C⊤)⊙ (P⊤B)

)
xm.

Due to the convolution structure of A, two models are functionally equivalent if and only if P⊤AP aligns with
[
A⋆ O
O O

]
,

and (P⊤C⊤)⊙ (P⊤B) align with
[
C⊤

⋆

0

]
⊙
[
B⋆

0

]
for some P ∈ PH . If they are already matching or partially matched

for certain entries, no updates are required for those entries; only the unmatched entries need to be updated. Then, the
required trainable parameters for this permutation matrix P are:∥∥∥[P⊤(diag(A)⊙B ⊙C⊤)

]
(H⋆+1):H

∥∥∥
0
+
∥∥∥[P⊤AP

]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0
+
∥∥∥[P⊤(B ⊙C⊤)

]
1:H⋆

−B⋆ ⊙C⊤
⋆

∥∥∥
0
.

Optimizing the permutation matrix P ∈ PH yields the desired results.

This lemma highlights the significance of identifying essential hidden state dimensions. The term∥∥∥[P⊤(diag(A)⊙B ⊙C⊤)
]
(H⋆+1):H

∥∥∥
0

underscores the importance of excluding redundant dimensions. This can be

achieved by either directly removing these dimensions from the state matrix A, or by updating B or C to ensure that only
the selected hidden state dimensions are utilized during the input transition or output mapping phases. Once redundant
dimensions are filtered out, tuning only the essential dimensions is sufficient to align the updated model with the target
model.

Furthermore, based on the lemma, the roles of the input transition vector B and C⊤ are nearly identical, as they consistently
appear together as the combined term B ⊙C⊤, which is also discussed in Gupta et al. (2022). Consequently, one could opt
to tune either B or C exclusively or alternatively, split the indices into two groups, tuning B for the first group and C for
the second. Both vectors indicate how information from different hidden state dimensions is integrated, whereas A plays a
distinct role, determining how the hidden states are stored.

In practice, instead of directly using the discretized parameters A,B,C, S4 is implemented using the continuous parameters
A,B,C with step size ∆. To provide further practical guidance on parameter tuning, the following two lemmas analyze
the parameter efficiency of continuous parameters under different discretization methods. Two exemplary methods of
discretization are bilinear and zero-order hold (ZOH):

(Bilinear)

{
A = (I −∆/2A)−1(I +∆/2A)

B = (I −∆/2A)−1 ·∆B,
(ZOH)

{
A = exp(∆A)

B = (∆A)−1(exp(∆A)− I) ·∆B.
(16)

Lemma 3 (Essential Continuous Parameter Set for S4 with Bilinear Discritization). Consider the parameters before
discretization, i.e., A,B,C, which are subsequently discretized using bilinear discretization. To achieve functional
equivalence between the updated model and the target model, i.e., f̂ ≡ f⋆, it is sufficient to tune the following number of
parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[∆P⊤(diag(I +∆/2A)⊙B ⊙C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊙C⊤)

]
1:H⋆

−B⋆ ⊙C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

Proof of Lemma 3. Combining Lemma 2 and the Bilinear discretization method in (16) yields the desired results.

Lemma 4 (Essential Continuous Parameter Set for S4 with ZOH Discritization). Consider the parameters before discretiza-
tion, i.e., A,B,C, which are subsequently discretized using ZOH discretization. To achieve functional equivalence between
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the updated model and the target model, i.e., f̂ ≡ f⋆, it is sufficient to tune the following number of parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[∆P⊤(diag(exp(∆A)− I)⊙B ⊙C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊙C⊤)

]
1:H⋆

−B⋆ ⊙C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

Proof of Lemma 4. Combining Lemma 2 and the ZOH discretization method in (16) yields the desired results.

The insights provided by Lemma 3 and Lemma 4 are the same as those provided by Lemma 2. The analysis here supports
the second step of SDT-P presented in Sec. 5.

D.2. Extension to Deep S4 Models

Our previous analysis focused on single-channel S4 models. We now expand our investigation to more complex scenarios
involving deep S4 models for both target and frozen architectures, incorporating D channels and varying layer depths. In
this section, in addition to SDT-P, we introduce SDT+. The key distinction between SDT+ and SDT-P lies in their treatment
of linear projection matrices. SDT-P only operate on SSM modules and additionally requires applying LoRA to modify the
linear projection matrices. In contrast, SDT+ applies SDT-P on SSM modules while also updates the columns of weight
matrices corresponding to the updatable channels identified through Alg. 2. It is worth noting that the linear projection
matrix updates in SDT+ are inherently low-rank, making it a specialized case of SDT-P combined with LoRA. Our analysis
starts with SDT+, and it automatically applies to SDT-P combined with LoRA.

In this analysis, we assume that each input token xt belongs to X , a bounded subset of RD, and that the length of the input
sequence is finite. Let the frozen model have L layers, and the target model have L⋆ layers, where L ≥ L⋆. Similar to the
technique used in Zeng & Lee (2024) and Giannou et al. (2023). The basic idea of updating the frozen model to match
the functionality of the target model is to utilize every ⌈L/L⋆⌉ layers of the frozen model to approximate every layer of
the target model. We start introducing this proof idea from the simplest case where L⋆ = 1, L = D. In this scenario, we
can simply choose one different channel to tune and maintain all other channels at zero at every layer. The outputs from
the various channels of the deep S4 layers are then combined through a residual connection. This proof idea inspires us to
perform channel selection and make use of the residual connections, which is the first and third step of SDT-P presented
in Sec. 5. Building on this idea, we present the following results for when the target model has only L⋆ = 1 layer, and
L = D = 2.

Lemma 5. Consider a D-dimensional input sequence. Assume that the linear layers in the model have linear activation
functions. Using SDT+, any deep S4 model with H hidden states per channel and L layers can be updated to accurately
present any target one-layer deep S4 model without residual connections, having a reduced hidden state dimension H⋆ < H .
Then this can be achieved by selectively fine-tuning at most ⌈D/L⌉ channels, H⋆ hidden states, and residual connections at
each layer, while additionally fully fine-tuning the linear projection matrix of the last layer only.

Proof of Lemma 5. In this proof, we start by considering the case where L = D. In this case, we update a single distinct
channel for each layer while setting the other channels to zero. Essentially, we modify the frozen model so that each layer
corresponds to and functions as an individual channel in the target model. To be more specific, we fully update the first
channel in the first layer to match the first channel of the target model, second channel in the second layer to match the
second channel of the target model, so on and so forth.

For the l-th layer of the frozen model , we append subscript l to all parameters of the deep S4 layer as introduced in (4). For
the d-th channel, corresponding notations are denoted with a superscript (d). We define the t-th intermediate output token of
the l-th deep S4 layer as zl,t ∈ RD. Additionally, the updated S4 module in layer l is denoted as Ŝ4l, with Ŝ4l,t referring
specifically to the sub-function that outputs the t-th token. Therefore, for the t-th intermediate output token of the l-th deep
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S4 layer of the updated model can be written as

zl,t = Ŵl · Ŝ4l,t(zl−1,1, . . . ,zl−1,t) + β̂l + ûl ⊙ zl−1,t

= Ŵl ·


Ŝ4

(1)

l,t (z
(1)
l−1,1, . . . , z

(1)
l−1,t)

...

Ŝ4
(D)

l,t (z
(D)
l−1,1, . . . , z

(D)
l−1,t)

+ β̂l + ûl ⊙ zl−1,t,

where Ŵl ∈ RD×D, β̂l ∈ RD are the updated weight and biases of the l-th layer of the frozen model, and ûl ∈ RD is the
updated residual connection weight of the frozen model.

For layers l < L = D. We follow the steps provided in Sec. 5 to update the l-th layer of the frozen model such that it
functionally equivalent to the l-th channel of the target model. For the reader’s convinence, we restate our strategies here:

• (Channel Selection) Select D′ ≤ D (D′ = 1 here) important channels for making predictions. Any channel d that is not
utilized will have their corresponding C(d) set to zero, eliminating the need to update parameters for A(d) and the d-th
column of W . To be more specific, we let C(d) = 0 for all d ̸= l in this scenario.

• (Hidden State Selection) Within the selected channels, select H ′ ≤ H important hidden states. For any hidden state that
is not used within a selected channel d, the corresponding element in C(d) will be set to zero, thus eliminating the need to

tune the corresponding element in A(d). To be more specific, we can achieve Ŝ4
(l)

l,t (·) = S4
(l)
⋆,t(·) by Lemma 2.

• (Residual and Bias Tuning) Regardless of other selections, SDT consistently tunes the coefficients of residual connections
and biases in linear projections, as these components contain a negligible number of parameters. In this scenario, we let
β̂l = 0, ûl =

[
1 · · · 1︸ ︷︷ ︸
l−1 elements

0 1 · · · 1︸ ︷︷ ︸
D−l elements

]⊤
.

This construction yields

zl,t =
[
z
(1)
l−1,t . . . z

(l−1)
l−1,t S4

(l)
⋆,t(z

(l)
l,1, . . . , z

(l)
l,t ) z

(l+1)
l−1,t . . . z

(D)
l−1,t

]⊤
.

Consequently, only the l-th channel is active in the l-th layer, while all other layers function as identity mappings, propagating
the output of the preceding layer without modification.

For layer l = L = D. Based on the setup of the first L− 1 layers, we have

zL−1,t =
[
S4

(1)
⋆,t (x

(1)) · · · S4
(L−1)
⋆,t (x(L−1)) x(L)

]⊤
.

For the last layer, we let

ŴL = W⋆, β̂L = β⋆, ûL = 0,

Ŝ4
(L)

L,t (·) = S4
(L)
⋆,t (·), which can be achieved by Lemma 2.

It is easy to verify that the output of the updated frozen model is identical to the output of the target model, i.e.,

yt = zL,t = W⋆

[
S4

(1)
⋆,t (x

(1)) · · · S4
(L−1)
⋆,t (x(L−1)) S4

(L)
⋆,t (x

(L))
]⊤

+ β⋆.

Thus far, we have demonstrated that the statement holds when L = D. This analysis can be readily extended to cases where
L ̸= D by tuning ⌈D/L⌉ channels at each layer. For example, when L = D/2, we can tune two channels per layer using a
construction similar to the one described above. This generalization completes the proof.
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Theorem 2 (Expressive Power of SDT+ on Deep S4 Models). Consider a D-dimensional input sequence. Assume that
the linear layers in the model have linear activation functions. Using SDT+, any deep S4 model with H hidden states per
channel and L layers can be updated to accurately present any target deep S4 model without residual connections, having a
reduced hidden state dimension H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at most
⌈DL⋆/L⌉ channels, H⋆ hidden states, and residual connections at each layer.

Proof of Theorem 2. We update every ⌈D/L⌉ layers of the frozen model to approximate each layer of the target model. By
applying Lemma 5 iteratively to each set of ⌈D/L⌉ layers, we obtain the desired result.

Theorem 2 leads to the following result, which represents the deep S4 model case of Theorem 1.

Theorem 3 (Expressive Power of SDT-P on Deep S4 Models). Consider a D-dimensional input sequence. Assume that
the linear layers in the model have linear activation functions. Using SDT-P, any deep S4 model with H hidden states per
channel and L layers can be updated to accurately present any target deep S4 model without residual connections, having
a reduced hidden state dimension H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at
most ⌈DL⋆/L⌉ channels, H⋆ hidden states on SSM modules, applying rank-⌈ L

L⋆ ⌉ updates on linear projection matrices
and updating residual connections and biases at each layer, while additionally fully fine-tuning the linear projection matrix
of the last layer only.

Proof of Theorem 1. Since SDT+ is a special case of SDT-P, Theorem 2 directly implies the desired statement.

D.3. Extension to S6

In this section, we extend the discussion of SDT-P and SDT+ to S6, following the same logic. We begin by proving results
for SDT+ in the scenario where the target model consists of only a single layer. In doing so, we extend Theorem 3 to apply
to deep S6 models by first generalizing Lemma 5 to Lemma 6.

Lemma 6. Consider a D-dimensional input sequence. Assume that the linear layers in the model have linear activation
functions. Using SDT+, any deep S6 model with H hidden states per channel and L layers can be updated to accurately
present any target one-layer deep S6 model without residual connections, having a reduced hidden state dimension H⋆ < H .
Then this can be achieved by selectively fine-tuning at most ⌈D/L⌉ channels, H⋆ hidden states, and residual connections at
each layer, while additionally fully fine-tuning the linear projection matrix of the last layer only.

Proof of Lemma 6. To demonstrate this, we can follow the same proof strategy as in the proof of Lemma 5. In particular,
the t-th intermediate output token of the l-th deep S6 layer of the updated model can be similarly written as

zl,t = Ŵl · Ŝ6l,t(zl−1,1, . . . ,zl−1,t) + β̂l + ûl ⊙ zl−1,t

= Ŵl ·


Ŝ6

(1)

l,t (z
(1)
l−1,1, . . . , z

(1)
l−1,t)

...

Ŝ6
(D)

l,t (z
(D)
l−1,1, . . . , z

(D)
l−1,t)

+ β̂l + ûl ⊙ zl−1,t,

where Ŵl ∈ RD×D, β̂l ∈ RD are the updated weight and biases of the l-th layer of the frozen model, and ûl ∈ RD is the
updated residual connection weight of the frozen model.

For layers l < L = D. We follow the steps provided in Sec. 5 to update the l-th layer of the frozen model such that it
functionally equivalent to the l-th channel of the target model. For the reader’s convinence, we restate our strategies here:

• (Channel Selection) Select D′ ≤ D (D′ = 1 here) important channels for making predictions. For any channel d that is
not utilized, rather than directly setting the corresponding C(d) to zero as in the deep S4 model, we instead set β(d)

∆ to be

sufficiently large. According to the computation of SSM parameters described in (17), this ensures that B
(d)

n is set to zero
for all d ̸= l in this scenario. This approach is equivalent to setting C(d) to zero, as both result in the channel producing
all zeros.
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• (Hidden State Selection) Within the selected channels, select H ′ ≤ H important hidden states. For any hidden state that
is not used within a selected channel d, the corresponding entries in A(d) will be set to sufficiently small. To be more

specific, we can achieve Ŝ6
(l)

l,t (·) = S6
(l)
⋆,t(·) by leveraging the discretized parameters. Lemma 2 provides the conditions

for this equality to hold by updating A, B, and C for the l-th channel, where these parameters are computed as follows:

∆n = softplus(W∆,↓W∆,↑xn + β∆), (17)

A
(d)

n = exp(∆(d)
n A(d)), B

(d)

n = ∆(d)
n WBxn, Cn = WCxn,

Therefore, we can achieve Ŝ6
(l)

l,t (·) = S6
(l)
⋆,t(·) by only updating the corresponding values or columns of the weight

matrices for each channel and dimension.

• (Residual and Bias Tuning) Regardless of other selections, SDT+ consistently tunes the coefficients of residual connec-
tions and biases in linear projections, as these components contain a negligible number of parameters. In this scenario, we
let β̂l = 0, ûl =

[
1 · · · 1︸ ︷︷ ︸
l−1 elements

0 1 · · · 1︸ ︷︷ ︸
D−l elements

]⊤
.

This construction yields

zl,t =
[
z
(1)
l−1,t . . . z

(l−1)
l−1,t S4

(l)
⋆,t(z

(l)
l,1, . . . , z

(l)
l,t ) z

(l+1)
l−1,t . . . z

(D)
l−1,t

]⊤
.

For the remaining layers, following the same steps leads to the desired results.

Therefore, we similarly obtain the following two results.

Theorem 4 (Expressive Power of SDT+ on Deep S6 Models). Consider a D-dimensional input sequence. Assume that
the linear layers in the model have linear activation functions. Using SDT+, any deep S6 model with H hidden states per
channel and L layers can be updated to accurately present any target deep S6 model without residual connections, having a
reduced hidden state dimension H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at most
⌈DL⋆/L⌉ channels, H⋆ hidden states, and residual connections at each layer.

Theorem 5 (Expressive Power of SDT-P on Deep S6 Models). Consider a D-dimensional input sequence. Assume that
the linear layers in the model have linear activation functions. Using SDT-P, any deep S6 model with H hidden states per
channel and L layers can be updated to accurately present any target deep S6 model without residual connections, having
a reduced hidden state dimension H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at
most ⌈DL⋆/L⌉ channels, H⋆ hidden states on SSM modules, applying rank-⌈ L

L⋆ ⌉ updates on linear projection matrices
and updating residual connections and biases at each layer, while additionally fully fine-tuning the linear projection matrix
of the last layer only.

Combining Theorem 3 and 5 leads to Theorem 1.

D.4. Sparse Dimension Tuning and Pruning (SDT-P)

Algorithm 2 is our extended algorithm, which includes setting dimensions to zero. However, in practical settings, setting
channels to zero is not necessary and omitting it reduces number of hyperparameters, as pruning parameters is effectively
equivalent to training them to zero.
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Algorithm 2 Dimension Selection Algorithm of SDT-P
Input: A small subset of dataset D, warmup epochs E, number of layers L, total channels D, total states H , state sparsity

β0, channel sparsity α0, state update fraction β, channel update fraction α

/* Warmup Epochs */
Perform full update on SSM modules using D for E epochs /* Categorize dimensions */
for l = 1 to L do

/* Set dimensions as zero */

Sort channels based on ∥A(d)∥
Select final (1− β0)D channels as zero channels and denote non-zero channels as set D
for d ∈ D do

Sort states based on magnitude of Ā(d)
h at each state dimension

Select final (1− α0)H states as zero states and denote non-zero states as set H
/* Unfreeze dimensions */

Sort non-zero channels D based on changes of ∥A(d)∥
Select the top β|D| channels as updatable, denoted by D′

for d ∈ D′ do
Sort non-zero state dimensions based on changes of ∥A(d)∥
Select the top α|H| states as updatable at the d-th channel

D.5. Extension to S5

In this part, we extend Lemma 2 and Theorem 1 to two corresponding results for S5. The extension follows the same
procedure as the previous proof, so we omit the details here.

Lemma 7 (Minimal Parameter Adjustment for S5 Fine-Tuning). Assume all hidden dimensions of the target
model f⋆ are non-zero, i.e., all elements of diag(A⋆) ⊙ B

(d)

⋆ ⊙ C
(d)
⋆ are non-zero. To update frozen model f0

such that it becomes functionally equivalent to the target model f⋆, the minimum number of tunable parameters is:

minA,B,C

∥∥∥[A]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0
+
∑D

d=1


eliminating redundant dimensions︷ ︸︸ ︷∥∥∥∥[diag(A)⊙B

(d) ⊙C(d)⊤
]
(H⋆+1):H

∥∥∥∥
0

+

aligning remaining dimensions with target model︷ ︸︸ ︷∥∥∥∥[B(d) ⊙C(d)⊤
]
1:H⋆

−B
(d)

⋆ ⊙C
(d)⊤
⋆

∥∥∥∥
0

 ,

subject to (A,B,C) ∈ {(P⊤A0P ,P⊤B0,C0P ) : P is a permutation matrix}.

Theorem 6 (Expressive Power of SDT-P with LoRA on Simplified SSM-based Models). Assume all layers use linear
activations. Let f0 be a frozen deep S4 S5, or S6 model with L layers, each containing H hidden states per channel. Let
f⋆ be a smaller target model of the same type (S4, S5 or S6), with no residual connections, L⋆ < L layers, and H⋆ < H
hidden states per channel. Then, there exists a set of parameter updates to f0 satisfying the following conditions such that
for any finite-length input sequence X = (x1, . . . ,xN ) with xn ∈ X ⊂ RD, where X is bounded, the resulting model f
satisfies f(X) = f⋆(X):

1. (SDT-P on SSM) In each SSM module, update at most ⌈DL⋆/L⌉ channels. Within each updated channel, fine-tune at
most H⋆ hidden states and set the rest to zero.

2. (LoRA⋆ on Linear Projections) Apply rank-⌈L/L⋆⌉ updates to each linear projection matrix.
3. (Minimal Additional Updates) Modify only the residual connections, per-layer biases, and the final-layer output

projection.

D.6. Memory Usage and Runtime Analysis of SDT

Memory Usage Analysis. To assess the memory usage of SDT and LoRA, we conducted experiments on four different
models, including both SSM and hybrid architectures. For each model and method, a dataset was generated with 2,500
batches of data samples, each batch comprising a random sequence of 1,500 tokens. The simulation was repeated four times,
including dataset generation. All experiments were carried out on a single H100 GPU, and the reported metrics represent
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Figure 4. Peak memory usage during training as a function of context length for different Mamba model sizes. Each line represents
the mean across three configurations; shaded regions indicate min–max ranges. SDT is consistently more memory-efficient than LoRA
when applying to SSM module.

averages across the four simulations. Consistent with our previous experiments, we used the original hyperparameter settings,
ensuring that SDT includes similar trainable parameters than LoRA. The memory usage of LoRA and SDT is presented in
Table 16. Our observations indicate that SDT requires less memory than LoRA. This difference can be attributed to the
design of the LoRA adapters, which involve matrix multiplication of two low-rank matrices. In contrast, tuning SSM with
the same number of parameters does not require any matrix multiplication, resulting in lower memory usage.

Memory Usage (GB) Mamba-130M Mamba-1.4B Jamba-Tiny-319M Jamba-Mini-52B

LoRA 7.753 37.167 7.207 71.986
LoRA & SDT 5.738 26.491 6.605 67.193

Table 16. Memory usage comparison between SDT and LoRA on various models. Bold numbers indicate the lowest memory usage
for each model.

To provide a more fine-grained view, we further analyze how sequence length affects peak memory usage for different
Mamba model sizes, as shown in Fig. 4. We measure the memory required to process a single training batch with varying
context lengths using randomly generated data. Each batch contains four examples, with 90% of tokens used as input and
10% as output (loss is computed only on the output tokens). The experimental settings for both LoRA and SDT follow the
setup described in Section 6.2. We evaluate three configurations for each method, matched in parameter budget. In the plot,
each line represents the average across the three configurations, and the shaded region for LoRA shows the range (minimum
to maximum). SDT shows negligible variance across configurations, so no shading is included. All models are trained for
500 iterations, and results are averaged over these iterations. Experiments were conducted on an NVIDIA H100 80GB GPU.

Runtime Analysis. We similarly analyze the latency of LoRA and SDT, using the same experimental setup as in Table 16.
Fine-tuning with SDT consists of two stages: (1) dimension selection and (2) standard training. In this study, we first
compare the runtime of SDT and LoRA during stage 2 (training) and then evaluate the additional runtime introduced by
SDT during stage 1 (dimension selection). Our results show that the dimension selection stage adds only marginal runtime
overhead, and SDT is more efficient than LoRA in standard training.

Training: When the channels and states have been selected, the training of SDT is faster than LoRA when the same number
of trainable parameters are considered.

The runtimes are reported in Table 17. We observe that, despite having similar trainable parameters, SDT is faster than
LoRA. We attribute this to the fact that LoRA introduces additional FLOPs due to the extra matrix multiplication operations
required for each update (specifically, the multiplication of two low-rank matrices).

Dimension Selection: For dimension selection, our method first performs Initial Subset Training, and then selects the
dimensions based on the magnitude of parameter changes across different dimensions.

1. Initial Subset Training: We update the model by going through only a subset of the dataset (e.g., 3% of batches in DART
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Avg. Runtime (Seconds) Mamba-130M Mamba-1.4B Jamba-Tiny-319M Jamba-Mini-52B

LoRA 410.0 ± 80.0 2060.0 ± 135.0 352.5 ± 107.5 3427.5 ± 185.0
LoRA & SDT 330.0 ± 77.5 1697.5 ± 87.5 257.5 ± 72.5 3065.0 ± 232.5

Table 17. Runtime comparison of SDT and LoRA during stage 2 (training).

experiments), which is sufficient in practice.

2. Magnitude-Based Dimension Selection: After the subset training, we select dimensions based on the magnitude of
parameter changes observed.

In this experiment, we simulate a real scenario using a dataset with 2,500 batches, considering a small subset containing 125
batches (5% of the full dataset). We repeat the experiments 80 times, and the reported numbers are averaged across these
simulations. Table 18 demonstrates that the dimension selection stage adds only negligible runtime.

Avg. Runtime (Seconds) Mamba-130M Mamba-1.4B Jamba-Tiny-319M Jamba-Mini-52B

Initial Subset Training 16.250 ± 3.880 85.250 ± 5.130 15.750 ± 1.000 163.630 ± 10.120
Magnitude-Based Dimension Selection 0.280 ± 0.000 0.520 ± 0.120 0.090 ± 0.000 0.240 ± 0.040

Total Time 16.530 ± 3.880 85.770 ± 5.250 15.840 ± 1.000 163.870 ± 10.160

Proportion of Training 1 Epoch 0.050× 0.051× 0.062× 0.053×
Proportion of Training 5 Epoch 0.010× 0.010× 0.012× 0.011×

Table 18. Runtime comparison of SDT and LoRA during stage 1 (dimension selection).

We further examine how runtime varies with sequence length, using the same experimental setup as in the memory analysis
(Fig. 4). Our results in Fig. 5 show that SDT consistently outperforms LoRA in training speed when applied to SSM
modules.
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Figure 5. Average training time per batch across different sequence lengths and Mamba model sizes. Each line represents the mean
across three configurations; shaded regions indicate min–max ranges. SDT is consistently faster than LoRA when applying to SSM
module.

E. Expanded Sec. 6: Evaluation of SDT
E.1. Experiments on Deep S4 Models

Synthetic. For selecting channels and hidden states, we initiate with a warmup learning rate between 1e− 2 and 1e− 3
and conduct 20 warmup iterations. Learning rates are adjusted between 5e− 2, 1e− 2, 5e− 3, and 1e− 3. We apply LoRA
with ranks of 2 and 4 to the SSM and with ranks of 4, 8, and 16 to the linear projection matrices. Non-zero states are selected
from the sets {4, 8}, and non-zero channels from {8, 16}.
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Method # Params (%) Accuracy

Frozen 0.00 73.9

LoRA (Proj) 16.00 77.6
LoRA (S4+Proj) 15.52 77.6
LoRA & SDT 11.17 78.0

Full Fine-Tuning 100.00 77.6

Table 19. Accuracy comparison between SDT and LoRA on deep S4 models for CIFAR-10 (Krizhevsky et al., 2009).

In addition, we compare the convergence speed of LoRA and SDT in terms of training loss for sequence lengths in
{100, 500, 1000}. We plot the MSE of both methods against wall-clock time. As shown in Fig. 6, SDT consistently
converges to a lower loss faster than LoRA across all tested sequence lengths.
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Figure 6. Comparison of SDT and LoRA for tuning S4 in deep S4 models, where LoRA is applied to linear projection matrices.
Results are shown across varying sequence lengths under different time budgets in synthetic experiments.

CIFAR-10 (Krizhevsky et al., 2009). Previous work (Dinh et al., 2022) demonstrates that large language models can be
fine-tuned for image classification tasks. In this study, we investigate the adaptation of SSMs for computer vision, focusing
on experiments conducted with the CIFAR-10 dataset (Krizhevsky et al., 2009). We employ an eight-layer deep S4 model
with a hidden state dimension of 16 and a model dimension of 64. Since pretrained deep S4 models are not available,
we simulate a pretrained scenario by fully updating the model for 50 epochs first, then subsequently evaluating the PEFT
methods over an additional 5 epochs. We adhere to the preprocessing steps for CIFAR-10 as outlined by Gu et al. (2022a).
The LoRA ranks for linear projection matrices are tuned among {1, 2, 4, 8, 16}, and for the S4 component, ranks are set
from {1, 2, 4}. Non-zero states are chosen from {8, 12, 16}, and non-zero channels from {48, 64}. The warmup phase
includes 1 epoch with a learning rate of 1e− 2. For linear projection matrices, LoRA ranks are explored at {2, 4, 8, 16}, and
for the SSM, ranks at {2, 4, 8}. All state dimensions are updated, and channel dimensions considered for updates are {4, 8,
16, 32}. The results, as reported in Table 19, indicate that SDT outperforms LoRA with fewer trainable parameters.

E.2. Experiments on Mamba-II, Jamba, and LoRA+

Additional Experimental Details. In this paragraph, we provide further experimental details. Unless otherwise stated,
our experiment setting is identical to Sec. C.1. For LoRA, we consider three different LoRA configurations at each layer,
targeting the primary parameters of Mamba. Specifically, we focus on the following matrices: Wout (output linear projection),
WB,WC (weight matrices for computing input-dependent Bn,Cn), and W∆,↓,W∆,↑ (down and up projection matrices
of LoRA adapters for computing ∆). The three LoRA application methods are: (i) Wout, WB,WC , and W∆,↓,W∆,↑;
(ii) Wout,WB,WC and W∆,↓; and (iii) Wout and W∆,↑. For SDT, we set the channel freeze ratio at 99% across all
scenarios. We select the state freeze ratio α from the set {75%, 90%, 95%} and apply LoRA exclusively to Wout to maintain
a comparable number of trainable parameters. Residual connections and biases are frozen in this experiment. For the
warmup, we employ 500 data batches to fully train the SSM modules prior to dimension selection, except for the RTE task
in GLUE, where we use 250 batches due to its limited dataset size. Note that the parameters are reverted back after the
warmup stage.
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Additional Results on Mamba-II. For Mamba-II, applying SDT is not straightforward because Mamba-II further
constrains A such that all (non-zero) entries must have the same value. Therefore, our original dimension selection approach
cannot be directly applied here. We consider a naive extension of SDT by selecting dimensions in the projection matrices
for input mapping vector B and the projection matrices for output mapping vector C using their respective magnitude, and
fine-tune the selected dimensions and all elements of state transition matrix A.

Tables 20 and 21 compare the performance on Mamba-II. The results demonstrate that SDT consistently outperforms LoRA
on Mamba-II models.

Model Mamba-II-130M Mamba-II-1.3B

Dataset Params (%) DART Params (%) SAMSum Spider
Metric (↑) METEOR BLEU R1 R2 RL Acc.

LoRA 0.3354 68.71 48.09 0.1614 49.73 26.14 41.53 72.36
LoRA & SDT 0.3393 70.60 48.93 0.1767 50.72 27.21 42.54 84.15

Table 20. Performance comparison between SDT and LoRA on Mamba-II-130M and Mamba-II-1.3B. Bold numbers indicate the
best performance for each task.

Model Mamba-II-130M

Dataset Params (%) GLUE
Accuracy (↑) RTE MRPC SST2 QNLI QQP MNLI

LoRA 0.3354 63.4 80.9 89.1 85.3 87.1 78.6

LoRA & SDT 0.3393 64.3 82.3 94.1 87.0 88.3 81.1

Table 21. Performance comparison between SDT and LoRA on the GLUE (Wang et al., 2019) benchmark using Mamba-II-130M.
Bold numbers indicate the best performance for each task.

Additional Results on Jamba. Table 22 shows results for SDT and LoRA on additional datasets. Even though the
performance improvement is smaller, our method outperforms pure LoRA in most cases. Mamba layers make up only a
small part of Jamba, which is a possible reason for smaller performance gains.

LinProj S6 GLUE DART CelebA SAMSum Spider
Avg. BLEU MET. Acc. R1 R2 RL Acc.

LoRA
LoRA 65.5 52.9 73.0 88.5 56.4 33.5 47.9 90.7

SDT 67.7 53.1 73.0 88.4 56.5 33.5 48.0 89.8

Table 22. Performance comparison between SDT and LoRA on pretrained Jamba models. Bold numbers indicate the best perfor-
mance for each task. We use Jamba-Tiny-319M to compare the performance of SDT and LoRA on GLUE (Wang et al., 2019), and
CelebA (Liu et al., 2015) benchmarks. For all other datasets, we employ Jamba-Mini-52B. We report only the best setting out of three for
each method.

Additional Results for LoRA+. We extend our investigation to include LoRA+ (Hayou et al., 2024) with SDT and
evaluate its performance against LoRA+ across various datasets on both Mamba-I and Mamba-II. The results, presented in
Table 23, show that integrating SDT with LoRA+ enhances its effectiveness and achieves superior performance compared to
using LoRA+ alone.
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Model Mamba-I-130M Mamba-II-130M Mamba-II-1.3B

Dataset DART DART SAMSum Spider
Metric (↑) METEOR BLEU METEOR BLEU R1 R2 RL Acc.

LoRA+ 70.06 50.91 69.78 49.14 49.83 26.09 41.66 73.75

LoRA+ & SDT 70.58 51.93 70.48 49.99 50.81 27.19 42.4 84.22

Table 23. Performance comparison between LoRA+ and SDT on Mamba-I and Mamba-II. Bold numbers indicate the best perfor-
mance for each task. We test all experiments under various parameter settings (<0.4%) for both LoRA+ and SDT, and report the best
values.
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