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Abstract
Human pose estimation in videos has long been a compelling yet
challenging task within the realm of computer vision. Nevertheless,
this task remains difficult because of the complex video scenes,
such as video defocus and self-occlusion. Recent methods strive
to integrate multi-frame visual features generated by a backbone
network for pose estimation. However, they often ignore the useful
joint information encoded in the initial heatmap, which is a by-
product of the backbone generation. Comparatively, methods that
attempt to refine the initial heatmap fail to consider any spatio-
temporal motion features. As a result, the performance of existing
methods for pose estimation falls short due to the lack of ability to
leverage both local joint (heatmap) information and global motion
(feature) dynamics.

To address this problem, we propose a novel joint-motion mu-
tual learning framework for pose estimation, which effectively
concentrates on both local joint dependency and global pixel-level
motion dynamics. Specifically, we introduce a context-aware joint
learner that adaptively leverages initial heatmaps and motion flow
to retrieve robust local joint feature. Given that local joint feature
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and global motion flow are complementary, we further propose a
progressive joint-motion mutual learning that synergistically ex-
changes information and interactively learns between joint feature
and motion flow to improve the capability of the model. More
importantly, to capture more diverse joint and motion cues, we
theoretically analyze and propose an information orthogonality
objective to avoid learning redundant information from multi-cues.
Empirical experiments show our method outperforms prior arts on
three challenging benchmarks.
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1 Introduction
Accurately estimating human pose in videos by localizing the
anatomical position of human joints (e.g., ankle, shoulder) serves
as a fundamental cornerstone for higher-level tasks such as ac-
tion recognition [62], motion transfer [36, 58], and motion pre-
diction [7, 47]. It also paves the way for modern human-machine
interaction applications, including robotics [32], augmented reality
(AR) [19], and smart home [46], etc.
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Figure 1: Heatmap-based methods such as DCPose refine
heatmaps to perform pose estimation but lack the ability to
incorporate spatio-temporal features. Conversely, feature-
based methods like TDMI employ feature difference to ex-
tract the valuable features but neglect local joint dependency
present in heatmaps. These methods may encounter esti-
mation difficulties in scenarios involving video defocus and
self-occlusion. In comparison, our approachmodels the joint-
motion information with a novel mutual learning frame-
work, which grasps more meaningful and complementary
representations, delivering a more robust result.

Fueled by the power of deep learning [9, 44, 65, 66, 71] and
the accessibility of large-scale datasets [1, 10, 23], human pose
estimation in static images has garnered extensive attention and
achieved notable breakthroughs. Pioneering approaches propose
pictorial structure models [43, 54] for pose estimation. Recently,
deep convolutional neural models [33, 52], Transformer models [61,
67], and diffusion models [40] have drastically pushed forward the
frontier of pose estimation in static images. Unfortunately, existing
methods often encounter suboptimal performance when directly
applied to human pose estimation in videos. This mainly stems
from the fact that videos are usually accompanied with challenging
frames due to frequent pose occlusion and video blurring.

Existing methods for video-based human pose estimation can be
broadly classified into heatmap-based and feature-based approaches.
These methods are distinguished by their emphasis on refining
either heatmaps or visual features extracted from the backbone net-
work. One line of works, i.e., heatmap-based methods [5, 34], utilize
unidirectional or bidirectional neighboring heatmaps of consecu-
tive frames to refine the heatmap of the keyframe. Another line of
works, i.e., feature-based approaches [14, 35], focus on extracting
the most useful visual features for human pose estimation.

Upon scrutinizing and experimenting with the released imple-
mentations of existing methods [14, 34], we observe that they suffer
from degraded performance in challenging scenes like video defocus
and self-occlusion: (1) For example, in Figure 1, the heatmap-based
method DCPose [34] fails to locate the left hand in a defocused
frame and the right foot in a self-occlusion frame. The reason is
that DCPose estimates the joint by merging the initial heatmaps
extracted from consecutive frames and ignores the cues contained

in the spatio-temporal motion feature. (2) As shown in Figure 1, the
feature-based method TDMI [14] demonstrates inaccuracies in esti-
mating joint positions within challenging frames. These include the
misalignment of the left hand in a defocused frame and the drifting
right foot in a self-occlusion frame. We think that TDMI employs
joint (heatmap)-agnostic visual features to estimate human pose,
overlooking the implicit position information and joint dependency
contained in initial heatmaps. In addition, visual features fail to
capture pixel-level motion dynamics and are not robust enough for
challenging scenarios. These observations inspire us to ask: How to
effectively aggregate local joint dependency and global pixel-level
motion dynamics to obtain a comprehensive representation?

To answer the question, we propose a novel framework, termed
Joint-Motion Mutual Learning for Pose Estimation (JM-Pose),
which comprises two key components. Firstly, to enable the model
to learn joint (heatmap)-relevant features, we introduce a context-
aware joint learner to extract local joint feature. Specifically, guided
by initial heatmaps, we employ modulated deformable operations
to capture local joint context features. Secondly, we propose a pro-
gressive joint motion mutual learning to explore the cooperative
effect of the two representations in pose estimation. This alleviates
the limitation of existing methods that only exploit single-modal
representations. The progressive joint motion mutual learning dy-
namically exchanges and refines information between local joint
feature and global motion flow to capture an informative joint-
motion representation. We conduct further theoretical analysis and
arrive at an information orthogonality objective. Minimizing the
objective endows our model with the ability to fully mine the di-
verse joint feature and motion flow, enhancing the performance
of pose estimation. We perform comprehensive experiments on
three widely used benchmark datasets. Empirical results demon-
strate that our method consistently outperforms state-of-the-art
approaches.

Contribution. In summary, this paper makes three original
contributions:

• To the best of our knowledge, we are the first to present a
joint-motion mutual learning framework for human pose
estimation, which collaboratively amalgamates local joint
feature and global pixel-level motion flow.

• We propose a novel context-aware joint learner guided by
heatmaps to retrieve refined local joint-level information
from the motion flow. We also learn a comprehensive joint-
motion representation by progressive joint-motion mutual
learning with information orthogonality objective, which
effectively captures the diverse knowledge from complemen-
tary features.

• Extensive experiments on three widely used benchmark
datasets show that our method achieves a new state-of-the-
art performance.

2 Related Work
2.1 Image-based Human Pose Estimation
Before the surge of deep learning, traditional approaches [49, 56, 63]
address the human pose estimation task by designing a probabilistic
graphical structure or a pictorial structure to model the relationship
of human joints. With the advent of deep learning such as CNN
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[29], Transformer [53], diffusion model [21] and the large-scale
datasets such as PoseTrack [1, 10, 23], human pose estimation in
static images has been extensively studied and achieved significant
breakthroughs [2, 31, 57]. There are two mainstream paradigms:
bottom-up and top-down. Bottom-up methods [27, 28, 38] are also
known as part-based methods. They first detect all human joints in
the given images and then assemble them into individual skeletons.
[6] employs a dual branch structure and utilizes part affinity fields
to represent pairwise confidence maps between different body parts.
[37] assigns an identification tag to each detected part that indicates
to which individual it belongs. Although bottom-up methods have
obtained promising results, their human part detectors are fragile
when the people in the image are far away from the camera posi-
tion. Contrary to the above method, top-down methods [12, 13, 48]
first detect all human bounding boxes in the given images and then
perform pose estimation on each individual. [48] proposes a novel
framework, named HRNet, which preserves high-resolution fea-
tures through themultiple stages for precise human pose estimation.
[8] proposes a feature pyramid network to detect simple joints and
a fine-grained network to identify hard joints which incorporate
all the hierarchical representations of the previous network.

2.2 Video-based Human Pose Estimation
Applying image-level approaches to video-level pose estimation
results in degraded performance due to the neglect of temporal
cues inherent in videos. Current methods for video-level human
pose estimation can be classified into heatmap-based methods and
feature-basedmethods, depending onwhether the approach focuses
on refining either heatmaps or visual features extracted from the
backbone network.

The heatmap-based methods could employ optical flow fields,
temporal models (i.e., RNN and Transformer), or heatmap optimiza-
tion to detect human pose. To capture temporal dynamics in the
video, (i) [45, 69] compute dense optical flow between consecutive
frames for human pose estimation. However, the computation of
optical flow is expensive and largely depends on the quality of
the video, and challenging cases such as blurring and character
occlusion are very common in videos. (ii) [2] employs an LSTM
module to utilize the similarities and temporal relationships be-
tween frames, achieving promising results. However, RNNs have
limitations in focusing on global temporal information, leading
to the development of Transformer-based approaches. [16] pro-
pose using a Transformer to model spatiotemporal representation
with self-feature refinement and cross-frame temporal learning. (iii)
[5, 34] employ unidirectional or bidirectional neighboring heatmaps
of consecutive frames to refine the heatmap of the keyframe.

The feature-based method tends to fuse meaningful features to
perform pose estimation. (i) [35] proposes feature alignments be-
tween supporting frames and the keyframe and utilizes the aligned
feature to estimate human pose. (ii) [14] employs feature differences
and disentanglement to obtain useful visual features to detect hu-
man poses. However, visual features contains much task-irrelevant
information, such as background and nearby-person. We employ
pixel-level optical flow to capture global motion dynamic, which is
more robust to challenging scenes.

3 Method
Preliminaries. Presented with a video, our task is to estimate hu-
man poses in each frame. Technically, all human bounding boxes in
each frame are identified with the object detector proposed in [39].
These bounding boxes are then enlarged by 25% to crop the identi-
cal human across consecutive frames. Subsequently, for person 𝑘 ,
we acquire the cropped video clip I𝑘

𝑡 =< 𝐼𝑘
𝑡−𝛿 , . . . , 𝐼

𝑘
𝑡 , . . . , 𝐼

𝑘
𝑡+𝛿 >

centered on the key frame 𝐼𝑘𝑡 (where 𝛿 represents the predefined
time span), and aim to estimate the pose of person 𝑘 in frame 𝐼𝑘𝑡 .
For simplicity, we set 𝛿 = 1 and omit the superscript 𝑘 .

Method overview. An overview of our approach, JM-Pose,
is outlined in Figure 2. JM-Pose consists of two key components:
a Context-aware Joint Learner (CJL, Subsec. 3.1) and a progres-
sive Joint-Motion Mutual learning module (JMML, Subsec. 3.2).
Formally, we first extract initial heatmaps �̂�𝑡 and pixel-level mo-
tion flow 𝑀𝑡 from the input sequence I𝑡 , and feed them into the
context-aware joint learner. The CJL utilizes modulated deformable
operations to retrieve the local joint feature 𝐽𝑡 from motion flow.
Subsequently, the progressive joint-motion mutual learning module
accepts local joint feature 𝐽𝑡 and global motion flow𝑀𝑡 as inputs,
and dynamically exchanges information between them. This yields
a more informative joint-motion representation 𝑆𝑡 . Finally, 𝑆𝑡 is fed
into a detection head to generate the human pose estimation Ĥ𝑡 .
In what follows, we will elaborate on the two key components in
detail.

3.1 Context-Aware Joint Learner
In order to better leverage local joint-related contexts, we propose to
explicitly retrieve the local joint feature from the consecutive frames
with the guidance of readily available initial heatmaps. There are
two key steps: feature extraction and deformable feature retrieval.

Feature extraction. Specifically, given the video clip I𝑡 , we
first employ a backbone [48] network to generate initial heatmaps
H =< 𝐻𝑡−1, 𝐻𝑡 , 𝐻𝑡+1 >, which encode possible position informa-
tion of the joints in each frame. Then, these heatmaps are aggre-
gated to yield the sequence-level representations for the current
frame �̂�𝑡 . In parallel to the heatmap extraction, we also employ
RAFT [50] to extract dense motion flow 𝑀𝑡 , which captures the
spatial variation of joint pixel positions over time, i.e., the dynamic
information of the pose, as follows:

𝑀𝑡 = Θ(𝐼𝑡−1, 𝐼𝑡 ) ⊕ Θ(𝐼𝑡 , 𝐼𝑡+1), (1)

where ⊕ represents the concatenation operation and Θ(·, ·) repre-
sents the RAFT estimator.

Deformable feature retrieval. Given �̂�𝑡 and𝑀𝑡 , we further
retrieve context-aware joint cues from motion flow𝑀𝑡 guided by
the initial heatmap �̂�𝑡 .

Instead of fusing𝑀𝑡 and �̂�𝑡 with regular convolution blocks, we
employ modulated deformable convolution to extract the context-
aware joint feature 𝐽𝑡 , sampling from motion flow by adaptively
learning the offsets and weights of the deformable convolution.
Initially, we concatenate the motion flow 𝑀𝑡 and the heatmap �̂�𝑡

to generate the fused features 𝑅𝑡 . Subsequently, given the fused
features 𝑅𝑡 , we compute the kernel sampling offsets 𝐽𝑂𝑡 and mod-
ulated weights 𝐽𝑊𝑡 by:



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Sifan Wu et al.

Figure 2: JM-Pose is designed to estimate human pose in the keyframe 𝐼𝑡 with its consecutive supporting frames, e.g., 𝐼𝑡−𝛿 , 𝐼𝑡+𝛿
in the above figure. JM-Pose introduces two key components: Context-aware Joint Learner and Joint-Motion Mutual Learning.
The context-aware joint learner is designed to extract the local joint-level feature 𝐽𝑡 from motion flow𝑀𝑡 using modulated
deformable operations guided by initial heatmap �̂�𝑡 . Joint-motion mutual learning further refines local joint feature 𝐽𝑡 and
global motion flow𝑀𝑡 using their knowledge to complement each other. An information orthogonality objective L𝐼𝑂 is adopted
to improve the diversity of learned 𝐽𝑡 and 𝑀𝑡 , which is conditioned on initial heatmap �̂�𝑡 . The final 𝐿𝑡ℎ representation is
aggregated and fed to the detection head to obtain the final heatmap Ĥ𝑡 for pose estimation. Finally, we employ a heatmap loss
L𝐻 to measure the discrepancy between the ground truthH𝑡 and the detected heatmaps Ĥ𝑡 .

{�̂�𝑡 ⊕ 𝑀𝑡 }
𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛−−−−−−−−−−→

𝑏𝑙𝑜𝑐𝑘𝑠
𝑅𝑡 , (2)

𝑅𝑡
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙−−−−−−−→
𝑏𝑙𝑜𝑐𝑘𝑠

𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛−−−−−−−−−−→
𝑏𝑙𝑜𝑐𝑘𝑠

𝐽𝑂𝑡 , (3)

𝑅𝑡
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙−−−−−−−→
𝑏𝑙𝑜𝑐𝑘𝑠

𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛−−−−−−−−−−→
𝑏𝑙𝑜𝑐𝑘𝑠

𝐽𝑊𝑡 , (4)

where the kernel offset 𝐽𝑂𝑡 reflects the pixel movement associ-
ation field, and the modulated weight 𝐽𝑊 𝑡 represents the scalar
matrix for the convolution kernel. The network parameters of the
two processes for 𝐽𝑂𝑡 and 𝐽𝑊𝑡 are learned independently. Finally,
we retrieve the context-aware joint feature 𝐽𝑡 via a modulated de-
formable convolution [72] as follows:

{𝑀𝑡 , 𝐽𝑂𝑡 , 𝐽𝑊𝑡 }
𝑑𝑒𝑓 𝑜𝑟𝑚𝑎𝑏𝑙𝑒
−−−−−−−−−−→
𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐽𝑡 . (5)

3.2 Joint-Motion Mutual Learning
Context-aware joint learner outputs the joint feature 𝐽𝑡 that en-
codes local joint dependency and the motion flow𝑀𝑡 that encodes
global pixel-level motion dynamics. Simply merging these two fea-
tures may not fully exploit their individual strengths for accurate
pose estimation, since joint feature and motion flow essentially
have the potential to guide each other. For instance, in scenes with
video defocus (poor video quality), local joint feature can supply
motion flow with position information for hard-to-detect joints.
Conversely, in scenarios of pose occlusion, the occluded joints could
be inferred based on global motion dynamics. Given that motion
flow and joint feature are complementary, we propose a progressive
L-layer joint-motion mutual learning (JMML) paradigm. This pro-
cess involves a joint-motion interaction block and an information

orthogonality objective, aimed at effectively enhancing the expres-
sive capabilities of each feature by densely exchanging valuable
information between them.

Joint-motion interaction block (JMIB). Here, we elabo-
rate on the 𝑖𝑡ℎ layer joint-motion interaction block in JMML. As
shown in Figure 3, with 𝐽 𝑖−1𝑡 and𝑀𝑖−1

𝑡 produced by 𝑖 − 1𝑡ℎ JMML,
𝑖𝑡ℎ joint-motion interaction block applies two convolution blocks
on them, obtaining 𝐽 𝑖−1𝑡 and �̂�𝑖−1

𝑡 . Subsequently, to leverage the
complementarity of local joint feature and global motion flow, we
propose a joint-motion cross-attention mechanism within the in-
teraction block, which allows joints and motion features to act as
mutual guides. Specifically, we generate a joint query matrix 𝑄 𝑗

based on 𝐽 𝑖−1𝑡 while also generating a motion key matrix 𝐾𝑚 and
a motion value matrix 𝑉𝑚 based on �̂�𝑖−1

𝑡 using independent con-
volution layers. Similarly, we employ �̂�𝑖−1

𝑡 to generate a motion
query matrix𝑄𝑚 while also employing 𝐽 𝑖−1𝑡 to generate a joint key
matrix 𝐾 𝑗 and a joint value matrix 𝑉 𝑗 . Then, we compute feature
compatibility between corresponding query-key pairs using a cross
attention mechanism:

𝐽 𝑖−1𝑡 = Υ(𝐽 𝑖−1𝑡 ), �̂�𝑖−1
𝑡 = Υ(𝑀𝑖−1

𝑡 ), (6)

𝐽
′𝑖−1
𝑡 = Ψ(𝑄 𝑗𝐾𝑚𝑇 /

√
𝑑)𝑉𝑚 + 𝐽 𝑖−1𝑡 , (7)

�̂�
′𝑖−1
𝑡 = Ψ(𝑄𝑚𝐾 𝑗𝑇 /

√
𝑑)𝑉 𝑗 + �̂�𝑖−1

𝑡 , (8)

where Υ(·) represents a set of convolution blocks, Ψ(·) denotes the
softmax operation, and 𝑑 is the hyperparameter. Joint-motion cross-
attention coarsely instills local joint feature and global motion flow.
Next, we will exchange each other’s information finely. Consider
the complementarity of the two features, we concatenate 𝐽

′𝑖−1
𝑡

and �̂�
′𝑖−1
𝑡 followed by a sigmoid function and a channel chunk
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Figure 3: The joint-motion mutual learning framework. Left:
The architectures of the 𝑖𝑡ℎ joint-motionmutual learning and
legends. Right: We propose an information orthogonality
objective to update the parameters of joint-motion mutual
learning and mine diverse local joint feature and global mo-
tion flow.

operation to obtain two attention masks 𝐴 𝑗 and 𝐴𝑚 . The attention
mask 𝐴 𝑗 and 𝐴𝑚 are used to rescale corresponding joint feature
𝐽
′𝑖−1
𝑡 and motion flow �̂�

′𝑖−1
𝑡 respectively. The above process can

be described as :

𝐴 𝑗 , 𝐴𝑚 = Φ(𝜎 (𝐽
′𝑖−1
𝑡 ⊕ �̂�

′𝑖−1
𝑡 )), (9)

𝐽 𝑖𝑡 = 𝐴 𝑗 ⊗ 𝐽 𝑖−1𝑡 , 𝑀𝑖
𝑡 = 𝐴

𝑚 ⊗ �̂�𝑖−1
𝑡 , (10)

where Φ(·) denotes the operations of channel chunk, ⊕, ⊗, and 𝜎 (·)
reveal concatenate, spatial-wise multiplication, and the sigmoid
activation function, respectively.

Information orthogonality objective. After generating the
complementary joint feature 𝐽 𝑖𝑡 and motion flow 𝑀𝑖

𝑡 , we further
conduct theoretical analysis and propose an information orthogo-
nality objective inspired by mutual information theory [20]. This
objective ensures that both joint feature and motion flow provide
diverse cues by minimizing redundant information introduced by
the mutual learning block.

Mutual information measures the information dependency be-
tween random variables, which can be formalized as:

I(𝑥1;𝑥2) = E𝑝 (𝑥1,𝑥2 ) [log
𝑝 (𝑥1, 𝑥2)
𝑝 (𝑥1)𝑝 (𝑥2)

], (11)

where 𝑥1 and 𝑥2 denote the two random variables, 𝑝 (𝑥1, 𝑥2) repre-
sents the joint probability distribution between 𝑥1 and 𝑥2. 𝑝 (𝑥1)
and 𝑝 (𝑥2) represent the marginals of 𝑥1 and 𝑥2, respectively.

To ensure the diversity of features extracted from the mutual
learning (𝐽 𝑖𝑡 and 𝑀𝑖

𝑡 ) and information gain of the initial heatmap
�̂�𝑡 , the proposed information orthogonality loss is given by:

L𝑖
𝐼𝑂 = 𝐼𝑂 (𝑀𝑖

𝑡 , 𝐽
𝑖
𝑡 ) =𝑚𝑖𝑛 I(𝑀𝑖

𝑡 ; 𝐽
𝑖
𝑡 |�̂�𝑡 ) . (12)

As L𝑖
𝐼𝑂

in equation 12 is intractable to estimate analytically,
we seek to simplify it as depicted in Figure 3. The information
orthogonality loss L𝑖

𝐼𝑂
can be stated as :

𝑚𝑖𝑛 I(𝑀𝑖
𝑡 ; 𝐽

𝑖
𝑡 |�̂�𝑡 ) =𝑚𝑖𝑛 [I(𝑀𝑖

𝑡 ; 𝐽
𝑖
𝑡 )︸     ︷︷     ︸

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑦

−

𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡︷     ︸︸     ︷
I(𝐽 𝑖𝑡 ; �̂�𝑡 ) + I(�̂�𝑡 ; 𝐽 𝑖𝑡 |𝑀𝑖

𝑡 )︸          ︷︷          ︸
𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦

] .

(13)

The first term compresses the relevancy between joint feature
𝐽 𝑖𝑡 and motion flow 𝑀𝑖

𝑡 , directing both to focus on more diverse
cues. The second term allows the joint feature 𝐽 𝑖𝑡 to contain more
location and dependency information related to the heatmap �̂�𝑡 .
The third term constrains the context-aware joint learner to extract
joint feature 𝐽𝑡 from the motion flow𝑀𝑡 . These terms are illustrated
in Figure 3 and can be estimated by existing mutual information
estimators [35, 51]. In our experiments, we employ the Variational
Self-Distillation [51] to estimate each term.

Heatmap estimation. Ultimately, we derive the joint feature
𝐽𝐿𝑡 and motion flow𝑀𝐿

𝑡 through the 𝐿𝑡ℎ joint-motion mutual learn-
ing. We aggregate these two features to obtain a comprehensive
representation 𝑆𝑡 as follows:

𝑆𝑡 = Υ(𝐽𝐿𝑡 ⊕ 𝑀𝐿
𝑡 ), (14)

where Υ(·) denotes a convolution block and ⊕ is the concatenation
operation. 𝑆𝑡 is subsequently fed into a detection head to gener-
ate the pose heatmap Ĥ𝑡 . The detection head consists of a set of
3 × 3 convolution layers. Through mutual and adaptive refinement
of local joint dependency and global pixel-level motion flow, we
can obtain complementary cues between them, thereby generat-
ing more tailored information that contributes to accurate pose
estimation.

3.3 Loss Functions
We adopt a standard heatmap loss L𝐻 to supervise the final pose

estimation:

L𝐻 =

H𝑡 − Ĥ𝑡

2
2
, (15)

where H𝑡 and Ĥ𝑡 represent the ground truth heatmap and the
prediction heatmap, respectively. We also employ the proposed
information orthogonality loss to supervise the joint-motion mutual
learning as mentioned in Sec. 3.2. The total loss function L𝑇𝑜𝑡𝑎𝑙 is
given by:

L𝑇𝑜𝑡𝑎𝑙 = L𝐻 + 𝛼
𝐿∑︁
𝑖=1

L𝑖
𝐼𝑂 , (16)

where 𝛼 is a trade-off parameter to balance the two loss terms.

4 Experiments
In this section, we conduct comprehensive experiments on three
widely used benchmark datasets for human pose estimation in
video. Our overarching goal is to answer the following research
questions:

• RQ1: How does our method compare with the state-of-the-
art human pose estimation approaches on quantitative re-
sults?
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• RQ2: How is the proposed method compared against existing
human pose estimation methods in challenging scenarios?

• RQ3: How does the proposed method compare to the state-
of-the-art video human pose estimation methods on visual
results?

• RQ4: How much do various components of JM-Pose con-
tribute to its overall performance?

Next, we first introduce the experimental settings, followed by
answering the above research questions one by one.

4.1 Experimental Settings
Datasets. We adopt three widely-used pose estimation datasets,
namely PoseTrack2017 [23], PoseTrack2018 [1], and PoseTrack21
[10], to evaluate the proposed method.

PoseTrack is a large-scale public dataset designed for evaluating
human pose estimation methods in video and involves the chal-
lenging case of complex movements of highly occluded people in
crowded scenes. Specifically, PoseTrack2017 comprises 300 video
sequences and 80,144 pose annotations, with 250 video clips al-
located for training and the remaining used for validation (split
following the official protocol). PoseTrack2018 increases the num-
ber of videos and pose annotations, including 593 video clips for
training and 170 video clips for validation (with 153,615 pose labels).
Each annotated person in both datasets has 15 keypoints positions
and a flag indicating joint visibility. Moreover, the training sam-
ples provide dense labels in the center 30 frames, and validation
videos are additionally labeled every four frames. The Posetrack21
further extends PoseTrack2018 with a focus on small subjects and
those in the occluded scenes, encompassing 177,164 pose labels.

Evaluation metric. The average precision (AP) is commonly
adopted to evaluate the performance for human pose estimation.
We further average the AP of all joints (mAP) to derive and compare
the final performance.

Implementation details. We use PyTorch to implement our
method. The input image size is fixed to 384 × 288. For initial
heatmap extraction, we leverage the HRNet-W48 model pre-trained
on the COCO dataset as our backbone. During the training process,
we incorporate several data augmentations including random ro-
tation [−45◦, 45◦], random scale [0.65, 1.35], random truncation,
and flipping. The predefined time span 𝛿 is set to 2. In joint-motion
mutual learning, 𝐿 is set to 4. We utilize the AdamW optimizer with
an initial learning rate of 1𝑒 − 4 (decays to 1𝑒 − 5, 1𝑒 − 6, 1𝑒 − 7 at the
5𝑡ℎ, 10𝑡ℎ, 𝑎𝑛𝑑 15𝑡ℎ epochs, respectively). Our model is trained on 2
Nvidia Geforce RTX 4090 GPUs and terminated within 20 epochs.

4.2 Quantitative Comparison with
State-of-the-art Methods (RQ1)

Results on the PoseTrack2017 dataset. We first evaluate the
performance of our model on the PoseTrack2017 validation dataset.
Specifically, we compare 22 methods, and their performance are
shown in Table 1. The proposed JM-Pose consistently outperforms
existing approaches, achieving an mAP of 86.4. In comparison to
the widely-used backbone network HRNet, our JM-Pose improves
the mAP by 9.1 points. Moreover, when compared to the state-of-
the-art method TDMI, JM-Pose delivers a 0.7 mAP gain. Notably,
we observe an encouraging improvement for the challenging joints

Table 1: Quantitative results on the PoseTrack2017 dataset.

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Mean

PoseTracker [17] 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6

PoseFlow [60] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

JointFlow [11] - - - - - - - 69.3

FastPose [70] 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3

TML++ [22] - - - - - - - 71.5

Simple (R-50) [59] 79.1 80.5 75.5 66.0 70.8 70.0 61.7 72.4

Simple (R-152) [59] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

STEmbedding [26] 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

HRNet [48] 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3

MDPN [18] 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7

CorrTrack [42] 86.1 87.0 83.4 76.4 77.3 79.2 73.3 80.8

Dynamic-GNN [64] 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1

PoseWarper [5] 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2

DCPose [34] 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8

DetTrack [55] 89.4 89.7 85.5 79.5 82.4 80.8 76.4 83.8

SLT-Pose [16] 88.9 89.7 85.6 79.5 84.2 83.1 75.8 84.2

HANet [25] 90.0 90.0 85.0 78.8 83.1 82.1 77.1 84.2

KPM [15] 89.5 90.9 87.6 81.8 81.1 82.6 76.1 84.6

M-HANet [24] 90.3 90.7 85.3 79.2 83.4 82.6 77.8 84.8

FAMI-Pose [35] 89.6 90.1 86.3 80.0 84.6 83.4 77.0 84.8

TDMI [14] 90.0 91.1 87.1 81.4 85.2 84.5 78.5 85.7

JM-Pose (Ours) 90.7 91.6 87.8 82.1 85.9 85.3 79.2 86.4

Table 2: Quantitative results on the PoseTrack2018 dataset.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

STAF [41] - - - 64.7 - - 62.0 70.4

AlphaPose [13] 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9

TML++ [22] - - - - - - - 74.6

MDPN [18] 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0

PGPT [3] - - - 72.3 - - 72.2 76.8

Dynamic-GNN [64] 80.6 84.5 80.6 74.4 75.0 76.7 71.8 77.9

PoseWarper [5] 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7

PT-CPN++ [68] 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9

DCPose [34] 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9

DetTrack [55] 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5

SLT-Pose [16] 84.3 87.5 83.5 78.5 80.9 80.2 74.4 81.5

FAMI-Pose [35] 85.5 87.7 84.2 79.2 81.4 81.1 74.9 82.2

HANet [25] 86.1 88.5 84.1 78.7 79.0 80.3 77.4 82.3

M-HANet [24] 86.7 88.9 84.6 79.2 79.7 81.3 78.7 82.7

KPM [15] 85.1 88.9 86.4 80.7 80.9 81.5 77.0 83.1

TDMI [14] 86.2 88.7 85.4 80.6 82.4 82.1 77.5 83.5

JM-Pose (Ours) 86.6 88.7 86.0 81.6 83.3 83.2 78.2 84.1

(elbow, knee): with an mAP of 87.8 (↑ 0.7) for the elbow and an
mAP of 85.3 (↑ 0.8) for the knee. The consistent improvement of
our method underscores the significance of explicitly incorporating
context-aware joint feature and global pixel-level motion flow.

Results on the PoseTrack2018 dataset. We further evaluate
the proposed JM-Pose on the PoseTrack2018 dataset. Empirical
comparisons on the validation set are presented in Table 2. JM-Pose
outperforms all other methods, achieving an mAP of 84.1, with an
mAP of 86.0, 81.6, 83.3, and 78.2 for the elbow, wrist, knee, and
ankle joints.
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Table 3: Quantitative results on the Posetrack21 dataset.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Tracktor++ w. poses [4] - - - - - - - 71.4

CorrTrack [42] - - - - - - - 72.3

CorrTrack w. ReID [42] - - - - - - - 72.7

Tracktor++ w. corr [4] - - - - - - - 73.6

DCPose [34] 83.2 84.7 82.3 78.1 80.3 79.2 73.5 80.5

FAMI-Pose [35] 83.3 85.4 82.9 78.6 81.3 80.5 75.3 81.2

TDMI [14] 85.8 87.5 85.1 81.2 83.5 82.4 77.9 83.5

JM-Pose (Ours) 85.8 88.1 85.7 82.5 84.1 83.1 78.5 84.0

Table 4: Performance comparisons on the Challenging-
PoseTrack dataset.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

SimpleBaseline [59] 64.2 57.3 44.4 36.8 45.1 31.6 25.8 45.0

HRNet-W48 [48] 61.1 56.2 48.0 39.5 46.4 34.2 32.0 46.4

PoseWarper [5] 65.2 58.7 49.6 40.9 47.8 36.8 30.4 48.0

DCPose [34] 67.5 60.4 49.7 40.0 50.1 37.3 30.0 48.7

FAMI-Pose [35] 69.3 62.2 50.0 43.7 49.4 40.2 38.0 51.6

TDMI [14] 71.8 63.4 53.7 46.0 53.5 44.3 39.6 54.4

JMPose (Ours) 71.9 65.7 56.4 47.4 56.0 45.6 42.0 56.1

Figure 4: The keyframe (a) and visual comparisons of detec-
tion results obtained from DCPose (b), TDMI (c), and our
JM-Pose (d) on challenging scenes in the PoseTrack dataset.
Inaccurate predictions are highlighted with the red solid cir-
cles.

Results on the PoseTrack21 dataset. Table 3 shows that our
JM-Pose achieves the best mAP performance on the PoseTrack21
dataset. Experimental results of the first four methods are officially
provided by the dataset [10]. [14] offers the quantitive results of
three methods (i.e., DCPose [34], FAMI-Pose [35], TDMI [14]). We
observe that the previous approach TDMI has delivered a com-
mendable result. In comparison to TDMI, our JM-Pose improves
the performance with an mAP of 84.0. Additionally, a notable ob-
servation from Table 3 is that JM-Pose achieves an mAP of 82.5 for
the wrist joint and 78.5 for the ankle joint.

4.3 Performance on Complex and challenging
scenes (RQ2)

We conduct experiments to evaluate the performance of our method
and existing methods on complex and challenging scenes. We select
a more difficult subset (Challenging-PoseTrack) accroding to [30]
from the PoseTrack dataset [23]. Challenging-PoseTrack consists
of 806 frames and contains many challenging scenes, such as pose
occlusions, tangleed and crowded person, etc. Seven methods are
evaluated in this subset and the quantitative results are presented
in Table 4. The heatmap-based method DCPose tends to fail in
these complex scenes, possibly due to the lack of the ability to
capture spatio-temporal features, achieving an mAP of 48.7 only.
The feature-based method TDMI integrates well-designed visual
features by utilizing feature difference and obtains a mAP of 54.5.
However, visual features fail to capture pixel-level motion dynamic
and are not robust enough to challenging scenes. Our JM-Pose
mutually amalgamates local joint dependency and global pixel-level
motion flow to capture more informative representations, which
effectively reason about challenging keypoints and improve model
robustness. Therefore, our method achieves a final AP of 56.1 on
the Challenging-PoseTrack.

4.4 Comparison of Visual Results (RQ3)
Looking at the visuals would be more instructive. We visualize the
results for scenes with rapid motion or pose occlusions attest to the
robustness of our method. Specifically, we present in Figure 4 the
visual comparisons of our JM-Pose against state-of-the-art methods.
From Figure 4, we can observe that JM-Pose displays more accurate
pose estimation given the heavily crowded and challenging scenar-
ios. DCPose only leverages temporal heatmap information from
neighboring frames to refine the initial pose heatmap, resulting
in suboptimal performance. TDMI solely refines and disentangles
backbone features yet ignores the important effect of joint cues. For
example, in the Rapid-Motion scene (c), the right foot and right knee
(pink line) of the woman wearing black in the TDMI red box are to
the left of the true keypoint location, while our method identified
the correct location. Similarly, in the pose occlusions scene (c), the
right knee (pink line) of the woman wearing white pants in the
TDMI red box is located to the right of the true keypoint location.
At the same time, TDMI did not estimate the right hip of the boy
(in the lower right corner of the image), while our method iden-
tified the correct location. More visual results of our method are
demonstrated in Figure 5 and supplementary material. Through the
principled designs of context-aware joint learner and joint-motion
mutual learning for mining complementary and informative rep-
resentations, our JM-Pose is capable of detecting accurate human
poses for challenging scenes.

4.5 Ablation Study (RQ4)
To better investigate the contribution of JM-Pose under different
settings, we conduct a series of ablation studies, including context-
aware joint learner (CJL) and joint-motion mutual learning (JMML).
These experiments are conducted on the PoseTrack2017 validation
dataset.

Study on components of JM-Pose. We conduct experiments
to investigate the effect of each component in our JM-Pose and
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Figure 5: More visual results of JM-Pose on benchmark datasets. Challenging cases such as high-speed motion, video defocus,
and pose occlusion are involved.

Table 5: Ablation of different components of JM-Pose. ‘w/o
X’ represents remove X module.

Method CJL JMML Mean Declines

JM-Pose ✓ ✓ 86.4 -

JM-Pose* ✓ ✓ 85.9 0.5 (↓)
w/o CJL - ✓ 85.6 0.8 (↓)

w/o JMML ✓ - 84.6 1.8 (↓)
TDMI [14] - - 85.7 0.7 (↓)

Table 6: Ablation of different modules in joint-motion mu-
tual learning (JMML).

Method L𝐼𝑂 JMIB Mean Declines

JM-Pose ✓ ✓ 86.4 -

(a) ✓ - 85.0 1.4 (↓)
(b) - ✓ 85.8 0.6 (↓)

present the empirical result in Table 5. TDMI serve as a baseline
which refines visual features for human pose estimation. However,
it neglects local joint dependency present in heatmaps. In addition,
JM-Pose* refers to using visual feature differences to extract motion
features (from backbone network), which replaces the global pixel-
level motion flow in JM-Pose and the mAP decreases from 86.4 to
85.9. This performance drop (↓ 0.5) highlights that our global mo-
tion flow could capture pixel-level motion dynamics and is helpful
for human pose estimation. In case w/o CJL, we remove the context-
aware joint learner (CJL), and the initial heatmap �̂�𝑡 and motion
flow 𝑀𝑡 are fed into the JMML. We can observe that mAP falls
from 86.4 to 85.6. This decline in performance upon removal of the
context-aware joint learner suggests the efficacy of the joint-level
feature clues encoded by the context-aware joint learner. More-
over, in case w/o JMML, we remove joint-motion mutual learning
(JMML), and the local joint feature 𝐽𝑡 is fed into the detection head.
We can observe that mAP falls from 86.4 to 84.6 mAP. This decline
in performance upon removal of the joint-motion mutual learning
suggests the importance of the mutually aggregate the joint feature
and motion flow.

Study on components of JMML. Finally, we also examine
the contributions of joint-motion mutual learning (JMML) under
different settings and report the results in Table 6. (a) For the first
setting, we remove the joint-motion interaction block (JMIB) mod-
ule, which performs mutual learning between joint feature and
motion flow. It should be noted that after removing JMIB, our pro-
posed information orthogonality objective (L𝐼𝑂 ) will constrain the
joint feature and motion flow in the context-aware joint learner to
generate diverse joint feature. The mAP results drop from 86.4 to
85.0. This performance deterioration on top of JMIB corroborates
the importance of excavating the complementary joint-motion cues
in guiding more accurate estimations of the joint locations. (b) For
the next setting, we remove the information orthogonality objective
(L𝐼𝑂 ) from JMML, which minimizes redundant information and
differentiates the context-aware joint feature and global motion
flow. We observe the performance drops from 86.4 mAP to 85.8
mAP. This demonstrates the importance of our L𝐼𝑂 objective in
introducing meaningful and diverse joint feature and motion flow
to enhance human pose estimation.

5 Conclusion
In this work, we explore human pose estimation from the perspec-
tive of effectively integrating context-aware local joint feature and
global pixel-level motion flow. We propose a novel joint-motion
mutual learning framework termed JM-Pose. We propose a context-
aware joint learner guided by heatmaps to retrieve local joint-level
information from the motion flow. A particular highlight of our
method is the progressive joint-motionmutual learning to exchange
information between joint feature and motion flow, improving the
performance of pose estimation. Theoretically, we further propose
an information orthogonality objective for effective feature diver-
sity supervision of joint-motion interactive blocks. Empirical evalu-
ation on three large-scale datasets shows that our method achieves
notable improvements, showcasing the ability of our method to
detect human poses in complex and challenging scenes.
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