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ABSTRACT

This paper presents an approach to learning (deep) nD features equivariant under
orthogonal transformations, utilizing hyperspheres and regular n-simplexes. Our
main contributions are theoretical and tackle major challenges in geometric deep
learning such as equivariance and invariance under geometric transformations.
Namely, we enrich the recently developed theory of steerable 3D spherical neurons—
SO(3)-equivariant filter banks based on neurons with spherical decision surfaces—
by extending said neurons to nD, which we call deep equivariant hyperspheres, and
enabling their multi-layer construction. Using synthetic and real-world data in nD,
we experimentally verify our theoretical contributions and find that our approach
is superior to the competing methods for benchmark datasets in all but one case,
additionally demonstrating a better speed/performance trade-off in all but one other
case.

1 INTRODUCTION

Spheres1 serve as a foundational concept in Euclidean space while simultaneously embodying the
essence of non-Euclidean geometry through their intrinsic curvature and non-linear nature. This
motivated their usage as decision surfaces encompassed by spherical neurons (Perwass et al., 2003;
Melnyk et al., 2021).

Felix Klein’s Erlangen program of 1872 (Hilbert & Cohn-Vossen, 1952) introduced a methodology
to unify non-Euclidean geometries, emphasizing the importance of studying geometries through
their invariance properties under transformation groups. Similarly, geometric deep learning (GDL)
as introduced by Bronstein et al. (2017; 2021) constitutes a unifying framework for various neural
architectures. This framework is built from the first principles of geometry—symmetry and scale
separation—and enables tractable learning in high dimensions.

Symmetries play a vital role in preserving structural information of geometric data and allow models
to adjust to different geometric transformations. This flexibility ensures that models remain robust
and accurate, even when the input data undergo various changes. In this context, spheres exhibit a
maximal set of symmetries compared to other geometric entities in Euclidean space. The orthogonal
group O(n) fully encapsulates the symmetry structure of an nD sphere, including both rotational
and reflection symmetries. Integrating these symmetries into a model as an inductive bias is often a
crucial requirement for problems in natural sciences and the respective applications, e.g., molecular
analysis, protein design and assessment, or catalyst design (Rupp et al., 2012; Ramakrishnan et al.,
2014; Townshend et al., 2021; Jing et al., 2021; Lan et al., 2022).

In this paper, we consider data that live in Euclidean space (such as point clouds) and undergo
rotations and reflections, i.e., transformations of the O(n)-group. Enriching the theory of steerable
3D spherical neurons (Melnyk et al., 2022a), we present a method for learning O(n)-equivariant
deep features using regular n-simplexes2 and nD spheres, which we call Deep Equivariant
Hyperspheres (see Figure 1). The name also captures the fact that the vertices of a regular
n-simplex lie on an nD sphere, and that our main result enables combining them in multiple layers,
thereby enabling deep propagation via them.

Our main contributions are summarized as follows:

1By sphere, we generally refer to an nD sphere or a hypersphere; e.g., a circle is thus a 2D sphere.
2We use the fact that a regular n-simplex contains n+ 1 equidistant vertices in nD.
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Figure 1: The central components of Deep Equivariant Hyperspheres (best viewed in
color): regular n-simplexes with the nD spherical decision surfaces located at their vertices and the
simplex change-of-basis matrices Mn (displayed for the cases n = 2 and n = 3).

• We propose a method for learning O(n)-equivariant deep features, called Deep
Equivariant Hyperspheres, readily generalizing to any dimension.

• We define and analyze generalized concepts for a network composed of the proposed neurons,
such as equivariant bias, non-linearity, and multilayer configuration.

• We provide experiments using both synthetic and real-world data in nD and demonstrate
the soundness and effectiveness of the developed theoretical framework, achieving state-
of-the-art performance in all but one case (CGENN on the O(5) regressions task), and
demonstrating a better speed/performance trade-off than the competing methods in all but
one other case (VN on the O(3) classification task).

2 RELATED WORK

Even though the concept of spheres is also an essential part of spherical convolutional neural networks
(CNNs) and CNNs designed to operate on 360 imagery (Coors et al., 2018; Su & Grauman, 2017;
Esteves et al., 2018; Cohen et al., 2018; Perraudin et al., 2019), our method does not map input
data on a sphere, S2, nor does it perform convolution on a sphere. Instead, it embeds input in a
higher-dimensional Euclidean space by means of a quadratic function. Namely, our work extrapolates
the ideas from prior work by Perwass et al. (2003); Melnyk et al. (2021), in which spherical decision
surfaces and their symmetries have been utilized for constructing equivariant models for the 3D case
(Melnyk et al., 2022a;b). We carefully review these works in Section 3.

Similarly to the approach of Ruhe et al. (2023), our Deep Equivariant Hyperspheres
directly operate on the basis of the input points, not requiring constructing an alternative one, such as
a steerable spherical harmonics basis, which is a key limitation of many related methods (Anderson
et al., 2019; Thomas et al., 2018; Fuchs et al., 2020). Our method also generalizes to the orthogonal
group of any dimensionality.

Another type of method is such as by Finzi et al. (2021), a representation method building equivariant
feature maps by computing an integral over the respective group (which is intractable for continuous
Lie groups and hence, requires coarse approximation). Another category includes methods operating
on scalars and vectors: they update the vector information by learning the parameters conditioned on
scalar information and multiplying the vectors with it (Satorras et al., 2021), or by learning the latent
equivariant features (Deng et al., 2021).

3 BACKGROUND

In this section, we present a comprehensive background on the theory of spherical neurons and their
rotation-equivariant version, as well as on the general geometric concepts used in our work.

3.1 SPHERICAL NEURONS VIA NON-LINEAR EMBEDDING

Spherical neurons (Perwass et al., 2003; Melnyk et al., 2021) are neurons with, as the name suggests,
spherical decision surfaces. By virtue of conformal geometric algebra (Li et al., 2001), Perwass
et al. (2003) proposed to embed the data vector x ∈ Rn and represent the sphere with center
c = (c1, . . . , cn) ∈ Rn and radius r ∈ R respectively as

X =
(
x1, . . . , xn,−1,−

1

2
∥x∥2

)
∈ Rn+2 and S =

(
c1, . . . , cn,

1

2
(∥c∥2 − r2), 1

)
∈ Rn+2, (1)
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and used their scalar product X⊤S = − 1
2∥x− c∥2 + 1

2r
2 as a classifier, i.e., the spherical neuron:

fS(X;S) = X⊤S, (2)

with learnable parameters S ∈ Rn+2.

The sign of this scalar product depends on the position of the point x relative to the sphere (c, r):
inside the sphere if positive, outside of the sphere if negative, and on the sphere if zero (Perwass et al.,
2003). Geometrically, the activation of the spherical neuron equation 2 determines the cathetus length
of the right triangle formed by x, c, and the corresponding point on the sphere (see Figure 2 in Melnyk
et al. (2021)).

We note that with respect to the data vector x ∈ Rn, a spherical neuron represents a non-linear
function fS( · ;S) : Rn+2 → R, due to the inherent non-linearity of the embedding (equation 1), and
therefore, does not necessarily require an activation function, as observed by Melnyk et al. (2021).
The components of S in equation 1 can be treated as independent learnable parameters. In this case,
a spherical neuron learns a non-normalized sphere of the form S̃ = (s1, . . . , sn+2) ∈ Rn+2, which
represents the same decision surface as its normalized counterpart defined in equation 1, thanks to
the homogeneity of the embedding (Perwass et al., 2003; Li et al., 2001).

3.2 EQUI- AND INVARIANCE UNDER ORTHOGONAL TRANSFORMATIONS

The elements of the orthogonal group O(n) can be represented as n×n matrices R with the properties
R⊤R = RR⊤ = In, where In is the identity matrix, and detR = ±1, geometrically characterizing
nD rotations and reflections. The special orthogonal group SO(n) is a subgroup of O(n) and includes
only orthogonal matrices with the positive determinant, representing rotations.

We say that a function f : X → Y is O(n)-equivariant if for every R ∈ O(n) there exists the
transformation representation, ρ(R), in the function output space, Y , such that

ρ(R) f(x) = f(Rx) for all R ∈ O(n), x ∈ X . (3)

We call a function f : X → Y O(n)-invariant if for every R ∈ O(n), ρ(R) = In. That is, if

f(x) = f(Rx) for all R ∈ O(n), x ∈ X . (4)

Following the prior work convention (Melnyk et al., 2022a;b) hereinafter, we write R to denote the
same nD rotation/reflection as an n× n matrix in the Euclidean space Rn, as an (n+ 1)× (n+ 1)
matrix in the projective (homogeneous) space P(Rn) ⊂ Rn+1, and as an (n+ 2)× (n+ 2) matrix
in Rn+2. For the latter two cases, we achieve this by appending ones to the diagonal of the original
n× n matrix without changing the transformation itself (Melnyk et al., 2021).

3.3 STEERABLE 3D SPHERICAL NEURONS AND TETRASPHERE

Considering the 3D case, Melnyk et al. (2022a) showed that a spherical neuron (Perwass et al., 2003;
Melnyk et al., 2021) can be steered. In this context, steerability is defined as the ability of a function
to be written as a linear combination of the rotated versions of itself, called basis functions (Freeman
et al., 1991; Knutsson et al., 1992). For details, see Section A in the Appendix.

According to Melnyk et al. (2022a), a 3D steerable filter consisting of spherical neurons needs to
comprise a minimum of four 3D spheres: one learnable spherical decision surface S ∈ R5 (equation 1)
and its three copies rotated into the other three vertices of the regular tetrahedron, using one of the
results of Freeman et al. (1991) that the basis functions must be distributed in the space uniformly.

To construct such a filter, i.e., a steerable 3D spherical neuron, the main (learned) sphere center c0
needs to be rotated into∥c0∥ (1, 1, 1) by the corresponding (geodesic) rotation RO. The resulting
sphere center is then rotated into the other three vertices of the regular tetrahedron. This is followed
by rotating all four spheres back to the original coordinate system. One steerable 3D spherical neuron
can thus be defined by means of the 4× 5 matrix B(S) containing the four spheres:

F(X;S) = B(S)X , B(S) =
[
(R⊤

O RTi RO S)⊤
]
i=1...4

, (5)
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where X ∈ R5 is the input 3D point embedded using equation 1, {RTi
}4i=1 is the R5 rotation

isomorphism corresponding to the rotation from the first vertex, i.e., (1, 1, 1) to the i-th vertex of the
regular tetrahedron3.

Melnyk et al. (2022a) showed that steerable 3D spherical neurons are SO(3)-equivariant:
VR B(S)X = B(S)RX, VR = M⊤RO R R⊤

OM , (6)
where R is a representation of the 3D rotation in R5, and VR ∈ G < SO(4) is the 3D rotation
representation in the filter bank output space, with M ∈ SO(4) being a change-of-basis matrix that
holds the homogeneous coordinates of the tetrahedron vertices in its columns as

M =
[
m1 m2 m3 m4

]
=

1

2


1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1

 . (7)

We note that with respect to the input vector x ∈ R3, a steerable 3D spherical neuron represents a
non-linear rotational-equvivariant function F( · ;S) : R5 → R4 with the learnable parameters S ∈ R5.

TetraSphere As the first reported attempt to learn steerable 3D spherical neurons in an end-to-end
approach, Melnyk et al. (2022b) has presently introduced an approach for O(3)-invariant point cloud
classification based on said neurons and the VN-DGCNN architecture (Deng et al., 2021), called
TetraSphere.

Given the point cloud input X ∈ RN×3, the TetraSphere approach suggests to learn 4D features
of each point by means of the TetraTransform layer lTT( · ;S) : RN×3 → RN×4×K that consists of
K steerable spherical neurons B(Sk) (see equation 5) that are shared among the points. After the
application of TetraTransform, pooling over the K dimensions takes place, and the obtained feature
map is then propagated through the VN-DGCNN network as-is. However, the work of Melnyk et al.
(2022b) does not investigate the question of how to combine the steerable neurons in multiple layers,
nor how to process data in dimensions higher than 3.

3.4 REGULAR SIMPLEXES

Geometrically, a regular n-simplex represents n+ 1 equidistant points in nD (Elte, 2006), lying on
an nD sphere with unit radius. In the 2D case, the regular simplex is an equilateral triangle; in 3D, a
regular tetrahedron, and so on.

Following Cevikalp & Saribas (2023), we compute the Cartesian coordinates of a regular n-simplex
as n+ 1 vectors pi ∈ Rn:

pi =

{
n−1/2 1, i = 1

κ 1 + µ ei−1, 2 ≤ i ≤ n+ 1 ,
κ = −1 +

√
n+ 1

n3/2
, µ =

√
1 +

1

n
, (8)

where 1 ∈ Rn is a vector with all elements equal to 1 and ei is the natural basis vector with the i-th
element equal to 1.

For the case n = 3, we identify the following connection between equation 7 and equation 8: the
columns of M, mi ∈ R4, are the coordinates of the regular 3-simplex appended with a constant and

normalized to unit length; that is, mi =
1
p

[
pi

1/
√
3

]
with p =

∥∥∥∥∥
[

pi

1/
√
3

]∥∥∥∥∥, 1 ≤ i ≤ 4.

4 DEEP EQUIVARIANT HYPERSPHERES

In this section, we provide a complete derivation of the proposed O(n)-equivariant neuron based on
a learnable spherical decision surface and multiple transformed copies of it, as well as define and
analyze generalized concepts of equivariant bias, non-linearities, and multi-layer setup.

While it is intuitive that in higher dimensions one should use more copies (i.e., vertices) than in the
3D case (Melnyk et al., 2022a), it is uncertain exactly how many are needed. We hypothesize that the
vertices should constitute a regular n-simplex (n+ 1 vertices) and rigorously prove it in this section.

3Therefore, RT1 = I5, i.e., the original S remains at c0.
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4.1 THE SIMPLEX CHANGE OF BASIS

We generalize the change-of-basis matrix (equation 7) to nD by introducing Mn, an (n+1)× (n+1)
matrix holding in its columns the coordinates of the regular n-simplex appended with a constant and
normalized to unit length:

Mn =
[
mi

]
i=1...n+1

, mi =
1

p

[
pi

n−1/2

]
, p =

∥∥∥∥∥
[

pi

n−1/2

]∥∥∥∥∥ , (9)

where the norms p are constant, since ∥pi∥ = ∥pj∥ for all i and j by definition of a regular simplex.

Proposition 1. Let Mn be the-change-of-basis matrix defined in equation 9. Then Mn is an (n+1)D
rotation or reflection, i.e., Mn ∈ O(n+ 1) (see Section B in the Appendix for numeric examples).

Proof. We want to show that M⊤
n Mn = In+1, which will prove that Mn is orthogonal. The diagonal

elements of M⊤
n Mn are m⊤

i mi = ∥mi∥2 = 1 since ∥mi∥ = 1. The off-diagonal elements are found
as m⊤

i mj = (p⊤
i pj + n−1)/p2 for i ̸= j, where p is defined in equation 9. Note that p⊤

i pj is the
same for all i and j with i ̸= j since, by definition of a regular simplex, the vertices pi are spaced
uniformly. Note that p⊤

i pj = −n−1 for all i ̸= j by definition (equation 8). Hence, the off-diagonal
elements of M⊤

n Mn are zeros and M⊤
n Mn = In+1.

Since Mn ∈ O(n + 1), the sign of detMn is determined by the number of reflections required to
form the transformation. In the case of a regular n-simplex, the sign of the determinant depends on
the parity of n and the configuration of the simplex vertices. In our case, Mn is a rotation for odd n,
i.e., detMn = 1, and a reflection for even n. Consider, for example, the case n = 3. The matrix M3

shown in equation 7 has detM3 = 1, thus, is a 4D rotation, as stated in Section 3.3.
Lemma 2. Let Mn be the change-of-basis matrix defined in equation 9, and Pn an n × (n + 1)

matrix holding the regular n-simplex vertices, pi, in its columns, and p =

∥∥∥∥∥
[

pi

n−1/2

]∥∥∥∥∥, as defined in

equation 9. Then

MnP⊤
n = p

[
In
0⊤

]
. (10)

Proof. We begin by elaborating on equation 9:

Mn =
1

p

[
Pn

n−1/2 1⊤

]
. (11)

We note that the norms of the rows of Pn are also equal to p since Mn ∈ O(n + 1) (as per
Proposition 1). Recall that Pn is centered at the origin, and, therefore, for a constant a ∈ R and a
vector of ones 1 ∈ Rn+1, we obtain a 1⊤P⊤

n = 0⊤. Remembering that the product MnP⊤
n is between

Rn+1 vectors, we plug equation 11 into the LHS of equation 10 and obtain

MnP⊤
n =

1

p

[
Pn

n−1/2 1⊤
]

P⊤
n =

p2

p

[
In
0⊤

]
= p

[
In
0⊤

]
. (12)

4.2 EQUIVARIANT nD SPHERES

In this section, we generalize steerable 3D spherical neurons reviewed in Section 3.3. We denote
an equivariant nD-sphere neuron (an equivariant hypersphere) by means of the (n+ 1)× (n+ 2)
matrix Bn(S) for the spherical decision surface S ∈ Rn+2 with center c0 ∈ Rn and an nD input
x ∈ Rn embedded as X ∈ Rn+2 as

Fn(X;S) = Bn(S)X , Bn(S) =
[
(R⊤

O RTi RO S)⊤
]
i=1...n+1

, (13)

where {RTi
}n+1
i=1 is the Rn+2 rotation isomorphism corresponding to the rotation from the first vertex

to the i-th vertex of the regular n-simplex, and RO ∈ SO(n) is the geodesic rotation from the sphere
center c0 to∥c0∥p1 (therefore, RT1

= In+2).

We now need to prove that Fn( · ;S) is O(n)-equivariant.
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Proposition 3. Let Fn( · ;S) : Rn+2 → Rn+1 be the neuron defined in equation 13 and R ∈ O(n)
be an n× n rotation or reflection matrix. Then the transformation representation in the filter output
space Rn+1 is given by the (n+ 1)× (n+ 1) matrix

Vn = ρ (R) = M⊤
n RO R R⊤

OMn , (14)

where Mn ∈ O(n+ 1) is the-change-of-basis matrix defined in equation 9 and a 1 is appended to
the diagonals of RO and R to make them (n+ 1)× (n+ 1). Furthermore, Vn ∈ G < O(n+ 1).

Proof. Since Mn ∈ O(n + 1), RO ∈ SO(n), and R ∈ O(n) are orthogonal matrices, Vn in
equation 14 is an orthogonal change-of-basis transformation that represents R ∈ O(n) in the basis
constructed by Mn and RO. Note that appending one to the diagonal of R ∈ O(n) does not affect
the sign of the determinant, which makes Vn a reflection representation if detR = −1, or a rotation
representation if detR = +1. Since R ∈ O(n) and RO ∈ O(n), not all elements of O(n+ 1) can be
generated by the operation in equation 14. Thus, we conclude that Vn belongs to a proper subgroup
of O(n+ 1), i.e., G < O(n+ 1). The original transformation is found directly as

R = R⊤
OMn Vn M⊤

n RO , (15)

followed by the retrieval of the upper-left n× n sub-matrix.

Noteworthy, the basis determined by RO ∈ SO(n), which depends on the center c0 of the sphere
S ∈ Rn+2 (see equation 13), will be different for different c0. Therefore, the representation Vn will
differ as well.

Theorem 4. The neuron Fn( · ;S) : Rn+2 → Rn+1 defined in equation 13 is O(n)-equivariant.

Proof. To prove the theorem, we need to show that equation 3 holds for Fn( · ;S).

We substitute equation 14 to the LHS and equation 13 to the RHS, and obtain

Vn Bn(S)X = Bn(S)RX . (16)

For the complete proof, please see Section C in the Appendix.

We note that with respect to the input vector x ∈ Rn, the equivariant hypersphere Fn( · ;S) : Rn+2 →
Rn+1 represents a non-linear O(n)-equivariant function. It is also worth mentioning that the sum
of the output Y = Bn(S)X is an O(n)-invariant scalar, i.e., the DC-component, due to the regular
n-simplex construction.

This invariant part can be adjusted by adding a scalar bias parameter to the output Y. The concept
of bias is imperative for linear classifiers, but for spherical decision surfaces (Perwass et al., 2003),
it is implicitly modeled by the embedding (equation 1). We note, however, that adding a scalar
bias parameter, b ∈ R to the output of an equivariant hypersphere (equation 13) respects O(n)-
equivariance:

Proposition 5. Let Y ∈ Rn+1 be the output of the O(n)-equivariant hypersphere Fn( · ;S) : Rn+2 →
Rn+1 (equation 13) given the input X ∈ Rn+2, and b ∈ R be a bias parameter. Then Y′ = Y + b 1,
where 1 is the vector of ones in Rn+1, is also O(n)-equivariant.

Proof. We need to show that equation 16 also holds when the bias b is added. First, we use Vn—the
representation of R ∈ O(n) from equation 14—and the fact that R and RO are both appended
1 to their main diagonal to make them (n + 1) × (n + 1). Then Vn 1 = M⊤

n RO R R⊤
OMn1 =

M⊤
n RO R R⊤

O

[
0

p
√
n

]
= M⊤

n

[
0

p
√
n

]
= 1, where p is a scalar defined in equation 8. Since the bias

b is a scalar, we use that Vn b1 = bVn 1 = b1. We now consider the left-hand side of equation 16:
Vn Y′ = Vn (Y + b1) = Vn Bn(S)X +Vn b1 = Vn Bn(S)X + b1. Plugging the equality equation 16
into the last equation, we complete the proof: Vn Bn(S)X + b1 = Bn(S)RX + b1.

This result allows us to increase the capacity of the equivariant hypersphere by adding the learnable
parameter b ∈ R.
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4.3 NORMALIZATION AND ADDITIONAL NON-LINEARITY

An important practical consideration in deep learning is feature normalization (Ioffe & Szegedy,
2015; Ba et al., 2016). We show how the activations of the equivariant hypersphere (equation 13) can
be normalized maintaining the equivariance:
Proposition 6. Let Y ∈ Rn+1 be the O(n)-equivariant output of the hypersphere filter (equation 13).
Then Y/∥Y∥, where ∥Y∥ ∈ R, is also O(n)-equivariant.

Proof. Let Y′ = Y/∥Y∥. We need to show that equation 16 holds also in the case of the normalization.
We start by rewriting the right-hand side of equation 16: Vn Y′ = ∥Y∥−1Vn Y = ∥Y∥−1Vn Bn(S)X.
We then use the original equality in equation 16 and rewrite the last equation: ∥Y∥−1Vn Bn(S)X =
∥Y∥−1Bn(S)RX, which completes the proof.

To increase the descriptive power of the proposed approach, we can add non-linearity to the normal-
ization step, following Ruhe et al. (2023):

Y 7→ Y
σ(a) (∥Y∥ − 1) + 1

, (17)

where a ∈ R is a learnable scalar and σ(·) is the sigmoid function.

4.4 EXTRACTING DEEP EQUIVARIANT FEATURES

We might want to propagate the equivariant output of Fn (equation 13), Y = Bn(S)X, through
spherical decision surfaces while maintaining the equivariance properties. One way to achieve it is by
using (n+ 1)D spheres, i.e., Fn+1, since the output Y ∈ Rn+1. Thus, the results established in the
previous section not only allow us to use the equivariant hyperspheres (equation 13) for nD inputs but
also to cascade them in multiple layers, thus propagating equivariant representations by successively
incrementing the feature space dimensionality with a unit step, i.e., nD→ (n+ 1)D.

Consider, for example, the point cloud patch X = {x}Ni=1 consisting of the coordinates of N
points x ∈ Rn as the input signal, which we can also consider as the N × n matrix X. Given
the equivariant neuron Fn( · ;S), a cascaded nD → (n + 1)D feature extraction procedure using
equivariant hyperspheres Fn( · ;S) for the given output dimensionality d (with d > n) can be defined
as follows (at the first step, X ← x):

X ∈ Rn → embed(normalize(X + b))→ Fn(X;S)→ embed(normalize(X + b))

→ Fn+1(X;S)→ . . .→ Fd(X;S)→ normalize(X + b)→ X ∈ Rd ,
(18)

where embed is the embedding according to equation 1, normalize is the optional activation
normalization (see Proposition 6), and b is an optional scalar bias.
Proposition 7. Given that all operations involved in the procedure 18 are O(n)-equivariant, its
output will also be O(n)-equivariant.

The proof is given in Section C.

Thus, given X as input, the point-wise cascaded application with depth d (equation 18) produces the
equivariant feature Y = {Y}Ni=1, Y ∈ Rn+d, which we can consider as the N × (n+ d) matrix Y.

In this case, we considered the width of each layer in equation 18 to be 1, i.e., one equivariant
hypersphere. In practice, one can use multiple equivariant hyperspheres per layer, with various types
of connectivity between the layers, which is chosen based on the task at hand.

4.5 MODELLING HIGHER-ORDER INTERACTIONS

The theoretical framework established thus far considers the interaction of one point and one spherical
decision surface (copied to construct the regular n-simplex constellation for the equivariant neuron in
equation 13). To increase the expressiveness of a model comprised of equivariant hyperspheres, we
propose to consider the relation of two points and a sphere, inspired by the work of Li et al. (2001).

Namely, given the input X ∈ RN×n and the corresponding extracted equivariant features Y ∈
RN×(n+d), we propose to compute

∆ = E⊙ Y Y⊤, (19)
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Figure 2: Left: real data experiment (the higher the accuracy the better); all the presented models are
also permutation-invariant. Center and right: synthetic data experiments (the lower the mean squared
error (MSE) the better); dotted lines mean that the results of the methods are copied from Ruhe et al.
(2023) and the code for those particular versions of the models is unavailable. Best viewed in color.

where E := 1
2 (∥xi − xj∥2 + IN ) ∈ RN×N models the edges as the squared distances between the

points (with 1’s in the main diagonal) in the input X.

Note, that ∆ ∈ RN×N is O(n)-invariant since E is comprised of the invariant distances between the
points and the auto-product (Gram) matrix Y Y⊤ consists of the pair-wise inner products of equivariant
features, which is invariant (Deng et al., 2021; Melnyk et al., 2022b). To enable permutation-
invariance by aggregating over the points, we first follow the procedure by Xu et al. (2021) and sort
the rows/columns of ∆, and then apply max and/or mean pooling over N . If multiple (K) equivariant
hyperspheres per layer are used, equation 19 is computed independently for each K, by broadcasting
E and computing K Gram matrices, resulting in ∆ ∈ RN×N×K .

5 EXPERIMENTAL VALIDATION

In this section, we experimentally verify our theoretical results derived in Section 4 by evaluating our
Deep Equivariant Hyperspheres, constituting feed-forward point-wise architectures, on
real and synthetic O(n)-equivariant benchmarks. A more detailed description of the used architectures
is presented in Table 1 in the Appendix. In addition to the performance comparison in Figure 2, we
compare the time complexity (i.e., the inference speed) of the considered methods4 in Figure 3.

5.1 O(3): ACTION RECOGNITION

First, we test the ability of our method to utilize O(3)-equivariance as the inductive bias. For this, we
select the task of classifying the 3D skeleton data, presented and extracted by Melnyk et al. (2022a)
from the UTKinect-Action3D dataset by Xia et al. (2012). Each skeleton is a 20 × 3 point cloud,
belonging to one of the 10 action categories; refer to the work of Melnyk et al. (2022a) for details.
We formulate the task to be both permutation- and O(3)-invariant.

We construct O(3)-equivariant point-wise feedforward models using layers with our equivariant
hyperspheres (according to the blueprint of equation 18) with and without the two-point interaction
described in Section 4.5, which we call DEH_∆ and DEH (see respectively the bottom and the top
illustration in Figure D in the Appendix). We also build point-wise equivariant VN (Deng et al.,
2021) and CGENN (Ruhe et al., 2023) models and non-equivariant baselines (MLPs, in which the
equivariant layers are substituted with non-linear layers), all with the roughly the same number of the
learnable parameters. We train the methods using the same hyperparameters. We train one version
of the baseline with O(3)-augmentation, whereas our method is only trained on non-transformed
skeletons. We evaluate the performance of the methods on the randomly O(3)-transformed test data.

4Some of the results are copied from Ruhe et al. (2023), and the implementation of the specific versions of
some models is currently unavailable.
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Figure 3: Speed/performance trade-off: The arrows in the plots articulate the direction of the desired
trade-off, i.e., higher performance and faster inference. Best viewed in color.

The results are presented in Figure 2 (left): our models (both, DEH and DEH_∆) trained on
the data in a single orientation capture equivariant features sufficient to perform more effectively
than the non-equivariant baseline trained on the augmented data (MLP Aug). Moreover, DEH_∆
consistently outperforms the competing equivariant methods (VN and CGENN), demonstrating a
better speed/performance trade-off, as seen in Figure 3 (left).

5.2 O(5): REGRESSION

Originally introduced by Finzi et al. (2021), the task is to model the O(5)-invariant function
f(x1, x2) := sin(∥x1∥) − ∥x2∥3/2 +

x⊤1 x2
∥x1∥∥x2∥ , where the two vectors x1 ∈ R5 and x2 ∈ R5

are sampled from a standard Gaussian distribution to construct train, validation, and test sets. We
use the same training hyperparameters and evaluation setup as Ruhe et al. (2023). Here, we employ
two models with architectures similar to those in Section 5.1, and compare them to the equivariant
EMLPs (Finzi et al., 2021), CGENN, and VN, and non-equivariant MLPs.

Our results together with those of the related methods are presented in Figure 2 (center). As we
can see, our DEH model exhibits fast convergence in terms of the training set size, and DEH_∆
outperforms the vanilla MLP and the MLP trained with augmentation (MLP Aug), as well as the
O(5)- and SO(5)-equivariant EMLP (Finzi et al., 2021) and VN. Only CGENN outperforms our
models, which comes, however, at the price of almost the double inference speed of our DEH_∆ (see
the center of Figure 3).

5.3 O(5): CONVEX HULL VOLUME PREDICTION

We also consider the more challenging task of estimating the volume of the convex hull generated
by 16 5D points, described by Ruhe et al. (2023). The problem is O(5)-invariant in nature. We
exploit the same network architecture as in Section 5.1. As previously, we use the original training
hyperparameters and evaluation setup presented by Ruhe et al. (2023).

We present our results alongside those of the related methods in Figure 2: Even our simplistic DEH
model outperforms all the methods (including CGENN, GVP (Jing et al., 2021), and VN (Deng et al.,
2021)) in the low-data regime (256 and 1000 training samples), and the DEH_∆ outperforms all of
the competing methods in all the scenarios, exhibiting a superior speed/performance trade-off, as
seen in Figure 3 (left).

6 CONCLUSION

In this manuscript, we presented Deep Equivariant Hyperspheres — nD neurons based
on spheres and regular n-simplexes — equivariant under orthogonal transformations of dimension n.
We defined and analyzed generalized components for a network composed of the proposed neurons,
such as equivariant bias, non-linearity, and multi-layer configuration. We evaluated our method on
both synthetic and real-world data and demonstrated the utility of the developed theoretical framework
in nD, and achieved a particularly better trade-off in higher dimensions, as the O(5) experiments
show a much clearer picture in Figure 3, Investigating the design of more advanced architectures of
the proposed equivariant hyperspheres forms a clear direction for future work.
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A ADDITIONAL BACKGROUND

A.1 STEERABILITY

According to Freeman et al. (1991), a function is called steerable if it can be written as a linear
combination of rotated versions of itself, as also alternatively presented by Knutsson et al. (1992). In
3D, fR(x, y, z) is thus said to steer if

fR(x, y, z) =

M∑
j=1

vj(R)fRj (x, y, z) , (20)

where fR(x, y, z) is f(x, y, z) rotated by R ∈ SO(3), and each Rj ∈ SO(3) orients the corresponding
jth basis function.

Freeman et al. (1991) further describe the conditions under which the 3D steerability constraint
(equation 20) holds and how to find the minimum number of basis functions, that must be uniformly
distributed in space.

In this context, Melnyk et al. (2022a) showed that in order to steer a spherical neuron defined in
equation 2 (Perwass et al., 2003; Melnyk et al., 2021), one needs to have a minimum of fours basis
functions, i.e., rotated versions of the original spherical neuron. This, together with the condition of
the uniform distribution of the basis functions, leads to the regular tetrahedron construction of the
steerable 3D spherical neuron in equation 5.

B NUMERIC INSTANCES FOR n = {2, 3, 4}

To facilitate the reader’s understanding of the algebraic manipulations in the next section, herein,
we present numeric instances of the central components of our theory defined in equation 8 and
equation 9, for the cases n = 2, n = 3, and n = 4. For convenience, we write the vertices of the
regular simplex equation 8 as the n× (n+ 1) matrix Pn =

[
pi

]
i=1...n+1

.

n = 2 : P2 =
√
2
2

[
1 (

√
3− 1)/2 −(

√
3 + 1)/2

1 −(
√
3 + 1)/2 (

√
3− 1)/2

]
, p =

√
3/2,

M2 = 1√
3

1 (
√
3− 1)/2 −(

√
3 + 1)/2

1 −(
√
3 + 1)/2 (

√
3− 1)/2

1 1 1

.

n = 3 : P3 = 1√
3

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

, p = 2/
√
3,

M3 = 1
2


1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1

.

n = 4 : P4 = 1
2


1 (3

√
5− 1)/4 −(

√
5 + 1)/4 −(

√
5 + 1)/4 −(

√
5 + 1)/4

1 −(
√
5 + 1)/4 (3

√
5− 1)/4 −(

√
5 + 1)/4 −(

√
5 + 1)/4

1 −(
√
5 + 1)/4 −(

√
5 + 1)/4 (3

√
5− 1)/4 −(

√
5 + 1)/4

1 −(
√
5 + 1)/4 −(

√
5 + 1)/4 −(

√
5 + 1)/4 (3

√
5− 1)/4

,

p =
√
5/2,
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M4 = 1√
5


1 (3

√
5− 1)/4 −(

√
5 + 1)/4 −(

√
5 + 1)/4 −(

√
5 + 1)/4

1 −(
√
5 + 1)/4 (3

√
5− 1)/4 −(

√
5 + 1)/4 −(

√
5 + 1)/4

1 −(
√
5 + 1)/4 −(

√
5 + 1)/4 (3

√
5− 1)/4 −(

√
5 + 1)/4

1 −(
√
5 + 1)/4 −(

√
5 + 1)/4 −(

√
5 + 1)/4 (3

√
5− 1)/4

1 1 1 1 1

.

C COMPLETE PROOFS

In this section, we provide complete proof of the propositions and theorems stated in the main paper.

Theorem. (Restating Theorem 4:)The neuron Fn( · ;S) : Rn+2 → Rn+1 defined in equation 13 is
O(n)-equivariant.

Proof. We need to show that equation 3 holds for Fn( · ;S).

We substitute equation 14 to the LHS and equation 13 to the RHS, and obtain

Vn Bn(S)X = Bn(S)RX . (21)

Keeping in mind that the (n + 1)-th and (n + 2)-th components, sn+1 and sn+2, of the sphere
S ∈ Rn+2 with center c0 ∈ Rn (equation 1) are O(n)-invariant, as well as our convention on writing
the rotation matrices (see the last paragraph of Section 3.2), we rewrite the (n+ 1)× (n+ 2) matrix
Bn(S) using its definition (equation 13):

Bn(S) =
[
(R⊤

O RTi
RO S)⊤

]
i=1...n+1

=
[
c⊤0 R⊤

O R⊤
Ti

RO sn+1 sn+2

]
i=1...n+1

. (22)

By definition of the rotation RO (equation 13), we have that RO c0 = ∥c0∥p1, where p1 ∈ Rn is the
first vertex of the regular simplex according to equation 8. Since RTi rotates p1 into pi, we obtain

RTi
RO c0 = ∥c0∥pi , 1 ≤ i ≤ n+ 1 . (23)

Thus, we can write the RHS of equation 21 using the sphere definition equation 1 as

Bn(S)RX =
[
∥c0∥p⊤

i RO sn+1 sn+2

]
i=1...n+1

RX =
[
∥c0∥P⊤

n ROR sn+1 1 sn+2 1
]

X.

(24)
We now use the definition of Vn from equation 14 along with equation 10, equation 11, and equation 23
to rewrite the LHS of equation 21 as

Vn Bn(S)X = M⊤
n RO R R⊤

O Mn

[[
∥c0∥P⊤

n sn+1 1
]

RO sn+2 1
]

X

= M⊤
n RO R R⊤

O

[p ∥c0∥ [ In
0⊤

]
0

p
√
n sn+1

]
RO

0

p
√
n sn+2

 X

= M⊤
n RO R

[[
p ∥c0∥ 0

0⊤ p
√
n sn+1

]
R⊤
O RO

0
p
√
n sn+2

]
X

=
1

p

[
P⊤
n RO R n−1/21

] [p ∥c0∥ In 0 0
0⊤ p

√
n sn+1 p

√
n sn+2

]
X

=
[
∥c0∥P⊤

n RO R
√
n√
n
sn+1 1

√
n√
n
sn+2 1

]
X = Bn(S)RX.

(25)

Proposition 8. (Restating Proposition 7:) Given that all operations involved in the procedure 18 are
O(n)-equivariant, its output will also be O(n)-equivariant.
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Proof. Let R ∈ O(n) be an orthogonal transformation, ρi(R) the representation of R in the re-
spective space, e.g., equation 14 for the equivariant hypersphere output, and x ∈ Rn be the
input to the procedure 18. We denote the output of the procedure 18 as F(x), where F is the
composition of all operations in the procedure 18. Since each operation is equivariant, equa-
tion 3 holds for each operation Φ, i.e., we have Φi(ρi(R)X) = ρi+1(R)Φ(X). Consider now
the output F(x) and the transformed output F(Rx). Since each operation in F is equivariant, we
have: F(Rx) = Φd(Φd−1(. . .Φ2(Φ1(Rx)))) = ρd(R)Φd(Φd−1(. . .Φ2(Φ1(x)))) = ρd(R)F(x).
Thus, the output of the procedure in equation 18 is equivariant, as desired.
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Figure 4: Architectures of our model: DEH (top) and DEH_∆ (bottom). All the operations are point-
wise, i.e., shared amongst N points. Each subsequent layer of equivariant hyperspheres contains Kl

neurons for each of the
∏d

i Ki preceding layer channels. The architectures of the non-permutation-
invariant variants differ only in that the global aggregation function over N is substituted with the
flattening of the feature map.
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Methods Equivariant layer sizes Invariant operation FC-layer sizes Total #params

O(3) Action Recognition

DEH [8, 48, 96] sum 32 7.81K
DEH_∆ [3, 6] ∆ 32 8.11K

O(5) Regression

DEH [2, 2] l2-norm 32 391
DEH_∆ [2] ∆ 32 343

O(5) Convex Hulls

DEH [32, 512] l2-norm 32 38.2K
DEH_∆ [8, 48] ∆ 32 49.8K

Table 1: Model architectures and number of parameters used in the experiments.

In this section, we provide illustrations of the architectures of our models used in the experiments in
Section 5 (see Figure D). By default in all our models (DEH and DEH_∆), we learned non-normalized
hyperspheres and equipped the layers with the equivariant bias and the additional non-linearity
(non-linear normalization in equation 17). The number of learnable parameters corresponds to the
competing methods in the experiments.
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