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ABSTRACT

Deep neural networks perform well on train data, but are often unable to adapt to
data distribution shifts. These are data which are rarely encountered, and thus are
under-represented in our training data. Examples of this includes data under ad-
verse weather conditions, and data which have been augmented with adversarial
perturbations. Estimating the robustness of models to data distribution shifts is im-
portant in enabling us to deploy them into safety critical applications with greater
assurance. Thus, we desire a measure which can be used to estimate robustness.
We define robustness in 4 ways: Generalization Gap, Test Accuracy (Clean &
Corrupted), and Attack Success Rate. A measure is said to be representative of
robustness when consistent (non-contradicting) relationships are found across all
4 robustness definitions. Through our empirical studies, we show that it is difficult
to measure robustness comprehensively across all definitions of robustness, as the
measure often behave inconsistently. While they can capture one aspect of robust-
ness, they often fail to do so in another aspect. Thus, we recommend that different
measures be used for different robustness definitions. Besides this, we also fur-
ther investigate the link between sharpness and robustness. We found that while
sharpness has some impact on robustness, this relationship is largely affected by
the choice of hyperparameters such as batch size.

1 INTRODUCTION

Deep Neural Networks (DNNs) provide state-of-the-art performances across various visual tasks.
However, a key problem exists when deploying DNNs in real-world conditions. These DNNs often
encounter out-of-distribution (OOD) data during deployment. This can come in the form of differ-
ing environmental conditions (e.g., rain, haze, fog). However, perhaps most concerning of all are
adversarial attacks (Szegedy et al., 2013; Goodfellow et al., 2014). Adversarial attacks aim to fool
DNNs into making incorrect decisions. Given the critical use cases of DNNs in our applications,
there is a need to both measure and improve the robustness of DNNs to OOD data in the wild. Doing
so would provide us with assurances that our DNNs are safe and robust when deploying them in the
real-world. In this work, we focus on identifying a measure of robustness for DNNs. This measure
will serve as a metric to determine how robust an arbitrary DNN is. In our experiments, we study
the existence of such a measure for the Image Classification task. To quantify robustness, we use the
Generalization Gap, Clean Test Accuracy, Corruption Test Accuracy, and the Attack Success Rate
(ASR). A measure is said to be representative of robustness if it consistently achieves a high corre-
lation across all these definitions of robustness. In our experiments, we adopt the approach taken by
Jiang et al. (2019); Dziugaite et al. (2020), which conducted large scale empirical studies to discover
correlations between their introduced measures and the Generalization Gap. However, in addition
to the measures introduced by Jiang et al. (2019); Dziugaite et al. (2020) we use other measures
such as boundary thickness (Yang et al., 2020) and gradient norm measures (Ross & Doshi-Velez,
2018). Furthermore, we extend this study to consider the relationship between the measures and
Test Accuracy (Clean & Corrupted images). We also study their relationship with the ASR of vari-
ous adversarial attacks. We then follow up this study by analyzing the significance of each measure
across the different definitions of robustness. Our experiments show that none of the measures we
studied are consistent across all definitions of robustness. Conflicting relationships with the differ-
ent definitions of robustness are formed. Additionally, we found that the choice of hyperparameters
such as batch size significantly influences the robustness of DNNs. This calls the reliability of these
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measures into question. These findings lead us to conclude that there is no one measure that can
comprehensively reflect the robustness of DNNs. Thus, we recommend that separate measures for
the different robustness definitions be used. As we are concerned with OOD data, we focus our
recommendations on measures for Corruption Test Accuracy and ASR. When concerned with Cor-
ruption Test Accuracy, we found the weight gradient norm and hessian eigenvalue (sharpness) to
best reflect it. On the other hand, when concerned with ASR, we found boundary thickness to be
most representative of it. Besides identifying a measure for robustness, we also investigated the rela-
tionship between sharpness and robustness. While substantial number of works have advocated that
flatness of loss landscape leads to improved robustness (Foret et al., 2020; Kwon et al., 2021), other
works (Dinh et al., 2017; Andriushchenko et al., 2023) have proven otherwise. The discrepancies
in these studies lead us to conduct this investigation. We found that while low sharpness can lead
to improved robustness, this relationship is significantly influenced by the choice of batch size used
when training DNNs.

We summarize our contributions and findings below:

• Conducted large scale empirical studies to find a measure for robustness. Different from
previous studies, we capture robustness more comprehensively by considering it from 4
different angles. In terms of the Generalization Gap, Test Accuracy (Clean & Corrupted),
and ASR.

• Identified hessian eigenvalue and weight gradient norm to be most promising when con-
cerned with Corruption Test Accuracy. Additionally, we found boundary thickness to be
the most promising measure of robustness when concerned with ASR.

• Demonstrated that the link between sharpness and robustness is significantly impacted by
the choice of hyperparameters such as batch size.

2 RELATED WORK

While DNNs yield excellent performances on In-distribution (ID) data, they tend to suffer a per-
formance drop when they encounter OOD data. This problem is further exacerbated when they are
faced with adversarial examples. Ideally, we want robust DNNs which can both maintain perfor-
mance on OOD data and are robust to adversarial examples. To improve the robustness of DNNs,
we first require a way to measure robustness. This is obviously not as simple as directly measuring
the Test Accuracy (Clean & Corrupted) or ASR, as this set of OOD data is generally unknown. What
we instead seek is a metric that captures a property of a DNN which is in turn reflective of the DNNs
robustness. Most works (Jiang et al., 2019; Dziugaite et al., 2020; Kim et al., 2024) in this field in-
vestigate this matter through large scale empirical studies. They train numerous DNNs, perform the
relevant measures, before performing correlation analysis with robustness. The measure that yields
the highest correlation will be deemed as the most reflective measure of robustness. However, these
works are limited in scope. Jiang et al. (2019) only studied the relationship between their selected
measures and the Generalization Gap. Andriushchenko et al. (2023) looked into the relationship
between both Clean Test Accuracy and the Generalization Gap. However, they neglected the rela-
tionship between Corruption Test Accuracy and the ASR. In this work, we argue that it is equally
important to consider all aspects of robustness when finding a measure that reflects robustness.
Hence, we define the robustness of DNNs in 4 ways. We use the Generalization Gap, Clean Test
Accuracy, Corruption Test Accuracy, and ASR to represent robustness. We then utilize measures to
perform correlation analysis via the Kendall rank correlation coefficient against all these definitions
of robustness. A measure that yields high correlation scores against all robustness definitions will be
taken as a reflective measure of robustness. Another question we want to tackle is the relationship
between sharpness and robustness. While Jiang et al. (2019) found that their sharpness measures
were strongly correlated with robustness (Generalization Gap), Andriushchenko et al. (2023) ob-
served weak correlation between sharpness and robustness. In fact, it is training parameters like
the learning rate that influences whether the relationship with robustness is positively or negatively
correlated. The contention between these findings leads us to further investigate this matter.
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3 BACKGROUND

3.1 DEFINITIONS OF ROBUSTNESS

Generalization Gap. Measures the difference in performance during train and test time. It can be
defined as such Generalization Gap = Test Error−Train Error. A large Generalization Gap
indicates that the DNN performs well on train data (low train error) but does poorly on test data
(high test error), indicating poor robustness of a DNN. Hence, we desire a tight Generalization Gap,
where test error does not deviate much from train error.

Clean Test Accuracy. Measures how well the DNN performs on the test dataset. It can be defined
as such Clean Test Accuracy = 1(f(xi),ti)

|Dtest| ∗ 100%, (xi, ti) ∈ Dtest, where Dtest represents the
test dataset, (xi,ti) an input-target label pair, and f a trained DNN. The higher the test accuracy, the
more robust a DNN is.

Corruption Test Accuracy. Measures how well the DNN performs on a corrupted version
of the test dataset, and can be defined as such Corrupted Test Accuracy =

1(f(xcorr
i ),ti)

|Dtest| ∗
100%, (xcorr

i , ti) ∈ Dcorr
test , where Dcorr

test represents the corrupted test dataset, and xcorr
i is a data

instance from the corrupted test dataset. Corrupted data can be seen as a representation of OOD
data. The higher the Corruption Test Accuracy is, the more robust a DNN is.

Attack Success Rate. Indicates how effective an adversarial attack is. It measures the proportion
of adversarial examples in the test dataset that successfully causes a model to make incorrect pre-
dictions. It can be defined as such Attack Success Rate =

1(f(xadv
i ),tadv

i )

|Dadv
test|

∗ 100%, (xadv
i , tadvi ) ∈

Dadv
test, where Dadv

test represent the set of adversarial examples crafted from the test dataset. xadv
i

represents an instance of an adversarial example, with tadvi being the target corresponding to it. As
we are interested in the robustness of DNNs, we want the ASR to be as low as possible. A low ASR
indicates that the DNN is robust to adversarial attacks.

3.2 MEASURING ROBUSTNESS OF DNNS

We seek a measure that reflects how robust an arbitrary DNN is. This means that given a DNN, by
performing this measurement on the DNN, we can use the measurement obtained to estimate the
robustness of the DNN. To do so, we first need to identify what we want to measure. Intuitively,
these measures should capture the properties of the DNNs. In this subsection, we take a closer look
into the measures we used when measuring properties of DNNs. Given the numerous measures we
use, we categorised them into 4 categories.

Complexity Measures. Complexity-based measures are typically calculated using the weight ma-
trix of trained DNNs. They give us an indication of how complex the learnt function is. Typically,
the less complex a solution is, the more generalizable and thus robust the DNN is. In our experi-
ments, we utilize several complexity-based measures based on the norm of the weight matrix. This
includes the number of parameters, L2 norm, Path-norm (Neyshabur et al., 2015), Spectral norm,
and Frobenius norm. For norm-based complexity measures, smaller measures indicate less complex
DNNs. Besides norm-based complexity measures, we also use the sparsity of the weight matrix (Liu
et al., 2022) as a measure.

Decision Boundary Measures. Decision boundary-based measures estimates the distance between
class boundaries. A small distance between class boundaries implies that just a small amount of
perturbation is required to cross over the class boundaries. This indicates poor robustness. In this
work, we consider two measures to estimate decision boundaries. Inverse margin and boundary
thickness (Yang et al., 2020).

Sharpness Measures. Sharpness has been linked to robustness (generalizability). The intuition
behind this is that with smoother loss landscapes (low sharpness), DNNs would be less sensitive to
perturbations. This implies improved robustness. Despite several works supporting this claim, other
works have instead found that there is little to no correlation between sharpness-based measures
and robustness. Given this conflict, we found it fit to conduct our own study. In our experiments,
we consider the Hessian eigenvalue, Hessian trace, and Average sharpness (Andriushchenko et al.,
2023) as estimates for the sharpness of DNNs.
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Gradient Measures. In this work, we study the use of input gradient norm (Ross & Doshi-Velez,
2018) and weight gradient norm (Zhao et al., 2022) as measures for robustness. These measures
have been incorporated as terms to be regularized in the DNN training process. As such, it is not
uncommon to associate low gradient norm values with better robustness.

3.3 CORRUPTIONS AND ADVERSARIAL ATTACKS

We are interested to understand the DNNs performance on OOD data in the form of corruptions
and adversarial examples. In our experiments, we consider 14 common corruptions (Hendrycks &
Dietterich, 2019) to represent both noise and adverse weather conditions. For adversarial attacks, we
consider only whitebox attacks. Adversarial examples were crafted using the Fast-Gradient-Sign-
Method (FGSM) (Goodfellow et al., 2014) and Projected Gradient Descent (PGD) (Madry et al.,
2017) algorithms. We chose these algorithms as they provide the best balance between high ASR
and compute efficiency.

3.4 SHARPNESS OPTIMIZERS

Sharpness optimizers introduces an additional term into the learning objective termed as loss sharp-
ness, which aims to encourage smoother loss landscapes. For this to occur, the optimizers first finds
the loss value in the worst case by perturbing the learnt parameters at the current timestep. There-
after, they minimise this value. This transforms the learning objective into a min-max optimization
problem. Through introducing this learning paradigm, they hope to find parameters that lie in flat
neighbourhoods (smooth loss landscape) having uniformly low loss. This leads to DNNs which
are more robust. By introducing sharpness optimizers into the training pipeline, we hope to obtain
DNNs with vastly different loss landscapes and sharpness values. Doing so will help us to perform
a more thorough study into the connection between sharpness and robustness.

4 EXPERIMENTS

4.1 IMAGE CLASSIFIERS

In this work, we look to discover a measure that is reflective of robustness across all 4 definitions
for the Image classification task. To perform a comprehensive study to seek convincing measures
of robustness, we took an empirical approach. This involves training a large pool of well-trained
classifiers with vastly different robustness behaviors. In our experiments, we utilize the Residual
Neural Network (ResNet) architecture (He et al., 2016) for our image classifiers. We trained mul-
tiple ResNet classifiers under different hyperparameter configurations on the Imagenette1 dataset,
training till convergence (cross-entropy 0.01), and repeating each experiment 3 times with different
initialization values. Performing this resulted in 486 different hyperparameter configurations and a
total of 1458 classifiers. We detail the different hyperparameter configurations in appendix E.1.

4.2 GENERATING OUT-OF-DISTRIBUTION DATA

We want to measure our classifiers robustness (performance) when it encounters OOD data. To
generate data that is representative of OOD data, we employed various techniques to augment our
test dataset.

Common Corruptions. We measure the robustness of our classifiers to OOD data in the form of
common corruptions. We obtain this corrupted data by running 14 natural perturbations (Hendrycks
& Dietterich, 2019) on the test dataset. This includes the addition of noise (gaussian noise, shot
noise, etc...) and adverse weather conditions (Frost, Fog, etc...). Our initial analysis found that
majority of the corruptions have little impact on the Test Accuracy, with only Fog and Contrast
causing significant drops in Test Accuracy.

Adversarial Attacks. We also measure the robustness of our classifiers to OOD data in the form
of adversarial examples. To generate adversarial examples, we use the FGSM and PGD algo-

1https://github.com/fastai/imagenette
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rithms using different attack budget settings. For both algorithms, we ran attacks with budgets
{2/255, 5/255, 8/255} and calculated their respective ASR.

4.3 SHARPNESS OPTIMIZERS

In our experiments, we also want to further understand the relationship between sharpness and ro-
bustness. To do so, we trained ResNet classifiers both with and without sharpness optimizers. We
utilize 2 variants of sharpness optimizers: Sharpness-Aware Minimization (SAM) (Foret et al., 2020)
and Adaptive Sharpness-Aware Minimization (ASAM) (Kwon et al., 2021). Both these methods op-
timize towards obtaining a local minimum in a smooth region. However, while SAM calculates the
worst case via a fixed radius, ASAM is scale invariant and calculates this adaptively. This removes
the drawback that SAM has to sensitivity of parameter re-scaling. We hope that by introducing
different sharpness optimizers, we can capture more varying properties and behaviors.

4.4 MEASURES

To discover a representative measure of robustness, we select various measures, implement them,
and measured our 1458 trained classifiers. When performing the measures, there exists hyperpa-
rameters to be set. We detail these in appendix E.2. As we have 3 classifiers corresponding to
each hyperparameter configuration (just with different seed values), we took the average of the mea-
sured values across the 3 classifiers. This results in our subsequent analysis being conducted on 486
classifiers. We hope that by doing so, we can reduce the impact which randomness may have and
further increase the validity of our experiments. Following this measurement phase, we perform
correlation analysis via the Kendall Rank Correlation Coefficient for each of the measures against
the Generalization Gap, Test Accuracy (Clean & Corrupted), and ASR.

5 RESULTS AND ANALYSIS

In this section, we present our analysis on the relationships observed between the measures and
the different definitions of robustness. We also indicate which measures are most representative of
robustness. We particularly do so for measures which reflect robustness in terms of Corruption Test
Accuracy and ASR, as we are interested in the case of OOD data. A representative measure is one
that behaves consistently and achieves a high correlation score across all robustness definitions.

5.1 CORRUPTION TEST ACCURACY DISPLAYS WEAKER CORRELATION COMPARED TO
CLEAN TEST ACCURACY

As seen from Figure 1 - 3, across the 4 categories of measures, a common observation is that the
correlation of Corruption Test Accuracy tends to be almost half as weak compared to Clean Test
Accuracy. This phenomenon holds true for each measure within each category. We attribute the
drop in correlation for Corruption Test Accuracy to the random perturbations introduced during the
corruption process.

5.2 INCONSISTENCIES OCCURS ACROSS THE DIFFERENT ROBUSTNESS DEFINITIONS

Another observation made is that inconsistencies arises from our correlation analysis. While a mea-
sure might obtain high correlation scores with multiple robustness definitions, the correlation ob-
tained (positive or negative) might have different implications on robustness. These implications are
sometimes counter-intuitive to one other, bringing the effectiveness of these measures into question.
We describe such instances in greater detail in the following subsection.

5.3 CORRELATION ANALYSIS BY THE CATEGORIES

Complexity-based Measures. As seen in Figure 1, aside from sparsity, all other measures had a
correlation score < |0.2| for all robustness definitions. This indicates that they are not indicative
measures of robustness. Taking a closer look into sparsity, despite sparsity obtaining a correlation
score of > |0.2| for both Generalization Gap and Test Accuracy (Clean & Corrupted), these results

5
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are contradictory to each other. A positive correlation with Test Accuracy means that high sparsity
(low complexity) yields higher Test Accuracy (improved robustness). While this is desirable, the
positive correlation with Generalization Gap means that high sparsity (less complex) leads to a
higher Generalization Gap (weaker robustness). The contradictory result calls the reliability of
sparsity as a measure of robustness into question. Furthermore, the correlation for sparsity against
the ASR is weak.

Figure 1: Correlation scores when correlating complexity-based measures against the different def-
initions of robustness.

Decision boundary-based Measures. As seen in Figure 2, all 3 measures in this category scored
a correlation score of > |0.2| when correlated with Generalization Gap, and Test Accuracy (Clean
& Corrupted). These measures also scored just below |0.2| when correlated with ASR. However, as
with the case of complexity-based measures, inconsistencies arise.

Figure 2: Correlation scores when correlating decision boundary-based measures against the differ-
ent definitions of robustness.

• Inverse margin. Positive correlations were obtained for all robustness definitions. This
means large margins lead to lower Generalization Gap (improved robustness). Positive cor-
relation with ASR means large margins lead to lower ASR (improved robustness). How-
ever, a positive correlation with both Clean and Corruption Test Accuracy means larger
margins leads to lower Test Accuracy (weaker robustness). This highlights the inconsisten-
cies that arise from what seemed to be promising measures.

• Boundary thickness. Calculated with respect to both FGSM and PGD, negative corre-
lations were obtained across all robustness definitions. This means that thicker boundary
leads to both lower Generalization Gap and lower ASR (improved robustness). However,
our findings also implied that thicker boundaries lead to lower Test Accuracy (weaker ro-
bustness). This again emphasises the inconsistencies.
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Sharpness-based Measures. As seen in Figure 3, all sharpness-based measures displayed similar
trends, they obtained negative correlation with all robustness definitions. Across all sharpness-
based measures, only Test Accuracy consistently obtained a correlation score > |0.2|. On the other
hand, the correlation with ASR and Generalization Gap was particularly weak across most sharpness
measures. This is apart from hessian eigenvalue which displays the strongest relationship with
respect to all robustness definitions among the sharpness-based measures. In particular, we note
that when correlated with Generalization Gap, it obtained a score close to -0.2. Seeing as how
hessian eigenvalue appears as the most significant sharpness-based measure, we focus our discussion
on it. The negative correlation with Test Accuracy implies that lower sharpness (smoother loss
landscape) leads to higher Test Accuracy (improved robustness). This is consistent with works that
prove that smooth minima lead to improvements in robustness. However, the negative correlation
score (-0.2) of hessian eigenvalue with Generalization Gap implies that low sharpness leads to higher
Generalization Gap (weaker robustness). This observation reiterates the inconsistencies.

Figure 3: Correlation scores when correlating both sharpness-based and gradient-based measures
against the different definitions of robustness.

Gradient-based Measures. As seen in Figure 3, both gradient-based measures display weak corre-
lation with ASR. This indicates their inability to capture the relationship with ASR.

• Input gradient norm. A positive correlation is obtained when correlated with Generaliza-
tion Gap. This implies that a lower input gradient norm leads to a lower Generalization Gap
(improved robustness). The negative correlation with Clean Test Accuracy means lower in-
put gradient norm leads to higher Clean Test Accuracy (improved robustness). In this
regard, input gradient norm is consistent across these 2 robustness definitions. However, it
is unable to capture the relationship for Corruption Test Accuracy and ASR.

• Weight gradient norm. A negative correlation is obtained across all 4 robustness def-
initions. Negative correlation for Generalization Gap implies that lower weight gradient
norm leads to higher Generalization Gap (weaker robustness). On the other hand, negative
correlation with Test accuracy (Clean & Corrupted) means that lower gradient norm leads
to higher Test Accuracy (improved robustness). Once again, conflicting relationships are
observed.

5.4 DIFFERENT ROBUSTNESS DEFINITIONS REQUIRES DIFFERENT MEASURES

We have now seen that conflicting relationships consistently arise between the measures and the
different robustness definitions. This leads us to conclude that there is no one measure that is com-
prehensively reflective of robustness across all 4 definitions. Thus, we recommend that rather than
finding a “one shoe fits all” measure, we should instead find a measure that is most representative for
each respective definition of robustness. As we are more concerned with the classifier’s performance
on OOD data in the form of corruptions and adversarial examples, we focus on the Corruption Test
Accuracy and ASR. Through our experiments, we found all decision-boundary based measures,
hessian eigenvalue, and weight gradient norm to be most promising if we are concerned with the
Corruption Test Accuracy. On the other hand, when concerned with the ASR, decision boundary-
based measures prove to be most indicative. For decision boundary-based measures, we focus on
boundary thickness (PGD).
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5.5 SHARPNESS OPTIMIZERS AND THEIR IMPACT ON SHARPNESS

To better understand the link between sharpness and robustness, we incorporated the use of sharp-
ness optimizers into our training framework. Doing so allows us to obtain classifiers with different
sharpness properties. This in turn enables us to discover evidence of correlations more easily be-
tween sharpness-based measures and robustness. To understand the impact that sharpness optimiz-
ers have, we plot the sharpness measures separately for the three cases (No sharpness optimizers,
Sharpness-Aware-Minimization (SAM), and Adaptive-Sharpness-Aware-Minimization (ASAM)).
From Figure 4, we see that for the same Model ID, classifiers trained with SAM consistently had the
lowest sharpness. This was followed by classifiers trained with ASAM. Classifiers trained without
sharpness optimizers had the highest sharpness value.

Figure 4: Scatter plots for sharpness-based measures for the different model IDs. The different
model IDs correspond to different hyperparameter configurations. Within each model ID, the only
difference in training configuration (hyperparameter setting) lies in the use of sharpness optimizers.
Across all sharpness measures, classifiers trained with sharpness optimizers consistently yielded
lower sharpness value. Between SAM and ASAM, SAM consistently obtained lower sharpness
values.

Following the same approach, we plot the Generalization Gap, Test Accuracy (Clean & Corrupted),
and ASR separately for the three cases involving different sharpness optimizers in Figure 5. We
found that classifiers trained with sharpness optimizers consistently displayed higher robustness.
Classifiers trained with SAM which have the lowest sharpness had the lowest Generalization Gap.
They were also found to have the highest Test Accuracy (Clean & Corrupted), and the lowest ASR.
On the other hand, classifiers with no sharpness optimizers had the highest Generalization Gap,
lowest Test Accuracy (Clean & Corrupted), and highest ASR. This indicates their poor robustness.

Seeing as how using sharpness optimizers lead to lower sharpness and improved robustness, we
might be tempted to correlate low sharpness with improved robustness. From our initial analysis,
this is indeed a convincing argument as hessian eigenvalue has a correlation score > |0.2| as seen in
Figure 3.

Figure 5: Scatter plots for the different robustness definitions for the different model IDs. As Corrup-
tion Test Accuracy and ASR involves aggregating data from the various corruptions and attack types,
we reduced the scope of our analysis to make our analysis easier. We chose Corruption Test Accu-
racy (snow) to be representative of corruptions. For ASR, we chose the ASR of PGD (ϵ = 8/255)
to be representative. Across all definitions of robustness, classifiers trained with sharpness optimiz-
ers consistently yielded better robustness. Between SAM and ASAM, SAM consistently displayed
better robustness.

However, further analysis finds that the improved robustness seemingly brought about by sharpness
optimizers cannot be solely linked to sharpness. Other factors could have also contributed to the
improved robustness. Batch size in particular plays a significant role in determining robustness. As
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seen in Figure 6, within each sharpness optimizer case, clusters involving batch size are formed.
These clusters contribute towards the negative correlation observed between Corruption Test Ac-
curacy and hessian eigenvalue. Larger batch sizes tend to lead towards higher hessian eigenvalue
(high sharpness), regardless of whether sharpness optimizers were utilized. Additionally, classifiers
trained with smaller batch size are more likely to have low sharpness and high Corruption Test Accu-
racy. Given the significant role batch size plays, it would be incorrect to directly link low sharpness
to higher Corruption Test Accuracy.

Figure 6: Scatter plots for hessian eigenvalue with Corruption Test Accuracy (Snow) based on the
different sharpness optimizer settings. From the scatter plots, we observe that regardless of the
sharpness optimizer setting, significant clusters involving batch size are formed

5.6 SHARPNESS OPTIMIZERS AND THEIR IMPACT ON BOUNDARY THICKNESS

We also analyze the impact that sharpness optimizers has on boundary thickness. We conclude
that utilising sharpness optimizers tends to lead to thicker boundaries in most cases. However, as
with the previous finding, the relationship between boundary thickness and robustness is heavily
influenced by batch size. As seen from Figure 7, 3 distinct clusters corresponding to the different
batch sizes (32, 64, 128) are formed. These clusters contribute to the negative correlation obtained
when correlating boundary thickness with Corruption Test Accuracy and ASR. Further analysis also
found that within each cluster of batch size, learning rate also influences the relationship. The
influence which learning rate holds is more apparent in clusters formed by larger batch sizes. As
seen in Figure 7, especially in the clusters corresponding to batch size 128, classifiers with higher
learning rate tend to have thicker boundaries.

Figure 7: Scatter plots for boundary thickness (PGD) against Corruption Test Accuracy and ASR.
Once again, distinctive clusters owing to the different batch sizes are formed. Additionally, learning
rate forms further sub-clusters within each cluster.

6 CONCLUSION

In this work, we studied various measures and their ability to measure robustness. Through our
experiments, we found that while certain measure appears as convincing candidates, inconsisten-
cies were a common occurrence. While a measure might be reflective of a particular definition of
robustness, it will imply a conflicting relationship with respect to another definition of robustness.
This leads us to conclude that there is no one measure that is representative of robustness across
all definitions. Thus, we suggest that rather than seeking a “one-shoe-fits-all” solution, we should
instead use different measures to measure the different robustness definitions. As we are particularly
interested in robustness from the perspective of corruptions and adversarial examples, we identified
the hessian eigenvalue and weight gradient norm to be most representative of the Corruption Test
Accuracy. For ASR, we identified boundary thickness to be most representative. In this work, we
also studied the significance of sharpness in relation to robustness. Through our empirical studies,
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we found that while there exists a relationship between sharpness and robustness, this relationship is
tenuous. While low sharpness implies high Test Accuracy, it also implies high Generalization Gap.
The relationship between sharpness and ASR is also weak. Furthermore, we found evidence of this
relationship to be largely influenced by batch size. Analysis of other measures such as boundary
thickness likewise yielded similar findings. We also found the effectiveness of boundary thickness
to be influenced by the choice of hyperparameters such as batch size and learning rate. Neverthe-
less, through our analysis, we determined boundary thickness to be the most promising measure.
It produced significant correlation scores across all the definitions of robustness. Despite the issues
surfaced, we hope that boundary thickness can serve as a starting point in our bid to better understand
robustness.
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A ALL RESULTS

A.1 CLASSIFIERS WITHOUT ADVERSARIAL TRAINING

Table 1: Correlation analysis for the different measures against the different robustness definitions,
for classifiers with no adversarial training.

Measure name Generalization Gap Clean Test Accuracy Corruption Test
Accuracy

Attack Success Rate

num params 0.008 -0.048 -0.003 -0.006

L2 -0.101 -0.053 -0.029 -0.048

L2 init -0.045 -0.045 -0.015 -0.021

path norm 0.014 -0.019 -0.013 -0.044

frobenius over spectral -0.142 -0.143 -0.088 -0.106

log spectral main term 0.030 0.112 0.078 0.040

log init spectral main
term

0.035 0.111 0.078 0.043

log product of spectral 0.011 0.075 0.056 0.034

log product of spectral
over margin

0.034 0.111 0.078 0.043

log product of frobenius -0.028 0.007 0.017 -0.017

log product of frobenius
over margin

-0.001 0.051 0.044 -0.009

log sum of spectral 0.028 0.111 0.076 0.047

log sum of spectral over
margin

0.060 0.156 0.103 0.059

log sum of frobenius -0.068 0.014 0.014 -0.037

log sum of frobenius
over margin

-0.038 0.061 0.041 -0.028

sum of init spectral 0.096 0.100 0.077 0.083

sum of frobenius -0.101 -0.054 -0.029 -0.048

sum of init frobenius -0.045 -0.045 -0.015 -0.020

sparsity 0.205 0.214 0.146 0.125

inverse margin 0.403 0.631 0.366 0.139

boundary thickness PGD -0.657 -0.522 -0.327 -0.156

boundary thickness
FGSM

-0.653 -0.524 -0.327 -0.164

hessian eigenvalue -0.169 -0.349 -0.209 -0.104

hessian trace -0.104 -0.245 -0.146 -0.085

input grad norm 0.265 -0.220 -0.081 0.105

weight grad norm -0.202 -0.482 -0.278 -0.110

avg sharpness L2 rho
0.05

-0.085 -0.263 -0.147 -0.035

avg sharpness L2 rho 0.1 -0.043 -0.219 -0.121 -0.020

avg sharpness L2 rho 0.2 0.059 -0.089 -0.047 0.006

avg sharpness L2 rho 0.4 0.132 0.012 0.008 0.014

avg sharpness Linf rho
0.1

-0.076 -0.264 -0.147 -0.032

avg sharpness Linf rho
0.2

-0.034 -0.205 -0.114 -0.017

avg sharpness Linf rho
0.4

0.085 -0.054 -0.026 0.012

avg sharpness Linf rho
0.8

0.105 -0.021 -0.012 0.000
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Table 2: Correlation analysis for the different measures against the different robustness definitions,
for classifiers with adversarial training.

Measure name Generalization Gap Clean Test Accuracy Corruption Test
Accuracy

Attack Success Rate

num params 0.105 -0.170 -0.081 0.050

L2 0.059 -0.126 -0.068 0.044

L2 init 0.101 -0.113 -0.057 0.042

path norm 0.143 -0.094 -0.054 0.063

frobenius over spectral -0.058 -0.305 -0.166 0.078

log spectral main term 0.027 0.016 0.013 -0.014

log init spectral main
term

0.037 0.014 0.013 -0.012

log product of spectral 0.042 0.046 0.029 -0.017

log product of spectral
over margin

0.032 0.027 0.020 -0.016

log product of frobenius 0.054 -0.111 -0.055 0.026

log product of frobenius
over margin

0.036 -0.139 -0.070 0.030

log sum of spectral 0.020 0.098 0.057 -0.033

log sum of spectral over
margin

0.001 0.071 0.042 -0.033

log sum of frobenius 0.035 -0.094 -0.050 0.024

log sum of frobenius
over margin

0.012 -0.127 -0.067 0.029

sum of init spectral 0.125 0.221 0.128 -0.049

sum of frobenius 0.059 -0.126 -0.068 0.044

sum of init frobenius 0.101 -0.113 -0.057 0.042

sparsity -0.009 0.152 0.094 -0.067

inverse margin -0.201 -0.219 -0.123 -0.004

boundary thickness PGD -0.599 -0.521 -0.278 -0.007

boundary thickness
FGSM

-0.601 -0.519 -0.277 -0.008

hessian eigenvalue -0.160 -0.462 -0.247 0.088

hessian trace -0.187 -0.459 -0.248 0.083

input grad norm -0.461 -0.629 -0.329 0.033

weight grad norm -0.331 -0.509 -0.275 0.058

avg sharpness L2 rho
0.05

-0.266 -0.608 -0.318 0.082

avg sharpness L2 rho 0.1 -0.243 -0.591 -0.309 0.085

avg sharpness L2 rho 0.2 -0.118 -0.505 -0.266 0.101

avg sharpness L2 rho 0.4 0.175 -0.242 -0.130 0.116

avg sharpness Linf rho
0.1

-0.261 -0.604 -0.316 0.082

avg sharpness Linf rho
0.2

-0.233 -0.585 -0.307 0.087

avg sharpness Linf rho
0.4

-0.063 -0.465 -0.246 0.107

avg sharpness Linf rho
0.8

0.206 -0.214 -0.116 0.117

B ADDITIONAL EXPERIMENTS

B.1 CONSIDERING CLASSIFIERS WITH ADVERSARIAL TRAINING

The vulnerability of DNNs to adversarial examples has been well demonstrated. This indicates
the need for appropriate defences to deter attackers. A common defensive technique to increase
the robustness of DNNs against adversarial attacks is to perform adversarial training (Goodfellow
et al., 2014). By incorporating adversarial examples into the training dataset, the DNN would be
able to learn the features corresponding to the adversarial examples and still yield correct outputs.
Given the popularity of adversarial training, it leads us to question if the previous relationships
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learnt are also applicable to classifiers which have undergone adversarial training. To investigate
this, we follow the same approach as before. However, we now only consider classifiers which have
undergone adversarial training. To do so, we additionally trained 486 classifiers with adversarial
training. Thereafter, we repeated our experiments as before, performing the measurements and
correlating them against the 4 robustness definitions. Our experiments show that the previously
identified relationships do not always hold when we factor in adversarial training. For the two
scenarios of without and with adversarial training, for the same measure, different behaviors can be
observed. Different behaviors include scenarios where the relationship learnt is flipped. We also
found some cases where the measures lose their ability to reflect robustness. Like in the previous
study, we split our analysis of the measures into 4 categories.

Complexity-based Measures. In the study where classifiers were trained without adversarial train-
ing, among all complexity-based measures, only sparsity obtained a correlation score > |0.2| for
some robustness definitions. However, as seen in Figure 8., for classifiers trained with adversar-
ial training, the effectiveness of sparsity was not as pronounced. Instead, measures like Frobe-
nius over spectral and sum of init spectral appeared more convincing. Additionally, while high
sparsity previously implied high ASR, high sparsity now implies low ASR. These differences in
relationships indicate that the relationship learnt in the previous study is not directly applicable to
classifiers which have undergone adversarial training. Different behaviors are observed.

Figure 8: Correlation scores when correlating complexity-based measures against the different def-
initions of robustness for classifiers which have undergone adversarial training.

Decision boundary-based Measures.

• Inverse margin. As seen in Figure 9., the correlation between inverse margin and the
robustness definitions of Generalization Gap and Test Accuracy (Clean & Corrupted) are
all negative. Furthermore, the correlation with ASR is close to 0, indicating that there is no
relationship between inverse margin and the ASR. This is opposed to the case in Figure 2.,
which displays positive correlation scores between inverse margin and all 4 definitions of
robustness. The change in polarities for the correlation indicate that the relationship learnt
has been entirely flipped. While classifiers without adversarial training show that thick
margins imply low Generalization Gap, classifiers with adversarial training show that thick
margins imply high Generalization Gap.

• Boundary thickness. While the correlation relationship of boundary thickness with Gen-
eralization Gap and Test Accuracy (Clean & Corrupted) is similar to that obtained when no
adversarial training is considered, we found that the correlation score with ASR dropped
significantly. As seen in Figure 9., the correlation score between boundary thickness and
ASR is essentially 0. This contrasts with the case in Figure 2, where the correlation score
between boundary thickness and ASR is just below |0.2|. This indicates that for classifiers
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with adversarial training, boundary thickness is unable to act as a measure of robustness in
terms of ASR.

Figure 9: Correlation scores when correlating decision boundary-based measures against the differ-
ent definitions of robustness for classifiers which have undergone adversarial training.

Sharpness-based measures. Compared against the previous study, we found that classifiers with
adversarial training yield stronger relationships when correlating sharpness-based measures against
the Generalization Gap and Test Accuracy (Test & Corrupted). We also found that their relationships
with ASR are flipped. As seen in Figure 10., we now obtain a positive relationship with ASR instead
of a negative one. This indicates that lower sharpness means lower ASR. This makes sharpness a
good candidate for consideration when considering classifiers with adversarial training, as it displays
a consistent relationship with robustness when considering robustness in terms of Test Accuracy
(Clean & Corrupted) and ASR.

Figure 10: Correlation scores when correlating sharpness-based measures against the different defi-
nitions of robustness for classifiers which have undergone adversarial training.

Gradient-based measures.

• Input-gradient norm. Compared to the study where adversarial training is not considered,
the correlation of input-gradient norm with Generalization Gap now flips from positive to
negative. This implies that high input gradient norm now leads to low Generalization
Gap. While there was no change in polarity for the relationship with Test Accuracy (Clean
& Corrupted), we found that this relationship was weaker for classifiers with adversarial
training. Relationship with ASR was observed to be similar too, albeit slightly weaker.

• Weight-gradient norm. When comparing the relationship obtained between classifiers
without and with adversarial training, we found the polarity of the correlation scores to
remain the same for Generalization Gap and Test Accuracy (Clean & Corrupted). How-
ever, the strength of correlation for the case with adversarial training was found to be
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stronger. Besides this, we also observed the switch in polarity of correlation scores for
ASR compared to that of the previous study. While the previous relationship between
weight-gradient norm and ASR was negative, the relationship obtained is now positive.

Figure 11: Correlation scores when correlating gradient-based measures against the different defini-
tions of robustness for classifiers which have undergone adversarial training.

B.1.1 RECOMMENDED MEASURES FOR CLASSIFIERS WITH ADVERSARIAL TRAINING

We previously recommended several measures for both Corruption Test Accuracy and ASR. How-
ever, these relationships were learnt only from classifiers without adversarial training. We now
recommend measures based on classifiers which have undergone adversarial training. For these
classifiers, we found that boundary thickness, all sharpness-based measures, and all gradient-based
measures were indicative of robustness in terms of Corruption Test Accuracy. On the other hand,
when concerned with the ASR, only sharpness-based measures appeared most indicative of robust-
ness. This means that unlike the case where no adversarial training is considered, we did find
evidence of a measure that is reflective of robustness in terms of both Corruption Test Accuracy and
ASR. In particular, sharpness-based measures such as the hessian eigenvalue displayed this.

B.1.2 COMPARING RELATIONSHIPS FOR CLASSIFIERS WITHOUT AND WITH ADVERSARIAL
TRAINING

Upon comparing the relationships learnt from classifiers without and with adversarial training, we
noticed a few considerable differences. We summarize the key differences into 3 points.

Some measures which are indicative of robustness for classifiers without adversarial
training are not indicative of robustness for classifiers with adversarial training. An example
of this is boundary thickness. While boundary thickness was found to a promising measure of
robustness in terms of ASR in the scenario where adversarial training is not considered, this does
not hold true for classifiers with adversarial training. Rather than boundary thickness which yielded
a correlation score close to 0, sharpness-based measures were found to best reflect robustness in
terms of ASR.

Some measures which are indicative of robustness for classifiers with adversarial training are
not indicative of robustness for classifiers without adversarial training. From our experiments,
we observed that there exist more measures that are indicative of robustness (Corruption Test
Accuracy) when considering classifiers with adversarial training. This includes the input-gradient
norm and the other sharpness-based measures besides the hessian eigenvalue. These same mea-
sures were not able to capture the robustness relationships for classifiers without adversarial training.

Indicative measures shared by both scenarios carry different meanings. While both sce-
narios without and with adversarial training shared similar measures which could be indicative of
robustness (correlation score > |0.2|), certain relationships imply opposing meanings due to the
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phenomenon of flipped relationships. This is especially so in the case of inverse margin when
concerned with Corruption Test Accuracy, and all sharpness-based measures when concerned with
the ASR. While inverse margin had a correlation score > |0.2| with Corruption Test Accuracy
in both scenarios, this was a positive relationship in the case for classifiers without adversarial
training and a negative relationship when considering classifiers with adversarial training. A
positive relationship indicates that low inverse margin (large margins) leads to lower Corruption
Test Accuracy while a negative relationship indicates that low inverse margin (large margins) leads
to higher Corruption Test Accuracy.

B.1.3 RECOMMENDED MEASURES FOR CLASSIFIERS WITHOUT AND WITH ADVERSARIAL
TRAINING

Considering the fact that the relationships in one scenario may not hold in the other, we now rec-
ommend common measures that are applicable in both scenarios. Among the measures studied
for Corruption Test Accuracy, we found that boundary thickness, hessian eigenvalue, and weight-
gradient norm are promising measures when considering both scenarios. On the other hand, for
ASR, none of our studied measures can reflect robustness when considering both scenarios.

C ADDITIONAL ANALYSIS

C.1 SIGNIFICANCE OF THE DIFFERENT MEASURES

Putting aside the issue of inconsistencies that we surfaced earlier, several viable measures for each
robustness definitions do exist. We are interested to understand which measure contributes most to
robustness. However, given that the link between these measures and robustness is still not well
understood, and the existence of inconsistencies, this is a difficult task. Thus, we decided to take an
unconventional approach to instead offload this task to an auxiliary model.

In particular, we trained a set of 4 different regression models to predict each robustness definition
(Generalization Gap, Clean Test Accuracy, Corruption Test Accuracy, and ASR). These models take
in the viable measures as input and the different robustness definitions as output. In most cases, we
deem a measure to be viable if its correlation score is > |0.2|. After training these models, we utilize
SHapley Additive exPlanations (SHAP) values to explain how important each feature (measures) is
to the model when it predicts robustness. SHAP values indicates to us each features contribution to
the predicted output. To aid our analysis of SHAP values, we utilize Beeswarm plots. Beeswarm
plots tell us the relative importance of the features and their actual relationships with the predicted
outcomes.

Through this analytical process, we offload the problem of understanding how significant a measure
is with respect to each other to the regression model. While this method has its flaws, we believe
that it gives us an indication of which measure holds greater significance.

C.1.1 SIGNIFICANCE OF THE MEASURES IN PREDICTING THE GENERALIZATION GAP

To understand how important each measure is when predicting the Generalization Gap, we train
a regression model to predict the Generalization Gap. We used measures which had correlation
scores > |0.2| to train this model. Thereafter, we calculated the SHAP values of each feature. From
Figure 12, we see that among the features (measures), boundary thickness is the most significant
feature when predicting the Generalization Gap. This is followed by gradient-based measures. For
boundary thickness, we observed dense clusters of low boundary thickness (in blue) with positive
SHAP values. On the other hand, data points with high boundary thickness (in red) are more spread
out and have negative SHAP values. This indicates that the negative correlation between boundary
thickness and Generalization Gap is strong. As boundary thickness increases, Generalization Gap
decreases. This supports our earlier finding.

C.1.2 SIGNIFICANCE OF THE MEASURES IN PREDICTING THE CLEAN TEST ACCURACY

Likewise for Clean Test Accuracy, we trained a regression model to predict it using measures with
correlation scores > |0.2| as input. Performing the same analysis also results in boundary thickness

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 12: SHAP Beeswarm plot for predicting the Generalization Gap.

and gradient-based measures being deemed as the most important measures for predicting Clean
Test Accuracy. The significance of boundary thickness can be seen from Figure 13, where boundary
thickness is ranked at the top, indicating that it is the most significant measure contributing to the
model’s prediction. In this case, our SHAP analysis indicates that high boundary thickness con-
tributes to lower Clean Test Accuracy. This again is a similar observation to what we had in the
earlier sections.

Figure 13: SHAP Beeswarm plot for predicting the Clean Test Accuracy.
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C.1.3 SIGNIFICANCE OF THE MEASURES IN PREDICTING THE CORRUPTION TEST
ACCURACY

Following the same procedure for Corruption Test Accuracy yields the same results and findings.
As seen in Figure 14, when trained to predict the Corruption Test Accuracy, among the measures of
interest, boundary thickness is found to be the most significant measure to the model.

Figure 14: SHAP Beeswarm plot for predicting the Corruption Test Accuracy.

C.1.4 SIGNIFICANCE OF THE MEASURES IN PREDICTING THE ATTACK SUCCESS RATE

When analyzing the significance of measures in predicting the ASR, we first note that none of the
measures have correlation scores > |0.2|. Thus, to train our regression models to predict ASR,
we relaxed our previous condition and instead used measures with correlation scores > |0.1| as
input. Performing the same analysis results in boundary thickness being the most important feature.
We found that as boundary thickness increases, ASR decreases. This relationship agrees with our
previous finding.

Figure 15: SHAP Beeswarm plot for predicting the ASR.
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C.1.5 IMPORTANCE OF BOUNDARY THICKNESS

Our SHAP analysis came to the conclusion that boundary thickness is the most indicative measure of
robustness. However, it is important to note that these findings might be marred by the performance
of the regression models themselves. While we did verify the trained models to have low mean
square error and high R2 values, the ability of these models to predict values which are truly repre-
sentative of the different definitions of robustness is still questionable. Additionally, inconsistencies
still arises, while thick boundary thickness means low Generalization Gap and low ASR, it also leads
to low Test Accuracy (Clean & Corrupted). Despite these issues, we believe that this analysis serves
to identify the significant role which boundary thickness plays in predicting robustness.

D DEFINITIONS OF MEASURES

We provide a more in depth explanation on the measures, the intuition behind them, and what they
represent. We also provide their mathematical formulations where relevant.

D.1 COMPLEXITY MEASURES

These measures attempt to capture how complex the learnt function (DNN weight matrix) is. In
general, the less complex the learnt function is, the more robust the DNN is. A majority of our
complexity-based measures based on the Spectral and Frobenius norm are adopted from Dziugaite
et al. (2020), which modified measures introduced by Jiang et al. (2019). For these measures, we
also calculated variants with respect to the initialisation value of the initial weight matrix at time-step
0. We represent these variants with the term init. We let Wi represent the weight tensor belonging
to layer i of the DNN, d represent the depth of the DNN, and m represent the train dataset size.

Number of parameters. Calculates the number of learnable parameters the DNN has.

num params =

d∑
i

k2i ci−1(ci + 1) (1)

At each layer +i, we have a ki x ki kernel and ci filters. Given the same network architecture, this
measure only differs when varying the width and depth of the DNN.

Path-norm. Takes the summation of the product of the weights along all paths of the DNN, from
an input neuron to an output neuron. This can be calculated by taking the sum of outputs of a DNN
with squared weights f(W 2) when passing in a vectors of ones as inputs.

path norm =
∑
i

fw2(1) (2)

Spectral norm. Calculated using the methods introduced by Sedghi et al. (2018), the spectral norm
gets the maximum singular vector of the weight matrix. We denote the spectral norm as ∥Wi∥.

• Log spectral main term

log spec main term = log

√√√√∏d
i=1 ∥Wi∥22

∑d
j=1

∥Wj∥2
F

∥Wj∥2
2

γ2m
(3)

• Log init spectral main term

log init spec main term = log

√√√√∏d
i=1 ∥Wi∥22

∑d
j=1

∥Wj−W 0
j ∥2

F

∥Wj∥2
2

γ2m
(4)

• Log product of spectral

log prod of spec = log

√∏d
i=1 ∥Wi∥22

m
(5)
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• Log product of spectral over margin

log prod of spec over margin = log

√∏d
i=1 ∥Wi∥22
γ2m

(6)

• frobenius over spectral

frob over spec = log

√√√√∑d
i=1

∥Wi∥2
F

∥Wi∥2
2

m
(7)

• Log sum of spectral

log sum of spec = log

√
d(
∏d

i=1 ∥Wi∥22)
1
d

m
(8)

• log sum of spectral over margin

log sum of spec over margin = log

√
d(

∏d
i=1∥Wi∥2

2

γ2 )
1
d

m
(9)

• sum of init spectral

sum of init spec =

√∑d
i=1 ∥Wi −W 0

i ∥
2

2

m
(10)

Frobenius norm. The square root of the sum of the absolute squares of the elements in the weight
matrix. We represent the Frobenius norm as ∥Wi∥2F .

• Log product of frobenius

log spec main term = log

√∏d
i=1 ∥Wi∥2F

m
(11)

• Log product of frobenius over margin

log prod of spec over margin = log

√∏d
i=1 ∥Wi∥2F
γ2m

(12)

• Log sum of frobenius

log sum of frob = log

√
d(
∏d

i=1 ∥Wi∥2F )
1
d

m
(13)

• Log sum of frobenius over margin

log sum of frob over margin = log

√
d(

∏d
i=1∥Wi∥2

F

γ2 )
1
d

m
(14)

• sum of frobenius

sum of frob =

√∑d
i=1 ∥Wi∥2F

m
(15)

• sum of init frobenius

sum of init frob =

√∑d
i=1 ∥Wi −W 0

i ∥
2

F

m
(16)

Sparsity. The ratio of elements in the weight matrix which has values below a threshold value. A
higher sparsity means that more elements in the weight matrix falls below the threshold value. This
indicates a less complex DNN.

sparsity =

∑d
i=1 1[Wi < threshold]

|W |
∗ 100% (17)
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D.2 DECISION BOUNDARY MEASURES

These measures provide some insight into what is the distance or the perturbation that is required to
cross over the class boundaries. Intuitively, the harder it is to cross over the decision boundaries, the
more robust the DNN is.

Inverse margin. The margin γ between class boundaries for each data point is defined as the
difference between the top-2 logit values. To get a margin value that is representative of the entire
train dataset, we first calculate the margins for all examples in the train dataset. Thereafter, we take
the 10th percentile of the calculated margins as the final margin value. Following this, the inverse
margin is calculated by taking the reciprocal of the square of the final margin value.

inverse margin =
1

γ2
(18)

Boundary thickness. Introduced by Yang et al. (2020), boundary thickness measures the average
distance (L2 norm) between the set of adversarial examples and the set of natural examples. This
can be seen as a generalized form of margin which only takes the worst case (difference between
the top-2 logit values). However, when calculating boundary thickness, we randomly sample n
times from a mixup of the adversarial and natural examples and calculate the distance between the
selected points. This aims to capture how thick the boundary between the set of adversarial and
natural examples is.

D.3 SHARPNESS MEASURES

These aim to estimate the sharpness of the loss landscape. This follows from works that attempt to
link the robustness of DNNs to the sharpness of loss landscapes.

Hessian measures. These measures are based on the Hessian matrix of a DNNs loss function with
respect to its parameters. This contains second-order partial derivatives which provides information
on the curvature of the loss landscape. In our experiments, we measure both the maximum eigen-
value of the Hessian and the trace of the Hessian. These 2 measures capture different aspects of the
loss landscape.

• Hessian eigenvalue. The maximum eigenvalue of the Hessian matrix indicates the direc-
tion of the largest curvature (worst-case). The larger in magnitude these values are, the
sharper the loss landscape is. Additionally, while a positive value indicates the loss land-
scape at the point is concave upwards, a negative value indicates that the loss landscape is
concave downwards.

• Hessian trace. The hessian trace is the sum of all Hessian eigenvalues. This measures
the overall curvature of the loss landscape. The larger these values are, the sharper the loss
landscape is.

Average sharpness. Estimates sharpness by taking the difference in loss values between a DNN
with injected noise and without noise. Noisy DNNs are constructed by injecting noise into the orig-
inal DNNs parameters at random. Large differences in loss values indicates a sharp loss landscape.
We conduct a few variants of this measure. In particular, we explored adding noise with the L2 and
L-infinity constraints. We also varied the variance in which noise was added to the DNNs when
constructing noisy DNNs.

D.4 GRADIENT MEASURES

Input-gradient norm. The vulnerability of DNNs has been linked to the noisiness of the input
gradients. Works have found that through regularizing input-gradient norms (Ross & Doshi-Velez,
2018), it leads to a smoothing effect which increases the robustness of DNNs to adversarial exam-
ples. Thus, by measuring the input-gradient norm of DNNs, we hope to link it to the robustness of
DNNs.

input gradient margin = Ex,y[∥∇xLCE(f(x,W ), y)∥2] (19)
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Weight-gradient norm. Regularizing the weight-gradient norm has a similar effect to obtaining
a low local Lipschitz (Zhao et al., 2022), where a low local Lipschitz is linked to obtaining a flat
minimum. Seeing as how flat minima has been linked to increased robustness, we hope to find some
association between weight-gradient norm and robustness too.

weight gradient margin = Ex,y[∥∇WLCE(f(x,W ), y)∥2] (20)

E IMPLEMENTATION DETAILS

E.1 IMAGE CLASSIFIER TRAINING CONFIGURATIONS

To discover convincing measures of robustness, we require a pool of well-trained classifiers with
vastly different robustness behaviors. In our experiments, we trained multiple ResNet image classi-
fiers under different hyperparameter configurations with no augmentations considered. We trained
till convergence (cross-entropy 0.01) and repeated each experiment 3 times, each with different
weight initialization values. Performing this resulted in 486 different hyperparameter configurations
and a total of 1458 classifiers. We detail the different hyperparameter configurations below.

1. Depth: Varies between depths of {ResNet-18, ResNet-34}.
2. Dropout: Varies between dropouts of {0, 0.25, 0.50}.
3. Batch size: Varies between batch sizes of {32, 64, 128}.
4. Optimizers: Varies between these optimizers {“SGD”, “SGD-SAM”, “SGD-ASAM”}.
5. Learning Rate: Varies between learning rates of {0.01, 0.032, 0.1}.
6. Weight Decay: Varies between weight decays of {0, 0.0001, 0.0005}.

For the study done on classifiers with adversarial training, we reuse the same hyperparameter con-
figurations as above with the exception of varying the optimizer. This results in 162 different hy-
perparameter configurations and a total of 486 classifiers. We performed adversarial training by
employing the learning objective introduced by Goodfellow et al. (2014).

E.2 MEASURE CONFIGURATIONS

When performing the measures, there exist certain hyperparameters to be set too. In this section,
we detail the settings we used when conducting the measures.

To calculate sparsity of the weight matrix, we took the threshold value to be 1% of the max-
imum element of the weight matrix. The more elements in the weight matrix that falls below the
threshold value, the higher the sparsity.

Boundary thickness calculates the L2 distance between the set of natural and adversarial im-
ages. We calculate boundary thickness in two ways, with respect to both PGD and FGSM attacks.
We term them as boundary thickness PGD and boundary thickness FGSM.

When measuring average sharpness, we introduce some variations during the measurements.
Particularly, when creating the noisy classifiers, we add noise with the L2 and L-infinity constraints.
We also vary the amount of noise that is injected into the original weights by varying the variance
of added noise. We term the hyperparameter that controls the amount of injected noise as rho. In
our experiments, while we explored multiple rho values, we eventually only considered the scenario
where rho is set to 0.1 for our results and analysis.

1. L2 average sharpness: {0.05, 0.1, 0.2, 0.4}
2. L-infinity average sharpness: {0.1, 0.2, 0.4, 0.8}

For corruptions and adversarial examples, there exists multiple variants and thus numerous readings
within each of them. This includes 14 Corruption Test Accuracy values per trained classifier corre-
sponding to the 14 corruptions introduced. For adversarial examples, as we have 2 different attacks
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algorithms and 3 attack budget settings per attack algorithm, this cumulates to 6 ASR readings for
each trained classifier. Given the large number of readings we have for these two robustness defini-
tions, we decided to aggregate the Corruption Test Accuracies for all 14 corruptions together when
performing correlation analysis for Corruption Test Accuracy. Likewise, for ASR, we aggregate the
ASR for all attack variants together when performing correlation analysis for ASR.
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