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ABSTRACT

Multimodal image matching seeks pixel-level correspondences between images
of different modalities, crucial for cross-modal perception, fusion and analysis.
However, the significant appearance differences between modalities make this
task challenging. Due to the scarcity of high-quality annotated datasets, existing
deep learning methods that extract modality-common features for matching per-
form poorly and lack adaptability to diverse scenarios. Vision Foundation Model
(VFM), trained on large-scale data, yields generalizable and robust feature repre-
sentations adapted to data and tasks of various modalities, including multimodal
matching. Thus, we propose DistillMatch, a multimodal image matching method
using knowledge distillation from VFM. DistillMatch employs knowledge distilla-
tion to build a lightweight student model that extracts high-level semantic features
from VFM to assist matching across modalities. To retain modality-specific infor-
mation, it extracts and injects modality category information into the other modal-
ity’s features, which enhances the model’s understanding of cross-modal correla-
tions. Furthermore, we design V2I-GAN to boost the model’s generalization by
translating visible to pseudo-infrared images for data augmentation. Experiments
show that DistillMatch outperforms existing algorithms on public datasets.

1 INTRODUCTION

Multimodal images, like visible and infrared images from different sensors, can provide richer scene
information Jiang et al. (2021); Zhou et al. (2022). They are crucial for advanced visual tasks in-
cluding medical image analysis Li et al. (2025), remote sensing image processing Xiao et al. (2024);
Li et al. (2019), and autonomous driving Zhou et al. (2021). However, the variations in imaging
positions lead to geometric normalization issues in multimodal images, such as scale, rotation, and
viewpoint changes, making precise analysis difficult for computers. Multimodal image matching
enhances the accuracy and robustness of visual tasks by establishing correspondences across modal-
ities, thereby promoting the development of multimodal perception technologies and expanding its
application.

The imaging principles of Multimodal images are distinct, leading to significant discrepancies in
texture, contrast, and intensity Tang et al. (2022); Li et al. (2013). These modal differences reduce
the feature extraction accuracy and limit the effectiveness of traditional matching methods. Cur-
rent deep-learning methods focus on extracting modality-common features for matching, discarding
modality-specific information and limiting feature representation Hou et al. (2024); Shi et al. (2023);
Deng et al. (2023); Liu et al. (2024); Deng & Ma (2023). Besides, due to the scarcity of large-scale,
high-quality annotated datasets, models are mostly trained on single-modality and small-scale unan-
notated multimodal datasets, resulting in poor generalization and adaptability to diverse scenarios,
which restrict the practical application of multimodal image matching.

To tackle these issues, we propose DistillMatch for multimodal image matching via knowledge dis-
tillation from VFM in Figure 1 (a). VFM like DINOv2 Oquab et al. (2023), trained on extensive
data, can extract high-level, modality-independent semantic features, which are resistant to modal
differences and noise. Basic feature extractors yield texture features with local geometric informa-
tion for matching, which are not robust to modal differences. Thus, we use features from VFM
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(b) Category-Enhanced Feature Guidance Module (CEFG)
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Figure 1: Overview of DistillMatch, CEFG and STFA. (a) Framework of DistillMatch includes KD-
VFM and matching module. (b) Structure of CEFG module. (c) Structure of STFA module.

to guide extractor to focus on semantically similar regions. DistillMatch transfers VFM’s seman-
tic knowledge into a lightweight student model via online knowledge distillation, which inherits
semantic understanding and adapts to matching tasks. To retain modality-specific information, we
design a Category-Enhanced Feature Guidance Module (CEFG) that injects modality category rep-
resentation from one modality into another’s features, enhancing texture features’ understanding of
cross-modal correlations. Then, STFA aggregates semantic and enhanced texture features to inte-
grate their advantages. For matching, a coarse-to-fine matching module is used to establish subpixel-
level correspondences. To address data scarcity, we propose V2I-GAN for visible-to-infrared image
translation for data augmentation. Extensive experiments on public datasets show DistillMatch out-
performs state-of-the-art algorithms. Anonymized source code can be found in the Reproducibility
Statement. The paper has the following contributions:

• We design a lightweight student model that uses online knowledge distillation to learn high-level
semantic understanding from VFM, overcoming modal differences.

• We design a Category-Enhanced Feature Guidance Module. It injects modality category represen-
tation to enhance understanding of cross-modal correlations.

• We propose V2I-GAN for visible-to-infrared image translation, overcoming the limited training
data issue.

2 RELATED WORKS

2.1 DATA AUGMENTATION BASED MATCHING METHODS

To address the scarcity of annotated data in multimodal image matching, researchers used the meth-
ods of data augmentation Deng et al. (2024); Zhang et al. (2025a). They generate high-quality
synthetic or pseudo-multimodal datasets for mixed training to boost performance Zhu et al. (2017);
Han et al. (2024). He et al. proposed a general large-scale pre-training framework for data aug-
mentation He et al. (2025), that integrates cross-modal signals from various data sources, enabling
model to recognize and match fundamental image structures. Jiang et al. introduced MINIMA,
a unified image matching framework Ren et al. (2025). They designed a data engine to expand
single-modal RGB images into multimodal data and built a new MD-syn dataset. MD-syn can
directly train any advanced matching pipeline, significantly improving their performance in multi-
modal matching. Liu et al. constructed a real infrared-visible image dataset MTV Liu et al. (2022),
using UAV-captured images, 3D reconstruction technology, and semi-supervised generation meth-
ods, and retrained LoFTR Sun et al. (2021) for multimodal matching.

2.2 PRE-TRAINED AND FINE-TUNED MATCHING METHODS

To overcome modal differences and extract cross-modal high-level features, researchers pre-train
feature extractors on large-scale data and fine-tune them for multimodal matching Zhou et al. (2022);
Yagmur et al. (2024). Pre-training doesn’t require datasets with matching annotations, and can use
data from other domains, reducing data collection and annotation costs. Tuzcuoğlu et al. proposed
XoFTR Tuzcuoğlu et al. (2024), which uses masked image modeling for pre-training and fine-tunes
with pseudo-infrared images. Zhang et al. introduced SemaGlue Zhang et al. (2025b), which com-
bines semantic information from pre-trained segmentation model and image geometric features,
enhancing semantic understanding in matching. Zhang et al. proposed SDME Zhang & Ma (2024),
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Figure 2: Overview of matching module. (a) is KD-VFM. (b) is coarse-level matching module,
which predicts coarse-level matches at the 1/8 scale. (c) is fine-level matching module, which uses
1/2 and 1/4 scale features based on the coarse-level matches to predict fine-level matches. (d) is
subpixel refinement module, which refines fine matches at the subpixel level.

which performs initial registration via sparse feature matching prediction and refines results through
dense direct alignment. It can fine-tune model pre-trained on single-modal datasets using small mul-
timodal datasets. Sun et al. proposed DenseAffine for extracting affine correspondences Sun et al.
(2025), introducing a geometry-constrained loss function combined with dense matches to supervise
networks in learning geometric information. DenseAffine uses ResNet50 He et al. (2016) encoder
pre-trained on ImageNet-1K Deng et al. (2009), fine-tuning only the Refiner module’s weights. Liu
et al. proposed LiftFeat Liu et al. (2025), a lightweight network that uses pseudo surface normal
labels from pre-trained monocular depth estimation model to extract 3D geometric feature. It en-
hances 2D feature description discrimination by fusing 3D with 2D descriptors.

2.3 VFM BASED MATCHING METHODS

VFM, trained on large-scale image datasets, excels in representation and semantic understanding
Xue et al. (2023); Edstedt et al. (2024); Zhang & Zhao (2024); Xue et al. (2025). Many researchers
use VFM to capture cross-modal semantic features for matching, overcoming modal differences and
reducing reliance on large-scale annotated data. Cadar et al. proposed SCFeat Cadar et al. (2024),
enhancing local feature matching with semantic features from model like DINOv2. It optimizes
descriptors by fusing texture and semantic features through a semantic reasoning module. Wu et al.
introduced SAMFeat Wu et al. (2023), which uses the Segment Anything Model (SAM) Kirillov
et al. (2023) as a teacher model. Through knowledge distillation, contrastive learning, and edge
attention guidance, SAMFeat extracts semantic information from SAM to optimize local feature
descriptors. Lu et al. proposed JamMa Lu & Du (2025), an ultra-lightweight feature matching
method based on joint Mamba. Using the linear Mamba Gu & Dao (2023) model and JEGO scan-
merge strategy, it achieves efficient image matching.

3 METHODOLOGY

DistillMatch has four modules: KD-VFM, CEFG, STFA module, and matching modules from
coarse to fine. We also propose an image translation method V2I-GAN for data augmentation.

3.1 FEATURE EXTRACTION MODULE BASED ON KNOWLEDGE DISTILLATION OF VFM

To leverage the high-level semantic cues from VFM, we design the KD-VFM module, which can
aggregate high-level semantic information into basic feature extractors. The structure of KD-VFM
is shown in Figure 1 (a).

Feature Extraction: Given two multimodal images from the same scene, e.g., visible and infrared
image Ivis/ir, they are input to KD-VFM. KD-VFM has three different branches. The first branch
is a multibranch and multiscale ResNet, which processes Ivis/ir and generates basic texture features
F

1/2
Res ∈ RB×C1×H

2 ×W
2 , F 1/4

Res ∈ RB×C2×H
4 ×W

4 and F
1/8
Res ∈ RB×C3×H

8 ×W
8 , where H and W are

image’s height and width, and C1 = 128, C2 = 196, C3 = 256. The second branch uses a ViT-
S/14 variant of the DINOv2 model augmented with register tokens. It generates high-level semantic
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features FDINO. Prior to feeding images into this branch, they are downsampled to 7/8 of original
resolution. The output FDINO ∈ RB×C4× H

14×
W
14 are interpolated to the 1/8 of original resolution

using bilinear interpolation to obtain FDINO ∈ RB×C4×H
8 ×W

8 , where C4 = 384.

Distillation of VFM: DINOv2 is a Transformer-based pretrained VFM trained on large-scale
datasets with strong generalization and can capture rich and robust semantic information from im-
ages. However, its complex architecture leads to high computation and slow inference, limiting
deployment in resource-constrained scenarios. To solve this and avoid loading DINOv2’s pretrained
weights, we propose a lightweight vision transformer Dosovitskiy et al. (2021) as student model
in the third branch, trained to distill knowledge from the teacher model’s output Ftea = FDINO.
In multimodal image matching, different modalities have different feature distributions and noise
characteristics. Though FDINO has broad generalizability, it may not fully adapt to domain-specific
matching scenarios, potentially underutilizing task-relevant information. Thus, we propose an on-
line feature distillation framework. The student model is fine-tuned on task-specific datasets and
losses, enabling it to learn matching-oriented features in training, enhancing algorithmic stability.

In student model, the input image is divided into fixed-size patches and embedded into a high-
dimensional embedding space with 2D sinusoidal-cosine positional encoding to generate initial fea-
ture FP ∈ RB×P×C4 , where P = 1600. The encoder has multiple transformer blocks, each with a
multi-head self-attention layer and a feed-forward network, while the decoder has a similar structure.
The model ultimately outputs the refined feature Fstu ∈ RB×C4×H

8 ×W
8 .

To effectively distill high-quality features from DINOv2 to student model, we design a compre-
hensive feature alignment loss that integrates three methods. The mean squared error (MSE) loss
quantifies the discrepancy between Fstu and Ftea using MSE:

LMSE =
1

N

N∑
i=1

∥∥∥∥ Ftea

∥Ftea∥2
− Fstu

∥Fstu∥2

∥∥∥∥2
2

, (1)

where N = BHW/64 is the dimensionality of the flattened feature vectors. LMSE enforces nu-
merical proximity between Fstu and Ftea at the pixel level.

Gram matrix loss quantifies feature similarity by comparing the Gram matrices of Fstu and Ftea:

LGram =
1

N

N∑
i=1

∥G(Ftea)−G(Fstu)∥22, (2)

where G(F ) = FFT

HW . N is the number of elements in Gram matrix. LGram enforces spatial-
relationship preservation between Fstu and Ftea.

The Kullback-Leibler (KL) divergence loss quantifies discrepancy in the probabilistic distribution
between Fstu and Ftea:

LKL = DKL(Ftea ∥ Fstu), (3)
where DKL(·) is the KL divergence operator. LKL enforces probabilistic distribution alignment
between Fstu and Ftea.

The complete knowledge distillation loss is formulated as:

LKD = α · LMSE + β · LGram + γ · LKL, (4)

where α, β and γ are the weights.

3.2 CATEGORY-ENHANCED FEATURE GUIDANCE MODULE

Modal differences cause the texture features extracted by KD-VFM exhibiting significant diver-
gence, making it hard to establish correspondence of them across same regions in different modal-
ities. To mitigate modal differences and enhance the understanding of cross-modal correlations,
we propose the Category-Enhanced Feature Guidance Module (CEFG). As shown in Figure 1 (b),
CEFG uses an encoder composed of restormer and transformer layers. The restormer processes
input F 1/2

Res, and produces shallow features F s
vis/ir ∈ RB×N×C3 (N = 1600), which contain low-

level image details. We initialize a learnable category feature f clc
vis/ir ∈ RB×1×C3 and concate-

nate it with F s
vis/ir. The combined features are then processed through two transformer layers

4
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and split into deep-level features F̂ d
vis/ir ∈ RB×N×C3 and modality category representation heads

f̂ clc
vis/ir ∈ RB×1×C3 . f̂ clc

vis/ir is used to characterizes the image’s modality category. To ensure

that f̂ clc
vis/ir precisely represents the modality-aware information, we use MLP and optimize it with

cross-entropy loss Lce:

Lce = CE (Pvis, [0, 1]) + CE (Pir, [1, 0]) (5)

where CE(·) is the cross-entropy function and Pvis/ir is the MLP prediction. Lce enforces the
MLP’s output to accurately predict modality category labels.

As modal difference persists between F̂ d
vis and F̂ d

ir, they cannot be directly matched. Conven-
tional methods extract common cross-modal features from them for matching, but they discard
modality-specific or non-shared information, compromising the feature representational capac-
ity. To solve this, we directly inject f̂ clc

ir/vis as global feature information into F̂ d
vis/ir through

element-wise summation, and then input them separately into two Transformer blocks with non-
shared parameters (TransferA and TransferB) to obtain the category-enhanced feature F̃vis/ir:
F̃vis = TransferA(F̂ d

vis + f̂ clc
ir ), F̃ir = TransferB(F̂ d

ir + f̂ clc
vis).

To guide texture features through category-enhanced features, we directly fuse F̃vis/ir with F
1/8
Res

via element-wise addition, and input it into convolutional layers to obtain enhanced texture features
F̃

1/8
Res. This operations not only enhance the model’s comprehension of cross-modal correlations but

also preserve non-shared information.

3.3 SEMANTIC AND TEXTURE FEATURE AGGREGATION MODULE

Texture feature FT = F̃
1/8
Res excels at capturing local geometric information but lacks semantic com-

prehension. Semantic feature FS = Fstu demonstrates strong scene-level semantic understanding
yet suffers from insufficient resolution for fine-level matching. To aggregate the strengths of both
features and enhance representational capacity and matching precision, we design the Semantic
and Texture Feature Aggregation Module (STFA), which contains Channel Attention Aggregation
(CAA) module and Spatial Attention Aggregation (SAA) module.

As shown in Figure 1 (c), the CAA module first aligns the channel and spatial dimensions of FS

with FT by bilinear interpolation and channel compression. The aligned features are then reshaped
and input to MLP and layer-normalization, yielding FLN

S/T = LN
(
MLP (FS/T )

)
∈ RB×N×C ,

where LN(·) is layer-normalization. Finally, FLN
S is used as the query, and FLN

T is used as the key
and value to perform cross-attention aggregation along the channel dimension and obtain FCAA

T .
CAA achieves soft channel-dimension alignment, enabling semantic features to adaptively focus on
channels relevant to texture features, thereby enhancing feature consistency.

SAA has a similar structure to CAA. First, FCAA
T and FT are fed into convolutional projection

layers to generate: Q = Projq(FT ),K = Projk(F
CAA
T ), V = Projv(F

CAA
T ) ∈ RB×C×N .

Then perform spatial attention aggregation along the spatial dimension and obtain FSAA
T . Fi-

nally, perform residual connection between FSAA
T and the original feature to obtain FSTFA

T =

FT + reshape(FSAA
T ) ∈ RB×C×H

8 ×W
8 . SAA enables texture features to acquire spatially relevant

information from semantic features, achieving feature fusion.

3.4 MATCHING MODULE FROM COARSE TO FINE

Coarse-level Matching Module (CMM): CMM uses feature F
1/8
vis and F

1/8
ir from STFA to pre-

dict matches at the 1/8 scale. As shown in Figure 2 (b), it first applies linear self-attention and
cross-attention in LoFTR to interact F 1/8

vis and F
1/8
ir , outputting F̂

1/8
vis and F̂

1/8
ir . The similarity

matrix S is computed as: S(i, j) = 1
γ ·

〈
Linear(F̂

1/8
vis ), Linear(F̂

1/8
ir )

〉
, where Linear(·) is the

linear layer, and γ is the temperature parameter. The matching probability matrix is obtained by:
Pk∈(0,1)(i, j) = softmax(S(i, ·))j . Using the threshold θc, high-confidence elements are filtered
out to obtain coarse-level matches Mc.
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𝑀𝐼𝑁𝐼𝑀𝐴𝐸LoFTR 𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑀𝑎𝑡𝑐ℎ𝑆𝐴𝑀𝐹𝑒𝑎𝑡𝑆𝑒𝑚𝑎𝐺𝑙𝑢𝑒𝐽𝑎𝑚𝑀𝑎 𝑀𝐼𝑁𝐼𝑀𝐴LoFTR 𝑀𝐼𝑁𝐼𝑀𝐴𝑋oFTR

(a)

(b)

Figure 3: The qualitative and quantitative results of image matching. (a) Comparison experimen-
tal results for JamMa, SemaGlue, SAMFeat, MINIMAELoFTR, MINIMALoFTR, MINIMAXoFTR and
DistillMatch (left to right), using images from the UAV remote sensing images, indoor scenes, night-
time conditions, haze and mist scenes (top to bottom). (b) The quantitative comparison results for
zero-shot experiments of unknown modalities.

Fine-level Matching Module (FMM): FMM refines matches based on Mc and the 1/2 and 1/4
scale features. As shown in Figure 2 (c), it first preprocesses F 1/2 and F 1/4 to improve feature
interaction. Then, it extracts local windows of 1×1, 3×3, and 5×5 from the preprocessed features
and performs a series of concatenation, self-attention, cross-attention, and splitting operations to
pass information among these windows. For each (̃i, j̃) in Mc, it computes the similarity matrix Sf

between the processed windows {f̂5×5
vis , f̂5×5

ir } and applies double softmax to obtain the fine-level
match probability matrix P f : P f (i, j) = softmax (Sf (i, ·))j ·softmax (Sf (·, j))i. Matches with
P f (i, j) > θf are selected as the fine-level matches Mf .

Subpixel Refinement Module (SRM): SRM refines fine-level matches to subpixel accuracy. As
Figure 2 (d) shows, it concatenates {f̂5×5

vis , f̂5×5
ir } at fine-level match (̂i, ĵ) and predict local subpixel

offsets by: {δvis, δir} = Tanh(MLP (f̂5×5
vis |f̂5×5

ir )) for each match. Adding these offsets to the
coordinates of (̂i, ĵ) to obtain subpixel-level matches: {Ĉvis, Ĉir} = {Cvis + δvis, Cir + δir} ,
where {Cvis, Cir} is the coordinate of (̂i, ĵ) before SRM.

3.5 IMAGE TRANSLATION FOR DATA AUGMENTATION

Current research suffers from the lack of large-scale visible-infrared image datasets from same
scenes, and the high cost of manual annotation of matching landmarks. These factors constrain re-
strict improvements in multimodal matching tasks. To address this, we propose a visible-to-infrared
image translation framework (V2I-GAN). V2I-GAN directly leverages mature benchmark datasets
from visible image matching domains to synthesize abundant paired <visible, pseudo-infrared>
data with correspondence annotations. Critically, as image translation preserves geometric struc-
tures without deformation or viewpoint changes, the synthesized data faithfully inherits both match-
ing labels and scene diversity from the original datasets.

Based on PearlGAN’s framework Luo et al. (2022); Zhu et al. (2017), we construct V2I-GAN for
visible-to-infrared image translation, and train it on FMB dataset Liu et al. (2023). The architecture
has two generators (GV I , GIV ) and two discriminators (DV and DI ). Specifically, GV I transforms
Ivis into Ipseir , while GIV does the opposite. DI distinguishes real Iir from pseudo Ipseir (from GV I ),
whereas DV distinguishes real Ivis from pseudo Ipsevis (from GIV ). The generator uses an encoder-
decoder structure. The encoder extracts multi-scale texture information by convolutional layers and
down-sampling blocks, while the decoder reconstructs target-domain images via up-sampling mod-
ules and feature fusion blocks. Critically, we integrate STFA in the encoder to aggregate features
from DINOv2, significantly enhancing semantic comprehension of original image and the semantic
consistency of generated images. Furthermore, we add a structured gradient alignment loss between
input image and its semantic segmentation map to further enhance the semantic consistency. Fig-
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(b)(a)

Figure 4: The qualitative results of image translation and zero-shot experiments. (a) The qualitative
results of image translation. Column 1 and 5 are visible images. Column 2 and 6 are infrared images.
Column 3 and 7 are the translation results of PearlGAN. Column 4 and 8 are the translation results
of V2I-GAN. (b) The qualitative results for zero-shot experiments, using images of optical-depth,
optical-map, optical-optical, optical-SAR, PD-T1-T2 and retina (left to right). Line 1 are the results
of MINIMAXoFTR. Line 2 are the results of DistillMatch.

ure 4 (a) shows the image translation results. V2I-GAN’s pseudo-infrared images are more like real
infrared images than PearlGAN’s.

3.6 SUPERVISION

The loss function of DitillMatch consists of the knowledge distillation loss in Equation (4), cross-
entropy loss in Equation (5) and matching loss. The matching loss mainly consists of three parts:

Coarse-level Matching Loss: we use focus loss (FL) to supervise the matching probability matrix
Pk∈(0,1) in CMM:

Lc = α · FL(P0, P̂0) + β · FL(P1, P̂1), (6)
where P̂0 and P̂1 are the GT matching matrices for CMM. α and β are the weights for balancing.

Fine-level Matching Loss: We design the fine-level matching loss to supervise P f in FMM:

Lf =
1

Mc

∑
(̂i,ĵ)∈Mc

FL(P f

î,ĵ
, P̂ f

î,ĵ
), (7)

where P̂ f

î,ĵ
is the GT fine-level matching matrix for (̂i, ĵ).

Subpixel Refinement Loss: Given predicted matches’ homogeneous coordinates (x̂vi, x̂ir), the
subpixel refinement loss is computed by symmetric polar distance function:

Lsub =
1

|Mc|
∑

(x̂vi,x̂ir)

∥∥∥x̂T
viEx̂ir

∥∥∥2

(
1

∥ET x̂vi∥20:2
+

1

∥Ex̂ir∥20:2
), (8)

where E is the GT essential matrix from the camera pose. ∥v∥0:2 denotes the first two elements of
the vector v. The total matching loss is: Lmatch = λcLc + λfLf + λsubLsub. The overall loss is:
Ltotal = λKDLKD + λceLce + Lmatch.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In training, we employ the MegaDepth dataset Li & Snavely (2018) as our benchmark. For data
augmentation, we perform randomized adjustments to hue, saturation, and value intensities across
input images, and leverage V2I-GAN to translate one image from each pair into pseudo-infrared
image. Training is conducted using the AdamW optimizer with a learning rate of 6 × 10−3, a
batch size of 1, a total of 20 epochs, and 120 hours of training on 3 NVIDIA GeForce RTX 4090
GPUs. The thresholds in the matching network are set to: θc = 0.3, θf = 0.1. The settings
in the loss function are set to: λc = 0.5, λf = 0.3, λsub = 104, λs = 1, λvis

ac = λir
ac = 0.25,

α = 100, β = 0.5, γ = 0.25, λKD = 0.1, λce = 0.1.

4.2 RELATIVE POSE ESTIMATION

Dataset and Evaluation Metrics: To evaluate the performance of DistillMatch for relative
pose estimation in visible-infrared images, we test it on the METU-VisTIR dataset Tuzcuoğlu
et al. (2024). DistillMatch processes the input images and generates matched point pairs.
We use RANSAC Fischler & Bolles (1981) with a threshold of 3 to filter correct matching
point pairs. During testing, the longer image side is set to 640 pixels to standardize sizes.
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Table 1: Quantitative results of relative pose estima-
tion in METU-VisTIR dataset, and the values to the
left and right of ’/’ are the results for cloud-cloud
and cloud-sunny scenarios respectively (bold fonts
indicate the maximum values).

Method AUC of cloud-cloud and cloud-sunny

@5◦ @10◦ @20◦

SAMFeat 0.084/0.083 0.141/0.312 0.323/0.931
SDME 0/0 0/0 0.198/0.222
SCFeat 0.069/0.335 0.489/1.404 2.400/4.284

SemaGlue 0.035/0.092 0.248/0.416 1.105/1.559
LiftFeat 0.131/0.173 0.561/0.699 2.176/2.818

DenseAffine 1.465/2.094 3.656/5.900 8.057/12.21
MTV-LoFTR 0.086/0.220 0.391/0.6128 1.800/2.307

JamMa 0.058/0.029 0.571/0.389 2.877/2.334
XoFTR 18.39/9.523 33.18/22.09 48.43/36.83

MINIMALoFTR 19.15/10.47 35.78/24.84 52.29/41.98
MINIMAELoFTR 6.872/5.248 17.79/14.11 35.10/28.59
MINIMAXoFTR 22.47/10.68 38.95/25.50 55.30/43.33
DistillMatch 23.13/12.45 41.10/26.86 58.41/44.47

We evaluate the methods independently
on cloudy-cloudy and cloudy-sunny sce-
narios of the dataset. We use the area
under curve (AUC) at 5◦, 10◦ and 20◦
thresholds as evaluation metrics, measur-
ing the maximum angular deviation from
the GT in rotation and translation. We
compared DistillMatch with the following
publicly available methods: SAMFeat Wu
et al. (2023), SDME Zhang & Ma (2024),
SCFeat Cadar et al. (2024), SemaGlue
Zhang et al. (2025b), LiftFeat Liu et al.
(2025), DenseAffine Sun et al. (2025),
MTV-LoFTR Liu et al. (2022), JamMa Lu
& Du (2025), XoFTR Tuzcuoğlu et al.
(2024), MINIMALoFTR, MINIMAELoFTR
Wang et al. (2024) and MINIMAXoFTR Ren
et al. (2025).

Results: As shown in Table 1, Distill-
Match achieves significantly higher AUC
than other algorithms at all thresholds
for the cloudy-cloudy and cloudy-sunny
datasets. The performance on the cloudy-

sunny dataset is lower than on the cloudy-cloudy dataset, due to increased image feature variation
from light and temperature differences, which makes matching and pose estimation more challeng-
ing. Figure 3 (a) illustrates the qualitative results.

4.3 HOMOGRAPHY TRANSFORMATION ESTIMATION

Dataset and Evaluation Metrics: To evaluate the homography estimation performance of Distill-
Match, we conducted experiments on four visible-infrared datasets covering distinct scenarios: (1)
UAV remote sensing images Liu et al. (2022), (2) indoor scenes SMT/COPPE/Poli/UFRJ (2021),
(3) nighttime conditions González et al. (2016), and (4) haze and mist scenes Xie & Jin (2023). We
randomly generate a unique homography matrix and apply it as GT to the original image. The ho-
mography matrices include random translations of [−10%, 10%], rotations of [−20,−20], scaling
of [0.8, 1.2], shear angles of [−0.1, 0.1], and perspective transformations of [−0.003, 0.003]. For
UAV remote sensing dataset, we evaluate matching performance by calculating the mean reprojec-
tion error of four corner points, adopting AUC under thresholds of 3, 5 and 10 pixels. For the other
datasets, AUC is computed at thresholds of 5, 10 and 20 pixels.

Results: As evidenced by Table 2 and Figure 3 (a), DistillMatch achieves significantly higher AUC
values than competing methods across most thresholds on all datasets, with the performance gap
widening progressively as thresholds increase. Figure 3(a) demonstrates that DistillMatch precisely
aligns feature points between source and target images. This alignment preserves geometric consis-
tency and structural integrity in transformed images despite scale variations, viewpoint distortions,
and rotational changes.

4.4 ZERO-SHOT EXPERIMENTS OF UNKNOWN MODALITIES

Dataset and Evaluation Metrics: In addition to matching visible and infrared images, we also con-
ducted zero-shot matching on several unknown modalities, including: (1) optical-SAR image pairs,
(2) optical-map image pairs, (3) optical-depth image pairs Li et al. (2023), (4) pairwise combinations
of PD, T1, and T2 images, (5) retina image pairs, and (6) cross-temporal image pairs Jiang et al.
(2021). The evaluation metrics are: (1) Number of Correct Matches (NCM): A match is accepted
as correct if its residual under the GT transformation is less than 5 pixels. (2) Root Mean Square
Error (RMSE): The RMSE between the matches extracted by the algorithm and those under the GT
transformation.
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Table 2: Quantitative results of homography estimation in visible-infrared dataset. The best and
second of each category are masked as bold and underline, respectively.

Method UAV Indoor Night Haze

@3px @5px @10px @5px @10px @20px @5px @10px @20px @5px @10px @20px
SAMFeat 3.666 10.85 24.43 0.384 0.666 1.122 0 0 0.561 0 1.462 3.710
SDME 4.327 10.85 21.13 0.309 0.639 1.090 0 0.279 1.272 0.657 0.945 2.283
SCFeat 5.799 16.68 36.43 0.328 2.406 12.97 0 0.406 6.533 0 0.922 4.929

SemaGlue 0.567 1.416 4.365 0.384 0.886 2.003 0.397 0.476 1.015 1.004 3.377 7.043
LiftFeat 8.732 24.28 45.34 0.870 2.978 11.69 0 1.644 10.49 0 1.047 6.477

DenseAffine 5.626 11.95 21.25 0 0 0 0 0.281 1.213 0 1.263 3.142
MTV-LoFTR 16.75 29.20 44.91 0.314 1.707 5.940 0 2.248 11.40 0.687 2.133 6.249

JamMa 0 0.878 8.676 0.450 6.275 19.74 0 2.965 15.57 0 1.250 2.703
XoFTR 16.93 35.88 59.33 2.755 15.62 29.66 0.363 3.152 21.17 6.214 24.66 45.43

MINIMALoFTR 17.32 35.01 58.40 2.867 16.63 33.50 0 3.026 20.84 3.606 13.83 30.43
MINIMAELoFTR 14.27 32.05 57.44 2.978 15.23 32.37 0 2.641 17.82 3.516 17.32 38.47
MINIMAXoFTR 19.58 37.65 60.37 4.793 18.44 29.46 0.347 3.256 22.81 7.719 26.77 51.35
DistillMatch 20.53 40.12 64.62 5.257 22.94 43.33 0.466 3.585 22.19 9.208 28.99 51.07

Results: Quantitative results are shown in Figure 3 (b). Due to the large modality gap and extreme
difficulty of optical-SAR image pairs, most algorithms perform poorly. Nevertheless, our Distill-
Match still has advantage. On optical-map and cross-temporal image pairs, DistillMatch slightly
lags behind MINIMAXoFTR in terms of RMSE. However, DistillMatch achieves leading NCM across
all datasets, demonstrating its robust matching capability even on unknown modalities. We attribute
this primarily to the generalizable representation power of DINOv2-distilled features, and the cross-
modal correlation enhancement by the CEFG. This indicates that DistillMatch possesses strong
extensibility, and only needs to adapt the image translation algorithm’s modality to handle diverse
multimodal matching tasks. Qualitative results in Figure 4 (b) further validate that DistillMatch can
establish a high quantity and proportion of correct matches on real-world multimodal image pairs.

4.5 ABLATION STUDY

Table 3: Ablation study of DistillMatch. All experi-
ments are performed in the cloud-sunny scenarios of
the METU-VisTIR dataset.

SAA CAA KD-VFM CEFG V2I-GAN AUC

20.05/35.94/51.98
! 21.11/37.30/52.40
! ! 21.71/38.58/54.38
! ! ! 22.26/40.55/56.94
! ! ! ! 23.12/40.24/57.40
! ! ! ! ! 23.13/41.10/58.41

To verify the effectiveness of Distill-
Match’s modules and data augmentation,
we perform the ablation experiments in
METU-VisTIR dataset with results in Ta-
ble 3. SAA and CAA are the spatial
and channel attention aggregation mod-
ule. KD-VFM is feature extraction mod-
ule based on knowledge distillation of
VFM. V2I-GAN indicates data augmenta-
tion with V2I-GAN. A checkmark shows
a module’s presence. The first line is the
result of baseline. The second and third
lines directly aggregate the VFM features
without knowledge distillation. The results show that the absence of either component degrades
matching performance, underscoring their importance for cross-modal feature learning.

5 CONCLUSION

In this study, we propose a multimodal image matching method named DistillMatch. By leverag-
ing knowledge distillation from VFM, it tackles modal differences and data scarcity. DistillMatch
uses a lightweight student model to extract high-level semantic features from VFM for multimodal
matching, and introduces a CEFG to retain modality-specific information and boost the model’s un-
derstanding of cross-modality correlations. Moreover, to enhance the model’s generalization ability,
we design V2I-GAN for visible-to-infrared image translation as data augmentation. Experiments
demonstrate that DistillMatch outperforms state-of-the-art algorithms on public datasets.
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6 REPRODUCIBILITY STATEMENT

To support the reproducibility of our work, we have taken the following measures:

(1) Details of our proposed algorithm are fully described in Section 3 of the main paper, with imple-
mentation details provided in Section 4.1.

(2) Anonymized source code, including training scripts and evaluation procedures, is available
are available at https://anonymous.4open.science/r/DistillMatch-503A and
https://anonymous.4open.science/r/V2I-GAN-E3B3.

(3) The meanings of the mathematical symbols used in paper are shown in Table 4 of Appendix A.1.

(4) All datasets used in our experiments are publicly available; The detailed pre-processing proce-
dure has been elaborately described in the Appendix A.2.

(5) The configuration and details of the training can be found in Appendix A.3.
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A APPENDIX

A.1 LIST OF MATHEMATICAL SYMBOLS

The meanings of the mathematical symbols used in the article are shown in Table 4.

F
1/2
Res, F

1/4
ResandF

1/8
Res Features processed by ResNet at 1/2, 1/4 and 1/8 resolution.

FDINO Features processed by DINOv2
Fstu The refined features output by the student model
Ftea The features output by the teacher model, and Ftea = FDINO

F s
vis/ir The shallow features output by Restormer

f̂clc
vis/ir The feature output by modality category representation heads

F̃vis/ir The category-enhanced features
F̃

1/8
Res The enhanced texture features

FCAA
T The features after alignment in the channel dimension

FSAA
T The features after spatial dimension alignment

FSTFA
T The features output by STFA module.

S The similarity matrix between {F 1/8
vis , F

1/8
ir }

Pk∈(0,1), P
f The coarse-level and fine-level matching probability matrix

Mc,Mf The final coarse-level and fine-level matching set
Sf The similarity matrix between {f̂5×5

vis , f̂5×5
ir }

θc, θf The threshold for coarse-level and fine-level matching
{δvis, δir} The local subpixel offsets for each match
C∗, Ĉ∗ (̂i, ĵ) coordinates before and after subpixel refinement

Table 4: List of Symbols.

A.2 DATASET SETUP

Two parts of data are needed for training and testing DistillMatch, the original dataset, i.e.,
MegaDepth and METU-VisTIR, and the offline generated dataset indices. The dataset indices store
scenes, image pairs, and other metadata within each dataset used for training. We use depth maps
provided in the original MegaDepth dataset as well as undistorted images, corresponding camera
intrinsics and extrinsics preprocessed by D2-Net. During the training phase, we use V2I-GAN to
randomly perform image translation on one of the images in the image pair.

A.3 TRAINING CONFIGURATION AND DETAILS

The knowledge distillation and matching process training of DistillMatch are carried out simultane-
ously, without any pre-training and fine-tuning steps. This online distillation method is beneficial for
learning features in DINOv2 that are more suitable for multimodal image matching. Detailed train-
ing environment details and configurations can be found at: https://anonymous.4open.
science/r/DistillMatch-503A/requirements.txt and https://anonymous.
4open.science/r/DistillMatch-503A/environment.yaml.
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