DISTILLMATCH: LEVERAGING KNOWLEDGE DISTILLATION FROM VISION FOUNDATION MODEL FOR MULTIMODAL IMAGE MATCHING

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal image matching seeks pixel-level correspondences between images of different modalities, crucial for cross-modal perception, fusion and analysis. However, the significant appearance differences between modalities make this task challenging. Due to the scarcity of high-quality annotated datasets, existing deep learning methods that extract modality-common features for matching perform poorly and lack adaptability to diverse scenarios. Vision Foundation Model (VFM), trained on large-scale data, yields generalizable and robust feature representations adapted to data and tasks of various modalities, including multimodal matching. Thus, we propose DistillMatch, a multimodal image matching method using knowledge distillation from VFM. DistillMatch employs knowledge distillation to build a lightweight student model that extracts high-level semantic features from VFM to assist matching across modalities. To retain modality-specific information, it extracts and injects modality category information into the other modality's features, which enhances the model's understanding of cross-modal correlations. Furthermore, we design V2I-GAN to boost the model's generalization by translating visible to pseudo-infrared images for data augmentation. Experiments show that DistillMatch outperforms existing algorithms on public datasets.

1 Introduction

Multimodal images, like visible and infrared images from different sensors, can provide richer scene information Jiang et al. (2021); Zhou et al. (2022). They are crucial for advanced visual tasks including medical image analysis Li et al. (2025), remote sensing image processing Xiao et al. (2024); Li et al. (2019), and autonomous driving Zhou et al. (2021). However, the variations in imaging positions lead to geometric normalization issues in multimodal images, such as scale, rotation, and viewpoint changes, making precise analysis difficult for computers. Multimodal image matching enhances the accuracy and robustness of visual tasks by establishing correspondences across modalities, thereby promoting the development of multimodal perception technologies and expanding its application.

The imaging principles of Multimodal images are distinct, leading to significant discrepancies in texture, contrast, and intensity Tang et al. (2022); Li et al. (2013). These modal differences reduce the feature extraction accuracy and limit the effectiveness of traditional matching methods. Current deep-learning methods focus on extracting modality-common features for matching, discarding modality-specific information and limiting feature representation Hou et al. (2024); Shi et al. (2023); Deng et al. (2023); Liu et al. (2024); Deng & Ma (2023). Besides, due to the scarcity of large-scale, high-quality annotated datasets, models are mostly trained on single-modality and small-scale unannotated multimodal datasets, resulting in poor generalization and adaptability to diverse scenarios, which restrict the practical application of multimodal image matching.

To tackle these issues, we propose DistillMatch for multimodal image matching via knowledge distillation from VFM in Figure 1 (a). VFM like DINOv2 Oquab et al. (2023), trained on extensive data, can extract high-level, modality-independent semantic features, which are resistant to modal differences and noise. Basic feature extractors yield texture features with local geometric information for matching, which are not robust to modal differences. Thus, we use features from VFM

Figure 1: Overview of DistillMatch, CEFG and STFA. (a) Framework of DistillMatch includes KD-VFM and matching module. (b) Structure of CEFG module. (c) Structure of STFA module.

to guide extractor to focus on semantically similar regions. DistillMatch transfers VFM's semantic knowledge into a lightweight student model via online knowledge distillation, which inherits semantic understanding and adapts to matching tasks. To retain modality-specific information, we design a Category-Enhanced Feature Guidance Module (CEFG) that injects modality category representation from one modality into another's features, enhancing texture features' understanding of cross-modal correlations. Then, STFA aggregates semantic and enhanced texture features to integrate their advantages. For matching, a coarse-to-fine matching module is used to establish subpixel-level correspondences. To address data scarcity, we propose V2I-GAN for visible-to-infrared image translation for data augmentation. Extensive experiments on public datasets show DistillMatch outperforms state-of-the-art algorithms. Anonymized source code can be found in the Reproducibility Statement. The paper has the following contributions:

- We design a lightweight student model that uses online knowledge distillation to learn high-level semantic understanding from VFM, overcoming modal differences.
- We design a Category-Enhanced Feature Guidance Module. It injects modality category representation to enhance understanding of cross-modal correlations.
- We propose V2I-GAN for visible-to-infrared image translation, overcoming the limited training data issue.

2 RELATED WORKS

2.1 Data Augmentation Based Matching Methods

To address the scarcity of annotated data in multimodal image matching, researchers used the methods of data augmentation Deng et al. (2024); Zhang et al. (2025a). They generate high-quality synthetic or pseudo-multimodal datasets for mixed training to boost performance Zhu et al. (2017); Han et al. (2024). He et al. proposed a general large-scale pre-training framework for data augmentation He et al. (2025), that integrates cross-modal signals from various data sources, enabling model to recognize and match fundamental image structures. Jiang et al. introduced MINIMA, a unified image matching framework Ren et al. (2025). They designed a data engine to expand single-modal RGB images into multimodal data and built a new MD-syn dataset. MD-syn can directly train any advanced matching pipeline, significantly improving their performance in multimodal matching. Liu et al. constructed a real infrared-visible image dataset MTV Liu et al. (2022), using UAV-captured images, 3D reconstruction technology, and semi-supervised generation methods, and retrained LoFTR Sun et al. (2021) for multimodal matching.

2.2 Pre-trained and Fine-tuned Matching Methods

To overcome modal differences and extract cross-modal high-level features, researchers pre-train feature extractors on large-scale data and fine-tune them for multimodal matching Zhou et al. (2022); Yagmur et al. (2024). Pre-training doesn't require datasets with matching annotations, and can use data from other domains, reducing data collection and annotation costs. Tuzcuoğlu et al. proposed XoFTR Tuzcuoğlu et al. (2024), which uses masked image modeling for pre-training and fine-tunes with pseudo-infrared images. Zhang et al. introduced SemaGlue Zhang et al. (2025b), which combines semantic information from pre-trained segmentation model and image geometric features, enhancing semantic understanding in matching. Zhang et al. proposed SDME Zhang & Ma (2024),

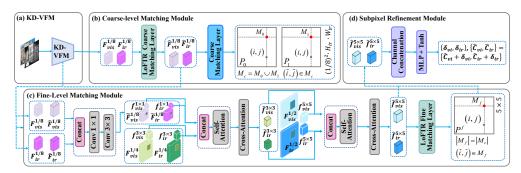


Figure 2: Overview of matching module. (a) is KD-VFM. (b) is coarse-level matching module, which predicts coarse-level matches at the 1/8 scale. (c) is fine-level matching module, which uses 1/2 and 1/4 scale features based on the coarse-level matches to predict fine-level matches. (d) is subpixel refinement module, which refines fine matches at the subpixel level.

which performs initial registration via sparse feature matching prediction and refines results through dense direct alignment. It can fine-tune model pre-trained on single-modal datasets using small multimodal datasets. Sun et al. proposed DenseAffine for extracting affine correspondences Sun et al. (2025), introducing a geometry-constrained loss function combined with dense matches to supervise networks in learning geometric information. DenseAffine uses ResNet50 He et al. (2016) encoder pre-trained on ImageNet-1K Deng et al. (2009), fine-tuning only the Refiner module's weights. Liu et al. proposed LiftFeat Liu et al. (2025), a lightweight network that uses pseudo surface normal labels from pre-trained monocular depth estimation model to extract 3D geometric feature. It enhances 2D feature description discrimination by fusing 3D with 2D descriptors.

2.3 VFM BASED MATCHING METHODS

VFM, trained on large-scale image datasets, excels in representation and semantic understanding Xue et al. (2023); Edstedt et al. (2024); Zhang & Zhao (2024); Xue et al. (2025). Many researchers use VFM to capture cross-modal semantic features for matching, overcoming modal differences and reducing reliance on large-scale annotated data. Cadar et al. proposed SCFeat Cadar et al. (2024), enhancing local feature matching with semantic features from model like DINOv2. It optimizes descriptors by fusing texture and semantic features through a semantic reasoning module. Wu et al. introduced SAMFeat Wu et al. (2023), which uses the Segment Anything Model (SAM) Kirillov et al. (2023) as a teacher model. Through knowledge distillation, contrastive learning, and edge attention guidance, SAMFeat extracts semantic information from SAM to optimize local feature descriptors. Lu et al. proposed JamMa Lu & Du (2025), an ultra-lightweight feature matching method based on joint Mamba. Using the linear Mamba Gu & Dao (2023) model and JEGO scanmerge strategy, it achieves efficient image matching.

3 METHODOLOGY

DistillMatch has four modules: KD-VFM, CEFG, STFA module, and matching modules from coarse to fine. We also propose an image translation method V2I-GAN for data augmentation.

3.1 FEATURE EXTRACTION MODULE BASED ON KNOWLEDGE DISTILLATION OF VFM

To leverage the high-level semantic cues from VFM, we design the KD-VFM module, which can aggregate high-level semantic information into basic feature extractors. The structure of KD-VFM is shown in Figure 1 (a).

Feature Extraction: Given two multimodal images from the same scene, e.g., visible and infrared image $I_{vis/ir}$, they are input to KD-VFM. KD-VFM has three different branches. The first branch is a multibranch and multiscale ResNet, which processes $I_{vis/ir}$ and generates basic texture features $F_{Res}^{1/2} \in \mathbb{R}^{B \times C_1 \times \frac{H}{2} \times \frac{W}{2}}$, $F_{Res}^{1/4} \in \mathbb{R}^{B \times C_2 \times \frac{H}{4} \times \frac{W}{4}}$ and $F_{Res}^{1/8} \in \mathbb{R}^{B \times C_3 \times \frac{H}{8} \times \frac{W}{8}}$, where H and W are image's height and width, and $C_1 = 128$, $C_2 = 196$, $C_3 = 256$. The second branch uses a ViT-S/14 variant of the DINOv2 model augmented with register tokens. It generates high-level semantic

features F_{DINO} . Prior to feeding images into this branch, they are downsampled to 7/8 of original resolution. The output $F_{DINO} \in \mathbb{R}^{B \times C_4 \times \frac{H}{14} \times \frac{W}{14}}$ are interpolated to the 1/8 of original resolution using bilinear interpolation to obtain $F_{DINO} \in \mathbb{R}^{B \times C_4 \times \frac{H}{8} \times \frac{W}{8}}$, where $C_4 = 384$.

Distillation of VFM: DINOv2 is a Transformer-based pretrained VFM trained on large-scale datasets with strong generalization and can capture rich and robust semantic information from images. However, its complex architecture leads to high computation and slow inference, limiting deployment in resource-constrained scenarios. To solve this and avoid loading DINOv2's pretrained weights, we propose a lightweight vision transformer Dosovitskiy et al. (2021) as student model in the third branch, trained to distill knowledge from the teacher model's output $F_{tea} = F_{DINO}$. In multimodal image matching, different modalities have different feature distributions and noise characteristics. Though F_{DINO} has broad generalizability, it may not fully adapt to domain-specific matching scenarios, potentially underutilizing task-relevant information. Thus, we propose an online feature distillation framework. The student model is fine-tuned on task-specific datasets and losses, enabling it to learn matching-oriented features in training, enhancing algorithmic stability.

In student model, the input image is divided into fixed-size patches and embedded into a high-dimensional embedding space with 2D sinusoidal-cosine positional encoding to generate initial feature $F_P \in \mathbb{R}^{B \times P \times C_4}$, where P=1600. The encoder has multiple transformer blocks, each with a multi-head self-attention layer and a feed-forward network, while the decoder has a similar structure. The model ultimately outputs the refined feature $F_{stu} \in \mathbb{R}^{B \times C_4 \times \frac{H}{8} \times \frac{W}{8}}$.

To effectively distill high-quality features from DINOv2 to student model, we design a comprehensive feature alignment loss that integrates three methods. The mean squared error (MSE) loss quantifies the discrepancy between F_{stu} and F_{tea} using MSE:

$$L_{MSE} = \frac{1}{N} \sum_{i=1}^{N} \left\| \frac{F_{tea}}{\|F_{tea}\|_{2}} - \frac{F_{stu}}{\|F_{stu}\|_{2}} \right\|_{2}^{2}, \tag{1}$$

where N=BHW/64 is the dimensionality of the flattened feature vectors. L_{MSE} enforces numerical proximity between F_{stu} and F_{tea} at the pixel level.

Gram matrix loss quantifies feature similarity by comparing the Gram matrices of F_{stu} and F_{tea} :

$$L_{Gram} = \frac{1}{N} \sum_{i=1}^{N} \|G(F_{tea}) - G(F_{stu})\|_{2}^{2},$$
 (2)

where $G(F) = \frac{FF^T}{HW}$. N is the number of elements in Gram matrix. L_{Gram} enforces spatial-relationship preservation between F_{stu} and F_{tea} .

The Kullback-Leibler (KL) divergence loss quantifies discrepancy in the probabilistic distribution between F_{stu} and F_{tea} :

$$L_{KL} = D_{KL}(F_{tea} \parallel F_{stu}), \tag{3}$$

where $D_{KL}(\cdot)$ is the KL divergence operator. L_{KL} enforces probabilistic distribution alignment between F_{stu} and F_{tea} .

The complete knowledge distillation loss is formulated as:

$$L_{KD} = \alpha \cdot L_{MSE} + \beta \cdot L_{Gram} + \gamma \cdot L_{KL}, \tag{4}$$

where α , β and γ are the weights.

3.2 CATEGORY-ENHANCED FEATURE GUIDANCE MODULE

Modal differences cause the texture features extracted by KD-VFM exhibiting significant divergence, making it hard to establish correspondence of them across same regions in different modalities. To mitigate modal differences and enhance the understanding of cross-modal correlations, we propose the Category-Enhanced Feature Guidance Module (CEFG). As shown in Figure 1 (b), CEFG uses an encoder composed of restormer and transformer layers. The restormer processes input $F_{Res}^{1/2}$, and produces shallow features $F_{vis/ir}^s \in \mathbb{R}^{B \times N \times C_3}$ (N=1600), which contain low-level image details. We initialize a learnable category feature $f_{vis/ir}^{clc} \in \mathbb{R}^{B \times 1 \times C_3}$ and concatenate it with $F_{vis/ir}^s$. The combined features are then processed through two transformer layers

and split into deep-level features $\widehat{F}^{d}_{vis/ir} \in \mathbb{R}^{B \times N \times C_3}$ and modality category representation heads $\widehat{f}^{clc}_{vis/ir} \in \mathbb{R}^{B \times 1 \times C_3}$. $\widehat{f}^{clc}_{vis/ir}$ is used to characterizes the image's modality category. To ensure that $\widehat{f}^{clc}_{vis/ir}$ precisely represents the modality-aware information, we use MLP and optimize it with cross-entropy loss L_{ce} :

$$L_{ce} = CE(P_{vis}, [0, 1]) + CE(P_{ir}, [1, 0])$$
(5)

where $CE(\cdot)$ is the cross-entropy function and $P_{vis/ir}$ is the MLP prediction. L_{ce} enforces the MLP's output to accurately predict modality category labels.

As modal difference persists between \widehat{F}^d_{vis} and \widehat{F}^d_{ir} , they cannot be directly matched. Conventional methods extract common cross-modal features from them for matching, but they discard modality-specific or non-shared information, compromising the feature representational capacity. To solve this, we directly inject $\widehat{f}^{clc}_{ir/vis}$ as global feature information into $\widehat{F}^d_{vis/ir}$ through element-wise summation, and then input them separately into two Transformer blocks with non-shared parameters (TransferA and TransferB) to obtain the category-enhanced feature $\widetilde{F}_{vis/ir}$: $\widetilde{F}_{vis} = TransferA(\widehat{F}^d_{vis} + \widehat{f}^{clc}_{ir})$, $\widetilde{F}_{ir} = TransferB(\widehat{F}^d_{ir} + \widehat{f}^{clc}_{vis})$.

To guide texture features through category-enhanced features, we directly fuse $\widetilde{F}_{vis/ir}$ with $F_{Res}^{1/8}$ via element-wise addition, and input it into convolutional layers to obtain enhanced texture features $\widetilde{F}_{Res}^{1/8}$. This operations not only enhance the model's comprehension of cross-modal correlations but also preserve non-shared information.

3.3 SEMANTIC AND TEXTURE FEATURE AGGREGATION MODULE

Texture feature $F_T = \widetilde{F}_{Res}^{1/8}$ excels at capturing local geometric information but lacks semantic comprehension. Semantic feature $F_S = F_{stu}$ demonstrates strong scene-level semantic understanding yet suffers from insufficient resolution for fine-level matching. To aggregate the strengths of both features and enhance representational capacity and matching precision, we design the Semantic and Texture Feature Aggregation Module (STFA), which contains Channel Attention Aggregation (CAA) module and Spatial Attention Aggregation (SAA) module.

As shown in Figure 1 (c), the CAA module first aligns the channel and spatial dimensions of F_S with F_T by bilinear interpolation and channel compression. The aligned features are then reshaped and input to MLP and layer-normalization, yielding $F_{S/T}^{LN} = LN\left(MLP(F_{S/T})\right) \in \mathbb{R}^{B\times N\times C}$, where $LN(\cdot)$ is layer-normalization. Finally, F_S^{LN} is used as the query, and F_T^{LN} is used as the set and value to perform cross-attention aggregation along the channel dimension and obtain F_T^{CAA} . CAA achieves soft channel-dimension alignment, enabling semantic features to adaptively focus on channels relevant to texture features, thereby enhancing feature consistency.

SAA has a similar structure to CAA. First, F_T^{CAA} and F_T are fed into convolutional projection layers to generate: $Q = Proj_q(F_T), K = Proj_k(F_T^{CAA}), V = Proj_v(F_T^{CAA}) \in \mathbb{R}^{B \times C \times N}$. Then perform spatial attention aggregation along the spatial dimension and obtain F_T^{SAA} . Finally, perform residual connection between F_T^{SAA} and the original feature to obtain $F_T^{STFA} = F_T + reshape(F_T^{SAA}) \in \mathbb{R}^{B \times C \times \frac{H}{8} \times \frac{W}{8}}$. SAA enables texture features to acquire spatially relevant information from semantic features, achieving feature fusion.

3.4 MATCHING MODULE FROM COARSE TO FINE

Coarse-level Matching Module (CMM): CMM uses feature $F_{vis}^{1/8}$ and $F_{ir}^{1/8}$ from STFA to predict matches at the 1/8 scale. As shown in Figure 2 (b), it first applies linear self-attention and cross-attention in LoFTR to interact $F_{vis}^{1/8}$ and $F_{ir}^{1/8}$, outputting $\hat{F}_{vis}^{1/8}$ and $\hat{F}_{ir}^{1/8}$. The similarity matrix S is computed as: $S(i,j) = \frac{1}{\gamma} \cdot \left\langle Linear(\hat{F}_{vis}^{1/8}), Linear(\hat{F}_{ir}^{1/8}) \right\rangle$, where $Linear(\cdot)$ is the linear layer, and γ is the temperature parameter. The matching probability matrix is obtained by: $P_{k \in (0,1)}(i,j) = softmax(S(i,\cdot))_j$. Using the threshold θ_c , high-confidence elements are filtered out to obtain coarse-level matches M_c .

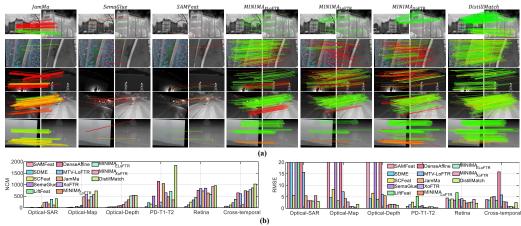


Figure 3: The qualitative and quantitative results of image matching. (a) Comparison experimental results for JamMa, SemaGlue, SAMFeat, MINIMA_{ELoFTR}, MINIMA_{LoFTR}, MINIMA_{XoFTR} and DistillMatch (left to right), using images from the UAV remote sensing images, indoor scenes, night-time conditions, haze and mist scenes (top to bottom). (b) The quantitative comparison results for zero-shot experiments of unknown modalities.

Fine-level Matching Module (FMM): FMM refines matches based on M_c and the 1/2 and 1/4 scale features. As shown in Figure 2 (c), it first preprocesses $F^{1/2}$ and $F^{1/4}$ to improve feature interaction. Then, it extracts local windows of 1×1 , 3×3 , and 5×5 from the preprocessed features and performs a series of concatenation, self-attention, cross-attention, and splitting operations to pass information among these windows. For each (\tilde{i},\tilde{j}) in M_c , it computes the similarity matrix S^f between the processed windows $\{\hat{f}_{vis}^{5\times 5},\hat{f}_{ir}^{5\times 5}\}$ and applies double softmax to obtain the fine-level match probability matrix $P^f\colon P^f(i,j)=soft\max{(S^f(i,\cdot))_j\cdot soft\max{(S^f(\cdot,j))_i}}$. Matches with $P^f(i,j)>\theta_f$ are selected as the fine-level matches M_f .

Subpixel Refinement Module (SRM): SRM refines fine-level matches to subpixel accuracy. As Figure 2 (d) shows, it concatenates $\{\hat{f}_{vis}^{5\times5},\hat{f}_{ir}^{5\times5}\}$ at fine-level match (\hat{i},\hat{j}) and predict local subpixel offsets by: $\{\delta_{vis},\delta_{ir}\}=\mathrm{Tanh}(MLP(\hat{f}_{vis}^{5\times5}|\hat{f}_{ir}^{5\times5}))$ for each match. Adding these offsets to the coordinates of (\hat{i},\hat{j}) to obtain subpixel-level matches: $\{\hat{C}_{vis},\hat{C}_{ir}\}=\{C_{vis}+\delta_{vis},C_{ir}+\delta_{ir}\}$, where $\{C_{vis},C_{ir}\}$ is the coordinate of (\hat{i},\hat{j}) before SRM.

3.5 IMAGE TRANSLATION FOR DATA AUGMENTATION

Current research suffers from the lack of large-scale visible-infrared image datasets from same scenes, and the high cost of manual annotation of matching landmarks. These factors constrain restrict improvements in multimodal matching tasks. To address this, we propose a visible-to-infrared image translation framework (V2I-GAN). V2I-GAN directly leverages mature benchmark datasets from visible image matching domains to synthesize abundant paired <visible, pseudo-infrared data with correspondence annotations. Critically, as image translation preserves geometric structures without deformation or viewpoint changes, the synthesized data faithfully inherits both matching labels and scene diversity from the original datasets.

Based on PearlGAN's framework Luo et al. (2022); Zhu et al. (2017), we construct V2I-GAN for visible-to-infrared image translation, and train it on FMB dataset Liu et al. (2023). The architecture has two generators (G_{VI} , G_{IV}) and two discriminators (D_V and D_I). Specifically, G_{VI} transforms I_{vis} into I_{ir}^{pse} , while G_{IV} does the opposite. D_I distinguishes real I_{ir} from pseudo I_{ir}^{pse} (from G_{VI}), whereas D_V distinguishes real I_{vis} from pseudo I_{vis}^{pse} (from G_{IV}). The generator uses an encoder-decoder structure. The encoder extracts multi-scale texture information by convolutional layers and down-sampling blocks, while the decoder reconstructs target-domain images via up-sampling modules and feature fusion blocks. Critically, we integrate STFA in the encoder to aggregate features from DINOv2, significantly enhancing semantic comprehension of original image and the semantic consistency of generated images. Furthermore, we add a structured gradient alignment loss between input image and its semantic segmentation map to further enhance the semantic consistency. Fig-

Figure 4: The qualitative results of image translation and zero-shot experiments. (a) The qualitative results of image translation. Column 1 and 5 are visible images. Column 2 and 6 are infrared images. Column 3 and 7 are the translation results of PearlGAN. Column 4 and 8 are the translation results of V2I-GAN. (b) The qualitative results for zero-shot experiments, using images of optical-depth, optical-map, optical-optical, optical-SAR, PD-T1-T2 and retina (left to right). Line 1 are the results of MINIMA_{XOFTR}. Line 2 are the results of DistillMatch.

ure 4 (a) shows the image translation results. V2I-GAN's pseudo-infrared images are more like real infrared images than PearlGAN's.

3.6 SUPERVISION

The loss function of DitillMatch consists of the knowledge distillation loss in Equation (4), cross-entropy loss in Equation (5) and matching loss. The matching loss mainly consists of three parts:

Coarse-level Matching Loss: we use focus loss (FL) to supervise the matching probability matrix $P_{k \in (0,1)}$ in CMM:

$$L_c = \alpha \cdot FL(P_0, \hat{P}_0) + \beta \cdot FL(P_1, \hat{P}_1), \tag{6}$$

where \hat{P}_0 and \hat{P}_1 are the GT matching matrices for CMM. α and β are the weights for balancing.

Fine-level Matching Loss: We design the fine-level matching loss to supervise P^f in FMM:

$$L_f = \frac{1}{M_c} \sum_{(\hat{i},\hat{j}) \in M_c} FL(P_{\hat{i},\hat{j}}^f, \hat{P}_{\hat{i},\hat{j}}^f), \tag{7}$$

where $\hat{P}_{\hat{i},\hat{j}}^f$ is the GT fine-level matching matrix for $(\hat{i},\hat{j}).$

Subpixel Refinement Loss: Given predicted matches' homogeneous coordinates $(\hat{x}_{vi}, \hat{x}_{ir})$, the subpixel refinement loss is computed by symmetric polar distance function:

$$L_{sub} = \frac{1}{|M_c|} \sum_{(\hat{x}_{vi}, \hat{x}_{ir})} \left\| \hat{x}_{vi}^T E \hat{x}_{ir} \right\|^2 \left(\frac{1}{\|E^T \hat{x}_{vi}\|_{0:2}^2} + \frac{1}{\|E \hat{x}_{ir}\|_{0:2}^2} \right), \tag{8}$$

where E is the GT essential matrix from the camera pose. $\|v\|_{0:2}$ denotes the first two elements of the vector v. The total matching loss is: $L_{match} = \lambda_c L_c + \lambda_f L_f + \lambda_{sub} L_{sub}$. The overall loss is: $L_{total} = \lambda_{KD} L_{KD} + \lambda_{ce} L_{ce} + L_{match}$.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In training, we employ the MegaDepth dataset Li & Snavely (2018) as our benchmark. For data augmentation, we perform randomized adjustments to hue, saturation, and value intensities across input images, and leverage V2I-GAN to translate one image from each pair into pseudo-infrared image. Training is conducted using the AdamW optimizer with a learning rate of 6×10^{-3} , a batch size of 1, a total of 20 epochs, and 120 hours of training on 3 NVIDIA GeForce RTX 4090 GPUs. The thresholds in the matching network are set to: $\theta_c = 0.3$, $\theta_f = 0.1$. The settings in the loss function are set to: $\lambda_c = 0.5$, $\lambda_f = 0.3$, $\lambda_{sub} = 10^4$, $\lambda_s = 1$, $\lambda_{ac}^{vis} = \lambda_{ac}^{ir} = 0.25$, $\alpha = 100$, $\beta = 0.5$, $\gamma = 0.25$, $\lambda_{KD} = 0.1$, $\lambda_{ce} = 0.1$.

4.2 RELATIVE POSE ESTIMATION

Dataset and Evaluation Metrics: To evaluate the performance of DistillMatch for relative pose estimation in visible-infrared images, we test it on the METU-VisTIR dataset Tuzcuoğlu et al. (2024). DistillMatch processes the input images and generates matched point pairs. We use RANSAC Fischler & Bolles (1981) with a threshold of 3 to filter correct matching point pairs. During testing, the longer image side is set to 640 pixels to standardize sizes.

Table 1: Quantitative results of relative pose estimation in METU-VisTIR dataset, and the values to the left and right of '/' are the results for cloud-cloud and cloud-sunny scenarios respectively (bold fonts indicate the maximum values).

Method	AUC of cloud-cloud and cloud-sunny					
	@5°	$@10^{\circ}$	@20°			
SAMFeat	0.084/0.083	0.141/0.312	0.323/0.931			
SDME	0/0	0/0	0.198/0.222			
SCFeat	0.069/0.335	0.489/1.404	2.400/4.284			
SemaGlue	0.035/0.092	0.248/0.416	1.105/1.559			
LiftFeat	0.131/0.173	0.561/0.699	2.176/2.818			
DenseAffine	1.465/2.094	3.656/5.900	8.057/12.21			
MTV-LoFTR	0.086/0.220	0.391/0.6128	1.800/2.307			
JamMa	0.058/0.029	0.571/0.389	2.877/2.334			
XoFTR	18.39/9.523	33.18/22.09	48.43/36.83			
MINIMALoFTR	19.15/10.47	35.78/24.84	52.29/41.98			
MINIMAELoFTR	6.872/5.248	17.79/14.11	35.10/28.59			
$MINIMA_{XoFTR}$	22.47/10.68	38.95/25.50	55.30/43.33			
DistillMatch	23.13/12.45	41.10/26.86	58.41/44.47			

We evaluate the methods independently on cloudy-cloudy and cloudy-sunny scenarios of the dataset. We use the area under curve (AUC) at 5°, 10° and 20° thresholds as evaluation metrics, measuring the maximum angular deviation from the GT in rotation and translation. We compared DistillMatch with the following publicly available methods: SAMFeat Wu et al. (2023), SDME Zhang & Ma (2024), SCFeat Cadar et al. (2024), SemaGlue Zhang et al. (2025b), LiftFeat Liu et al. (2025), DenseAffine Sun et al. (2025), MTV-LoFTR Liu et al. (2022), JamMa Lu & Du (2025), XoFTR Tuzcuoğlu et al. (2024), MINIMA_{Loftr}, MINIMA_{ELoftr} Wang et al. (2024) and MINIMAXOFTR Ren et al. (2025).

Results: As shown in Table 1, Distill-Match achieves significantly higher AUC than other algorithms at all thresholds for the cloudy-cloudy and cloudy-sunny datasets. The performance on the cloudy-

sunny dataset is lower than on the cloudy-cloudy dataset, due to increased image feature variation from light and temperature differences, which makes matching and pose estimation more challenging. Figure 3 (a) illustrates the qualitative results.

4.3 Homography Transformation Estimation

Dataset and Evaluation Metrics: To evaluate the homography estimation performance of Distill-Match, we conducted experiments on four visible-infrared datasets covering distinct scenarios: (1) UAV remote sensing images Liu et al. (2022), (2) indoor scenes SMT/COPPE/Poli/UFRJ (2021), (3) nighttime conditions González et al. (2016), and (4) haze and mist scenes Xie & Jin (2023). We randomly generate a unique homography matrix and apply it as GT to the original image. The homography matrices include random translations of [-10%, 10%], rotations of [-20, -20], scaling of [0.8, 1.2], shear angles of [-0.1, 0.1], and perspective transformations of [-0.003, 0.003]. For UAV remote sensing dataset, we evaluate matching performance by calculating the mean reprojection error of four corner points, adopting AUC under thresholds of 3, 5 and 10 pixels. For the other datasets, AUC is computed at thresholds of 5, 10 and 20 pixels.

Results: As evidenced by Table 2 and Figure 3 (a), DistillMatch achieves significantly higher AUC values than competing methods across most thresholds on all datasets, with the performance gap widening progressively as thresholds increase. Figure 3(a) demonstrates that DistillMatch precisely aligns feature points between source and target images. This alignment preserves geometric consistency and structural integrity in transformed images despite scale variations, viewpoint distortions, and rotational changes.

4.4 ZERO-SHOT EXPERIMENTS OF UNKNOWN MODALITIES

Dataset and Evaluation Metrics: In addition to matching visible and infrared images, we also conducted zero-shot matching on several unknown modalities, including: (1) optical-SAR image pairs, (2) optical-map image pairs, (3) optical-depth image pairs Li et al. (2023), (4) pairwise combinations of PD, T1, and T2 images, (5) retina image pairs, and (6) cross-temporal image pairs Jiang et al. (2021). The evaluation metrics are: (1) Number of Correct Matches (NCM): A match is accepted as correct if its residual under the GT transformation is less than 5 pixels. (2) Root Mean Square Error (RMSE): The RMSE between the matches extracted by the algorithm and those under the GT transformation.

Table 2: Quantitative results of homography estimation in visible-infrared dataset. The best and second of each category are masked as bold and underline, respectively.

Method	UAV		Indoor		Night		Haze					
11201100	@3px	@5px	@10px	@5px	@10px	@20px	@5px	@10px	@20px	@5px	@10px	@20px
SAMFeat	3.666	10.85	24.43	0.384	0.666	1.122	0	0	0.561	0	1.462	3.710
SDME	4.327	10.85	21.13	0.309	0.639	1.090	0	0.279	1.272	0.657	0.945	2.283
SCFeat	5.799	16.68	36.43	0.328	2.406	12.97	0	0.406	6.533	0	0.922	4.929
SemaGlue	0.567	1.416	4.365	0.384	0.886	2.003	0.397	0.476	1.015	1.004	3.377	7.043
LiftFeat	8.732	24.28	45.34	0.870	2.978	11.69	0	1.644	10.49	0	1.047	6.477
DenseAffine	5.626	11.95	21.25	0	0	0	0	0.281	1.213	0	1.263	3.142
MTV-LoFTR	16.75	29.20	44.91	0.314	1.707	5.940	0	2.248	11.40	0.687	2.133	6.249
JamMa	0	0.878	8.676	0.450	6.275	19.74	0	2.965	15.57	0	1.250	2.703
XoFTR	16.93	35.88	59.33	2.755	15.62	29.66	0.363	3.152	21.17	6.214	24.66	45.43
$MINIMA_{LoFTR}$	17.32	35.01	58.40	2.867	16.63	<u>33.50</u>	0	3.026	20.84	3.606	13.83	30.43
MINIMA _{ELoFTR}	14.27	32.05	57.44	2.978	15.23	32.37	0	2.641	17.82	3.516	17.32	38.47
$MINIMA_{XoFTR}$	<u>19.58</u>	<u>37.65</u>	60.37	4.793	<u>18.44</u>	29.46	0.347	3.256	22.81	7.719	<u>26.77</u>	51.35
DistillMatch	20.53	40.12	64.62	5.257	22.94	43.33	0.466	3.585	<u>22.19</u>	9.208	28.99	<u>51.07</u>

Results: Quantitative results are shown in Figure 3 (b). Due to the large modality gap and extreme difficulty of optical-SAR image pairs, most algorithms perform poorly. Nevertheless, our Distill-Match still has advantage. On optical-map and cross-temporal image pairs, DistillMatch slightly lags behind MINIMA_{XoFTR} in terms of RMSE. However, DistillMatch achieves leading NCM across all datasets, demonstrating its robust matching capability even on unknown modalities. We attribute this primarily to the generalizable representation power of DINOv2-distilled features, and the cross-modal correlation enhancement by the CEFG. This indicates that DistillMatch possesses strong extensibility, and only needs to adapt the image translation algorithm's modality to handle diverse multimodal matching tasks. Qualitative results in Figure 4 (b) further validate that DistillMatch can establish a high quantity and proportion of correct matches on real-world multimodal image pairs.

4.5 ABLATION STUDY

To verify the effectiveness of Distill-Match's modules and data augmentation, we perform the ablation experiments in METU-VisTIR dataset with results in Table 3. SAA and CAA are the spatial and channel attention aggregation module. KD-VFM is feature extraction module based on knowledge distillation of VFM. V2I-GAN indicates data augmentation with V2I-GAN. A checkmark shows a module's presence. The first line is the result of baseline. The second and third lines directly aggregate the VFM features

Table 3: Ablation study of DistillMatch. All experiments are performed in the cloud-sunny scenarios of the METU-VisTIR dataset.

SAA	CAA	KD-VFN	1 CEFG	V2I-GAN	N AUC
					20.05/35.94/51.98
✓					21.11/37.30/52.40
\checkmark	✓				21.71/38.58/54.38
\checkmark	\checkmark	\checkmark			22.26/40.55/56.94
\checkmark	\checkmark	\checkmark	\checkmark		23.12/40.24/57.40
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	23.13/41.10/58.41

without knowledge distillation. The results show that the absence of either component degrades matching performance, underscoring their importance for cross-modal feature learning.

5 CONCLUSION

In this study, we propose a multimodal image matching method named DistillMatch. By leveraging knowledge distillation from VFM, it tackles modal differences and data scarcity. DistillMatch uses a lightweight student model to extract high-level semantic features from VFM for multimodal matching, and introduces a CEFG to retain modality-specific information and boost the model's understanding of cross-modality correlations. Moreover, to enhance the model's generalization ability, we design V2I-GAN for visible-to-infrared image translation as data augmentation. Experiments demonstrate that DistillMatch outperforms state-of-the-art algorithms on public datasets.

6 REPRODUCIBILITY STATEMENT

To support the reproducibility of our work, we have taken the following measures:

- (1) Details of our proposed algorithm are fully described in Section 3 of the main paper, with implementation details provided in Section 4.1.
- 492 (2) Anonymized source code, including training scripts and evaluation procedures, is available are available at https://anonymous.4open.science/r/DistillMatch-503A and https://anonymous.4open.science/r/V2I-GAN-E3B3.
 - (3) The meanings of the mathematical symbols used in paper are shown in Table 4 of Appendix A.1.
 - (4) All datasets used in our experiments are publicly available; The detailed pre-processing procedure has been elaborately described in the Appendix A.2.
 - (5) The configuration and details of the training can be found in Appendix A.3.

REFERENCES

- Felipe Cadar, Guilherme Potje, Renato Martins, Cédric Demonceaux, and Erickson R Nascimento. Leveraging semantic cues from foundation vision models for enhanced local feature correspondence. In *Proceedings of the Asian Conference on Computer Vision*, pp. 1268–1283, 2024.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 248–255, 2009.
- Xin Deng, Enpeng Liu, Shengxi Li, Yiping Duan, and Mai Xu. Interpretable multi-modal image registration network based on disentangled convolutional sparse coding. *IEEE Transactions on Image Processing*, 32:1078–1091, 2023.
- Xin Deng, Enpeng Liu, Chao Gao, Shengxi Li, Shuhang Gu, and Mai Xu. Cross-Homo: Cross-modality and cross-resolution homography estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(8):5725–5742, 2024.
- Yuxin Deng and Jiayi Ma. ReDFeat: Recoupling detection and description for multimodal feature learning. *IEEE Transactions on Image Processing*, 32:591–602, 2023.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, pp. 1–12, 2021.
- Johan Edstedt, Georg Bökman, Mårten Wadenbäck, and Michael Felsberg. Dedode: Detect, don't describe—describe, don't detect for local feature matching. In *Proceedings of the International Conference on 3D Vision*, pp. 148–157, 2024.
- Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. *Commun. ACM*, 24:381–395, 1981.
- Alejandro González, Zhijie Fang, Yainuvis Socarras, Joan Serrat, David Vázquez, Jiaolong Xu, and Antonio M López. Pedestrian detection at day/night time with visible and FIR cameras: A comparison. *Sensors*, 16(6):820, 2016.
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv* preprint arXiv:2312.00752, 2023.
- Zhen Han, Chaojie Mao, Zeyinzi Jiang, Yulin Pan, and Jingfeng Zhang. Stylebooth: Image style editing with multimodal instruction. *arXiv preprint arXiv:2404.12154*, 2024.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 770–778, 2016.

- Xingyi He, Hao Yu, Sida Peng, Dongli Tan, Zehong Shen, Hujun Bao, and Xiaowei Zhou. MatchAnything: Universal cross-modality image matching with large-scale pre-training. *arXiv* preprint arXiv:2501.07556, 2025.
 - Zhuolu Hou, Yuxuan Liu, and Li Zhang. POS-GIFT: A geometric and intensity-invariant feature transformation for multimodal images. *Information Fusion*, 102:102027, 2024.
 - Xingyu Jiang, Jiayi Ma, Guobao Xiao, Zhenfeng Shao, and Xiaojie Guo. A review of multimodal image matching: Methods and applications. *Information Fusion*, 73:22–71, 2021.
 - Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment Anything. In *Proceedings of the International Conference on Computer Vision*, pp. 3992–4003, 2023.
 - Huafeng Li, Dayong Su, Qing Cai, and Yafei Zhang. Bsafusion: A bidirectional stepwise feature alignment network for unaligned medical image fusion. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 4725–4733, 2025.
 - Jiayuan Li, Qingwu Hu, and Mingyao Ai. RIFT: Multi-modal image matching based on radiation-variation insensitive feature transform. *IEEE Transactions on Image Processing*, 29:3296–3310, 2019.
 - Jiayuan Li, Qingwu Hu, and Yongjun Zhang. Multimodal image matching: A scale-invariant algorithm and an open dataset. ISPRS Journal of Photogrammetry and Remote Sensing, 204:77–88, 2023.
 - Zhao-Liang Li, Hua Wu, Ning Wang, Shi Qiu, José A Sobrino, Zhengming Wan, Bo-Hui Tang, and Guangjian Yan. Land surface emissivity retrieval from satellite data. *International Journal of Remote Sensing*, 34(9-10):3084–3127, 2013.
 - Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet photos. In *Proceedings of the Computer Vision and Pattern Recognition*, pp. 2041–2050, 2018.
 - Jinyuan Liu, Zhu Liu, Guanyao Wu, Long Ma, Risheng Liu, Wei Zhong, Zhongxuan Luo, and Xin Fan. Multi-interactive feature learning and a full-time multi-modality benchmark for image fusion and segmentation. In *Proceedings of the International Conference on Computer Vision*, pp. 8081–8090, 2023.
 - Yepeng Liu, Wenpeng Lai, Zhou Zhao, Yuxuan Xiong, Jinchi Zhu, Jun Cheng, and Yongchao Xu. Liftfeat: 3d geometry-aware local feature matching. *arXiv preprint arXiv:2505.03422*, 2025.
 - Yuxiang Liu, Yu Liu, Shen Yan, Chen Chen, Jikun Zhong, Yang Peng, and Maojun Zhang. A multi-view thermal–visible image dataset for cross-spectral matching. *Remote Sensing*, 15(1): 174, 2022.
 - Yuyan Liu, Wei He, and Hongyan Zhang. GRiD: Guided refinement for detector-free multimodal image matching. *IEEE Transactions on Image Processing*, 33:5892–5906, 2024.
 - Xiaoyong Lu and Songlin Du. JamMa: Ultra-lightweight local feature matching with joint mamba. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 14934–14943, 2025.
 - Fuya Luo, Yunhan Li, Guang Zeng, Peng Peng, Gang Wang, and Yongjie Li. Thermal infrared image colorization for nighttime driving scenes with top-down guided attention. *IEEE Transactions on Intelligent Transportation Systems*, 23(9):15808–15823, 2022.
 - Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *arXiv* preprint arXiv:2304.07193, 2023.
 - Jiangwei Ren, Xingyu Jiang, Zizhuo Li, Dingkang Liang, Xin Zhou, and Xiang Bai. MINIMA: Modality invariant image matching. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 23059–23068, June 2025.

- Lukui Shi, Ruiyun Zhao, Bin Pan, Zhengxia Zou, and Zhenwei Shi. Unsupervised multimodal remote sensing image registration via domain adaptation. *IEEE Transactions on Geoscience and Remote Sensing*, 61:1–11, 2023.
 - IPqM-Instituto de Pesquisa da Marinha SMT/COPPE/Poli/UFRJ, IME-Instituto Militar de Engenharia. Visible-infrared database, 2021. URL https://www02.smt.ufrj.br/~fusion/. Accessed: 2025-06-13.
 - Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. LoFTR: Detector-free local feature matching with transformers. In *Proceedings of the Conference on Computer Vision and Pattern Recognition*, pp. 8922–8931, 2021.
 - Pengju Sun, Banglei Guan, Zhenbao Yu, Yang Shang, Qifeng Yu, and Daniel Barath. Learning affine correspondences by integrating geometric constraints. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 27038–27048, 2025.
 - Linfeng Tang, Jiteng Yuan, Hao Zhang, Xingyu Jiang, and Jiayi Ma. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware. *Information Fusion*, 83: 79–92, 2022.
 - Önder Tuzcuoğlu, Aybora Köksal, Buğra Sofu, Sinan Kalkan, and A Aydin Alatan. XoFTR: Crossmodal feature matching transformer. In *Proceedings of the Conference on Computer Vision and Pattern Recognition*, pp. 4275–4286, 2024.
 - Yifan Wang, Xingyi He, Sida Peng, Dongli Tan, and Xiaowei Zhou. Efficient loftr: Semi-dense local feature matching with sparse-like speed. In *Proceedings of the Conference on Computer Vision and Pattern Recognition*, pp. 21666–21675, 2024.
 - Jingqian Wu, Rongtao Xu, Zach Wood-Doughty, Changwei Wang, Shibiao Xu, and Edmund Y Lam. Segment anything model is a good teacher for local feature learning. *arXiv preprint* arXiv:2309.16992, 2023.
 - Yun Xiao, Chunlei Zhang, Yuan Chen, Bo Jiang, and Jin Tang. ADRNet: Affine and deformable registration networks for multimodal remote sensing images. *IEEE Transactions on Geoscience and Remote Sensing*, 62:1–13, 2024.
 - Jiayu Xie and Xin Jin. Thermal infrared guided color image dehazing. In *Proceedings of the International Conference on Image Processing*, pp. 2465–2469, 2023.
 - Fei Xue, Ignas Budvytis, and Roberto Cipolla. Sfd2: Semantic-guided feature detection and description. In *Proceedings of the Conference on Computer Vision and Pattern Recognition*, pp. 5206–5216, 2023.
 - Fei Xue, Sven Elflein, Laura Leal-Taixé, and Qunjie Zhou. MATCHA: Towards matching anything. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 27081–27091, 2025.
 - Ismail Can Yagmur, Hasan F Ates, and Bahadir K Gunturk. Xpoint: A self-supervised visual-state-space based architecture for multispectral image registration. *arXiv preprint arXiv:2411.07430*, 2024.
 - Kaining Zhang and Jiayi Ma. Sparse-to-dense multimodal image registration via multi-task learning. In *Proceedings of the 41st International Conference on Machine Learning*, number 2458, pp. 59490 59504, 2024.
 - Shihua Zhang, Zizhuo Li, Kaining Zhang, Yifan Lu, Yuxin Deng, Linfeng Tang, Xingyu Jiang, and Jiayi Ma. Deep learning reforms image matching: A survey and outlook. *arXiv preprint arXiv:2506.04619*, 2025a.
 - Shihua Zhang, Zhenjie Zhu, Zizhuo Li, Tao Lu, and Jiayi Ma. Matching while perceiving: Enhance image feature matching with applicable semantic amalgamation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 10094–10102, 2025b.

Yesheng Zhang and Xu Zhao. MESA: Matching everything by segmenting anything. In *Proceedings of the Conference on Computer Vision and Pattern Recognition*, pp. 20217–20226, 2024.

Kaichen Zhou, Changhao Chen, Bing Wang, Muhamad Risqi U Saputra, Niki Trigoni, and Andrew Markham. Vmloc: Variational fusion for learning-based multimodal camera localization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6165–6173, 2021.

Shili Zhou, Weimin Tan, and Bo Yan. Promoting single-modal optical flow network for diverse cross-modal flow estimation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 3562–3570, 2022.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In *Proceedings of the International Conference on Computer Vision*, pp. 2223–2232, 2017.

A APPENDIX

A.1 LIST OF MATHEMATICAL SYMBOLS

The meanings of the mathematical symbols used in the article are shown in Table 4.

1/0 1/4 1/0	
$F_{Res}^{1/2}, F_{Res}^{1/4} and F_{Res}^{1/8}$	Features processed by ResNet at $1/2$, $1/4$ and $1/8$ resolution.
F_{DINO}	Features processed by DINOv2
F_{stu}	The refined features output by the student model
F_{tea}	The features output by the teacher model, and $F_{tea} = F_{DINO}$
$F_{vis/ir}^s$	The shallow features output by Restormer
$F^s_{vis/ir} \ \widehat{\widehat{f}}^{clc}_{vis/ir}$	The feature output by modality category representation heads
$\widetilde{F}_{vis/ir}$	The category-enhanced features
$\widetilde{F}_{Res}^{1/8} \ F_{T}^{CAA}$	The enhanced texture features
F_T^{CAA}	The features after alignment in the channel dimension
F_T^{SAA}	The features after spatial dimension alignment
F_T^{STFA}	The features output by STFA module.
S	The similarity matrix between $\{F_{vis}^{1/8}, F_{ir}^{1/8}\}$
$P_{k \in (0,1)}, P^f$	The coarse-level and fine-level matching probability matrix
M_c, M_f	The final coarse-level and fine-level matching set
S^f	The similarity matrix between $\{\hat{f}_{vis}^{5\times5}, \hat{f}_{ir}^{5\times5}\}$
$ heta_c, heta_f$	The threshold for coarse-level and fine-level matching
$\{\delta_{vis},\delta_{ir}\}$	The local subpixel offsets for each match
C_*, \hat{C}_*	(\hat{i},\hat{j}) coordinates before and after subpixel refinement

Table 4: List of Symbols.

A.2 DATASET SETUP

Two parts of data are needed for training and testing DistillMatch, the original dataset, i.e., MegaDepth and METU-VisTIR, and the offline generated dataset indices. The dataset indices store scenes, image pairs, and other metadata within each dataset used for training. We use depth maps provided in the original MegaDepth dataset as well as undistorted images, corresponding camera intrinsics and extrinsics preprocessed by D2-Net. During the training phase, we use V2I-GAN to randomly perform image translation on one of the images in the image pair.

A.3 TRAINING CONFIGURATION AND DETAILS

The knowledge distillation and matching process training of DistillMatch are carried out simultaneously, without any pre-training and fine-tuning steps. This online distillation method is beneficial for learning features in DINOv2 that are more suitable for multimodal image matching. Detailed training environment details and configurations can be found at: https://anonymous.4open.science/r/DistillMatch-503A/requirements.txt and https://anonymous.4open.science/r/DistillMatch-503A/environment.yaml.